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1. Introduction

In this paper, we study the following fourth order weakly damped wave equations

utt + Δ2u+ μut + au = |u|p−2u, (x, y, t) ∈ Ω × [0, T ], (1.1)

with the initial condition

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), (x, y) ∈ Ω, (1.2)

and the boundary condition
⎧⎪⎨
⎪⎩
u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−l, l) × [0, T ],
uyy(x,±l, t) + σuxx(x,±l, t) = 0, (x, t) ∈ (0, π) × [0, T ],
uyyy(x,±l, t) + (2 − σ)uxxy(x,±l, t) = 0, (x, t) ∈ (0, π) × [0, T ],

(1.3)

where Ω = (0, π) × (−l, l) ⊂ R
2, T > 0, μ > 0, 2 < p <∞, σ ∈ (0, (1/2)) and a =

a(x, y, t) is a sign-changing and bounded measurable function.
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Problem (1.1)–(1.3) arises from the physical model for the nonlinear dynamic suspen-
sion bridge (see [5,22]). The weak damping term μut represents internal friction. The
term au describes the restoring force due to the hangers of the suspension bridge and the
source term |u|p−2u represents the other external forces acting on the bridge. The open
rectangular plate Ω = (0, π) × (−l, l) represents the roadway of a suspension bridge, and
the edges x = 0, π connect with ground while the edges y = ±l are free.

As is well known, a reliable model for suspension bridge should be nonlinear and it
should have enough degrees of freedom to display torsional oscillations. There have been
some studies on the nonlinear behaviour of a suspension bridge, we refer the readers
to [1,6,9,18] and the references therein. Recently, Ferrero and Gazzola [5] suggested
the following fourth order damped wave equations from a plate model describing the
dynamics of a suspension bridge

utt + Δ2u+ μut + h(x, y, u) = f(x, y, t), (1.4)

with the initial condition (1.2) and the boundary condition (1.3), where h(x, y, u) is restor-
ing force due to the hangers of the suspension bridge, and f(x, y, t) is the external force
including the gravity. Moreover, the kinetic energy was added to the total energy of the
nonlinear dynamic suspension bridge. They investigated existence, uniqueness and qual-
itative behaviour of solutions for problem (1.2)–(1.4). Subsequently, Wang [22] studied
local existence, global existence and finite time blow-up of solutions for problem (1.1)–
(1.3) by employing the potential well theory. However, the results of [22] are restricted
to the case of low initial energy E(0) < d, that is, the initial energy E(0) is less than the
depth of the potential well d.

The potential well is also called stable set and started with Sattinger [19] (also see
Payne and Sattinger [17]). In general, by the energy functional J(u) and the Nehari
functional I(u), the classical potential well and its outside set (namely unstable set) can
be usually defined respectively as follows

W = {u|J(u) < d, I(u) > 0} ∪ {0},

V = {u|J(u) < d, I(u) < 0}.
The critical points of J(u) are stationary solutions of the problem concerned. Under
certain assumptions on the parameters such as the growth power of source term, J(u)
satisfies the Palais–Smale condition and the problem concerned admits at least a positive
stationary solution whose energy d (that is generally called the depth of the potential
well) can be defined by

d = inf
u∈N

J(u),

where the Nehari manifold

N = {u|I(u) = 0} \ {0}.
Thus, under the situation where E(0) is controlled by d, the well-posedness for solutions
to the problem concerned can be investigated by employing the potential well theory (see
e.g. [2–4,8,12–16,20–23] and the references therein). Here it is worth mentioning that
Gazzola and Squassina [7] modified the potential well theory and the concavity method
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developed by Levine [10,11] to derive the finite time blow-up of solutions for a class of
second order damped wave equations with high initial energy.

