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DENSITY-1-BOUNDING AND QUASIMINIMALITY
IN THE GENERIC DEGREES

PETER CHOLAKANDGREGORY IGUSA

Abstract. We consider the question “Is every nonzero generic degree a density-1-bounding generic
degree?” By previous results [8] either resolution of this question would answer an open question concerning
the structure of the generic degrees: A positive result would prove that there are nominimal generic degrees,
and a negative result would prove that there exist minimal pairs in the generic degrees.
We consider several techniques for showing that the answer might be positive, and use those techniques

to prove that a wide class of assumptions is sufficient to prove density-1-bounding.
We also consider a historic difficulty in constructing a potential counterexample: By previous results [7]

any generic degree that is not density-1-bounding must be quasiminimal, so in particular, any construction
of a non-density-1-bounding generic degree must use a method that is able to construct a quasiminimal
generic degree. However, all previously known examples of quasiminimal sets are also density-1, and so
trivially density-1-bounding. We provide several examples of non-density-1 sets that are quasiminimal.
Using cofinite and mod-finite reducibility, we extend our results to the uniform coarse degrees, and to

the nonuniform generic degrees. We define all of the above terms, and we provide independent motivation
for the study of each of them.
Combined with a concurrently written paper of Hirschfeldt, Jockusch, Kuyper, and Schupp [4], this

paper provides a characterization of the level of randomness required to ensure quasiminimality in the
uniform and nonuniform coarse and generic degrees.

§1. Introduction. Generic computability was introduced by Kapovich,
Miasnikov, Schupp, and Shpilrain [10] as a computability-theoretic analogue of the
real-world phenomenon in which a problem is apparently much easier to solve than
would be suggested by complexity theory. The idea of generic-case complexity is to
measure the complexity of the majority of instances of a problem, while disregard-
ing “difficult” instances if they are sufficiently uncommon. Generic computability
as well as coarse computability, a similarly defined notion, were later studied by
Jockusch and Schupp [9] in the framework of the theory of computability theory.
In generic and coarse computability, we think of a real A that we are trying to
compute as the problem, and the bits of A as the instances of the problem. The
goal, then, is to compute the majority of the bits of A. In generic computability,
we are not allowed to make any mistakes, but we are allowed to not always give
answers. In coarse computability, we must give answers everywhere, but we are
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allowed to make some mistakes. Coarse computability can be thought of as the
analogue of algorithms that take shortcuts, sacrificing accuracy for speed, while
generic computability is the analogue of completely accurate algorithms that run
very quickly inmost cases, butmore slowly or perhaps not at all in others. Following
the notation of Jockusch and Schupp [9], we make this precise as follows.

Definition 1.1. Let A ⊆ �. Then A is density-1 if the limit of the densities of its
initial segments is 1, or in other words, if limn→∞

|A∩n|
n = 1.

In this paper a real A is thought of either as a subset of �, or as a function
A : � → {0, 1}. In situations where it will not cause confusion, the two notations
will be used interchangably, so n ∈ Ameans the same thing asA(n) = 1, and n /∈ A
means the same thing as A(n) = 0.

Definition 1.2. A partial computation of a real A is a partial computation φ
(potentially with an oracle) such that for any n, if φ(n) ↓, then φ(n) = A(n).
Definition 1.3. A real A is generically computable if there exists a partial com-
putable function φ such that dom(φ) is density-1, and φ is a partial computation
of A.

Definition 1.4. A realA is coarsely computable if there exists a total computable
function φ, whose range is contained in {0, 1} such that {n |φ(n) = A(n)} is
density-1.

In order to obtain degree structures for these,weneed tomake sure that our notion
of relative computability is transitive, or in other words, that if X ≤ Y ≤ Z, then
X ≤ Z. The outputs of our “computations” are generic and coarse descriptions of
our reals, and so the inputs of our computations should also be generic and coarse
descriptions. This is fairly straightforward to define for coarse reducibility.

Definition 1.5. Let A and B be reals. Then B is (uniformly) coarsely reducible
to A if there exists a Turing functional φ such that for any C for which {n : A(n) =
C (n)} is density-1, φC is a coarse computation of B. In this case, we write B ≤c A.
In nonuniform coarse reducibility, the functional φ is allowed to depend on C .
There is no major reason to prefer the uniform or nonuniform reducibilities,
although it appears that for coarse reducibility, the nonuniform version is slightly
easier to work with, while for generic reducibility, the uniform version is slightly
easier to work with. This paper is primarily focused on generic reducibility, but will
occasionally derive conclusions about (uniform) coarse reducibility from arguments
concerning (uniform) generic reducibility, and so in this paper, unless specifically
specified otherwise, all reducibilities are assumed to be uniform.
Generic reducibility is somewhat more difficult to define than coarse reducibility,
because to define generic reducibility, we are forced to discuss what it means to use
a partial computation as an oracle in a computation. Our generic computations
are not even required to tell us whether or not they will give an output on a given
value, and so our generic computations must be able to work with oracles that
also do not tell them which outputs they will give. For this reason, we first define
partial oracles, and discuss what it means for a Turing functional to work with a
partial oracle.
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§2. Partial oracles. We wish to define computations with partial oracles so that
the following happens: We must be able to ask questions of our oracles and make
decisions based on the outputs. Second, we must be able to avoid being paralyzed
when an oracle does not give outputs, and we must also not be able to know
whether or not the oracle will give an output in the future, if it has not yet given
an output. We may formalize this either with time delays built in to our oracles, or
with enumeration operators, which are designed to be blind to exactly the sorts of
information that we do not wish to be able to use.
For uniform reducibilities, these are equivalent in terms of what is reducible to
what, althoughnot necessarily in terms of the actual procedures [7]. For nonuniform
reducibilities, it is not knownwhether or not the twoways to approachpartial oracles
are equivalent. In this paper, we present the reducibility in terms of time-dependent
oracles.

Definition 2.1. Let A be a real. Then a (time-dependent) partial oracle, (A), for
A is a set of ordered triples 〈n, x, l〉 such that:
n ∈ �, x ∈ 2, l ∈ �.
∃l(〈n, 0, l〉 ∈ (A)) =⇒ n /∈ A.
∃l(〈n, 1, l〉 ∈ (A)) =⇒ n ∈ A.
For every n, x, there exists at most one l such that 〈n, x, l〉 ∈ (A).
When using such an oracle, querying whether or not n ∈ A consists of initiating a
search for some value of l such that either 〈n, 0, l〉 ∈ (A), or 〈n, 1, l〉 ∈ (A). If there
exists such an l , we say that (A)(n) converges, or that (A)(n) ↓. The domain of (A),
written dom((A)), is the set of n for which there exists such an l . If 〈n, x, l〉 ∈ (A),
then we write that (A)(n) = x. Other computations, processes, and queries may be
carried out while searching for such an l . When working with reducibilities that use
partial oracles, we will frequently abuse notation and refer toA as the partial oracle
for A that converges immediately on all inputs.
In previous work [3,7,8], the second author omitted the uniqueness requirement
on l . Including this convention does not change any reducibilities thatwewill define,
and it will be convenient to us in Section 6, as it will ensure that for any n, (A) � n
must always be computable.

Definition 2.2. Let A be a real. Then a generic oracle, (A), for A is a partial
oracle for A such that dom((A)) is density-1.

Note that a generic computation of A is the same thing as a computation of a
generic oracle for A.

Definition 2.3. LetA andB be reals. Then B is (uniformly) generically reducible
to A if there exists a Turing functional φ such that for every generic oracle, (A), for
A, φ(A) is a generic computation of B. In this case, we write B ≤g A.
Whenworkingwith partial oracles in a contextwhere (1)mistakes are not allowed
to be made, and (2) one must act uniformly, it can be shown that no advantage
can be gained by actively using the time dependence of the partial oracles (see
Observation 2.9). It is frequently much more convenient to work only with Turing
functionals which ignore the time dependence of their partial oracles, and in this
paper, we will later be assuming that all Turing functionals are of that form.
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Those familiar with enumeration reductionwill see thatwhatwe define below is an
enumeration operator on the graph of the partial function given by a partial oracle.

Definition 2.4. Let φ be a Turing functional. Then the time-independent version
of φ is the (potentially multi-valued) functional � such that if X is any partial
oracle, then �X (n) is defined by considering all partial oracles Y whose domains
are finite subsets of dom(X ), and which agree with X on their domains, and giving
every output that φY (n) would give on any of those partial oracles Y .
We refer to a � defined in this way as a time-independent Turing functional.

Note that this process can be carried out effectively. There are countably many
finite partial oracles agreeing with X , and they can be enumerated effectively in
X . The computations of φY (n) can be carried out in parallel. Thus if � is a time-
independent Turing functional, then for a partial oracle X , the outputs of �X are
Σ0,X1 in much the same way that the outputs of φX are Σ0,X1 for an ordinary Turing
functional φ and oracle and X .
In the remark after Theorem 3.6 we will see why multi-valued functionals are
necessary for our purposes.
We now prove some basic facts concerning partial oracles and time-independent
functionals. Our first observation is a justification of why these are referred to as
time-independent.

Observation 2.5. Assume φ is a time-independent functional. Let X and Y be
partial oracles that have the same domains and agree on their domains. (So they agree
as partial functions, although perhaps with different l values at the locations where
they converge.) Then φX = φY as a (potentially partial, potentially multi-valued )
function.

Note that this justifies the abuse of notation in which A is the partial oracle that
halts everywhere. Every oracle for A that halts everywhere gives the same outputs
when given to a time-independent functional, and so it does not matter which
specific one we use.

Proof. The definition of a time-independent functional specifically ensures that
φX depends only on X as a partial function. �
This next observation is the primary reason that we will use time-independent
functionals.One important use of the following observation is that if we are checking
whether A ≤g B via φ, if we check that φB never makes any mistakes aboutA, then
it also ensures that for every partial oracle (B) for B, φ(B) also never makes any
mistakes about A.

Observation 2.6. Assume φ is a time-independent functional. Let X and Y be
partial oracles such that dom(Y ) ⊆ dom(X ), and such that Y agrees with X on its
domain. Then if φY (n) = x, then φX (n) = x.

