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ASYMPTOTICS FOR THE DISCRETE-TIME AVERAGE
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Abstract

The time average of geometric Brownian motion plays a crucial role in the pricing of
Asian options in mathematical finance. In this paper we consider the asymptotics of
the discrete-time average of a geometric Brownian motion sampled on uniformly spaced
times in the limit of a very large number of averaging time steps. We derive almost sure
limit, fluctuations, large deviations, and also the asymptotics of the moment generating
function of the average. Based on these results, we derive the asymptotics for the price of
Asian options with discrete-time averaging in the Black–Scholes model, with both fixed
and floating strike.

Keywords: Asian option; central limit theorem; Berry–Esseen bound; large deviations

2010 Mathematics Subject Classification: Primary 91G20
Secondary 91G80; 60F05; 60F10

1. Introduction

Asian (or average) options are widely traded instruments in the financial markets, which
involve the time average of the price of an asset St . Most commonly, St is a stock price or a
commodity futures contract price, for example, oil or natural gas futures. An Asian call option
has payoff of the form

payoff = max

{
1

n

n∑
i=1

Sti − K, 0

}
,

where 0 ≤ t1 < t2 < · · · < tn is a sequence of strictly increasing times, called sampling or
averaging dates. Under risk-free neutral pricing, the price of such an option is given by the
expectation of the payoff in the risk-neutral measure. Assuming the Black–Scholes (BS) model,
we study the distributional properties of the discrete-time average of the asset price

An = 1

n

n∑
i=1

Sti (1)

under the assumption that Sn follows a geometric Brownian motion (GBM)

dSt = (r − q)St dt + σSt dZt ,

where Zt is a standard Brownian motion, r is the risk-free rate, q is the dividend yield, and σ

is the volatility.
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Asymptotics for the average of GBM and Asian options 447

The main technical difficulty for pricing Asian options is that the probability distribution
of the discrete-time average (1) does not have a simple expression. If the averaging times are
uniformly distributed, the time average can be well approximated, for sufficiently small time
steps, by a continuous average

An = 1

tn

∫ tn

0
St dt.

When St follows a GBM, the problem is reduced to the study of the distributional properties
of the time integral of the GBM, which has been extensively studied in the literature. See [17]
for a review of the main results and their applications to the Asian options pricing.

A wide variety of methods have been proposed for pricing Asian options, and a brief survey
is given below.

Partial differential equation (PDE) methods (see [15], [37], [44], [51], [52], and [54]).
The pricing of an Asian option can be reduced to the solution of a 1 + 1 PDE, which is solved
numerically. This method can be applied both to continuous-time and discrete-time averaging
Asian options [1]. See also [2].

The Laplace transform method (see [7] and [26]). The Asian option price with random
exponentially distributed maturity can be found in closed form for the case when the asset
price St follows a GBM. This reduces the problem of the Asian option pricing in the BS model
to the inversion of a Laplace transform.

Spectral method (see [36]). The probability distribution of the time integral of the GBM can
be related to that of a Bessel process [13], [14]. The transition density of this Bessel process
can be expanded in an eigenfunction series [55], and Asian option prices can be evaluated using
the eigenfunction expansion, truncated to a sufficiently high order [34], [36]. A method based
on expansion in Laguerre polynomials was proposed in [12].

Bounds and control variates methods. There is a large literature on deriving bounds on
Asian option prices. Both lower and upper bounds have been given; see [37] for an overview.
They can be used also in conjunction with Monte Carlo (MC) methods as control variates. One
precise method of this type which is popular in practice was given by Curran [9]. Other methods
which take into account the discrete-time averaging have been proposed in [22], [23], [24].

MC simulation. See [21], [30], and [31].
Analytical approximations. Various numerical methods have been proposed which approx-

imate the distribution of the arithmetic average An using parametric forms, such as log-normal
[33] or inverse gamma distributions [38].

We note also the more general approach of [53] which can be applied for a wide class of
models.

Most of the theoretical results in the literature concerning the distribution of the time average
of the GBM refer to the continuous-time average. The discrete sum of the GBM is a particular
case of the sum of correlated log-normals which has been studied extensively in the literature;
see [3] for an overview. In [16] Dufresne obtained a limit distribution for the discrete-time
average in the limit of very small volatility σ → 0. A recent work by the present authors [41]
studied the properties of the discrete-time sum of the GBM at fixed σ in the limit n → ∞, and
its convergence to the continuous-time integral as the time-step τ → 0.

In this paper we concentrate on the discrete-time average of the GBM, An = (1/n)
∑n

i=1 Sti .
We assume the BS model, that is, the asset price follows a GBM

St = S0eσZt+(r−q−σ 2/2)t ,
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where Zt is a standard Brownian motion. We would like to study the distributional properties
of the average of the discretely sampled asset price (1) defined on the discrete times uniformly
spaced ti = iτ with time-step τ .

In this paper we derive asymptotic results about An in the limit n → ∞ by keeping fixed
the following combinations of model parameters:

β = 1
2σ 2tnn = 1

2σ 2τn2, (2)

(r − q)τn = ρ. (3)

Note that β is always positive but ρ can be both positive and negative. We also note that
conditions (2) and (3) can be replaced by limn→∞ 1

2σ 2τn2 = β and limn→∞(r − q)τn = ρ

and all the results in this paper will still hold.
Constraints (2) and (3) include two interesting regimes.

• When the maturity tn = τn is constant, and so are the interest rates r and dividend yield
q, then (2) assumes that the volatility σ is of the order O(1/

√
n). Therefore, conditions

(2) and (3) include the small volatility regime.

• When the maturity tn = τn is small, that is, tn → 0 as n → ∞ and, in particular, is
of the order 1/n, then by (3), the volatility σ is a constant. If the interest rates r and
dividend yield q are constant then (3) is replaced by limn→∞(r − q)τn = 0, that is,
ρ = 0. Therefore, conditions (2) and (3) include the short maturity regime.

We emphasize that we do not make any assumptions about the values of ρ, β, and they can
be arbitrary. The validity of our asymptotic results require only that n � 1, such that these
regimes cover most cases of practical interest, provided that the number of averaging times is
sufficiently large.

In this paper we present three asymptotic results for the distributional properties of the
discrete-time average of a GBM in the limit of a large number of averaging time steps n:

(i) almost sure limit and fluctuation results for An,

(ii) an asymptotic result for the moment generating function of the partial sums nAn for
n → ∞, and

(iii) large deviations results for P(An ∈ ·).
Using these asymptotic results, we derive rigorously asymptotics for the prices of out-of-the-
money (OTM), in-the-money (ITM), and at-the-money (ATM) Asian options.

In Section 2 we present the almost sure and fluctuations results for An in the n → ∞ limit.
In Section 3 we present an asymptotic result for the Laplace transform of the finite sum of the
GBM sampled on n discrete-times nAn, in the limit n → ∞. In Section 4 we consider the
asymptotics of fixed-strike Asian options following from the large deviations result (iii), and
in Section 5 we treat the case of the floating-strike Asian options. These asymptotic results
can be used to obtain approximative pricing formulae for Asian options, and in Section 6 we
compare the numerical performance of the asymptotic result against alternative methods for
pricing Asian options under the BS model. Some of the proposed methods are known to be
less efficient numerically in the small maturity and/or small volatility limit [26], [36]. The
asymptotic results derived in this paper are of practical interest as they complement these
approaches in a region where their numerical performance is not very good. We demonstrate
good agreement of our asymptotic results with alternative pricing methods for Asian options
with realistic values of the model parameters.
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2. Asymptotics for the discrete-time average of a GBM

Proposition 1. We have the almost sure (a.s.) limit

lim
n→∞ An = A∞ ≡ S0

1

ρ
(eρ − 1).

Proof. Note that max1≤i≤n σ |Zti | = max1≤i≤n

√
(2β/τ)|Ziτ |/n and from the property of

Brownian motion, 1/n max1≤i≤n |Ziτ | → 0 a.s. as n → ∞. Moreover, 1
2σ 2ti = βi/n2 ≤

β/n → 0 as n → ∞ uniformly in 1 ≤ i ≤ n. Therefore, Sti can be approximated by S0e(r−q)ti

uniformly in 1 ≤ i ≤ n, that is, max1≤i≤n |Sti − S0e(r−q)ti | → 0 a.s. as n → ∞. Finally, note
that

1

n

n∑
i=1

e(r−q)ti = 1

n

n∑
i=1

eρi/n = 1

n

eρ − 1

1 − e−ρ/n
→ 1

ρ
(eρ − 1), n → ∞.

Hence, we proved the desired result. �
We have also the following fluctuation result.

Proposition 2. The time average An converges in distribution to a normal distribution in the
n → ∞ limit

lim
n→∞

√
n
An − A∞

S0
= N(0, 2βv(ρ)).

with

v(a) := 1

a3

[
ae2a − 3

2
e2a + 2ea − 1

2

]
.