In this paper, we are mainly interested in the global existence and finite time blow-up of
solutions for problem (1.1)–(1.3) with E(0) > 0, namely, arbitrary positive initial energy
or high initial energy without restrictions of upper bound. In other words, the goal of this
work is to complement the results in [22]. From the physical point of view, this work is of a
great importance for the high energy case of a model for a suspension bridge in some sense.
To the best of our knowledge, much less effort has been devoted to problem (1.1)–(1.3)
with arbitrary positive initial energy. In addition, inspired by Gazzola and Squassina [7],
our main tools are the modified potential well theory and the modified concavity method.
On the one hand, we would like to mention that our techniques are not equal to those
in [7] since the complexities of equation (1.1) itself and the boundary condition (1.3) as
well as additional difficulties in the proof of the global existence of solutions. On the other
hand, in order to study the global well-posedness for solutions to problem (1.1)–(1.3) with
E(0) > 0, we have to break through the classical potential well theory so that our results
are not restricted to E(0) < d, which will cause additional technical obstacles to our
energy estimates. More precisely, unlike in the previous studies [2–4,8,12–17,19–23],
the innovation of this paper is that we use directly the relationship between the energy
functionals associated with problem (1.1)–(1.3) to discuss the global well-posedness for
solutions without the aid of d. In order to obtain the global existence and finite time blow-
up of solutions with E(0) > 0, we further exploit the properties of the Nehari functional,
which will play an essential role in the proofs of our main results. Finally, in the case
E(0) > 0, we shall provide appropriate and relaxed sufficient conditions on the global
existence and finite time blow-up of solutions for problem (1.1)–(1.3), respectively.

This paper is organized as follows. In § 2 we recall some definitions, lemmas and theo-
rems related to problem (1.1)–(1.3). Moreover, we state our main results with arbitrary
positive initial energy. In § 3 we establish the global existence of solutions by introducing
an evolution property of solutions. In § 4 we are devoted to the proof of finite time blow-up
of solutions by a combination of an unstable set and the modified concavity method.

2. Preliminaries and main results

Throughout this paper, the following notations are used for precise statements: ‖ · ‖p

= ‖ · ‖Lp(Ω), ‖ · ‖ = ‖ · ‖L2(Ω), (u, v) =
∫
Ω
uv dxdy, ‖ · ‖H2 = (‖ · ‖2 + ‖D2 · ‖2)1/2 and

‖ · ‖∗ = ‖ · ‖H2∗(Ω), where

H2
∗ (Ω) = {u ∈ H2(Ω)|u = 0 on {0, π} × (−l, l)}.

Clearly, H2
0 (Ω) ⊂ H2

∗ (Ω) ⊂ H2(Ω). According to [5], we see that H2
∗ (Ω) is a Hilbert space

with the norm

‖u‖∗ =
( ∫

Ω

|Δu|2 dxdy + 2(1 − σ)
∫

Ω

(u2
xy − uxxuyy) dxdy

)1/2

,

which is equivalent to ‖ · ‖H2 for σ ∈ (0, (1/2)). Moreover, in view of [22] we have a
Sobolev embedding inequality for this case.
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Lemma 2.1. Assume that 1 ≤ q <∞. Then for any u ∈ H2
∗ (Ω), there holds the

inequality

‖u‖q ≤ Sq‖u‖∗,

where

Sq =
(
π

2l
+

√
2

2

)
(2πl)(q+2)/2q

(
1

1 − σ

)1/2

.

As in [22], we now define the total energy associated with problem (1.1)–(1.3)

E(t) =
1
2
‖ut‖2 +

1
2
‖u‖2

∗ +
1
2
(au, u) − 1

p
‖u‖p

p, (2.1)

which satisfies the identity

E(t) + μ

∫ t

0

‖ut(τ)‖2 dτ = E(0), (2.2)

for all t ∈ [0, Tmax), where Tmax is the maximum existence time of u(x, y, t). In addition,
we also define the energy functional J on H2

∗ → R

J(u) =
1
2
‖u‖2

∗ +
1
2
(au, u) − 1

p
‖u‖p

p,

and the Nehari functional

I(u) = ‖u‖2
∗ + (au, u) − ‖u‖p

p. (2.3)

Thus, the Nehari manifold can be defined by

N = {u ∈ H2
∗ (Ω) \ {0}|I(u) = 0},

which separates two sets

N+ = {u ∈ H2
∗ (Ω)|I(u) > 0} ∪ {0},

and

N− = {u ∈ H2
∗ (Ω)|I(u) < 0}.