Note that time-independent functionals are sometimes multivalued, and so it is
possible thatφX (n) hasmore than one value and thatφY does not. This observation
simply notes that a “larger” oracle must cause the functional to give more outputs.

Proof. Assume that φ is the time-independent version of �. Assume that
φY (n) = x. This is because, at some finite stage, we see a finite partial oracleZ agree-
ing with Y on its domain, such that �Z(n) = x. We have that dom(Y ) ⊆ dom(X ),
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and that Y agrees with X on its domain. Therefore, at some stage, we will see that
Z is a partial oracle that agrees with X on its domain, and at that stage, we will
begin computing �Z(n). �
The following two observations will justify us in only using time-independent
functionals, so that the aforementioned conveniences will be available to us.

Observation 2.7. Let A and B be reals. Assume that B ≤g A via φ. Then for any
n, x, and for any partial oracle (A) for A, if φ(A)(n) = x, then B(n) = x.
In particular, given any X and Y , if φY is multi-valued, then it cannot be the case
that X ≤g Y via φ.
Remark 2.8. The second part of the observation is particularly useful in that
it allows us to make conclusions about whether or not X ≤g Y via φ without
knowing X . This is similar to the fact that in ordinary Turing computation, if φY is
not total, then (without knowingX , one knows that) it is not the case thatX ≤T Y
via φ. It is also similar to the fact that if one sees that for every Z, there is some n
such that φZ(n) �= X (n), then (without knowing Y , one knows that) it is not the
case thatX ≤T Y via φ. These sorts of observations are helpful in, for example, the
classical construction of a real of minimal Turing degree.

Proof. By definition of generic reduction, we have that, for any generic oracle
(A) for A, if φ(A)(n) = x, then B(n) = x. Furthermore, given any partial oracle
(A) for A, any initial segment of (A) can be extended to a generic oracle for A by
adding more outputs at values not yet queried (or with l values larger than have yet
been checked). That generic oracle would not be able to have given any incorrect
outputs aboutB, and so there can be no finite stage at which φ(A) gives any incorrect
outputs about B.
It cannot be the case that X (n) has more than one value, and so if φ(Y )(n) has
more than one value, then the conclusion of the first part of the observation does
not hold. �
Observation 2.9. Let A and B be reals. Assume that B ≤g A via φ. Then B ≤g A
via the time-independent version of φ.

Proof. Assume that B ≤g A via φ. Let � be the time-independent version of φ.
Let (A) be any generic oracle for A. If φ(A)(n) ↓, then it halts having queried only
finitely much of (A). Let Y be the finite partial oracle that agrees with that portion
of (A), and that does not halt anywhere else. Then φY (n) ↓, and so as a result,
we have that �(A)(n) ↓. Thus dom(φ(A)) ⊆ dom(�(A)) and because dom(φ(A)) is
density-1, we also have that dom(�(A)) is density-1.
Furthermore, every partial oracle that agrees with (A) is a partial oracle for A,
so by Observation 2.7, we have that if �(A)(n) = x, then B(n) = x. Therefore �(A)

never gives any incorrect outputs about B, and so �(A) is a generic computation
of B. �

§3. Relationships between degree structures. The Turing degrees embed both into
the coarse and into the generic degrees [3,4,9]. These embeddings factor through the
mod-finite and cofinite degrees, respectively [3]. These additional degree structures
will be useful in terms of analyzing the embedded Turing degrees, as there are a
number of lemmas making them convenient and relevant.
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Definition 3.1. Let A and B be reals. Then B is mod-finitely reducible to A if
there exists a Turing functional φ such that for anyC ≡ A (mod finite), φC is total,
and computes a set that is ≡ B (mod finite). In this case, we write B ≤mf A.
Definition 3.2. Let A be a real. Then a cofinite oracle, (A), for A is a partial
oracle for A such that dom((A)) is cofinite.

Definition 3.3. Let A and B be reals. Then B is cofinitely reducible to A if there
exists a Turing functional φ such that for every cofinite oracle, (A), for A, φ(A) is a
partial computation of B with cofinite domain. In this case, we write B ≤cf A.
Note that all the results from the previous section concerning time-independent
functionals in generic reduction apply equally well when working with cofinite
reduction.
Note also that cofinitely or mod-finitely computing a real is traditionally equiv-
alent to computing the real, since the finite error can be directly coded into the
machine. The difference here comes from the demand that the reduction is uniform,
a single reduction that works over all potential oracles. The implications between
these two reducibilities and Turing reducibility are as follows.

Theorem 3.4 (Dzhafarov, Igusa). B ≤mf A ⇒ B ≤cf A ⇒ B ≤T A, and all of
the implications are strict.

The embeddings between the Turing, generic, coarse, cofinite, and mod-finite
degrees can be induced by the following maps on reals.

Definition 3.5. If X ⊆ �, then R(X ) = {(2m + 1)2n : m ∈ �, n ∈ X}.
If X ⊆ �, then R̃(X ) = {m : (∃n ∈ X )(2n ≤ m < 2n+1)}.
The idea behindR is that each bit ofX is coded redundantly over infinitely many
bits ofR(X ) (in fact, positive density many bits). On the other hand, for R̃, each bit
of X is coded into progressively larger and larger (finite) initial segments of R̃(X ).
These maps induce embeddings as follows.

Theorem 3.6 (Dzhafarov, Igusa [3]). The map X �→ R(X ) induces an embedding
of the Turing degrees into either the mod-finite or cofinite degrees.
The mapX �→ R̃(X ) induces an embedding of themod-finite degrees into the coarse
degrees or of the cofinite degrees into the generic degrees.
Symbolically, we have that for any reals A and B:
(B ≤T A)⇔ (R(B) ≤mf R(A))⇔ (R(B) ≤cf R(A)).
(B ≤mf A)⇔ (R̃(B) ≤c R̃(A)).
(B ≤cf A)⇔ (R̃(B) ≤g R̃(A)).
We describe the idea behind the embedding of the cofinite degrees into the generic
degrees. The embeddings of the mod-finite degrees into the coarse degrees and of
the Turing degrees into the cofinite degrees are similar, although the embedding
of the Turing degrees into the mod-finite degrees is somewhat more subtle. See
Proposition 3.3 and Lemma 3.4 from [3] for a more thorough explanation.
In essence, a generic oracle for R̃(X ) has precisely the same information in it as
a cofinite oracle for X . This is because for cofinitely many n, there must be some m
between 2n and 2n + 1 in the domain of a generic oracle, or else its domain cannot
be density-1. Conversely, a cofinite oracle for X can compute a cofinite (and hence
generic) oracle for R̃(X ). The embedding of the mod-finite degrees into the coarse
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degrees is by a voting algorithm that must eventually give correct answers, and the
embedding of the Turing degrees into the cofinite degrees is by an unbounded search
that must eventually halt for every n.

Remark 3.7. The algorithm described above illustrates the reason that time-
independent functionals are by their nature potentially multivalued. If we were to
use the functional described above for computingX from a generic oracle for R̃(X ),
but if we were to give, as input, a real Y that was not in the range of R̃, then there
would be intervals [2n, 2n + 1) on which the oracle gave more than one different
output, and so our algorithm would also give more than one different output on
those values of n.
If we did not demand that our algorithms were time-independent, then we could
give the first output that we saw from our oracle, but then our output would depend
on the order in which our oracle gave its outputs.

Using Theorem 3.6, we may embed the Turing degrees into any of the other four
degree structures discussed in this section. In any of these degree structures, we
define a real to be “quasiminimal” if it is nonzero, but is not an upper bound for
any embedded Turing degrees.

Definition 3.8. Let A be a real, and let ≤ be any of: ≤c,≤g,≤mf ,≤cf .
Then A is quasiminimal in the ≤ degrees if A � 0, and if, for every B, if B �T 0,
then,

• (if ≤ is either ≤c or ≤g) R̃(R(B)) � A,
• (if ≤ is either ≤mf or ≤cf )R(B) � A.
In these degree structures, a degree is quasiminimal if any (equivalently all) of its
elements are quasiminimal.

In the next section, we will see additional motivation as to what makes quasimin-
imality interesting, but the basic idea is that a quasiminimal degree is a degree that,
on one hand is not computable, but on the other hand, does not contain any actual
information, in that there are no noncomputable reals that it can compute.
The implication in Theorem 3.4 allows quasiminimality to propagate in a
surprisingly robust manner.

Proposition 3.9. Assume A is quasiminimal in the cofinite degrees. Then A is
quasiminimal in the mod-finite, generic, and coarse degrees.

Proof. Let A be quasiminimal in the cofinite degrees, and let B be noncom-
putable in the Turing degrees.
By definition of quasiminimality, R(B) �cf A. By Theorem 3.4, we therefore
have thatR(B) �mf A. Thus for any noncomputable B, we have thatR(B) �mf A,
and so A is quasiminimal in the mod-finite degrees.
Using Theorem 3.6 and the above two statements, we have that R̃(R(B)) � R̃(A)
in either the generic or coarse degrees, so it remains to show thatA ≤ R̃(A) in both
the coarse and generic degrees, because then the fact that R̃(R(B)) � R̃(A) will
also show that R̃(R(B)) � A.
This last fact follows from the idea behind the proof of Theorem 3.6, mentioned
in this paper under the statement of the theorem. A generic oracle for R̃(A) contains
enough information to cofinitely (and hence generically) compute A in a uniform
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manner. Likewise a coarse oracle for R̃(A) contains enough information to mod-
finitely (and hence coarsely) compute A, again uniformly. �

§4. Quasiminimality and density-1 bounding. The results in this paper are
motivated in large part by the following question, posed by the second author
as Question 3 in [8].
Question 4.1. Is it true that for every nonzero generic degree a there exists a
nonzero generic degree b such that b ≤g a and such that b is the generic degree of a
density-1 real?
The resolution of this question would provide insight into the structure of the
generic degrees: If the answer is “yes,” then there are no minimal generic degrees,
and if the answer is “no,” then there are minimal pairs in the generic degrees [8].
Also, the question can be rephrased as a question about the relationship between
generic computability and coarse computability: We see below that a generic degree
is the degree of a density-1 real if and only if it is the generic degree of a coarsely
computable real, so the question is about how ubiquitous the coarsely computable
reals are at the bottom of the generic degrees.
Observation 4.2. Let B be a real, then B is coarsely computable if and only if the
generic degree of B has a density-1 set.
Proof. If B is density-1, then B is coarsely computable because it agrees with N
on a set of density 1.
Conversely, if B is coarsely computable, then fix a computable X such that B
agrees with X on a set of density 1. Let Y = {n : X (n) = B(n)}. Then Y ≤g B
because X is computable, and any generic oracle for B can enumerate a density-1
set of locations where it agrees with X . Likewise, B ≤g Y because again, X is
computable, and any generic oracle forY can enumerate a density-1 set of locations
where X is correct about B, and then output the values of X on those locations. �
To help us study Question 4.1, we introduce the following terminology.