Proof. We have

√
n
An − A∞

S0
= 1√

n

n∑
i=1

(
exp

(
σZi +

(
r − q − 1

2
σ 2

)
ti

)
− exp

(
ρ

i

n

))

+
[

1√
n

n∑
i=1

exp

(
ρ

i

n

)
− √

n
exp(ρ) − 1

ρ

]

= 1√
n

n∑
i=1

exp

(
ρ

i

n

)(
exp

(√
2β

n
Bi − β

i

n2

)
− 1

)

+
[

1√
n

n∑
i=1

exp

(
ρ

i

n

)
− √

n
exp(ρ) − 1

ρ

]
, (4)

where Zi = √
τBi with Bi a standard Brownian motion. We can rewrite the second term in (4)

as
1√
n

n∑
i=1

eρi/n − √
n

eρ − 1

ρ
= 1√

n

eρ − 1

1 − e−ρ/n
− √

n
eρ − 1

ρ

= (eρ − 1)
1√
n

[
1

ρ/n − ρ2/2n2 + O(n−3)
− n

ρ

]

= (eρ − 1)
1√
n

ρ2/2n + O(n−2)

ρ(ρ/n − ρ2/2n2 + O(n−3))

→ 0 as n → ∞.
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The first term in (4) can be written further as

1√
n

n∑
i=1

exp

(
ρ

i

n

)(
exp

(√
2β

n
Bi − β

i

n2

)
− 1

)
= 1√

n

n∑
i=1

exp

(
ρ

i

n

)√
2β

n
Bi + ξn, (5)

where we define

ξn ≡ 1√
n

n∑
i=1

exp

(
ρ

i

n

)(
exp

(√
2β

n
Bi − β

i

n2

)
−

√
2β

n
Bi − 1

)
.

We claim that ξn → 0 in probability as n → ∞.
We have the following upper bound on ξn:

ξn ≤ 1√
n

n∑
i=1

exp

(
ρ

i

n

)(
exp

(√
2β

n
Bi

)
−

√
2β

n
Bi − 1

)
≡ ξ

(up)
n .

The upper bound ξ
(up)
n is a nonnegative random variable since ex − 1 − x ≥ 0 for any real x.

The expectation of ξ
(up)
n can be computed exactly as

E[ξ (up)
n ] = 1√

n

n∑
i=1

exp

(
ρ

i

n

)(
exp

(
β

n2 i

)
− 1

)

= 1√
n

(
exp(ρ + β/n) − 1

1 − exp(−ρ/n − β/n2)
− exp(ρ) − 1

1 − exp(−ρ/n)

)

= 1√
n

(
β

ρ
+ o

(
1

n

))
.

This goes to 0 as n → ∞. The Markov inequality implies that ξ
(up)
n → 0 in probability as

n → ∞.
Next, let us estimate the lower bound on ξn. We have

ξn ≥ 1√
n

n∑
i=1

exp

(
ρ

i

n

)(
exp

(√
2β

n
Bi − β

n

)
−

(√
2β

n
Bi − β

n

)
− 1 − β

n

)

≥ 1√
n

n∑
i=1

exp

(
ρ

i

n

)(
−β

n

)

= − β√
n

exp(ρ) − 1

n(1 − exp(−ρ/n))

→ 0,

where we used again in the second step the inequality ex ≥ 1 + x.
The first term in (5) is a normal random variable and converges in distribution to a normal

distribution with mean 0 and variance to be determined. We have

1√
n

n∑
i=1

exp

(
ρ

i

n

)√
2β

n
Bi → N(0, 2βv(ρ)).
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This can be computed by writing Bi = ∑i−1
j=0 Vj with Vj ∼ N(0, 1) independent and

identically distributed (i.i.d.) normally distributed random variables with mean 0 and unit
variance. The sum can be written as

1√
n

n∑
i=1

exp

(
ρ

i

n

)√
2β

n
Bi

=
√

2β

n3/2

n−1∑
j=0

Vj

n∑
i=j+1

exp

(
ρ

i

n

)

=
√

2β

n3/2

n−1∑
j=0

Vj

1

exp(ρ/n) − 1

{
exp

(
ρ

n + 1

n

)
− exp

(
ρ

j + 1

n

)}
.

We can compute the variance of this random variable as

var

(
1√
n

n∑
i=1

exp

(
ρ

i

n

)√
2β

n
Bi

)

= 2β

n3

n−1∑
j=0

1

(exp(ρ/n) − 1)2

(
exp

(
ρ

n + 1

n

)
− exp

(
ρ

j + 1

n

))2

= 2β
1

n2(exp(ρ/n) − 1)2

n−1∑
j=0

(
exp

(
ρ

n + 1

n

)
− exp

(
ρ

j + 1

n

))2 1

n

→ 2β

ρ2

∫ 1

0
(exp(ρ) − exp(ρx))2 dx as n → ∞,

where we can compute

2β

ρ2

∫ 1

0
(eρ − eρx)2 dx = 2β

ρ3

[
ρe2ρ − 3

2
e2ρ + 2eρ − 1

2

]
. �

3. Moment generating function

Define the moment generating function of nAn as

Fn(θ) := E[eθnAn ].
For θ < 0, this is the Laplace transform of the distribution function of nAn.

We are interested in the limit limn→∞(1/n) log Fn(θ). We will compute this limit using the
theory of large deviations. Before we proceed, recall that a sequence (Pn)n∈N of probability
measures on a topological space X satisfies the large deviation principle with rate function
I : X → R if I is nonnegative, lower semicontinuous, and, for any measurable set A, we have

− inf
x∈Ao

I (x) ≤ lim inf
n→∞

1

n
log Pn(A) ≤ lim sup

n→∞
1

n
log Pn(A) ≤ − inf

x∈A

I (x).

Here, Ao is the interior of A and A is its closure. The rate function I is said to be good if, for
any m, the level set {x : I (x) ≤ m} is compact. We refer the reader to [10] or [50] for general
background information on large deviations and the applications.

We have the following limit theorem for the moment generating function in the limit n → ∞
at fixed β.
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Theorem 1. For any θ > 0, Fn(θ) = ∞, and, for any θ ≤ 0,

lim
n→∞

1

n
log Fn(θ) = sup

g∈AC0[0,1]

{
θS0

∫ 1

0
e
√

2βg(x) dx − 1

2

∫ 1

0

(
g′(x) − ρ√

2β

)2

dx

}
.

Proof. Since E[exp(θX)] = ∞ for any θ > 0 and for any log-normal random variable X,
it is clear that E[exp(θnAn)] = ∞ for any θ > 0. Next, for any θ ≤ 0,

E[exp(θnAn)] = E

[
exp

(
θ

n−1∑
k=0

S0 exp

(
σZtk +

(
r − q − 1

2
σ 2

)
tk

))]

= E

[
exp

(
θS0

n−1∑
k=0

exp

(
σ
√

τ

k∑
j=1

Vj +
(

r − q − 1

2
σ 2

)
kτ

))]

= E

[
exp

(
θS0

n−1∑
k=0

exp

(√
2β

n

k∑
j=1

Vj + ρk

n
− β

n2 k

))]

= E

[
exp

(
θS0

n−1∑
k=0

exp

(√
2β

n

k∑
j=1

(
Vj + ρ√

2β

)
− β

n2 k

))]
,

where Vj := (Zj − Zj−1)/
√

τ , 1 ≤ j ≤ k, are i.i.d. N(0, 1) random variables. Note

that
∑0

j=1 Vj is defined as 0. By Mogulskii’s theorem, see, e.g. [10], P((1/n)
∑
·n�

j=1(Vj +
ρ/

√
2β) ∈ ·) satisfies a large deviation principle on L∞[0, 1] with the good rate function

I (g) =
∫ 1

0
�(g′(x)) dx,

if g ∈ AC0[0, 1], that is, absolutely continuous, g(0) = 0, and I (g) = +∞ otherwise, where

�(x) := sup
θ∈R

{
θx − log E

[
exp

(
θ

(
V1 + ρ√

2β

))]}
= 1

2

(
x − ρ√

2β

)2

.

Let g(x) := (1/n)
∑
xn�

j=1 (Vj + ρ/
√

2β). Then

∫ 1

0
exp(

√
2βg(x)) dx =

n−1∑
k=0

∫ (k+1)/n

k/n

exp(
√

2βg(x)) dx

= 1

n

n−1∑
k=0

exp

(√
2β

n

k∑
j=1

(
Vj + ρ√

2β

))
.

Moreover, we claim that

g �→
∫ 1

0
exp(

√
2βg(x)) dx

is a continuous map. Let gn be any sequence in L∞[0, 1] so that gn → g in L∞[0, 1]. Observe
that, for any |x| ≤ 1

2 .

|ex − 1| =
∣∣∣∣x + x2

2! + x3

3! + · · ·
∣∣∣∣ ≤ |x|(1 + |x| + |x|2 + · · · ) ≤ 2|x|.
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Let n be sufficiently large so that
√

2β‖gn − g‖L∞[0,1] ≤ 1
2 . Therefore, we have

∣∣∣∣
∫ 1

0
exp(

√
2βgn(x)) dx −

∫ 1

0
exp(

√
2βg(x)) dx

∣∣∣∣
=

∣∣∣∣
∫ 1

0
exp(

√
2βg(x))(exp(

√
2β(gn(x) − g(x))) − 1) dx

∣∣∣∣
≤ exp(

√
2β‖g‖L∞[0,1])

∫ 1

0
| exp(

√
2β(gn(x) − g(x))) − 1| dx

≤ 2
√

2β exp(
√

2β‖g‖L∞[0,1])‖gn − g‖L∞[0,1],

which converges to 0 as n → ∞. Hence, the map is continuous. Let us recall the celebrated
Varadhan’s lemma from large deviations theory; see, e.g. [10]. If P(Zn ∈ ·) satisfies a large
deviation principle with good rate function I : X → [0, +∞], and if φ is a continuous map
and

lim
M→+∞ lim sup

n→∞
1

n
log E[enφ(Zn) 1{φ(Zn)≥M}] = −∞, (6)

then

lim
n→∞

1

n
log E[enφ(Zn)] = sup

x∈X
{φ(x) − I (x)}.