Next, we recall the following preliminary lemma, definition of weak solutions and local
existence theorem in [22], see [22] for the proofs.
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Lemma 2.2. Assume that −Λ1 < a1 ≤ a ≤ a2, where {Λi}∞i=1 is the eigenvalue
sequence of the eigenvalue problem⎧⎪⎨

⎪⎩
Δ2u = Λu, (x, y) ∈ Ω,
u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0, y ∈ (−l, l),
uyy(x,±l) + σuxx(x,±l) = uyyy(x,±l) + (2 − σ)uxxy(x,±l) = 0, x ∈ (0, π),

and Λ1 < 1. Then for any u ∈ H2
∗ (Ω), there holds

A1‖u‖2
∗ ≤ ‖u‖2

∗ + (au, u) ≤ A2‖u‖2
∗,

where

A1 =

⎧⎨
⎩

1 +
a1

Λ1
, a1 < 0,

1, a1 ≥ 0,
and A2 =

⎧⎨
⎩

1, a2 < 0,

1 +
a2

Λ1
, a2 ≥ 0.

Definition 2.3. A function u ∈ C([0, T ];H2
∗ (Ω)) ∩ C1([0, T ];L2(Ω)) ∩ C2([0, T ];H(Ω))

with ut ∈ L2(0, T ;L2(Ω)) is called a weak solution of problem (1.1)–(1.3), if u(0) = u0,
ut(0) = u1 and

〈utt, η〉 + (u, η)∗ + μ(ut, η) + (au, η) = (|u|p−2u, η)

for all η ∈ H2
∗ (Ω) and a.e. t ∈ [0, T ], where H(Ω) denotes the dual space of H2

∗ (Ω) and
corresponding duality between them is denoted by 〈·, ·〉.

Theorem 2.4. Let −Λ1 < a1 ≤ a ≤ a2. Then for any u0 ∈ H2
∗ (Ω), u1 ∈ L2(Ω), there

exists T > 0 such that problem (1.1)–(1.3) has a unique local weak solution u on [0, T ].
Moreover, if

Tmax = sup{T > 0 : u = u(t) exists on [0, T ]} <∞,

then

lim
t→Tmax

‖u(t)‖q = ∞,

for q ≥ 1 such that q > ((p− 2)/2).

Theorem 2.4 shows that the weak solution of problem (1.1)–(1.3) exists globally if
Tmax = ∞, while the weak solution blows up if Tmax <∞.

Now we are in a position to state the main results of this paper.

Theorem 2.5. Let u be the unique local solution of problem (1.1)–(1.3), u0 ∈ H2
∗ (Ω),

u1 ∈ L2(Ω). Assume that −∧1 < a1 ≤ a ≤ a2, E(0) > 0 and the initial data satisfy the
following assumptions

2(u0, u1) + (μ+ 1)‖u0‖2 +
2p
p+ 2

E(0) ≤ 0, (A1)

‖u0‖2
∗ + (a0u0, u0) > ‖u1‖2 + ‖u0‖p

p, (A2)

where a0 := a(x, y, 0). Then the solution u(t) of problem (1.1)–(1.3) exists globally.
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Theorem 2.6. Let u be the unique local solution of problem (1.1)–(1.3), u0 ∈ H2
∗ (Ω),

u1 ∈ L2(Ω). Assume that −∧1 < a1 ≤ a ≤ a2, a1 ≥ 0, E(0) > 0, u0 ∈ N− and the initial
data satisfy the following assumption

(u0, u1) ≥ 0, ‖u0‖2 ≥ 2pS2
2

p− 2
E(0). (A3)

Then the solution u(t) of problem (1.1)–(1.3) blows up in finite time.