Definition 4.3. A generic degree a is density-1-bounding if there is a nonzero
generic degree b such that b ≤g a and such that b is the generic degree of a
density-1 real.
A real A is density-1-bounding if it is of density-1-bounding generic degree.

In prior work, the second author showed that every noncomputable real can
generically compute a density-1 real that is not generically computable [7]. In our
context, this can be rephrased as saying that every nonzero embedded Turing degree
is density-1-bounding in the generic degrees. In particular, this implies the following.
Proposition 4.4 ([7]). If b is not quasiminimal, then b is density-1-bounding.
We will reprove this proposition in this paper, as the proof can be modified to
prove slightly more. One of the important consequences of this proposition, how-
ever, is that any attempt to construct a b that is not density-1-bounding must be a
construction that is capableof producing aquasiminimala.Unfortunately, currently,
every example of a construction of a quasiminimal real A constructs A to be both
quasiminimal, and also density-1, and therefore trivially density-1-bounding.
To help us understand quasiminimality, and therefore what sorts of constructions
might potentially be able to produce sets that are not density-1 bounding,we provide
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several examples of quasiminimal sets that are not density-1. We also prove that all
of the sets we construct are density-1-bounding, and prove that a few additional
sorts of sets are density-1-bounding. This can be taken as evidence toward the
answer to Question 4.1 being “yes.”
In the remainder of this section, we prove Proposition 4.4, and we modify the
proof to show that if a is an embedded cofinite degree, then it is density-1-bounding,
and also to show a rather curious result linking non-density-1-boundingwith all Π01-
basis theorems. In the next section, we show that 1-generics and 1-randoms are both
quasiminimal in the generic degrees, and also that they are density-1-bounding.
For the constructions in the rest of this section, we will use the following notation.

Definition 4.5. Let Pi = [2i , 2i+1). Let X ⊆ �.
If e ≤ i , say that X has a gap of size 2−e at Pi if |X ∩ Pi | ≤ 2i − 2i−e .
The following lemma illustrates the control that these Pi give over a construction
that uses them.

Lemma 4.6. Let X ⊆ �.
Then X is density-1 if and only if for every e, there are at most finitely many i ≥ e
such that X has a gap of size 2−e at Pi .

This is a slight strengthening of Lemma 2.3 from [7], which required that the gaps
be at the ends of the Pi . We will require this lemma in the generality just stated later
in this section.

Proof. If X has a gap of size 2−e at Pi then, because each Pi contains half the
elements of � up to the end of Pi ,

|X�2i+1|
2i+1 ≤ 1 − 2−e−1. If, for a single value of e,

this happens infinitely often, then X is not density-1.
Conversely, assume that for every e, there are finitely many i such that X has
a gap of size 2−e at Pi . Let ε > 0. We must show that there is an m such that
∀n ≥ m

(
|X�n|
n > 1− ε

)
. Choose e ∈ � such that (1 − 3 · 2−e) > 1 − ε. Fix j such

that for ∀i > j, X does not have a gap of size 2−e at Pi . Let m = 2j+e+1. Then we
claim that for n ≥ m, |X�n|n > 1− ε.
The reason for this is that for n ≥ m, the smallest value that |X�n|n could possibly
take is at the beginning of some Pk , after omitting the largest number of elements
that can be omitted from Pk without causing X to have a gap of size 2−e at Pk .
If this happens, then the elements missing from X � n can, at most, consist of:
these elements from the beginning of Pk , all of the elements less than 2j+1, and the
elementsmissing from thePi for j < i < k. The first elements are atmost n2−e many
elements because the number of elements of Pk is at most n. The second elements
are at most n2−e many elements because they are at most 2j+1 many elements, and
n ≥ 2j+e+1. The last elements are at most n2−e many elements because, for each i
between j and k, X does not have a gap of size 2−e at Pi .
Thus, there are at most 3n2−e elements missing from X � n, and so |X�n|

n >
(1− 3 · 2−e) > 1− ε. �
Proof (Proposition 4.4). We define a pair of functionals, φ, � such that for any
real X , if X is not left c.e. (not the leftmost path of any computable tree) then φX is
an enumeration of a density-1 set with no density-1 c.e. subset, and if X is not right
c.e. (not the rightmost path of any computable tree) then�X is an enumeration of a
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density-1 set with no density-1 c.e. subset. This will suffice to prove Proposition 4.4
as follows.
Let a be a generic degree that is not quasiminimal, and letA have generic degree a.
By definition of quasiminimality, fix X0 noncomputable such that R̃(R(X0)) ≤g A.
Because X0 is noncomputable, X0 must be either not left c.e. or not right c.e. By
symmetry, assume X0 is not left c.e. Let B the set enumerated by φX0 , and let
b be the generic degree of B. By construction of φ, B is density-1. Furthermore
b ≤g a because any generic oracle forA can generically compute R̃(R(X0)), and this
generic computation can uniformly be used to computeX0, and hence to enumerate
B. This enumeration is a generic computation of B because it halts on density-1,
and it is correct about B wherever it halts. Finally, B is not generically computable
because it has no density-1 c.e. subset, and if there were a generic computation of
B, then the set of n where that computation halted and outputted a 1 would be a
density-1 c.e. set. (Density-1 because it is the intersection of two density-1 sets, c.e.
because halting and outputting a 1 is a Σ1 condition.)
We construct φ as follows. � will be constructed symmetrically. For each e, we
will have an eth strategy, which will act to ensure that if the eth c.e. set We has
density 1, then We is not a subset of φX for any X ∈ 2� . In doing so, there will
be at most one X = Xe ∈ 2� such that the strategy prevents φXe from enumer-
ating a density-1 set, and that Xe will be left c.e. Lemma 4.6 will then be used to
ensure that the only reals X such that φX is not density-1 are the Xe from these
strategies.
We define φ using the subintervals Pi from Definition 4.5. At stage s , we simul-
taneously define φX on Ps for every X ∈ 2� . Note that because φX enumerates
its elements in increasing order, the set enumerated by φX is actually uniformly
computable from X , not just uniformly generically computable from X , although
this is not relevant for our purposes.
At stage s , for each e < s , the eth strategy acts as follows. Consider the tree
Te,s whose paths are the reals X such that the numbers less than 2s enumerated by
φX are a superset of the numbers less than 2e enumerated by We by stage s . The
reals X not on Te,s are the reals that have already “beaten” We , in that We has
enumerated an element that they will never enumerate, and so the eth strategy will
never need to work with those X again. If Te,s has no paths, then the eth strategy
has accomplished its task, and so it does nothing.
If Te,s has a path, then the eth strategy places a “marker” pe,s on the shortest
unmarked node of the leftmost path of Te,s . Here, an unmarked node is a node
such that the eth strategy has not yet placed a marker on that node, regardless of
whether or not other strategies have marked that node. When it places the marker
pe,s on the node �, it declares that for every X � �, φX must have a gap of size 2−e
at Ps . Specifically, the strategy requires that the last 2s−e elements of Ps are not in
φX . The strategy makes no other requirements for φX if X � �.
To define φX � Ps for any given X , we simply enumerate every element of Ps that
no strategy requires us to not enumerate.
We now prove that this construction has the desired properties.
First we show that for every e, and for everyX ∈ 2�,We is not a density-1 subset
of φX . Let e be given. Either there is some s such that Te,s has no paths, or for every
s , Te,s has at least one path.
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In the first case we have that for every X , We has enumerated a number not
enumerated by φX , and so for every X ,We cannot possibly be a density-1 subset of
the set enumerated by φX .
In the second case, let Te =

⋂
s Te,s , and let Xe be the leftmost path of Te . Note

that for every � ≺ Xe , there is some s such that � has the marker pe,s . This is
because every � to the left of that � eventually is removed from some Te,s , and once
all of those � are removed, after at most |�|many more steps, � must have a marker
placed on it by the eth strategy.
All of these � are in Te , and so, in particular, there are infinitely many nodes in
Te with markers placed by the eth strategy. Therefore there are infinitely many s for
which We has a gap of size 2−e at Ps , because if We ever enumerates an element
from the last 2s−e many elements of Ps , then at that stage s ′, every X extending the
node marked with pe,s will be removed from Te,s′ . Thus, each marker on a � ∈ T
corresponds to a gap of size 2−e in We . Therefore We is not an enumeration of a
density-1 set, and in particular, not an enumeration of a density-1 subset of the set
enumerated by φX for any X .
Next we show that if X is not left c.e., then φX is an enumeration of a
density-1 set.
Each Xe , if it is defined, is left c.e. because it is the leftmost path of a Π01 tree, and
because for every Π01 tree, there is a computable tree having the same infinite paths.
It remains to show that if X is not equal to any of the Xe , then φX enumerates a
density-1 set. To show this, we show that for every e, if Xe is not defined, or if X is
not equal to Xe , then only finitely many markers are placed on initial segments of
X by strategy e. This will show that for every e, φX has finitely many gaps of size
2−e , and so by Lemma 4.6, φX is density-1.
So, fix e, assume Xe is defined, and assume X �= Xe . If X is to the left of Xe ,
then at some stage s , X was removed from Te,s , and after that stage, X stopped
receiving new markers from strategy e. No marker ever gets placed to the right of
Xe by strategy e, so if X is to the right of Xe , then the only markers from strategy
e on X are those placed on � that are initial segments of both X and Xe , of which
there are at most finitely many. If Xe is not defined, it is because there is some
stage at which strategy e stops acting, and so strategy e uses at most finitely many
markers, so in particular, each X can receive at most finitely many markers from
strategy e.
Thus, if X is not equal to any of the Xe , then for every e only finitely many
markers are placed on initial segments of X by strategy e, so φX is density-1.
To construct �, we do the same construction but using rightmost paths instead
of leftmost paths. �
We now modify the proof to prove a stronger result.