In our case,

φ(g) = θS0

∫ 1

0
e
√

2βg(x) dx

is a continuous map. Moreover, for θ ≤ 0, φ(g) ≤ 0 and, thus, condition (6) is trivially
satisfied. Hence, we can apply Varadhan’s lemma to obtain

lim
n→∞

1

n
log E

[
exp

(
θS0

n−1∑
k=0

exp

(√
2β

n

k∑
j=1

(
Vj + ρ√

2β

)))]

= sup
g∈AC0[0,1]

{
θS0

∫ 1

0
exp(

√
2βg(x)) dx − 1

2

∫ 1

0

(
g′(x) − ρ√

2β

)2

dx

}
.

Finally, note that

E

[
exp

(
θS0

n−1∑
k=0

exp

(√
2β

n

k∑
j=1

(
Vj + ρ√

2β

)))]

≤ E[exp(θnAn)]

≤ E

[
exp

(
θS0 exp

(
−β

n

) n−1∑
k=0

exp

(√
2β

n

k∑
j=1

(
Vj + ρ√

2β

)))]
.

Hence, for any θ ≤ 0,

lim
n→∞

1

n
log E[exp(θnAn)]

= sup
g∈AC0[0,1]

{
θS0

∫ 1

0
exp(

√
2βg(x)) dx − 1

2

∫ 1

0

(
g′(x) − ρ√

2β

)2

dx

}
. �
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3.1. Solution of the variational problem

The variational problem in Theorem 1 can be restated as

lim
n→∞

1

n
log Fn(θ) = λ(−θS0,

√
2β; ρ),

where λ(a, b; ρ) is the solution of the variational problem

λ(a, b; ρ) = sup
g∈AC0[0,1]

{
−a

∫ 1

0
ebg(x) dx − 1

2

∫ 1

0

(
g′(x) − ρ

b

)2

dx

}
. (7)

Here we have a, b > 0.
This variational problem can be solved explicitly, and the solution is given by the following

result.

Proposition 3. The function λ(a, b; ρ) is given by one of the two expressions

λ1(a, b; ρ) = a

{
1 + sinh2

(
δ

2

)(
1 − 4ρ

δ2 + ρ2

δ2

)
− 2 − ρ

δ
sinh δ

}

+ 2

b2 ρ log

[
cosh

(
δ

2

)
+ ρ

δ
sinh

(
δ

2

)]
− ρ2

b2 (8)

or

λ2(a, b; ρ) = a

{
1 − sin2 ξ

(
1 + ρ

ξ2 − ρ2

4ξ2

)
+ ρ − 2

2ξ
sin(2ξ)

}

+ 2ρ

b2 log

[
cos ξ + ρ

2ξ
sin ξ

]
− ρ2

b2 . (9)

In (8), δ is the solution of

ρ2 − δ2 = 2ab2
(

cosh

(
1

2
δ

)
+ ρ

δ
sinh

(
1

2
δ

))2

, (10)

and in (9), ξ is the unique solution ξ ∈ (0, ξmax) of

2ξ2(4ξ2 + ρ2) = ab2(2ξ cos ξ + ρ sin ξ)2. (11)

Note that ξmax is the smallest solution of tan ξmax = −2ξmax/ρ.
For given (a > 0, b, ρ) only one of the two equations (10) and (11) has a solution, such that

the solution of the variational problem is unique.

Proof. The proof will be given in Appendix A. �
Recall that limn→∞(r − q)τn = ρ, and in the short maturity limit tn → 0 at constant r, q,

we have ρ = 0. Therefore, the special case ρ = 0 is of practical interest when considering the
short maturity limit. For this case it is clear that only (11) has a solution for a > 0 so we obtain
the simpler result.

Corollary 1. The function λ(a, b; 0) in the ρ = 0 limit is given by

λ(a, b; 0) = a

(
cos2 ξ − 1

ξ
sin(2ξ)

)
,

where ξ is the solution of 2ξ2 = ab2 cos2 ξ.
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In conclusion, the result of Theorem 1 and Proposition 3 gives an asymptotic expression for
the Laplace transform of the discrete sum of the GBM nAn in the limit n → ∞, of the form
E[exp(−θnAn)] = exp(nλ(θS0,

√
2β; ρ) + o(n)). This result could be used for numerical

simulations of nAn, similar to the approach presented in [32] using an asymptotic result for the
Laplace transform of the sum of correlated log-normals. Another possible application would
be to obtain a first-order approximation of Asian options prices in the asymptotic n ≥ 1 limit
using the Carr–Madan formula [6].

In the next section we present the leading asymptotics for the Asian option prices using the
theory of large deviations.

4. Asymptotics for Asian options prices

Asymptotics for the option pricing is a well-studied subject in mathematical finance. There is
a vast literature on the asymptotics for option pricing, especially the asymptotics for the vanilla
option pricing and the corresponding implied volatility for various continuous-time models;
see, e.g. [4], [18], [19], [25], and [48]. We are interested in the asymptotics for the pricing of
the Asian options in the discrete-time setting, under assumptions (2) and (3).

Let us consider an Asian option with strike price K , in the BS model with volatility σ , risk
free rate r , and dividend yield q. The prices of the put and call options at time 0 are given by

P(n) := e−rtnE[(K − An)
+], C(n) := e−rtnE[(An − K)+],

respectively, where An = (1/n)
∑n

i=1 Sti and the expectations are taken under the risk-neutral
probability measure under which the asset price satisfies the stochastic differential equation
dSt = (r − q)St dt + σSt dWt . Also note that exp(−rtn) = exp(−(r/(r − q))(r − q)τn) =
exp(−(r/(r − q))ρ). Recall that we have proved that An → A∞ = S0(eρ − 1)/ρ a.s. as
n → ∞. Since (K − An)

+ ≤ K , by the bounded convergence theorem from real analysis, we
have

lim
n→∞ P(n) = exp

(
− r

r − q
ρ

)
lim

n→∞ E[(K − An)
+]

= exp

(
− r

r − q
ρ

)(
K − S0

ρ
(exp(ρ) − 1)

)+
.

From put-call parity,

C(n) − P(n) = exp(−rtn)E[An − K]

= exp

(
− r

r − q
ρ

)[
1

n

n∑
i=1

E[Sti ] − K

]

= exp

(
− r

r − q
ρ

)[
1

n
S0

n∑
i=1

exp

(
ρ

i

n

)
− K

]

→ exp

(
− r

r − q
ρ

)(
S0

ρ
(exp(ρ) − 1) − K

)
as n → ∞.

Therefore,

lim
n→∞ C(n) = exp

(
− r

r − q
ρ

)(
S0

ρ
(exp(ρ) − 1) − K

)+
.
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4.1. The OTM case

When K < S0(eρ − 1)/ρ, limn→∞ P(n) = 0 and the put option is OTM and the decaying
rate of P(n) to 0 as n → ∞ is governed by the left tail of the large deviations of An. When
K > S0(eρ − 1)/ρ, limn→∞ C(n) = 0 and the call option is OTM and the decaying rate of
C(n) to 0 as n → ∞ is governed by the right tail of the large deviations of An. Before we
proceed, let us first derive the large deviation principle for P(An ∈ ·).
Proposition 4. It holds that P(An ∈ ·) satisfies a large deviation principle with rate function

� (x) = inf
g∈AC0[0,1], ∫ 1

0 exp(
√

2βg(y)) dy=x/S0

1

2

∫ 1

0

(
g′(x) − ρ√

2β

)2

dx (12)

for x ≥ 0 and � (x) = +∞ otherwise.

Proof. We proved already that

1

n

n−1∑
k=0

exp

(√
2β

n

k∑
j=1

(
Vj + ρ√

2β

))
=

∫ 1

0
exp(

√
2βg(x)) dx,

where g(x) = (1/n)
∑
xn�

j=1 (Vj + ρ/
√

2β) and the map g �→ ∫ 1
0 exp(

√
2βg(x)) dx is continu-

ous in the supremum norm. Since P((1/n)
∑
·n�

j=1(Vj + ρ/
√

2β) ∈ ·) satisfies a large deviation

principle on L∞[0, 1] with rate function 1
2

∫ 1
0 (g′(x) − ρ/

√
2β)2 dx if g ∈ AC0[0, 1] and +∞

otherwise. From the contraction principle, and the fact that e−β/n ≤ e−βk/n2 ≤ 1 uniformly
in 0 ≤ k ≤ n − 1, we conclude that P(An ∈ ·) satisfies a large deviation principle with rate
function defined in (12). Finally, note that An is positive and, thus, � (x) = +∞ for any x < 0.
This completes the proof. �
Remark 1. Note that � (x) = 0 in (12) if and only if the optimal g satisfies g′(x) = ρ/

√
2β,

which is equivalent to g(x) = ρx/
√

2β since g(0) = 0. This gives us
∫ 1

0 e
√

2βg(y) dy =∫ 1
0 eρy dy = (eρ − 1)/ρ. Thus, � (x) = 0 if and only if x = S0((eρ − 1)/ρ) = A∞, which is

consistent with the a.s. limit of An as n → ∞.