3. Proof of Theorem 2.5

In this section, we first introduce a property for u in order to prove the global exis-
tence. For given T ∈ (0,∞), we say that u ∈ C([0, T ];H2

∗ (Ω)) ∩ C1([0, T ];L2(Ω)) satisfies
property (Pt0) for some t0 ∈ (0, T ] if

I(u(t)) > ‖ut(t)‖2 + μ

∫ t

0

‖ut(τ)‖2 dτ for any t ∈ (0, t0). (Pt0)

We now consider the function M : [0, Tmax) → R
+ defined by

M(t) = ‖u(t)‖2 + μ

∫ t

0

‖u(τ)‖2 dτ. (3.1)

Lemma 3.1. Let u be the unique local solution of problem (1.1)–(1.3), u0 ∈ H2
∗ (Ω),

u1 ∈ L2(Ω). Assume that E(0) > 0 and the initial data satisfy (A1). Then M(t) is strictly
decreasing, provided u satisfies (PTmax).

Proof. By (3.1) we get
M ′(t) = 2(u, ut) + μ‖u‖2. (3.2)

Further,

M ′′(t) = 2‖ut‖2 + 2〈u, utt〉 + 2μ(u, ut)

= 2‖ut‖2 + 2(u,−Δ2u− μut − au+ |u|p−2u) + 2μ(u, ut)

= 2‖ut‖2 − 2‖u‖2
∗ − 2(au, u) + 2‖u‖p

p,

for t ∈ [0, Tmax). Consequently, from (2.3) we obtain

M ′′(t) = 2‖ut‖2 − 2I(u),

which together with (PTmax) gives
M ′′(t) < 0. (3.3)

Further, M ′(t) < M ′(0) for t ∈ (0, Tmax). From E(0) > 0 and (A1) it follows that

2(u0, u1) + μ‖u0‖2 < 0,

i.e.,
M ′(0) < 0.

Therefore, M ′(t) < 0 for t ∈ [0, Tmax). This implies that M(t) is strictly decreasing. �
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Lemma 3.2. Let u be the unique local solution of problem (1.1)–(1.3), u0 ∈ H2
∗ (Ω),

u1 ∈ L2(Ω). Assume that −∧1 < a1 ≤ a ≤ a2, E(0) > 0 and the initial data satisfy (A1)–
(A2). Then u satisfies (PTmax).

Proof. Suppose that u does not satisfy (PTmax). Then from (A2) and the continuity of
u in time we see that there exists the first time 0 < t0 < Tmax such that u satisfies (Pt0)
and

I(u(t0)) = ‖ut(t0)‖2 + μ

∫ t0

0

‖ut(τ)‖2 dτ. (3.4)

From (2.1)–(2.3) it follows that

E(0) =
1
2

(
‖ut(t0)‖2 + 2μ

∫ t0

0

‖ut(τ)‖2 dτ
)

+
1
p
I(u(t0))

+
(

1
2
− 1
p

)
(‖u(t0)‖2

∗ + (au(t0), u(t0))).

By Lemma 2.2 we get

‖u(t0)‖2
∗ + (au(t0), u(t0)) ≥ A1‖u(t0)‖2

∗ ≥ 0.

We further have

E(0) ≥ 1
2

(
‖ut(t0)‖2 + μ

∫ t0

0

‖ut(τ)‖2 dτ
)

+
1
p
I(u(t0)),

which together with (3.4) yields

E(0) ≥ p+ 2
2p

(
‖ut(t0)‖2 + μ

∫ t0

0

‖ut(τ)‖2 dτ
)
. (3.5)

By virtue of

‖ut(t0)‖2 = ‖ut(t0) + u(t0)‖2 − ‖u(t0)‖2 − 2(u(t0), ut(t0))

and∫ t0

0

‖ut(τ)‖2 dτ =
∫ t0

0

‖ut(τ) + u(τ)‖2 dτ −
∫ t0

0

‖u(τ)‖2 dτ − 2
∫ t0

0

(u(τ), ut(τ)) dτ,

(3.5) becomes

E(0) ≥ p+ 2
2p

‖ut(t0) + u(t0)‖2 +
p+ 2
2p

μ

∫ t0

0

‖ut(τ) + u(τ)‖2 dτ

− p+ 2
2p

‖u(t0)‖2 − p+ 2
2p

μ

∫ t0

0

‖u(τ)‖2 dτ

− p+ 2
p

(u(t0), ut(t0)) − p+ 2
p

μ

∫ t0

0

(u(τ), ut(τ)) dτ. (3.6)
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By applying (3.1)–(3.2) to the last term in (3.6), we obtain