Proposition 4.7. Assume A is noncomputable. Then R̃(A) is density-1-bounding
in the generic degrees.

Proposition 4.4 says that embedded noncomputable Turing degrees are density-
1-bounding, while Proposition 4.7 says that embedded noncomputable cofinite
degrees are density-1-bounding. In the next section,wewill demonstrate examples of
quasiminimal cofinite degrees, which, in particular, embed into the generic degrees
as quasiminimal, andhence this proposition is strictly stronger thanProposition 4.4.
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Proof. Assume A is noncomputable, and further assume that A is not left c.e.
Let φ be the functional φ from the proof of Proposition 4.4. Let φ̃ be the time-
independent functional defined from φ as follows.
Given a partial oracle (X ), φ̃(X )(n) ↓= 1 if and only if for every Y such that (X )
is a partial oracle for Y , φY (n) ↓= 1.
(Note that this definition is very similar to the definition of� as in Definition 2.4.
The primary difference is that in this case, φ was created as a functional that uses
ordinary Turing oracles, whereas in Definition 2.4, φ is a functional that uses partial
oracles.)
By compactness, this is a Σ1 operation: if every Y agreeing with (X ) enumerates
some n, then there is a finite stage at which we see this happen. Note also that
the quantifier over Y agreeing with (X ) does not interfere with the fact that (X )
enumerates its domain: As (X ) produces more answers, the set of Y agreeing with
(X ) becomes smaller, and so the set of n for which φ̃(X )(n) ↓ becomes larger, so we
never need to “take back” any n for which φ̃(X )(n) has halted.
We now claim that if (A) is a cofinite oracle for A (recall that any generic oracle
for R̃(A) can uniformly produce a cofinite oracle for A), then φ̃(A) is a generic
computation of the set enumerated by φA, which we have proved is density-1 and
not generically computable. Because A is one of the Y ’s agreeing with (A), we have
that the domain of φ̃(A) is a subset of the domain of φA, so in particular, φ̃(A) never
makes anymistakes about the set it is computing. It remains to show that dom(φ̃(A))
is density-1.
To prove this, let S be the set of initial segments of Y ’s such that (A) is a partial
oracle for Y . We show that strategy e from the proof of Proposition 4.4 places at
most finitely many markers on elements of S. To show this, define Te as in the
proof of Proposition 4.4. If Te is finite, then strategy e places at most finitely many
markers, and so it places at most finitely many markers on elements of S. If Te is
infinite, then let Xe be the leftmost path of Te , and we claim that for every � ≺ Xe ,
strategy e places at most finitely many markers on � that are not extensions of �.
This is because everything to the left of � eventually gets removed from Te , and
everything to the right of � never gets a marker, and there are only finitely many
things below �.
So it remains to show that there is some � ≺ Xe such that � has no extensions
in S. This follows from the fact that A is not left c.e., (A) is a cofinite oracle for A,
and every Y agreeing with (A) is mod-finitely equal to A, and so also not left c.e.
Therefore there must be some n such that (A)(n) ↓�= Xe(n), because Xe is left c.e.,
and so (A) is not a partial oracle for Xe .
We therefore conclude that for every e, S has only finitely many markers on it
placed by strategy e, and thus that the domain of φ̃(A) has at most finitely many
gaps of size 2−e , because if the eth strategy places a marker pe,s on some � /∈ S,
then for every Y agreeing with (A), � ⊀ Y , and so φY does not have a gap of size
2−e at Ps . (Or rather, the eth strategy does not cause it to have such a gap. The
gaps of size 2−e can be created by strategy e′ for any e′ < e, but this proof shows
that each one of those strategies causes at most finitely many gaps to appear in the
domain of φ̃(A).) Thus, by Lemma 4.6, the domain of φ̃(A) is density-1. �
As a corollary to the proof of Proposition 4.7, we make an observation that will
have a number of consequences.
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Observation 4.8. Assume there is no left c.e. set X such that {n : X (n) = A(n)}
is density-1. Then A is density-1-bounding.
Proof. Define φ̃ as above. If A is a real, there is no left c.e. set X such that

{n : X (n) = A(n)} is density-1, and (A) is a generic oracle forA, then, in particular,
for every e,Xe is not oneof the realsY that agreewith (A). In particular,we therefore
again have that there is some � ≺ Xe such that no Y � � agrees with (A). After
some finite stage, all markers placed by strategy e are placed on extensions of �, and
so therefore, there are at most finitely many markers placed on initial segments of
Y ’s that agree with (A). This again proves that for every e, there are at most finitely
many gaps of size 2−e in the set enumerated by φ̃(A). �
This observation can be modified by a technique from a previous paper of the
second author (Lemma 2.6 from [7]) which says that “left c.e.” can be replaced by
any property that can by realized uniformly in 0′ effective basis theorem.
Observation 4.9. Let F be any function from reals to reals such that for any Π01
tree T , if T is infinite, then F(T ) is an infinite path through T that is uniformly
computable in 0′ together with a Π01 index for T .
Assume there is no X in the range of F such that {n : X (n) = A(n)} is density-1.
Then A is density-1-bounding.
In particular, using the Low Basis Theorem, this says that if A is not density-1-
bounding, then A agrees with a low set on a set of density 1. Likewise, using the
cone avoidance basis theorem, this says that ifA is not density-1-bounding, then for
any noncomputable Δ02 B, there is a Δ

0
2 set X such that X �T B and A agrees with

X on a set of density-1, etc. In essence, Observation 4.9 is an observation schema
across 0′ computable basis theorems.
Proof (Sketch). In the proof of Proposition 4.4, wherever strategy e would nor-
mally place a marker on the shortest unmarked node of Te,s , have it instead place a
marker on the shortest unmarked node of the stage-s Δ02 approximation to F(Te).
(A Π01 index for Te can be obtained using the recursion theorem.) Let Xe = F(Te).
Because Δ02 approximations eventually converge, for every � ≺ Xe , we have that
eventually all markers are placed on extensions of �, which is sufficient for the
verification for Proposition 4.4 and also for Observation 4.8. �
Remark 4.10. If the proof of Proposition 4.4 could be modified somehow to
make each Xe computable, then Observation 4.8 would probably be able to be
modified to say that if there is no computable set X such that {n : X (n) = A(n)} is
density-1 then A is density-1-bounding. Note that Observation 4.2 implies that if A
is coarsely computable, then A is in the same generic degree as a density-1 set, and
so in particular is density-1-bounding. Combining these two would prove that if A
is not generically computable, then A is density-1-bounding, solving Question 4.1.
Simplifying the analysis above leads to a question that has been open since the
writing of [7], but that now appears to be sufficiently motivated to be worth stating
as an open problem.

Question 4.11. Is there a uniform proof of Proposition 4.4?
This question asks whether there is a single φ such that for every A, if A is
not computable, then φA is an enumeration of a density-1 set with no density-1
c.e. subset. A positive solution would not necessarily answer Question 4.1 as well,
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because the solutionmight not admit themodification required for Observation 4.8,
but the question is elegant and simple enough that it might merit study in its own
right.
We conclude the section with a proof of a result that effectively says that the
observations stated here are not already sufficient to prove that every nonzero
degree is density-1-bounding in the generic degrees.
Proposition 4.12 (Dzhafarov, Igusa). There exists a real A such that for every F
as in Observation 4.9, there is an X in the range of F such that {n : X (n) = A(n)} is
density-1, but such that A is neither coarsely computable nor generically computable.
Note that by Observation 4.9 and Lemma 4.2, if there existed a A that was
not density-1-bounding, then such a A would necessarily need to be a witness to
Proposition 4.12.
This construction is a slight modification of a construction by Dzhafarov, Igusa,
andWestrick [personal communication] inwhich they provedProposition 4.12with-
out the additional requirement that A not be generically computable. The previous
construction could only build generically computableA although it contained most
of the ideas necessary to write this proof.
Proof. We build an infinite computable tree T ⊆ 2<� such that given any two
paths in [T ], the two paths agree on density 1, and such that no path in [T ] is
either coarsely computable or generically computable. Any path in [T ], can then
be used as our A. This is because, given any F , there must be a path in [T ] that
is in the range of F , and by construction of T , that path must agree with A on
density 1. Furthermore, by construction of T , A is neither coarsely computable nor
generically computable.
The construction is as follows. We have requirements:
Ci : φi does not coarsely compute a path through T .
Gi : φi does not generically compute a path through T .
We first remark that if each individual requirement can be met uniformly, then
we can combine those trees to produce T . More formally:
Claim. Assume there is a computable function f such that φf(2i) computes an
infinite tree T2i ⊆ 2<� all of whose paths agree on density 1 such that φi does not
coarsely compute a path through T2i , and such that φf(2i+1) computes an infinite tree
T2i+1 ⊆ 2<� all of whose paths agree on density 1 such that φi does not generically
compute a path through T2i+1. Then there is an infinite computable tree T ⊆ 2<� all
of whose paths agree on density 1 such that no path is either generically computable
or coarsely computable.