Remark 2. We have proved that �(θ) := limn→∞(1/n) log E[eθnAn ] exists for any θ ≤ 0 and
is differentiable and �(θ) = +∞ for any θ > 0. Since �(θ) = +∞ for any θ > 0, we cannot
use the Gärtner–Ellis theorem to obtain large deviations for P(An ∈ ·). One may speculate that
we might have subexponential tails. But the intriguing fact is that we still have large deviations
as stated in Proposition 4.

We can further analyze and solve the variational problem (12). For ρ �= 0, the solution is
given by the following result.

Proposition 5. The rate function of the discrete-time average of the GBM is given by

� (x) = 1

2β
J

(
x

S0
, ρ

)
, (13)

with

J

(
x

S0
, ρ

)
=

⎧⎪⎪⎨
⎪⎪⎩

J1

(
x

S0
, ρ

)
, x/S0 ≥ 1 + 1

2ρ,

J2

(
x

S0
, ρ

)
, x/S0 ≤ 1 + 1

2ρ,
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where

J1

(
x

S0
, ρ

)
= 1

2
(δ2 − ρ2)

(
1 − 2 tanh(δ/2)

δ + ρ tanh(δ/2)

)

− 2ρ log

[
cosh

(
δ

2

)
+ ρ

δ
sinh

(
δ

2

)]
+ ρ2,

J2

(
x

S0
, ρ

)
= 2

(
ξ2 + ρ2

4

){
tan ξ

ξ + (ρ/2) tan ξ
− 1

}
− 2ρ log

(
cos ξ + ρ

2ξ
sin ξ

)
+ ρ2,

and δ, ξ are the solutions of

1

δ
sinh δ + 2ρ

δ2 sinh2
(

δ

2

)
= x

S0
(14)

and
1

2ξ
sin(2ξ)

(
1 + ρ

2

tan ξ

ξ

)
= x

S0
.

Proof. The proof is given in Appendix A. �
Remark 3. We note that the equations for J1,2(K/S0, ρ) can be put into a unique form by
denoting z = 2ξ = iδ. Expressed in terms of this variable, we have

J

(
x

S0
, ρ

)
= 1

2
(z2 + ρ2)

(
2 tan(z/2)

z + ρ tan(z/2)
− 1

)
− 2ρ log

[
cos

(
z

2

)
+ ρ

z
sin

(
z

2

)]
+ ρ2,

where z is the solution of
1

z
sin z + 2ρ

z2 sin2
(

z

2

)
= x

S0
.

Remark 4. The rate function J(K/S0, ρ) vanishes for K = A∞ = S0(eρ −1)/ρ, as expected
from the general properties of the rate function. Since we have (eρ − 1)/ρ ≥ 1 + 1

2ρ for any
ρ ∈ R, this 0 occurs for J1(K/S0, ρ). We note that the rate function J1(K/S0, ρ) vanishes at
δ = ±ρ. Both these values of δ satisfy (14) with K/S0 = (eρ − 1)/ρ, which corresponds to
K = A∞. However, the true solution of the variational problem (12) corresponds to δ = −ρ,
which gives the optimal function g(x) = ρx/

√
2β; see (44).

For ρ = 0, the solution to the variational problem (12) simplifies and is given as follows.

Corollary 2. For the special case ρ = 0,

J(x) =
⎧⎨
⎩

δ2

2
− δ tanh

(
δ

2

)
, x/S0 ≥ 1,

2ξ(tan ξ − ξ), 0 < x/S0 ≤ 1,

and J(x) = ∞ otherwise, where δ is the unique solution of

1

δ
sinh δ = x

S0
,

and ξ is the unique solution in (0, 1
2π) of

1

2ξ
sin(2ξ) = x

S0
.
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Figure 1: Plot of the rate function J(K/S0, ρ) versus K/S0 for two values of the ρ parameter ρ = 0, 0.1.
This is related to the rate function � (x) for the large deviations of the average of the GBM An as in (13).

It can be shown that this is identical to the rate function for the short maturity asymptotics
of Asian options with continuous-time averaging in the BS model [42]. The rate function
J(K/S0, ρ) can be evaluated numerically using the result of Proposition 5. The plot of
J(x/S0, ρ) is shown in Figure 1 for ρ = 0, 0.1.

Using the large deviations results for P(An ∈ ·), we can obtain the asymptotics of the OTM
Asian options prices. This is given by the following result.

Proposition 6. When K < (S0/ρ)(eρ − 1),

P(n) = e−n� (K)+o(n) as n → ∞, (15)

and when K > (S0/ρ)(eρ − 1),

C(n) = e−n� (K)+o(n) as n → ∞, (16)

where � (·) was defined in (12).

Proof. For any 0 < ε < K ,

P(n) ≥ exp

(
− r

r − q
ρ

)
E[(K − An) 1{An≤K−ε}] ≥ exp

(
− r

r − q
ρ

)
εP(An ≤ K − ε).

Therefore, lim infn→∞(1/n) log P(n) ≥ −� (K − ε). Since it holds for any ε ∈ (0, K), we
conclude that

lim inf
n→∞

1

n
log P(n) ≥ −� (K).

On the other hand,

P(n) = exp

(
− r

r − q
ρ

)
E[(K − An) 1{An≤K}] ≤ exp

(
− r

r − q
ρ

)
KP(An ≤ K),

which implies that lim supn→∞(1/n) log P(n) ≤ −� (K). Hence, we have proved (15).
For any ε > 0,

C(n) ≥ exp

(
− r

r − q
ρ

)
E[(An − K) 1{An≥K+ε}] ≥ exp

(
− r

r − q
ρ

)
εP(An ≥ K + ε).
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Therefore, lim infn→∞(1/n) log C(n) ≥ −� (K + ε). Since it holds for any ε > 0, we have

lim inf
n→∞

1

n
log C(n) ≥ −� (K).

For any 1/p + 1/q = 1, p, q > 1, by Hölder’s inequality,

C(n) = exp

(
− r

r − q
ρ

)
E[(An − K)+ 1{An≥K}]

≤ exp

(
− r

r − q
ρ

)
(E[[(An − K)+]p])1/p(E[(1{An≥K})q ])1/q

≤ exp

(
− r

r − q
ρ

)
(E[(An + K)p])1/pP(An ≥ K)1/q . (17)

By Jensen’s inequality, for any x, y > 0, it is clear that, for any p ≥ 2, ( 1
2 (x + y))p ≤

1
2 (xp + yp). Therefore, for any p ≥ 2,

E[(An + K)p] ≤ 2p−1(E[Ap
n ] + Kp). (18)

We can compute that

E[Ap
n ] = n−pE

[( n∑
i=1

S0 exp

(
σZti +

(
r − q − σ 2

2

)
ti

))p]

= n−pE

[( n∑
i=1

S0 exp

(
σ
√

τZi +
(

r − q − σ 2

2

)
τ i

))p]

≤ n−pE

[( n∑
i=1

S0 exp
(
σ
√

τ max
1≤i≤n

Zi + |ρ|
))p]

≤ S
p
0 exp(|ρ|p)E

[
exp

(√
2β

n
p max

1≤i≤n
Zi

)]

= S
p
0 exp(|ρ|p)E

[
exp

(√
2β

n
p|Zn|

)]

= S
p
0 exp(|ρ|p)E

[
exp

(√
2β√
n

p|Z1|
)]

, (19)

where we used the reflection principle for the Brownian motion and the Brownian scaling
property. Note that E[eθ |Z1|] is finite for any θ > 0. Hence, from (17)–(19), we conclude that,
for any 1 < q < 2 (and, thus, p > 2, where 1/p + 1/q = 1),

lim sup
n→∞

1

n
log C(n) ≤ − 1

q
lim

n→∞
1

n
log P(An ≥ K) = − 1

q
� (K).

Since it holds for any 1 < q < 2, by letting q ↓ 1, we prove (16). �
4.2. The ITM case

We consider the case of ITM Asian options, that is, K > (S0/ρ)(eρ − 1) for the put
option (and K < S0(eρ − 1)/ρ for the call option). Since An → A∞ a.s., from the bounded
convergence theorem and put-call parity, it follows that P(n) → K − S0(eρ − 1)/ρ and
C(n) → S0(eρ − 1)/ρ − K . The next results concern the speed of the convergence.
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Proposition 7. When K < S0(eρ − 1)/ρ and ρ �= 0,

C(n) = exp

(
− r

r − q
ρ

)(
S0

ρ
(exp(ρ)−1)−K

)
+ exp(−rρ/(r − q))S0(exp(ρ) − 1)

2n
+O(n−2),

(20)
and when K > S0(eρ − 1)/ρ and ρ �= 0,

P(n) = exp

(
− r

r − q
ρ

)(
K−S0

ρ
(exp(ρ)−1)

)
− exp(−rρ/(r − q))S0(exp(ρ) − 1)

2n
+O(n−2).

(21)
The ρ = 0 case is similar. When K < S0,

C(n) = (S0 − K) + e−n� (K)+o(n),

and when K > S0,
P(n) = (K − S0) + e−n� (K)+o(n).

Proof. When K < S0(eρ −1)/ρ, we proved that P(n) = e−n� (k)+o(n). From put-call parity,

C(n) − P(n) = exp(−rtn)E[An − K] = exp

(
− r

r − q
ρ

)[
S0

exp(ρ) − 1

n(1 − exp(−ρ/n))
− K

]
.