∫ t0

0

(u(τ), ut(τ)) dτ =
1
2

∫ t0

0

(M ′(τ) − μ‖u(τ)‖2) dτ

=
1
2
(M(t0) −M(0)) − 1

2
μ

∫ t0

0

‖u(τ)‖2 dτ

=
1
2
(‖u(t0)‖2 − ‖u0‖2). (3.7)

Substituting (3.7) into (3.6), we deduce that

E(0) ≥ −p+ 2
2p

(
‖u(t0)‖2 + μ

∫ t0

0

‖u(τ)‖2 dτ
)

− p+ 2
p

(
(u(t0), ut(t0)) +

1
2
μ(‖u(t0)‖2 − ‖u0‖2)

)
. (3.8)

From (3.3) it is easy to see that M ′(t0) < M ′(0), i.e.,

(u(t0), ut(t0)) + 1
2μ(‖u(t0)‖2 − ‖u0‖2) < (u0, u1).

Substituting this inequality into (3.8), we obtain

E(0) > −p+ 2
2p

(
‖u(t0)‖2 + μ

∫ t0

0

‖u(τ)‖2 dτ
)
− p+ 2

p
(u0, u1).

As a consequence, we may write

− 2p
p+ 2

E(0) < ‖u(t0)‖2 + μ

∫ t0

0

‖u(τ)‖2 dτ + 2(u0, u1).

By recalling (3.1), we conclude that

M(t0) > −2(u0, u1) − 2p
p+ 2

E(0).

According to Lemma 3.1 and (A1), this contradicts

M(t0) < M(0) = ‖u0‖2 ≤ −2(u0, u1) − μ‖u0‖2 − 2p
p+ 2

E(0).

Thus the proof of Lemma 3.2 is complete. �
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Proof of Theorem 2.5. By Lemma 3.2 we infer that u satisfies (PTmax), i.e.,

I(u) > ‖ut‖2 + μ

∫ t

0

‖ut(τ)‖2 dτ, (3.9)

for any t ∈ (0, Tmax). From (2.1)–(2.3) it follows that

E(0) =
1
2

(
‖ut‖2 + 2μ

∫ t

0

‖ut(τ)‖2 dτ
)

+
1
p
I(u) +

(
1
2
− 1
p

)
(‖u‖2

∗ + (au, u))

≥ 1
2

(
‖ut‖2 + μ

∫ t

0

‖ut(τ)‖2 dτ
)

+
1
p
I(u) +

(
1
2
− 1
p

)
(‖u‖2

∗ + (au, u)).

Combining this with (3.9), we get

E(0) >
p+ 2
2p

(
‖ut‖2 + μ

∫ t

0

‖ut(τ)‖2 dτ
)

+
p− 2
2p

(‖u‖2
∗ + (au, u)).

This implies that u is bounded in C([0, Tmax);H2
∗ (Ω)) ∩ C1([0, Tmax);L2(Ω)) and ut is

bounded in L2(0, Tmax;L2(Ω)). Therefore, we conclude from Theorem 2.4 that Tmax = ∞
and the solution of problem (1.1)–(1.3) exists globally. �

4. Proof of Theorem 2.6

We start this section by the following Lemma.

Lemma 4.1. Let u be the unique local solution of problem (1.1)–(1.3), u0 ∈ H2
∗ (Ω),

u1 ∈ L2(Ω). Assume that (u0, u1) ≥ 0. Then θ(t) = ‖u(t)‖2 is strictly increasing on
[0, Tmax), provided u(t) ∈ N−.

Proof. From the expression of θ(t) it is easy to see that

θ′(t) = 2(u, ut).