Proof of Claim. Given X ∈ 2�, let Xk = {n : (2n + 1)2k ∈ X}. Note that if
X is generically computable, then each Xk is generically computable, and if X is
coarsely computable, then each Xk is coarsely computable.
For each k, let Tk be as in the statement of the claim. Define T by X ∈ [T ]
iff for each k, Xk ∈ [Tk ]. (Note that because the Tk are uniformly computable,
this is a Π01 class, and so in particular, there is a T whose paths are the reals such
that ∀kXk ∈ Tk .) We then claim that if X ∈ [T ], then X is neither coarsely nor
generically computable.
To see this, assume otherwise. Assume X ∈ [T ] and � is a Turing functional that
coarsely computes X (the proof for generic computation will be nearly identical).
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Define g so that φg(i)(n) = �((2n + 1)2
2i). Note then that if � is a coarse compu-

tation of X , then φg(i) is a coarse computation of X2i . By the recursion theorem,
there exists an i such that φg(i) = φi , providing a contradiction, because Xi was
specifically constructed to not be coarsely computable via φi .
It remains to show that any two paths in [T ] must agree on density-1. Let X,Y ∈
[T ], let ε > 0. Let l be such that 2−l < ε

2 . For each k < l , let nk be such that for
m > nk , Xk � m and Yk � m agree on m(1 − ε

2 ) many bits. Let n = maxk<l (nk2
k).

It is straightforward to check that for m > n, X � m and Y � m agree on m(1 − ε)
many bits.
This concludes the proof of the claim. To complete the proof of the theorem, it
now remains to construct the Tk uniformly.

Meeting requirement Ci : We meet all of these requirements uniformly with a single
tree. Let X0 be any real that is generically computable but not coarsely computable
(exists by [9]).
Let φ be the Turing functional that generically computes X0. For every i , let T2i
be the tree of all X such that φ is a generic computation of X . Note that all such X
agree on density 1 (because they agree on dom(φ)), and are not coarsely computable
(because a coarse computation of one of them would be a coarse computation of
every one of them, and X0 is not coarsely computable).

Meeting requirement Gi : We construct a tree T2i+1 ⊆ 2<� all of whose paths agree
on density 1 such that φi does not generically compute a path through T2i+1.
We construct a computable tree T̃ ⊆ 2<� such that any two paths in [T̃ ] agree on
density 1 but such that, for any n ∈ �, there is at least one X ∈ [T̃ ] with X (n) = 0
and at least one X ∈ [T̃ ] with X (n) = 1. If we ever see φi(n) halt for any value of
n, then we let ni be the first value of n for which φi(n) ↓, and si > ni be the number
of stages required to see that φi(ni) ↓.
We then define:

T2i+1 = {� ∈ T̃ : |�| < si} ∪ {� ∈ T̃ : |�| ≥ si ∧ �(ni) �= φi(ni)}.
Note, in particular, that T2i+1 will be defined uniformly in i , and that if φi never
halts (or if φi(ni) /∈ {0, 1}) then T2i+1 = T̃ .
To ensure that all paths in [T̃ ] agree on density 1, we ensure that every path in
[T̃ ] is density-1 (as a subset of �), and so any two paths agree on a set containing
their intersection, which is a density-1 set.
We put the empty string into T̃ .
When we define T̃ � {� : 2n ≤ |�| < 2n+1}wewill have that there exist exactly 2n-
many � ∈ T̃ with |�| = 2n−1, and we will ensure that there exist exactly 2n+1-many
� ∈ T̃ with |�| = 2n+1 − 1.
To define T̃ � {� : 2n ≤ |�| < 2n+1}, each � ∈ T̃ with |�| = 2n − 1 selects one
element m� of [2n, 2n+1), and extends itself so that the extensions of � of length
2n+1 − 1 are precisely the two � of that length such that � � � and �(m) = 1 if
(m ∈ [2n, 2n+1) and m �= m�).
If each � selects a differentm� , then everym ∈ [2n, 2n+1) will be selected, because

|[2n, 2n+1)| = 2n. This is easy to arrange.
At the end of the construction, for each X ∈ T̃ , for each n ∈ �, there will be at
most onem ∈ [2n, 2n+1) such thatm /∈ X , and soX will be density-1. Also, every �
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in T̃ extends to an X ∈ [T̃ ], and so, in particular, for every m, there is an X ∈ [T̃ ]
such that X (m) = 0 and an X ∈ [T̃ ] such that X (m) = 1. �
Given the results of this section, the paths through this tree T are potential
candidates for sets that are not density-1-bounding in the generic degrees. However,
we now show that all of the paths through T are density-1-bounding.

Proposition 4.13. Let T be the tree constructed in Proposition 4.12. Every X ∈
[T ] is density-1-bounding in the generic degrees.
Proof. Let T be the tree constructed in Proposition 4.12, and for each k ∈ �,
let Tk be constructed as in the proof of Proposition 4.12.
Let X ∈ [T ]. Let Xk = {n : (2n + 1)2k ∈ X}, and note that by definition of T ,
we have that Xk ∈ [Tk ].
DefineY so thatYi = X2i+1.More formally, so that (2n+1)2i ∈ Y ↔ n ∈ X2i+1.
Note thatY is not generically computable by the same argument as whyX is neither
generically nor coarsely computable. Note also that Y is density-1, because for
every i , every path through T2i+1 is density-1. Finally, Y ≤g X , because a generic
oracle for X must contain density-1 many of the bits of Xk for every k. �
The reason we are able to prove Proposition 4.13 is that the non-coarse com-
putability requirements and non-generic computability requirements are addressed
independently in the proof of Proposition 4.12. If there were a way of meeting
both sorts of requirements simultaneously, perhaps by meeting general “non-
dense-computability” requirements, then this might shed additional light on
Question 4.1.

Question 4.14. If we define a real A to be “densely computable” if there is a
partial computable φ such that {n : φ(n) = A(n)} is density 1, then does there exist
an infinite computable tree T ⊆ 2<� such that given any two paths in [T ], the two
paths agree on density 1, and such that no path in [T ] is densely computable?

§5. Randoms and generics. In this section, we investigate the generic degrees of
random reals, and of generic reals. We show that both randomness and genericity
imply quasiminimality in the cofinite degrees, and therefore (by Lemma 3.9) in
the mod-finite, generic, and coarse degrees. In particular, this provides examples
of quasiminimal sets that are not density-1, potentially helping along the way to
a construction of a set that is not density-1-bounding. We also show that both
randomness and genericity imply density-1-bounding in the generic degrees, poten-
tially helping along the way to a proof that all non-generically-computable sets are
density-1-bounding.

Proposition 5.1. If A is a weakly 1-random real, then A is density-1-bounding in
the generic degrees.

Remark 5.2. Weak 1-randomness is implied by 1-randomness, and also by weak
1-genericity and therefore 1-genericity. Therefore, in particular, this shows that
1-randoms and 1-generics are density-1-bounding in the generic degrees.

Proof. The proof we present is very similar to that of Theorem 2.2 ofHirschfeldt,
Jockusch, McNicholl, and Schupp [5].
Define B = {� ∈ 2<� : � ⊀ A}. For purposes of density, it is important to
determine which coding of 2<� as a subset of � is being used. We use the standard
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order on 2<�: first by length of �, and then lexicographically among � of the same
length, with one small adjustment. We start with the empty string being coded by
n = 1, not n = 0, so that {� : |�| = i} will be coded in to Pi , as in Definition 4.5.
(There is no string coded by n = 0.)
Note that for anyA at all, B as defined above is density-1, because there is exactly
one � of each length not in B. Likewise, for any A at all, A ≥g B, as follows.
If (A) is any partial oracle for A, consider the partial computation of B given by
enumerating all � that (A) is able to rule out as potential initial segments of A:

φ(A)(�) = 1↔ ∃n(n ∈ dom((A)) & n < |�| & (A)(n) �= �(n)).
Note that for any partial oracle (A), for A, φ(A) is a partial computation of B.
If dom((A)) is infinite, then we claim that φ(A) is a generic computation of B.
To show this, we show that for each e, there are at most finitely many i such that
dom(φ(A)) has a gap of size 2−e at Pi , and then appeal to Lemma 4.6. To see this,
let e be given, and fix i0 such that |dom((A)) � i0| ≥ e + 1. For i > i0, there are at
most 2i−(e+1) many � of length i agreeing with (A), and so φ(A) enumerates at least
2i − 2i−(e+1) many � of length i , and so dom(φ(A)) does not have a gap of size 2−e
at Pi .
It now remains to show that if A is weakly 1-random, then the B that we built is
not generically computable.
BecauseB is density-1, it is generically computable if and only if it has a density-1
c.e. subset. To prove that this cannot be the case, letWe be a c.e. set, thought of as
coding a subset of 2<�. Consider V = {X ∈ 2� : ∀� ∈ We, � ⊀ X}. This is a Π01
class, and we claim that ifWe is density-1, then V is null, and we also claim that if
We is a subset of B, then A is an element of V .
Both of these claims are straightforward from the definitions, and we leave the
verification to the reader. If A is weakly 1-random, then A cannot be a member of
any null Π01 class, and soWe cannot be a generic computation of B. �
We now go on to prove that 1-generics and 1-randoms are quasiminimal in the
cofinite, (and hence mod-finite, generic and coarse) degrees.
Both of these proofs will be by the following lemma, which summarizes and
compiles the results of Sections 2 and 3 that we will use in this section. Note that
the results of Section 2 concerning time-independent functionals apply equally well
to cofinite reduction as they do to generic reduction.

Lemma 5.3. AssumeA is not quasiminimal in the cofinite degrees. Then there exists
a time-independent Turing functional φ such that for any cofinite oracle (A), for A,
φ(A) is total, and furthermore such that φA is not multivalued, and is a computation of
a noncomputable real B.

Proof. If A is not quasiminimal in the cofinite degrees, then by definition of
quasiminimality, there is a noncomputable B such that R(B) ≤cf A. By Observa-
tion 2.9, there is a time-independent Turing functional � such thatR(B) ≤cf A via
φ. Any cofinite oracle for R(B) can be uniformly used to compute B, and if we
use the time-independent version of the Turing functional that computes B from
a cofinite oracle for R(B), and compose that functional with �, then we obtain a
time-independent Turing functional � such that for any cofinite oracle (A), for A,
φ(A) is a total computation of B.
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In particular, because cofinite computations are never allowed to make mistakes,
φA only produces correct outputs concerning B, and so is not multivalued. �
Proposition 5.4. If A is weakly 1-generic, then A is quasiminimal in the cofinite
degrees, and hence in the mod-finite, generic, and coarse degrees.