Therefore,

C(n) − P(n) − exp

(
− r

r − q
ρ

)(
S0

ρ
(exp(ρ) − 1) − K

)

= exp

(
− rρ

r − q

)
S0(exp(ρ) − 1)

[
1

n(1 − exp(−ρ/n))
− 1

ρ

]

= exp

(
− rρ

r − q

)
S0(exp(ρ) − 1)

[
1

ρ − ρ2/2n + O(n−2)
− 1

ρ

]

= exp(−rρ/(r − q))S0(exp(ρ) − 1)

2n
+ O(n−2).

Since P(n) = e−n� (k)+o(n), we prove (20). Similarly, we have (21). �
4.3. The ATM case

Consider next the case of ATM Asian options, that is, K = S0(eρ − 1)/ρ = A∞. Since
An → A∞ a.s., using the bounded convergence theorem, we have P(n) → 0 as n → ∞. Put-
call parity implies that C(n) → 0 as n → ∞ as well. Note that in the case of OTM, we have
already seen that both P(n) and C(n) decay to 0 exponentially fast in n, where the exponent is
given by � (K). The next result concerns the speed that P(n) and C(n) decay to 0 as n → ∞
for ATM Asian options. We will see that, unlike the OTM Asian options, whose asymptotics
are governed by the large deviations results, the asymptotics for the ATM case are governed by
the normal fluctuations from the central limit theorem and nonuniform Berry–Esseen bound.

Proposition 8. When the Asian option is ATM, that is, K = S0(eρ − 1)/ρ = A∞,

P(n) = exp

(
− rρ

r − q

)
S0

√
βv(ρ)

π

1√
n

(1 + o(1)),

C(n) = exp

(
− rρ

r − q

)
S0

√
βv(ρ)

π

1√
n

(1 + o(1)),

as n → ∞.
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Proof. We have

C(n) = exp(−rtn)E[(K − An)
+]

= exp

(
− rρ

r − q

)
E[(An − A∞) 1{An≥A∞}]

= exp

(
− rρ

r − q

)
S0

1√
n

E

[√
n
(An − A∞)

S0
1{√n((An−A∞)/S0)≥0}

]
.

In Proposition 2 we proved that
√

n((An − A∞)/S0) → N(0, 2βv(ρ)) as n → ∞. Intuitively,
it is clear that

E

[√
n
(An − A∞)

S0
1{√n((An−A∞)/S0)≥0}

]
→ E[Z 1{Z≥0}],

where Z ∼ N(0, 2βv(ρ)). But in order to prove this, the central limit theorem is not sufficient.
We need a nonuniform Berry–Esseen bound [5], [39], which we recall next. See, e.g. [40] for
a survey on this subject.

Theorem 2. (Nonuniform Berry–Esseen bound.) For any independent and not necessarily
identically distributed random variables X1, X2, . . . , Xn with zero means and finite vari-
ances and var(Wn) = 1, where Wn = ∑n

i=1 Xi , let Fn be the cumulative distribution func-
tion of Wn and � the standard normal cumulative distribution function, that is, �(x) :=
(1/

√
2π)

∫ x

−∞ e−y2/2 dy.
The difference between the two distributions is bounded as (see [5] and [39])

|Fn(x) − �(x)| ≤ C
∑n

i=1 E|Xi |3
1 + |x|3 for any −∞ < x < ∞,

where C is a constant. The best known bound on this constant in the general (nonidentical Xi)
case is C < 31.935 [40].

We have proved that

√
n
(An − A∞)

S0
=

n∑
i=1

Xi + ξn + εn, (22)

where

Xi :=
√

2β

n3/2 Vi

exp(ρ(n + 1)/n) − exp(ρi/n)

exp(ρ/n) − 1
, 1 ≤ i ≤ n, (23)

where Vi are i.i.d. N(0, 1) random variables and

εn := 1√
n

n∑
i=1

exp

(
ρ

i

n

)
− √

n
exp(ρ) − 1

ρ
.

The plan of the proof will be to show that the contributions from the second and third terms in
(22) are negligible, and to apply the nonuniform Berry–Esseen bound to the first term in (22).

From (22), we have

E

[√
n
(An − A∞)

S0
1{√n((An−A∞)/S0)≥0}

]
= E

[( n∑
i=1

Xi + ξn + εn

)
1{∑n

i=1 Xi+ξn+εn≥0}
]
,

https://doi.org/10.1017/apr.2017.9 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.9


462 D. PIRJOL AND L. ZHU

which implies that

∣∣∣∣E
[√

n
(An − A∞)

S0
1{√n((An−A∞)/S0)≥0}

]
−E

[( n∑
i=1

Xi

)
1{∑n

i=1 Xi+ξn+εn≥0}
]∣∣∣∣ ≤ E|ξn|+|εn|.

We have already proved that E|ξn| and |εn| → 0 as n → ∞. Next, note that

E

[( n∑
i=1

Xi

)
1{∑n

i=1 Xi+ξn+εn≥0}
]

=
√√√√ n∑

i=1

var(Xi)E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0}
]
, (24)

where

Yi =
( n∑

i=1

var(Xi)

)−1/2

Xi, ξ̄n =
( n∑

i=1

var(Xi)

)−1/2

ξn,

ε̄n =
( n∑

i=1

var(Xi)

)−1/2

εn,

so that var(
∑n

i=1 Yi) = 1. Recall that we have already proved

lim
n→∞

n∑
i=1

var(Xi) = 2βv(ρ).

The expectation on the right-hand side of (24) can be written as

E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0}
]

= E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|≤δ}
]

+ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|>δ}
]

for any δ > 0. (25)

The second term is bounded from above by the Cauchy–Schwarz inequality

∣∣∣∣E
[( n∑

i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|>δ}
]∣∣∣∣

≤ E

[(( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0}
)2]1/2

E
[(

1{|ξ̄n+ε̄n|>δ}
)2]1/2

≤ E

[( n∑
i=1

Yi

)2]1/2

P(|ξ̄n + ε̄n| > δ)1/2

= P(|ξ̄n + ε̄n| > δ)1/2

→ 0 as n → ∞. (26)
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The first term in (25) can be written, furthermore, as

E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|≤δ}
]

= E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|≤δ,
∑n

i=1 Yi≥0}
]

+ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|≤δ,
∑n

i=1 Yi≤0}
]
. (27)

The second term in (27) is negative and is bounded in absolute value as

0 <

∣∣∣∣E
[( n∑

i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|≤δ,
∑n

i=1 Yi≤0}
]∣∣∣∣

≤ E

[( n∑
i=1

Yi

)2]1/2

P

( n∑
i=1

Yi + ξ̄n + ε̄n ≥ 0, |ξ̄n + ε̄n| ≤ δ,

n∑
i=1

Yi ≤ 0

)1/2

≤ P

(
−δ ≤

n∑
i=1

Yi ≤ 0

)1/2

→ [�(0) − �(−δ)]1/2 as n → ∞ (28)

by the central limit theorem.
Next, we need to estimate the first term in (27). We first give an upper bound,

E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|≤δ,
∑n

i=1 Yi≥0}
]

≤ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥0}
]
. (29)

Next, we give a lower bound,

E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0, |ξ̄n+ε̄n|≤δ,
∑n

i=1 Yi≥0}
]

≥ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥δ, |ξ̄n+ε̄n|≤δ}
]
. (30)

This can be written, furthermore, as

E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥δ, |ξ̄n+ε̄n|≤δ}
]

(31)

= E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥δ}
]

− E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥δ, |ξ̄n+ε̄n|>δ}
]
.

By following the same argument as in (26), we have

lim
n→∞ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥δ, |ξ̄n+ε̄n|>δ}
]

= 0. (32)
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The bounds (29) and (30) can be combined with the bounds (28) to obtain simpler bounds
on the expectation in (27) in the n → ∞ limit. By (25)–(32), these bounds translate into
corresponding bounds for the expectation (28). We have, for any δ ≥ 0,

lim inf
n→∞ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0}
]

≥ lim inf
n→∞ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥δ}
]

− [�(0) − �(−δ)]1/2,

and

lim sup
n→∞

E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0}
]

≤ lim sup
n→∞

E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥0}
]
.

Finally, take the δ → 0 limit, which gives

lim
n→∞ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi+ξ̄n+ε̄n≥0}
]

= lim
n→∞ E

[( n∑
i=1

Yi

)
1{∑n

i=1 Yi≥0}
]
.

The nonuniform Berry–Esseen bound can be applied to compute the expectation on the right-
hand side.

The sums of third moments appearing in the nonuniform Berry–Esseen bound are estimated
as follows. Recalling that Yi = (

∑n
i=1 var(Xi))

−1/2Xi , where Xi are defined in terms of
N(0, 1) i.i.d. random variables Vi as given in (23), we find that

n∑
i=1

E|Yi |3 = 1

(
∑n

i=1 var(Xi))3/2

n∑
i=1

E|Xi |3

= 1

(
∑n

i=1 var(Xi))3/2

(2β)3/2

n1/2 E|V1|3
n∑

i=1

(
exp(ρ(n + 1)/n) − exp(ρi/n)

n(exp(ρ/n) − 1)

)3 1

n

≤ C0(ρ)

n1/2 ,

where C0(ρ) > 0 depends only on ρ. Therefore, by the nonuniform Berry–Esseen bound, we
have

|Fn(x) − �(x)| ≤ C1(ρ)

n1/2

1

1 + |x|3 for any −∞ < x < ∞,

where Fn is the cumulative distribution function of
∑n

i=1 Yn and C1(ρ) > 0 is another constant.
Hence, we have, with Z ∼ N(0, 2βv(ρ)),

∣∣∣∣E
[( n∑

i=1

Yi

)
1{∑n

i=1 Yi≥0}
]

− E[Z 1{Z≥0}]
∣∣∣∣ =

∣∣∣∣
∫ ∞

0
x dFn(x) −

∫ ∞

0
x d�(x)

∣∣∣∣
=

∣∣∣∣
∫ ∞

0
Fn(x) dx −

∫ ∞

0
�(x) dx

∣∣∣∣
≤

∫ ∞

0

C1(ρ)

n1/2

1

1 + |x|3 dx,
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which goes to 0 as n → ∞. We conclude that

C(n) = exp

(
− rρ

r − q

)
S0E[Z 1{Z≥0}] 1√

n
(1 + o(1)) as n → ∞,

where Z ∼ N(0, 2βv(ρ)). The expectation is given explicitly by

E[Z 1{Z≥0}] = √
2βv(ρ) − 1√

2π

∫ ∞

0
x exp

(
−x2

2

)
dx =

√
βv(ρ)

π
.