A simple calculation yields

θ′′(t) = 2‖ut‖2 + 2〈u, utt〉
= 2‖ut‖2 + 2(u,−Δ2u− μut − au+ |u|p−2u)

= 2‖ut‖2 − 2‖u‖2
∗ − 2μ(u, ut) − 2(au, u) + 2‖u‖p

p

= 2(‖ut‖2 − I(u) − μ(u, ut)).

Consequently,

θ′′(t) + μθ′(t) = 2(‖ut‖2 − I(u)).

Noticing that u(t) ∈ N−, i.e., I(u) < 0 for all t ∈ [0, Tmax), we conclude from θ′(0) =
(u0, u1) ≥ 0 and [7, Lemma 8.1] that θ′(t) > 0 for all t ∈ [0, Tmax). Hence θ(t) is strictly
increasing on [0, Tmax). �
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Lemma 4.2. Let u be the unique local solution of problem (1.1)–(1.3), u0 ∈ H2
∗ (Ω),

u1 ∈ L2(Ω). Assume that −∧1 < a1 ≤ a ≤ a2, a1 ≥ 0 and there holds (A3). Then the
solution u(t) of problem (1.1)–(1.3) with E(0) > 0 belongs to N−, provided u0 ∈ N−.

Proof. If conditions hold, we have u(t) ∈ N− for all t ∈ (0, Tmax). Indeed, if it was
not the case, there would exist the first time 0 < t0 < Tmax such that u(t0) ∈ N and
u(t) ∈ N− for all t ∈ (0, t0), i.e., I(u(t0)) = 0 and I(u(t)) < 0 for all t ∈ (0, t0).

According to Lemma 4.1 and (A3), we have

θ(t) > θ(0) = ‖u0‖2 ≥ 2pS2
2

p− 2
E(0),

for all t ∈ (0, t0). We then conclude that

θ(t0) >
2pS2

2

p− 2
E(0). (4.1)

On the other hand, it follows from (2.1) and (2.3) that

E(t0) =
1
2
‖ut(t0)‖2 +

p− 2
2p

‖u(t0)‖2
∗ +

p− 2
2p

(au(t0), u(t0)) +
1
p
I(u(t0)).

Noticing that I(u(t0)) = 0, we get

E(t0) =
1
2
‖ut(t0)‖2 +

p− 2
2p

‖u(t0)‖2
∗ +

p− 2
2p

(au(t0), u(t0))

≥ p− 2
2p

‖u(t0)‖2
∗ +

p− 2
2p

(au(t0), u(t0)),

and so

‖u(t0)‖2
∗ + (au(t0), u(t0)) ≤ 2p

p− 2
E(t0).

This together with (2.2) gives

‖u(t0)‖2
∗ + (au(t0), u(t0)) ≤ 2p

p− 2
E(0).

Combining this with Lemmas 2.1 and 2.2, we deduce that

θ(t0) = ‖u(t0)‖2 ≤ S2
2‖u(t0)‖2

∗ ≤ S2
2(‖u(t0)‖2

∗ + (au(t0), u(t0))) ≤ 2pS2
2

p− 2
E(0),

which contradicts (4.1). Thus the proof of Lemma 4.2 is complete. �

Clearly, Lemma 4.2 shows that the unstable set N− is invariant under the flow of
problem (1.1)–(1.3) with arbitrary positive initial energy.

In the end, we finish the proof of Theorem 2.6.
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Proof of Theorem 2.6. Suppose that Tmax = ∞. For any 0 < T <∞ we now con-
sider the auxiliary function φ : [0, T ] → R

+ defined by

φ(t) = ‖u‖2 + μ

∫ t

0

‖u(τ)‖2 dτ + μ(T − t)‖u0‖2. (4.2)

A direct calculation yields

φ′(t) = 2(u, ut) + μ‖u‖2 − μ‖u0‖2

= 2(u, ut) + 2μ
∫ t

0

(u, ut) dτ, (4.3)

and so

φ′′(t) = 2‖ut‖2 + 2〈u, utt〉 + 2μ(u, ut)

= 2(‖ut‖2 − ‖u‖2
∗ − (au, u) + ‖u‖p

p) (4.4)