Proof. LetA be weakly 1-generic, and assumeA is not quasiminimal. By Lemma
5.3, there is a noncomputable B and a time-independent Turing functional φ such
that for any cofinite oracle (A), for A, φ(A) is total, and is a computation of B. We
prove then that B is computable as follows.
Consider S = {� ∈ 2<� : φ� is multivalued}. Note that S is Σ01 because � ∈ S ↔

∃n (φ�(n) ↓= 1 & φ�(n) ↓= 0). If S is dense, then because A is weakly 1-generic, A
meets S, and so by Observation 2.7 it cannot be the case that φA is a computation
of B.
If S is not dense, then choose any � that has no extensions in S. Let m = |�|.
For any X ∈ 2�, let Xm be the partial oracle for X that does not halt on any of its
firstm bits. Then we claim that B is computable by the functional� such that�(n)
searches for an X such that φXm (n) ↓ and then outputs the same value as the found
output.
This computation is total because for any cofinite oracle (A), for A, φ(A) is total,
and so in particular, for any n, φ(A)m(n) ↓. Furthermore, when this computation
halts, it gives a correct output for the following reason. Assume not, and fix X such
that φXm (n) ↓�= B(n). Let k be the use of this computation (the smallest number
such that only X � k was required for the computation of φXm (n)). Note then that
by hypothesis φAk (n) ↓= B(n). Let l be the use of this computation.
Let � ∈ 2<� be given by � � m = �, � � [m,k) = X � [m,k), and � �
[k, l) = A � [k, l). Note then that � � �, and furthermore, because φ is a time-
independent functional, φ�(n) = φXm (n) �= B, and also φ�(n) = φAk (n) = B, so
φ� is multivalued, contradicting our choice of �. �
Proposition 5.5. If A is 1-random, then A is quasiminimal in the cofinite degrees,
and hence in the mod-finite, generic, and coarse degrees.

The proof of Proposition 5.5 is somewhat more involved than the proof of
Proposition 5.4. It will use Lemma 5.3 as well as a fairly subtle control of the
halting measure of φ. Throughout the remainder of the section, we will always
assume that φ is a time-independent Turing functional.

Definition 5.6. Fix φ, and an integer n. Let k ≤ l be integers.
For any real X , let Xk be the partial oracle forX that does not halt on inputs less
than k, and let Xk,l be the partial oracle forX that does not halt on inputs less than
k or greater than or equal to l .
Define 	k = 	({X : φXk (n) ↓}), the halting measure of φ-computations that do
not use the first k bits of their oracles.
Similarly, define 	k,l = 	({X : φXk,l (n) ↓}).
Note that φ and n are suppressed in the notation for brevity.

Observation 5.7.
If k0 < k1, then for any l , 	k0,l ≥ 	k1,l , and also 	k0 ≥ 	k1 .
If l0 < l1, then for any k, 	k,l0 ≤ 	k,l1 .
For any k, 	k = liml→∞ 	k,l .
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Proof. The first two facts follow from Observation 2.6, which says that larger
oracles never have smaller halting sets. The third fact is because any computation
that halts does so using only finitely much from its oracle. �
Lemma 5.8. Let A be 1-random, φ a time-independent Turing functional, and n an
integer. If for every cofinite oracle (A) for A, φ(A)(n) ↓, then, for that φ and n, for
every k, 	k = 1.
Proof. Assume not. Fix k such that 	k �= 1, and fix some computable ε > 0 such
that 	k < 1− ε.
Consider the open sets Ui defined by X ∈ Ui if φXk converges for at least i
different independent reasons. We make this precise by an inductive definition as
follows.
Let U0 = 2� , and for every X , kX,0 = k.
Having definedUi , and kX,i for every X inUi , we let Ui+1 = {X ∈ Ui : φXkX,i ↓},
and for every X in Ui+1, we let kX,i+1 be the minimum number s such that φ

XkX,i ↓
in less than s steps, and using less than the first s bits of the oracle X . Such an s
can be found computably in X for any X in Ui+1, and so each Ui is defined Σ1 in
the previous one. Thus, the Ui are uniformly Σ1 sets.
Furthermore, 	(Ui ) ≤ (1 − ε)i . This is because to determine whether or not
X ∈ Ui , we must see that φXk halts (a measure < 1 − ε event), then we ignore
everything that caused φXk to halt, and require that φXkX,0 halts (another measure
< 1 − ε event) and so on. Each event is independent, and so the probability of
meeting all of them is equal to their product.
If for every l , φAl ↓, then Amust be in everyUi . This contradicts the assumption
that A is 1-random. �
This lemma will be what we require in order to construct a collection of “towers”
that will prove our contradiction. We will use the ideas of a “90%-halting tower,”
an “80%-agreement tower,” and a “60%-disagreement tower.” The numbers 90%,
80%, and 60% are not special: the only important facts about them are that 100% >
90% > 80% > 50%, and also that 80% > 60% > 0%. For our proof, it will be
convenient that 0.6 < 0.82.

Definition 5.9. Fix φ and n, and k. Then for that φ, n and k, a 90%-halting
tower starting at k is a sequence of numbers 〈ki : i ∈ �〉 such that k0 = k, for every
i , ki+1 > ki , and 	ki ,	ki+1 > 0.9.

Observation 5.10. Fix φ, n.
If there exists some k such that there is a 90%-halting tower starting at k, then for
every k, there is a 90%-halting tower starting at k. Moreover, that 90% halting tower
can be found uniformly computably in n, k.
Proof. The obvious greedy algorithm works for this. Let k0 = k, and search
for a k1 such that 	k0,	k1 > 0.9. Eventually such a k1 will be found because there
is a 90%-halting tower, 〈li : i ∈ �〉 starting somewhere, and that other halting
tower must have some i such that li ≥ k0. But then 	k0 ,li+1 ≥ 	li ,li+1 ≥ 0.9 (using
Observation 5.7). Thus, li+1 would work as k1, although some other smaller or
larger k might be found first. We then proceed inductively to define each ki . �
Lemma 5.11. Assume that φ is such that for every n, and for every k,	k = 1. Then,
for that φ and for every n and k, there exists a 90%-halting tower starting at k.
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Proof. Once again, the obvious greedy algorithm works. We let k0 = k, and for
each i , let ki+1 be the first l found such that 	ki ,l ≥ 0.9. Such an l exists because
liml→∞ 	ki = 1. �
Definition 5.12. Fix φ, n, k, and 〈ki : i ∈ �〉, a 90%-halting tower starting at
k. Then 〈ki : i ∈ �〉 is an 80%-agreement tower if there exists some v ∈ {0, 1} such
that:

(1) There exists an i such that 	{X : φXki ,ki+1 (n) = v} > 0.8 and,
(2) There does not exist an i such that 	{X : φXki ,ki+1 (n) �= v} > 0.8.
In this case, we will sometimes say that 〈ki : i ∈ �〉 is an 80%-agreement tower with
value v.

The purpose of these 80% agreement towers is that they will allow us to compute
B without needing A as an oracle. We will later prove that they must exist, but first
we show how they can be used to compute B.

Lemma 5.13. Assume that A is 1-random, and that φA is a computation of B. Fix
n, k, v. Assume that for that φ, n, there exists a computable 80%-agreement tower,
〈ki : i ∈ �〉, with value v starting at k. Then B(n) = v.
Proof. Assume the hypotheses are true and the conclusion is false.
Consider the open sets Ui = {X : φXki ,ki+1 (n) = v}. We have that A is not in
any Ui because φA(n) = B(n) �= v. Also, for every i , 	{X : φXki ,ki+1 (n) ↓} > 0.9,
and there does not exist an i such that 	{X : φXki ,ki+1 (n) �= v} > 0.8. Therefore
	(Ui > 10%).
Let Ci be the complement of Ui , and let C =

⋂
i Ci . The measure of the inter-

section of the Ci is equal to the product of the measures of the Ci because each Ci
is defined in terms of only the bits of X between ki and ki+1. Therefore C is a null
Π01 set, and A ∈ C . This contradicts the assumption that A is 1-random. �
To prove that they must exist, we will use 60%-disagreement towers, which will
derandomize X if φ does not produce enough 80% agreement towers. These 60%-
disagreement towers, unlike most of our other work in this proof, will not be fixed
to a specific n.

Definition 5.14. Let φ be given. Then a 60%-disagreement tower for φ is a
sequence 〈mi : i ∈ �〉 such that for every i ,
	
{
X : (∃n) (φXmi ,mi+1 is a multivalued function on n)} > 0.6.

Observation 5.15. If there is a 60%-disagreement tower for φ, then there is a
computable 60%-disagreement tower for φ.

Proof. Again, a greedy algorithm produces a computable 60%-disagreement
tower. �
Lemma 5.16. Let φ be given. Then, either there exists a k such that every 90%-
halting tower ( for any n) starting at k is an 80%-agreement tower, or there exists a
60%-disagreement tower for φ.

Proof. Assume the first clause is false. We construct a 60%-disagreement tower
as follows.
Let m0 = 0. Choose some n and some 〈ki : i ∈ �〉 that is a 90%-halting tower
for that n starting at k = m0 that is not an 80%-agreement tower.
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Case 1. If it is not an 80%-agreement because it never reaches a consensus (i.e.,
it fails the first clause in the definition of 80%-agreement towers), then choose j to
be large enough that (0.9)(1 − (0.9)j−1) > (0.6), and let m1 = kj . We claim then
that

	
{
X :

(
φXm0 ,m1 is a multivalued function on n

)}
> 0.6.