This completes the proof of the asymptotics for the ATM call option C(n). The asymptotics
for the price of the ATM put option P(n) can be obtained by using put-call parity. The proof
is complete. �

5. Asymptotics for floating-strike Asian options

We consider in this section the floating-strike Asian options, which are a variation of the
standard Asian option. The floating-strike Asian call option with strike K and weight κ has
payoff (κST − AT )+ at maturity T and the floating-strike put option has payoff (AT − κST )+
at maturity T .

The floating-strike Asian option is more difficult to price than the fixed-strike case because
the joint law of ST and AT is needed. Also, the one-dimensional PDE that the floating-strike
Asian price satisfies after a change of numéraire is difficult to solve numerically as the Dirac
delta function appears as a coefficient; see, e.g. [2], [29], and [44]. See [8], [28], and [43] for
alternative methods which have been proposed to deal with this problem.

It has been shown by Henderson and Wojakowski [28] that the floating-strike Asian options
with continuous-time averaging can be related to fixed strike ones. These equivalence relations
have been extended to discrete-time averaging Asian options in [49]. According to these
relations, we have

e−rtnE[(κStn − An)
+] = e−qtnE∗[(κS0 − An)

+], (33)

e−rtnE[(An − κStn)
+] = e−qtnE∗[(An − κS0)

+]. (34)

The expectations on the right-hand side are taken with respect to a different measure Q∗, where
the asset price St follows the process

dSt = (q − r)St dt + σSt dW ∗
t ,

with W ∗
t a standard Brownian motion in the Q∗ measure.

We are interested in the asymptotics of the price of the Asian call/put options with payoffs
(κStn − An)

+ and (An − κStn)
+,

C(n) := e−rtnE[(κStn − An)
+],

P (n) := e−rtnE[(An − κStn)
+]. (35)

As n → ∞, κStn − An → κS0eρ − S0((eρ − 1)/ρ) a.s. When κ < (1 − e−ρ)/ρ the call
option is OTM and the put option is ITM. When κ > (1 − e−ρ)/ρ, the call option is ITM and
the put option is OTM. When κ = (1 − e−ρ)/ρ, the call and put options are ATM.

For the expectations on the right-hand side of the equivalence relations (33) and (34), it
follows, as n → ∞, κS0 − An → κS0 − S0((e−ρ − 1)/(−ρ)) a.s. We conclude that for
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κ < (1 − e−ρ)/ρ these equivalence relations map an OTM floating-strike call (put) Asian
option onto an OTM fixed-strike put (call) Asian option. For κ > (1 − e−ρ)/ρ a similar
relation holds between the respective ITM Asian options.

Let us derive the asymptotics of the price of the floating-strike Asian options. This could be
expressed in terms of the asymptotics of the fixed-strike Asian options obtained in the previous
sections, with the help of the equivalence relations. An alternative way is to derive directly the
large deviation result for the floating-strike Asian options. Then we will relate the rate function
to that for the fixed-strike Asian options and show that this is consistent with the equivalence
relations.

We have the following result for the asymptotics of floating-strike Asian options.

Proposition 9. (i) When κ < (1 − e−ρ)/ρ, the call option is OTM,

C(n) = e−nH(0)+o(n) as n → ∞,

and the put option is ITM,

P(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−κS0 exp

(
− r

r − q
ρ

)
+ S0 exp

(
− r

r − q
ρ

)
exp(ρ) − 1

ρ

+exp(−rρ/(r − q))S0(exp(ρ) − 1)

2n
+ O(n−2), ρ �= 0,

(1 − κ)S0 + exp(−nH(0) + o(n)), ρ = 0.

(ii) When κ > (1 − e−ρ)/ρ, the put option is OTM

P(n) = e−nH(0)+o(n) as n → ∞,

and the call option is ITM,

C(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κS0 exp

(
− r

r − q
ρ

)
− S0 exp

(
− r

r − q
ρ

)
exp(ρ) − 1

ρ

−exp(−rρ/(r − q))S0(exp(ρ) − 1)

2n
+ O(n−2), ρ �= 0,

S0(κ − 1) + exp(−nH(0) + o(n)), ρ = 0.

The rate function in (i) and (ii) is given by

H(0) := inf
g∈AC0[0,1], κ exp(

√
2βg(1))−∫ 1

0 exp(
√

2βg(y)) dy=0

1

2

∫ 1

0

(
g′(x) − ρ√

2β

)2

dx.

(iii) When κ = (1 − e−ρ)/ρ, the call and put options are ITM,

lim
n→∞

√
nC(n) = lim

n→∞
√

nP (n) = S0 exp

(
− rρ

r − q

)
E[Z 1{Z≥0}],

where Z = N(0, s) is a normal random variable with mean 0 and variance

s2 = 2β

ρ2

[
1 − 2

ρ
(eρ − 1) + e2ρ − 1

2ρ

]
.
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Proof. The proof is similar to the fixed-strike case. The sketch of the proof will be given in
Appendix A. �

We show next that the rate function H(0) can be simply related to � (x) defined in (12). Recall
that we showed explicitly the dependence of ρ of the respective rate functions H(·) and I (·).
With a slight abuse of notation to emphasize the dependence on ρ, let H(·; ρ) := H(·) and
I (·; ρ) := I (·). We have the following result, which is clearly consistent with the equivalence
relations (33) and (34).

Proposition 10. The rate functions for the fixed-strike and floating-strike Asian options are
related as

H(0; ρ) = � (κS0; −ρ). (36)

Proof. The functionals in the variational problems for H(0) and � (x) are identical, and the
only difference is in the constraints on g(x). The constraints can be related as follows.

Let us express g(x) in the variational problem for H(0) in terms of a new function h(x)

defined as g(x) = g(1) + h(1 − x). This function satisfies the constraint h(0) = 0. The rate
function is now given by

H(0) := inf
h∈AC0[0,1], κ−∫ 1

0 exp(
√

2βh(y)) dy=0

1

2

∫ 1

0

(
h′(x) + ρ√

2β

)2

dx.

It is easy to see that this variational problem is identical to that for the rate function � (x),
identifying K/S0 = κ and ρ → −ρ. This concludes the proof of (36). �

6. Implied volatility and numerical tests

It has become accepted market practice to quote European option prices in terms of their
implied volatility. This is defined as the value of the log-normal volatility which, upon
substitution into the BS formula, reproduces the market option prices. A similar normal implied
volatility can be defined in terms of the Bachelier formula.

Although Asian options are quoted in practice by price, and not by implied volatility, it is
convenient to define an equivalent implied volatility also for these options. We will define the
equivalent log-normal implied volatility of an Asian option with strike K and maturity T as that
value of the volatility �LN(K, T ) which reproduces the Asian option price when substituted
into the BS formula for a European option with the same parameters (K, T ),

C(K, S0, T ) = e−rT (A∞�(d1) − K�(d2)), (37)

P(K, S0, T ) = e−rT (K�(−d2) − A∞�(−d1)),

where

A∞ = S0
1

ρ
(eρ − 1) = 1

(r − q)T
(e(r−q)T − 1),

and

d1,2 = 1

�LN(K, T )
√

T

(
log

A∞
K

± 1

2
�2

LN(K, T )T

)
.

The equivalent log-normal volatility �LN defined in this way exists for any Asian option call
price C(K, S0, T ) satisfying the Merton bounds (A∞ − K)+ ≤ erT C(K, S0, T ) ≤ A∞ [45].
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For finite n the price of the Asian option is bounded as (E[An] − K)+ ≤ erT C(K, S0, T ) ≤
E[An] with

E[An] = 1

n

eρ − 1

1 − e−ρ/n
,

so the required bounds are satisfied for n → ∞. (The lower bound follows from the convexity
of the payoff (x − K)+ and the upper bound follows from (x − K)+ ≤ x.)

One can define also a normal equivalent volatility �N(K, T ) of an Asian option as that
volatility which reproduces the Asian option price when substituted into the Bachelier option
pricing formula.

We would like to study the implications of the asymptotic results for Asian option prices
derived in Section 4 for the equivalent log-normal volatility �LN, and for the equivalent normal
volatility �N. This is given by the following result.

Proposition 11. (i) The asymptotic normal and log-normal equivalent implied volatilities of
an OTM Asian option in the n → ∞ limit at constant β = 1

2σ 2tnn are given by

lim
n→∞

�2
LN(K, n)

σ 2 = 1

2

log2(K/A∞)

J(K/S0, ρ)
, (38)

lim
n→∞

�2
N(K, n)

σ 2 = 1

2

(K − A∞)2

J(K/S0, ρ)
, (39)

where J(K/S0, ρ) is related to the rate function � (x) as in (13), and is given by Proposition 5.