= 2(‖ut‖2 − I(u)), (4.5)

for t ∈ [0, T ]. From (4.2)–(4.4) we get

φ(t)φ′′(t) − p+ 2
4

φ′(t)2 = 2φ(t)(‖ut‖2 − ‖u‖2
∗ − (au, u) + ‖u‖p

p)

+ (p+ 2)
[
ϕ(t) − (φ(t) − μ(T − t)‖u0‖2)

×
(
‖ut‖2 + μ

∫ t

0

‖ut‖2 dτ
)]
,

where

ϕ(t) =
(
‖u‖2 + μ

∫ t

0

‖u‖2 dτ
)(

‖ut‖2 + μ

∫ t

0

‖ut‖2 dτ
)
−

(
(u, ut) + μ

∫ t

0

(u, ut) dτ
)2

.

By Schwarz’s inequality, we obtain

‖u‖2‖ut‖2 ≥ (u, ut)2,

μ

∫ t

0

‖u‖2 dτ · μ
∫ t

0

‖ut‖2 dτ ≥
(
μ

∫ t

0

(u, ut) dτ
)2

,

and

(u, ut) · μ
∫ t

0

(u, ut) dτ ≤ ‖u‖‖ut‖
(
μ

∫ t

0

‖u‖2 dτ
)1/2(

μ

∫ t

0

‖ut‖2 dτ
)1/2

≤ 1
2

(
‖u‖2μ

∫ t

0

‖ut‖2 dτ + ‖ut‖2μ

∫ t

0

‖u‖2 dτ
)
.
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These three inequalities entail ϕ(t) ≥ 0 for all t ∈ [0, T ]. We further get

φ(t)φ′′(t) − p+ 2
4

φ′(t)2 ≥ −pφ(t)‖ut‖2 − 2φ(t)‖u‖2
∗ − 2φ(t)(au, u)

+ 2φ(t)‖u‖p
p − (p+ 2)φ(t)μ

∫ t

0

‖ut‖2 dτ

= −2pφ(t)
(
E(t) − 1

2
‖u‖2

∗ −
1
2
(au, u)

)
− 2φ(t)‖u‖2

∗

− 2φ(t)(au, u) − (p+ 2)φ(t)μ
∫ t

0

‖ut‖2 dτ,

which together with (2.2) gives

φ(t)φ′′(t) − p+ 2
4

φ′(t)2 ≥ φ(t)ψ(t), (4.6)

for t ∈ [0, T ], where

ψ(t) = −2pE(0) + (p− 2)‖u‖2
∗ + (p− 2)(au, u) + (p− 2)μ

∫ t

0

‖ut‖2 dτ. (4.7)

According to u0 ∈ N− and Lemma 4.2, we have u ∈ N−. Moreover, by recalling
Lemmas 2.1, 4.1 and (A3), it is easy to see that

‖u‖2
∗ ≥ 1

S2
2

‖u‖2 >
2p
p− 2

E(0),

i.e.,
−2pE(0) + (p− 2)‖u‖2

∗ > 0.

Combining this with Lemma 2.2, we infer from (4.7) that there exists a constant ρ1 >
0 that is independent of the choice of T such that ψ(t) ≥ ρ1. Moreover, notice that
φ(t) is continuous on [0, T ]. Then there exists a ρ2 > 0 such that φ(t) ≥ ρ2, where ρ2 is
independent of the choice of T . Hence we conclude from (4.6) that

φ(t)φ′′(t) − p+ 2
4

φ′(t)2 ≥ ρ1ρ2.

From u ∈ N− and (4.5) it follows that φ′′(t) > 0, and so φ′(t) > 0. Thus

(φ−α(t))′ = − αφ′(t)
φα+1(t)

< 0,

and

(φ−α(t))′′ =
−α

φα+2(t)
(φ(t)φ′′(t) − (α+ 1)φ′(t)2) < 0,

where α = (p− 2)/4. Hence there exists a finite time T0 that is independent of the choice
of T such that

lim
t→T0

φ−α(t) = 0.
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Therefore,

lim
t→T0

φ(t) = ∞,

which contradicts Tmax = ∞. This completes the proof of Theorem 2.6. �
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