This is because of the following calculation.
Let S be the set ofX such thatφXk0 ,k1 (n) halts. Note that	(S) ≥ 0.9, by definition
of a 90% halting tower.
We show that given any i > 0, and any � with |�| = ki , if � ≺ X for some X ∈ S,
and φ�(n) is not multivalued, then φ�(n) is multivalued for at least 10% of all
� � � with |�| = ki+1. This will show that, φ�(n) is multivalued for at least measure
(0.9)(1 − (0.9)j−1) many � of length kj because each time we increase i , 10% of
all strings that have not yet become multivalued, and we started with measure 0.9
many strings.
Let � be as above, and note that because � ≺ X for some X ∈ S, we have that
φ�(n) is defined. By hypothesis of Case 1, at least 10% many X give the opposite
output from the rest of theX when computing φXi,i+1 . In particular, this implies that
at least 10%manyX halt and give the opposite output from φ�(n) when computing
φXi,i+1 . This computation does not use any bits of X less than |�|, or greater than
ki+1, and so 10% many of all � � � with |�| = ki+1 cause φ�(n) to halt and give
the opposite output from φ�(n). But because � � �, φ�(n) also halts and gives the
same output as φ�(n), and so φ�(n) is multivalued.

Case 2. If the 90%-halting tower is not an 80%-agreement tower because it does
reach a consensus, but it also reaches the opposite consensus at some point, then
let j be large enough that both kinds of consensus get reached before kj , and let
m1 = kj . Then at least 80% of the oracles from the first consensus arrive at the
opposite conclusion with their later information, and so, in particular, they give
a multivalued function if enough of the oracle is taken to witness both of those
computations.We have that 0.82 = 0.64 > 0.6, and so at that stage, at least measure
0.6-many oracles produce multivalued functions.

We then repeat the construction, choosing a potentially new n, and a new 90%-
halting tower beginning at k = m1 to find m2, and then we repeat with m2, m3 etc.
At each stage, this ensures that for 60% of allX , φXmi ,mi+1 (n) is multivalued for some
value of n. �
Lemma 5.17. Assume that A is 1-random, and that there is some B such that for
every k, φAk is a computation of B. Then there is no 60%-disagreement tower for φ.

Proof. If it is true that for every k, φAk is a computation of B, then in particular,
there is no partial oracle forA that causes φ to be a multi-valued function. Thus, in
particular, there can be no mi,mi+1 such that Ami ,mi+1 is in the “60% disagreement
part” of the 60%-disagreement tower.
Thus, if there existed a 60%-disagreement tower for φ, then A would be in the
intersection, over all i , of the realsX such thatφXmi ,mi+1 is not amultivalued function
on n. This is an intersection of uniformly Π01 sets, and so it is a Π

0
1 set. Furthermore,

it is a measure 0 set because each one of the sets was at most measure 0.4, and the
sets each use disjoint parts of the oracle, so the measure of their intersection is the
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product of their measures. A 1-random real A cannot be in a Π01 null set, and so
there cannot be a 60%-disagreement tower for φ. �
We are now ready to prove Proposition 5.5, which we restate here for clarity.
Proposition 5.5. If A is 1-random, then R̃(A) (and hence A) is quasiminimal in
the generic degrees.
Proof. Assume A is 1-random. We show that A is quasiminimal in the cofinite
degrees, and hence that R̃(A) is quasiminimal in the generic degrees. To prove this,
assume that for every cofinite oracle (A) forA, φ(A) is a computation of B. We must
prove that B is therefore computable.
By Lemma 5.8, for that φ and for every n, and every k, we must have that 	k = 1.
By Lemma 5.11, we therefore have that for every n and k, there is a 90%-halting
tower starting at k. By Lemmas 5.16 and 5.17, we have that there exists an l such
that every 90%-halting tower (for any n) starting at l is an 80%-agreement tower.
Fix such an l . We now compute B through a “majority vote” trick. To compute
B(n), wait until 80% of all X have the property that φXl (n) ↓, giving the same
output, then halt and give that output. We must now verify that this will happen at
some point, and that when it happens, it gives the correct output.
Weknow this will eventually happen, because there is a 90%-halting tower starting
at l , and it is an 80% agreement tower. Thus there exist some v, ki , ki+1 such
that l ≤ ki ≤ ki+1, and 	{X : φXki ,ki+1 (n) = v} > 0.8. However, for any X , if
φXki ,ki+1 (n) = v, then φXl (n) = v, because Xl is a partial oracle extension of Xki ,ki+1 ,
and so we have that 	{X : φXl (n) = v} > 0.8.
Furthermore, the v that we find must be the value v of some 80% agreement
tower. This is because we may build a 90% halting tower for which k0 = l , and k1 is
large enough to witness that measure 80% many X give output v. By assumption,
this tower is an 80% agreement tower, and by definition of 80% agreement tower,
no “floor” of the tower can have 80% many X give an output other than the value
v of that tower, and so the v that we found is the v of that tower.
Therefore, by Lemma 5.13, that v must be B(n), and so we have correctly
computed B(n) without using A as an oracle. �

§6. Nonuniform generic reducibility. In this section, we consider nonuniform
generic reducibility, which has the property that the functional φ is allowed to
change depending on the generic oracle forA. This section is joint work with Denis
Hirschfeldt.

Definition 6.1. Let A and B be reals. Then B is non-uniformly generically
reducible to A if for every generic oracle, (A), forA, there exists a Turing functional
φ such that φ(A) is a generic computation of B. In this case, we write B ≤ng A.
Note that the Turing degrees embed into the nonuniform generic degrees by
the same map as the one used to embed them into the uniform generic degrees,
and so we may again define a degree to be quasiminimal if it is not above any
nonzero embedded Turing degrees. We show weakly 2-randoms are quasiminimal
in the nonuniform generic degrees, and also that 1-generics are quasiminimal in the
nonuniform generic degrees. The inspiration for this section comes from a preprint
of [4], and the realization that much of their work was complementary to the work
in this paper.
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In a preprint of [4], Hirschfeldt, Jockusch, Kuyper, and Schupp proved that
Δ02 1-randoms are not quasiminimal in the nonuniform coarse degrees (Corollary
3.11 from [4]), but that weakly 2-randoms are quasiminimal in the nonuniform
coarse degrees (Corollary 3.3 from [4]). They also asked whether 1-randoms are
quasiminimal in the uniform coarse degrees.
Proposition 5.5 answers this, showing that 1-randoms are quasiminimal in both
the uniform coarse and uniform generic degrees. In the published version of [4], the
authors also modify their proof of Corollary 3.11 to show that Δ02 1-randoms are
not quasiminimal in the nonuniform generic degrees. In this section, we combine
our proof of Proposition 5.5 with the proof of Corollary 3.3 from [4] to prove that
weakly 2-randoms are quasiminimal in the nonuniform generic degrees.
We use the following result, implicitly proved in the proof of Theorem 3.2 of [4],
but stated here in the form that we will use.
Lemma 6.2 (Hirschfeldt, Jockusch, Kuyper, Schupp [4]). Assume A is weakly 2-
random,B is noncomputable, and k > 1. For each i < k, let A=i = {n : kn+ i ∈ A},
and let A�=i =

⊕
j �=i A=j .

Then (∃i < k)(B �T A�=i ).
Furthermore, for every i , A=i is 1-random relative to A�=i .
Proof (Sketch). Assume that for every i , B ≤T A�=i . By a generalized form of
Van Lambalgen’s Theorem [11], we have that for every i , A=i is 1-random relative
to A�=i , and so therefore relative to B ⊕A�=i ≡T A�=i . By the same generalized form
of Van Lambalgen’s Theorem relativized toB, we therefore have thatA is 1-random
relative to B. We also have that B ≤T A (because B ≤T A�=i ), and so we can
conclude that B is a base for 1-randomness, and hence is K-trivial [6].
A weakly 2-random cannot compute any noncomputable Δ02 sets [2], and so
cannot compute any noncomputable K-trivials. �
Theorem 6.3 (Cholak, Hirschfeldt, Igusa). Assume A is weakly 2-random. Then
A is quasiminimal in the nonuniform generic degrees.
The proof will use a relativized version of Proposition 5.5. The proof of Propo-
sition 5.5 made ample use of uniformity, so we begin our argument with a forcing
argument that will allow us to reduce the question to a uniform question. The
uniform question will then be answered using Lemma 6.2 and Proposition 5.5.
Note also that in Section 2 we were working with uniform generic reducibility,
and so we do not have access to Observation 2.9, which said that we may use
time-independent functionals, and hence ignore the time dependence in our partial
oracles. Because of this we will work directly with time-dependent partial oracles. In
subsequent work Astor, Hirshfeldt, and Jockusch generalize the proof of Theorem
6.3 to prove a full analogue of Observation 2.9, which would simplify many of the
steps of our proof.
We remind the reader that a partial oracle is coded as a set of ordered triples

〈n, x, l〉, with n as the input, x as the output, and l as the number of steps required
for the oracle to halt. As such, we will use the following nonuniform version of
Lemma 5.3.
Lemma 6.4. Assume A is not quasiminimal in the nonuniform generic degrees.
Then there exists a noncomputable real B such that for any generic oracle (A), for A,
B ≤T (A).
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Proof (Lemma 6.4). By definition of quasiminimality, if A is not quasimini-
mal, then there is a noncomputable B such that R̃(R(B)) ≤ng A. So R̃(R(B)) is
generically computable from every generic oracle for A. But every generic oracle
for R̃(R(B)) can compute B, and so B is computable from every generic oracle
for A. �
Proof (Theorem 6.3). First, we construct a forcing poset that will allow us to
define a generic generic oracle, G for A. The poset P will consist of finite approxi-
mations to partial oracles forA, together with a restriction saying that in the future,
the partial oracles will need to have domain at least a certain size. In order to ensure
that generic generic oracles are not total, p will determine the entire behavior of
G � m for some m, so in particular, extensions of p will not be allowed to halt at
locations smaller thanm.
A finite partial oracle � for A is given by a number m = |�| and a subset of
m × 2×� which, thought of as a subset of � × 2×� would be a partial oracle for
A. For n < m, � � n is a shorthand for the partial oracle � such that |�| = n and for
k < n, 〈k, x, l〉 ∈ � ↔ 〈k, x, l〉 ∈ �. As with other partial oracles, dom(�) = {n <
|�| : ∃x∃l〈n, x, l〉 ∈ �}.
We define the poset P to be the set of ordered pairs 〈�, ε〉 such that � is a partial
oracle forA, ε > 0, and dom(�)|�| > 1− ε. Given conditions p = 〈�, ε〉, and q = 〈�, 
〉,
we say that q ≤ p if |�| ≥ |�|, � � |�| = � 
 ≤ ε, and for all n, if |�| ≤ n ≤ |�|, then
dom(��n)
n > 1− ε.
A generic generic oracle G for A is given by taking a sufficiently generic filter
G̃ for P and letting G = ⋃