(ii) The equivalent log-normal implied volatility for n → ∞ of an ATM Asian option is

lim
n→∞

�LN(A∞, n)

σ
= S0

A∞

√
v(ρ), (40)

and the corresponding result for the equivalent normal implied volatility is

lim
n→∞

�N(A∞, n)

σ
= S0

√
v(ρ).

Proof. The proof is given in Appendix A. �

We note that in (38), σ depends implicitly on n as the limit is taken at fixed β. In particular,
in the fixed maturity regime τn = T fixed, we have σ ∼ n−1/2 such that both σ and �LN(K)

approach 0 as n → ∞, in such a way that their ratio approaches a finite nonzero value. We
will use this relation for finite n to approximate the equivalent log-normal implied volatility
�LN(K) as

�2
LN(K, n) = σ 2 1

2

log2(K/A∞)

J(K/S0, ρ)
,

and analogously for �N(K). These volatilities can be used together with (37) to obtain
approximations for Asian option prices.
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Table 1: Numerical results for Asian call options under the seven scenarios considered in, e.g. [21]
and [36]. FPP3: the third-order approximations in [20]. Vecer: the PDE method from [52].
MAE3: the matched asymptotic expansions from [11]. Mellin500: the Mellin transform based method
in [46]. Linetsky: the results from the spectral expansion in [36]. LN: the result of the log-normal

approximation [33]. PZ: the results of the asymptotic result of this paper using (37).

Scenario FPP3 MAE3 Mellin500 Vecer PZ LN Linetsky

1 0.055 986 0.055 986 0.056 036 0.055 986 0.055 998 0.056 054 0.055 986
2 0.218 387 0.218 369 0.218 360 0.218 388 0.218 480 0.219 829 0.218 387
3 0.172 267 0.172 263 0.172 369 0.172 269 0.172 460 0.173 490 0.172 269
4 0.193 164 0.193 188 0.192 972 0.193 174 0.193 692 0.195 379 0.193 174
5 0.246 406 0.246 382 0.246 519 0.246 416 0.246 944 0.249 791 0.246 416
6 0.306210 0.306 139 0.306 497 0.306 220 0.306 744 0.310 646 0.306 220
7 0.350 040 0.349 909 0.348 926 0.350 095 0.351 517 0.359 204 0.350 095

Table 2: The seven benchmark scenarios considered for pricing Asian options in, e.g. [21] and [36].
Here, q = 0.

Scenario r T S0 K σ

1 0.0200 1 2.0 2 0.10
2 0.1800 1 2.0 2 0.30
3 0.0125 2 2.0 2 0.25
4 0.0500 1 1.9 2 0.50
5 0.0500 1 2.0 2 0.50
6 0.0500 1 2.1 2 0.50
7 0.0500 2 2.0 2 0.50

We show in Table 1 numerical results for the asymptotic approximation for the Asian options
obtained from (37) for a few scenarios proposed in [21], and defined as in Table 2. They are
compared against a few alternative methods considered in the literature: the method of Linetsky
[36], PDE methods [20], [52], inversion of Laplace transform [11], [46], and the log-normal
approximation [33] corresponding to continuous-time averaging.

The numerical agreement of the asymptotic result with the precise results of the spectral
expansion [36] is very good, and the difference is always below 0.5% in relative value. A more
appropriate test compares the difference to the option vega V: the approximation error of the
asymptotic result is always below 0.24V (compared with the log-normal approximation which
has an error as large as 1.54V (for scenario 7; see Table 2)). This is smaller than the typical
precision on σ around the ATM point, and compares well with typical bid-ask spreads for Asian
options which can be ∼ 1V for maturities up to 1–2Y.

Remark 5. We comment on the relation of the asymptotic implied volatility (38) to the log-
normal approximation [33]. The log-normal approximation [33] corresponds to a flat equivalent
log-normal volatility �

(Lévy)

LN (T ). In contrast, the asymptotic equivalent log-normal implied
volatility �LN(K) given by (38) has a nontrivial dependence on strike. It can be easily shown
that the log-normal implied volatility reproduces the asymptotic equivalent implied volatility
at the ATM point in the limit limσ 2T →0, rT =ρ �

(Lévy)

LN (T ) = �LN(K = A∞).
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The results of Table 1 show that the asymptotic result is an improvement over the log-normal
approximation.

Remark 6. The results of [21] and [36] were obtained using continuous-time averaging, while
our result (38) was derived for discrete-time Asian options. However, we note that (38) does
not depend on the size of the time-step τ , so it should hold for an arbitrarily small time-step.
It is shown elsewhere [42] that a result similar to (38) holds for the small maturity limit of
continuous-time Asian options at fixed σ, r, q, with the substitution ρ = 0. The limiting
procedure adopted in this paper, of taking n → ∞ at fixed β, ρ, allows one to take into account
the dependence on r, q in the short maturity expansion.

In order to address the performance of the asymptotic results in the small volatility and
maturity regime, we compare our results against those in Table 4 of [20]. As pointed out
in [21] and [46], some of the methods proposed in the literature have numerical issues in
these regimes in the model parameters. The scenarios considered for this test correspond to
σ = 0.01, S0 = 100, r = 0.05, q = 0, and three choices of maturity and strike as shown in
Table 3. For reasons of space economy, we present only a subset of the test results in Table 4 of
[20], which show the best agreement with a MC calculation. The asymptotic results are in very
good agreement with the alternative methods shown. We note that the computing time required
by the asymptotic method is very good, as it requires only the solution of a simple nonlinear
algebraic equation, and the evaluation of a function.

In Table 4 we present a comparison with the test results for discretely sampled Asian options
corresponding to the scenarios considered in Table B of [52]. These scenarios have parameters
r = 0.1, q = 0, σ = 0.4, T = 1, and K = 100. The results are compared against those
obtained in [9], [47], and [52]. The asymptotic results agree with the alternative methods up to
about 1%–1.5% in relative error.

Finally, in order to test the asymptotic relation (38) for the equivalent log-normal implied
volatility, in Figure 2 we show the equivalent log-normal implied volatility of several Asian
options obtained by numerical simulation (circles). These results are obtained by MC pricing
of Asian options with parameters σ = 0.2, r = q = 0, τ = 0.01, and n = 50, 100, 200
averaging dates. The MC calculation used NMC = 106 samples. The strikes considered cover

Table 3: Test results for Asian call options under small volatility σ = 0.01, S0 = 100, r = 0.05, and
q = 0. FPP3: the third-order approximations in [20]. MAE3: the results using the matched asymptotic
expansions from [11]. Mellin500: the results of the Mellin transform based method in [46]. PZ: the

asymptotic results of this paper.

T K PZ FPP3 MAE3 Mellin500

0.25 99 1.607 390 0 1.607 39 × 100 1.607 39 × 100 1.517 18 × 100

0.25 100 0.621 359 0 6.213 59 × 10−1 6.213 59 × 10−1 6.968 55 × 10−1

0.25 101 0.013 761 5 1.376 18 × 10−2 1.376 15 × 10−2 1.603 61 × 10−2

1.00 97 5.271 900 0 5.271 90 × 100 5.271 90 × 100 5.274 74 × 100

1.00 100 2.418 210 0 2.418 21 × 100 2.418 21 × 100 2.433 03 × 100

1.00 103 0.072 433 9 7.269 10 × 10−2 7.243 37 × 10−2 8.508 16 × 10−2

5.00 80 26.1756 2.617 56 × 101 2.617 56 × 101 2.617 56 × 101

5.00 100 10.5996 1.059 96 × 101 1.059 96 × 101 1.059 93 × 101

5.00 120 5.8331 × 10−6 2.066 99 × 10−5 5.733 17 × 10−6 1.422 35 × 10−3
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Table 4: Asymptotic results for discretely sampled Asian call options under the scenarios considered in
Table B of [52], comparing with the results of [9], [47], and [52].

S0 = 95 S0 = 100 S0 = 105

Vecer

n = 250 8.4001 11.1600 14.3073
n = 500 8.3826 11.1416 14.2881
n = 1000 8.3741 11.1322 14.2786

∞ 8.3661 11.1233 14.2696

Tavella–Randall

n = 250 8.3972 11.1573 14.3054
n = 500 8.3804 11.1392 14.2866
n = 1000 8.3719 11.1300 14.2771

∞ 8.3640 11.1215 14.2681

Curran

n = 250 8.3972 11.1572 14.3048
n = 500 8.3801 11.1388 14.2857
n = 1000 8.3715 11.1296 14.2762

∞ − − −
PZ 8.3789 11.1362 14.2818

Figure 2: The equivalent log-normal volatility �LN(K, S0) of Asian options in the BS model given by
(38) (solid line). The dashed line is at σ/

√
3 and corresponds to the ATM equivalent volatility. The circles

indicate the log-normal equivalent volatility obtained by MC pricing of the Asian options with maturity
T = 0.5, 1, 2. The BS model parameters are r = q = 0, σ = 0.2. The time step of the MC simulation is

τ = 0.01 and the number of paths NMC = 1m.

https://doi.org/10.1017/apr.2017.9 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.9


472 D. PIRJOL AND L. ZHU

a region around the ATM point K = S0; the numerical precision of the simulation decreases
rapidly outside of this region. We note very good agreement with the asymptotic result of
Proposition 11, even for n as low as 50.