〈�,ε〉∈G̃ �. Note that it is dense to decrease ε below any
positive number, and so a generic generic oracle for A is a generic oracle for A.
In this proof, we only use genericity of G̃ for two purposes: ensuring that G is a
generic oracle, and ensuring that, given an arbitrary φ, if φG is a computation of B,
then there is a condition p ∈ G̃ that forces that φG is a computation of B. We do
not wish to explicitly count quantifiers, but P is A-computable, so some small level
of genericity relative to A⊕ B is sufficient.
So, letA be weakly 2-random, and assume thatA is not quasiminimal. By Lemma
6.4, fix B noncomputable such that B ≤T (A) for every generic oracle (A) for A.
Let G be a generic generic oracle for A, and fix φ such that φG is a computation
of B. Fix a condition p = 〈�, ε〉 that forces that φG is a computation of B. Fix k
such that 1k < ε. By Lemma 6.2, fix i < k such that B �T A�=i .
We then claim that relativized toA�=i ,B is uniformly computable fromanarbitrary
cofinite oracle forA=i , and also that, relative toA�=i ,A=i is 1-random, contradicting
Proposition 5.5 relativized to A�=i .

Proof of Claim. Let X be an arbitrary cofinite oracle forA=i . Let F(X ) be the
cofinite oracle for A defined as follows.
For m ≥ |�|, let Sm = {n : (n ∈ dom(�)) ∨ (|�| ≤ n < m) ∨ (n ≥ m & n �≡ i

mod k)}. Choose m0 sufficiently large that for all m ≥ dom(�), |Sm0�m|
m > 1 − ε.

(Such an m0 exists because k was chosen so that 1k < ε.)
Let F(X ) be the cofinite oracle for A that agrees with � on |�|, that halts
immediately on all m between |�| and m0, that halts immediately on all m ≥ m0 if
m �≡ i mod k, and so that ifm > m0 andm ≡ i mod k, thenF(X )(m) = X (m−ik )
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(halting if and only if X halts, giving the same output if it does halt, and halting
with the same l value).
Finally, we define� so that�X⊕A �=i (n) searches for a partial oracleY such that:

• Y � |�| = �,
• dom(Y ) ⊆ dom(F(X )),
• for each m ∈ dom(Y ), Y (m) = F(X )(m),
• φY (n) ↓
and when it finds such a Y , then �X⊕A �=i (n) ↓= φY (n).
(In essence, �X⊕A �=i is almost a time-independent version of φF(X ), except that it
restricts its attention only to Y ’s that look potentially like extensions of p.)

It remains to show that �X⊕A �=i is total, and that it is correct about B wherever
it halts. (Note that showing that �X⊕A �=i is correct whenever it halts will also show
that it is not multivalued.)

To show that if �X⊕A �=i (n) ↓ then �X⊕A �=i (n) = B(n), let Y be as above. Define
q = 〈�, ε〉 where � is defined as the finite partial oracle for A that agrees with � on
|�|, that agrees with the portion of Y that is queried in the computation of φY (n),
and that “halts late” at all locations larger than |�| ifY was queried at that location,
but Y was not seen to halt at that location.
Here, “halting late” means that � halts at those locations, but with an l value
larger than any l value queried in the computation of φY (n). This ensures that �
agrees with the portion of Y that was queried while also having a large enough
domain to not violate the ε condition imposed by p.
Then q � φG(n) = φY (n), because q agrees with the portion of Y used in
the computation. But also that q ≤ p, and so q � φG(n) = B(n). Therefore
φY (n) = B(n). This proof was shown for an arbitrary Y as above, and so we have
that if �X⊕A �=i (n) ↓ then �X⊕A �=i (n) = B(n).

To show that if �X⊕A �=i is total, we show that there is a generic generic oracle G0
for A, extending p, whose domain is contained in dom(F(X )), and so, for every n,
G0 will be found as one of the Y as above. From this, because p � φG is total, we
will have that for every n, φG0(n) ↓, and so �X⊕A �=i (n) ↓.
To show that there exists such a G0, let m1 be the largest number such that
m1 /∈ dom(F(X )). Let � be defined as the finite partial oracle F(X ) � m1 + 1, and
let q = 〈�, ε〉. By construction of F , we have that q ≤ p. Let G0 be any generic
generic oracle for A extending q. Then G0 extends p, and its domain is contained
in dom(F(X )) because its domain restricted to m1 + 1 is equal to the domain of
F(X ) restricted to m1 + 1, and F(X ) is a total oracle past m1 + 1. �
Remark 6.5. Combining Proposition 5.5, and Theorem 6.3, with Corollaries
3.3, 3.11, and 3.14 from [4], provides the following characterization of the level of
randomness required for to ensure quasiminimality in the uniform or nonuniform
cofinite, mod-finite, coarse, or generic degrees:

Theorem 6.6. In the uniform coarse and generic degrees, and also in the cofinite,
and mod-finite degrees, every 1-random is quasiminimal.
In the nonuniform coarse or generic degrees, every weakly 2-random is quasiminimal,
but there exist 1-randoms (any 1-random that is also Δ02) which are not quasiminimal.
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In light of this, one might ask whether this provides a characterization of the
weakly 2-randoms, but it does not for a fairly trivial reason:

Observation 6.7. There exists a 1-random A that is not weakly 2-random that is
quasiminimal in both the nonuniform coarse and generic degrees.

Proof (Sketch). Let B be 1-random but not weakly 2-random, and let C be
weakly 2-random relative to B. Let A be the asymmetric join of B and C defined
by A = {2n : n ∈ B} ∪ (

C \ {2n : n ∈ �}).
Note then that A is 1-random but not weakly 2-random, but that A is coarsely
(and generically) equivalent to C , and so quasiminimal in the nonuniform coarse
(and generic) degrees. �
We observe now that our proof of Theorem 6.3 allows us to also prove that
1-generics are quasiminimal in the nonuniform generic degrees. The following
analogue of Lemma 6.2 is proved implicitly in the proof of Theorem 4.2 of [4].

Lemma 6.8 (Hirschfeldt, Jockusch, Kuyper, Schupp [4]). Assume A is 1-generic,
B is noncomputable, and k > 1. For each i < k, let A=i = {n : kn + i ∈ A}, and let
A�=i =

⊕
j �=i A=j .

Then (∃i < k)(B �T A�=i ).
Furthermore, for every i , A=i is 1-generic relative to A�=i .

Proof (Sketch). A theorem of Yu [12] replaces the generalized form of Van
Lambalgen’s Theorem that is used in the proof of Lemma 6.2, and K-triviality is
not needed because ifA is 1-generic relative to a noncomputableB, thenB �T A. �
Proposition 6.9 (Cholak, Hirschfeldt, Igusa). Assume A is 1-generic. Then A is
quasiminimal in the nonuniform generic degrees.

Proof (Sketch). The proof is identical to the proof of Theorem 6.3, using Lemma
6.8 in place of Lemma 6.2, and using Proposition 5.4 in place of Proposition 5.5 �

§7. Acknowledgements. This work was partially supported by a grant from the
Simons Foundation (#315283 to Peter Cholak). Igusa was partially supported by
EMSW21-RTG-0838506.

REFERENCES

[1] E. Astor,D. Hirschfeldt, andC. Jockusch,Dense computability, upper cones, and minimal pairs
(tentative title), in preparation.
[2] R. G. Downey, A. Nies, R. Weber, and L. Yu, Lowness and Π02 nullsets, this Journal, vol. 71

(2006), pp. 1044–1052.
[3] D. Dzhafarov and G. Igusa, Notions of robust information coding, Computability, to appear.
[4] D. Hirschfeldt, C. Jockusch, R. Kuyper, and P. Schupp, Coarse reducibility and algorithmic

randomness, this Journal, to appear.
[5] D. Hirschfeldt, C. Jockusch, T. H. McNicholl, and P. Schupp, Asymptotic density and the

coarse computability bound. Computability, to appear.
[6] D. R. Hirschfeldt, A. Nies, and F. Stephan,Using random sets as oracles. Journal of the London

Mathematical Society, vol. 75 (2007), pp. 610–622.
[7] G. Igusa, Nonexistence of minimal pairs for generic computability, this Journal, vol. 78 (2013),

no. 2, pp. 511–522.
[8] , The generic degrees of density-1 sets, and a characterization of the hyperarithmetic reals,

this Journal, vol. 80 (2015), no. 4, pp. 1290–1314.

https://doi.org/10.1017/jsl.2016.50 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.50


DENSITY-1-BOUNDING AND QUASIMINIMALITY 957

[9] C. Jockusch andP. Schupp,Generic computability, Turing degrees, and asymptotic density. Journal
of the London Mathematical Society, vol. 85 (2012), no. 2, pp. 472–490.
[10] I. Kapovich, A. Miasnikov, P. Schupp, and V. Shpilrain, Generic-case complexity, decision

problems in group theory, and random walks. Journal of Algebra, vol. 264 (2003), no. 2, pp. 665–694.
[11]M. van Lambalgen, The axiomatization of randomness, this Journal, vol. 55 (1990),

pp. 1143–1167.
[12] L. Yu, Lowness for genericity. Archive for Mathematical Logic, vol. 45 (2006), pp. 233–238.

DEPARTMENTOF MATHEMATICS
UNIVERSITY OF NOTRE DAME
NOTREDAME, IN 46556-5683, USA

E-mail: peter.cholak.1@nd.edu
URL: http://www.nd.edu/∼cholak
E-mail: gigusa@nd.edu
URL: http://www3.nd.edu/∼gigusa

https://doi.org/10.1017/jsl.2016.50 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.50