Appendix A

Proof of Proposition 3. The variational problem appearing in (7) can be written equivalently
by introducing the function f (x) = bg(x) as

λ(a, b; ρ) = 1

b2 sup
f ∈AC0[0,1]

{
−ab2

∫ 1

0
ef (x) dx − 1

2

∫ 1

0
(f ′(x) − ρ)2 dx

}
.

The functional �[f ] appearing in this variational problem can be written as

�[f ] = −ab2
∫ 1

0
dxef (x) − 1

2

∫ 1

0
(f ′(x) − ρ)2 dx

= −ab2
∫ 1

0
ef (x) dx − 1

2

∫ 1

0
[f ′(x)]2 dx + f (1)ρ − ρ2

2
.

In the second line we integrated by parts and wrote
∫ 1

0 f ′(x) dx = f (1), where we took into
account the constraint f (0) = 0. Although in Proposition 3 we have a > 0, the variational
problems in Section 4 require also the case of negative a. For this reason we will treat here
both cases of positive and negative a.

The optimal function f (x) satisfies the Euler–Lagrange equation

f ′′(x) = ab2ef (x) (41)

with the boundary conditions

f (0) = 0, f ′(1) = ρ. (42)

The second boundary condition (at x = 1) is a transversality condition.
We observe that the quantity

E = −ab2ef (x) + 1
2 [f ′(x)]2 = −ab2ef (1) + 1

2ρ2

is a constant of motion of the differential equation (41). Its value was expressed in terms of
f (1) by taking x = 1 and using the boundary condition (42). Taking the integral of this relation
over x : (0, 1) can be used to eliminate the integral of 1

2 [f ′(x)]2 in the functional �[f ]. This
can be put into the equivalent form

�[f ] = −2ab2
∫ 1

0
ef (x) dx + ab2ef (1) + f (1)ρ − ρ2. (43)

The Euler–Lagrange equation (41) can be solved exactly. Two independent solutions of this
equation are

f1(x) = δx − 2 log

(
eδx + γ

1 + γ

)
, (44)

f2(x) = −2 log |cos(ξx + η)| + 2 log |cos η|. (45)

https://doi.org/10.1017/apr.2017.9 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.9


Asymptotics for the average of GBM and Asian options 473

The first solution was given in [27], where a related differential equation appears in the context
of optimal sampling for MC pricing of Asian options. It is easy to see by direct substitution
into (41) that these functions satisfy this equation, with the appropriate boundary condition at
x = 0. Requiring that the coefficient in this equation and the boundary condition f ′(1) = ρ

are satisfied yielding two conditions.
For f1(x) we have the conditions

2γ δ2 = −ab2(1 + γ )2, δ
γ − eδ

γ + eδ
= ρ. (46)

Eliminating γ between these two equations as γ = ((δ + ρ)/(δ − ρ))eδ gives an equation for
δ:

δ2 − ρ2 = −2ab2
(

cosh

(
δ

2

)
+ ρ

δ
sinh

(
δ

2

))2

. (47)

For f2(x) we obtain the conditions

2ξ2 = ab2 cos2 η, 2ξ tan(ξ + η) = ρ. (48)

The second relation allows us to eliminate η as

tan η = ρ/2 − ξ tan ξ

ξ + (ρ/2) tan ξ
.

We obtain the equation for ξ :

2ξ2(4ξ2 + ρ2) = ab2(2ξ cos ξ + ρ sin ξ)2. (49)

Finally, the integral appearing in �[f ] can be computed in closed form for each solution,
and we have

T1(δ, ρ) =
∫ 1

0
dxef1(x) = 1

δ
sinh δ + 2ρ

δ2 sinh2
(

δ

2

)
,

T2(ξ, ρ) =
∫ 1

0
dxef2(x) = 1

2ξ
sin(2ξ)

(
1 + ρ

2ξ
tan ξ

)
.

Substituting these results into (43), we find the following results for the function λ(a, b; ρ):

λ1(a, b; ρ) = −2aT1(δ) + aeδ

(
1 + γ

eδ + γ

)2

+ 1

b2 ρ

(
δ − 2 log

(
eδ + γ

1 + γ

))
− ρ2

b2

= a

{
1 + sinh2 δ

2

(
1 − 4ρ

δ2 + ρ2

δ2

)
− 2 − ρ

δ
sinh δ

}

+ 2

b2 ρ log

[
cosh

δ

2
+ ρ

δ
sinh

δ

2

]
− ρ2

b2 ,

λ2(a, b; ρ) = −2aT2(ξ) + a
cos2 η

cos2(ξ + η)
+ 1

b2 ρ log
cos2 η

cos2(ξ + η)
− ρ2

b2

= a

{
1 − sin2 ξ

(
1 + ρ

ξ2 − ρ2

4ξ2

)
+ ρ − 2

2ξ
sin(2ξ)

}

+ 2ρ

b2 log

[
cos ξ + ρ

2ξ
sin ξ

]
− ρ2

b2 ,
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where δ and ξ are given by the solutions of (47) and (49), respectively. For given (a > 0, b, ρ),
only one of these two equations has a solution, which determines the optimal function f (x)

uniquely, and the function λ(a, b; ρ). This completes the proof of Proposition 3. �
Proof of Proposition 5. The variational problem (12) can be written equivalently in terms

of J(x, ρ) defined as in (13), by introducing the function f (y) = √
2βg(y) as

J(x, ρ) = inf
f ∈AC0[0,1], ∫ 1

0 exp(f (y)) dy=x/S0

1

2

∫ 1

0
(f ′(y) − ρ)2 dy.

The integral constraint on f (y) is taken into account by introducing a Lagrange multiplier a

and defining an auxiliary functional

�[f ] = 1

2

∫ 1

0
dy(f ′(y) − ρ)2 + a

(∫ 1

0
dyef (y) − x

S0

)

= 1

2

∫ 1

0
dy[f ′(y)]2 + a

∫ 1

0
dyef (y) − ρf (1) + ρ2

2
− a

x

S0
.

The solution of this variational problem f (y) satisfies the Euler–Lagrange equation

f ′′(y) = aef (y) (50)

with boundary conditions (the condition at y = 1 is a transversality condition)

f (0) = 0, f ′(1) = ρ.

This differential equation and the associated boundary conditions are identical to the equation
appearing in the proof of Proposition 3. As shown, this can be solved exactly, and the solutions
are given in (44) and (45). The details of the proof will be slightly different, as in the present
case the coefficient a (the Lagrange multiplier) is not known, but is one of the unknowns of
the variational problem. However, we will show that it can be determined using the integral
constraint ∫ 1

0
ef (y) dy = K

S0
. (51)

Before proceeding with the solution of the variational problem, we give a preliminary result
which expresses the rate function only in terms of a, f (1).

Lemma 1. The rate function J(x, ρ) is given by

J

(
K

S0
, ρ

)
= a

(
K

S0
− ef (1)

)
− ρf (1) + ρ2. (52)

Proof. The Euler–Lagrange equation (50) conserves the quantity

E = 1
2 (f ′(y))2 − aef (y),

which yields
1
2 [f ′(y)]2 − aef (y) = 1

2ρ2 − aef (1).

Taking the integral of this relation over x : (0, 1), and using the constraint (51) yields the result
(52). �
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The only remaining part of the proof is determining a, f (1). This can be done from the
constraint (51). Substituting (44) into this constraint gives

∫ 1

0
dxef1(x) = 1

δ
sinh δ + 2ρ

δ2 sinh2
(

δ

2

)
= K

S0
,

which is an equation for δ. This equation has solutions only for K/S0 ≥ 1+ρ/2. Once δ, γ are
known, the Lagrange multiplier a is determined using the relation (46). Substituting into (52),
we find the rate function

J

(
K

S0
, ρ

)
= 1

2
(β2 − ρ2)

(
1 − 2 tanh(β/2)

β + ρ tanh(β/2)

)

− 2ρ log

[
cosh

(
β

2

)
+ ρ

β
sinh

(
β

2

)]
+ ρ2.

A similar calculation using f2(x) yields

∫ 1

0
dxef2(x) = 1

2ξ
sin(2ξ)

(
1 + ρ

2

tan ξ

ξ

)
= K

S0
. (53)

Both η and ξ + η must be in the (−π/2, π/2) range. Equation (53) has solutions only for
K/S0 ≤ 1 + ρ/2.

Using the solution for ξ , the Lagrange multiplier a is found from (48). Substituting into (52),
we find the rate function

J

(
K

S0
, ρ

)
= 2

(
ξ2 + ρ2

4

){
tan ξ

ξ + (ρ/2) tan ξ
− 1

}
− 2ρ log

(
cos ξ + ρ

2ξ
sin ξ

)
+ ρ2.

This completes the proof of Proposition 5. �
Proof of Proposition 9. Start by noting that Stn = S0 exp(σZtn + (r − q − 1

2σ 2)tn) can be
written equivalently as S0exp((

√
2β/n)

∑n
j=1(Vj + ρ/

√
2β) − β/n) in distribution, where Vj

are i.i.d. N(0, 1) random variables. Let us also recall that

An = 1

n
S0

n−1∑
k=0

exp

(√
2β

n

k∑
j=1

(
Vj + ρ√

2β

)
− βk

n2

)
.

The terms β/n, βk/n2 are uniformly bounded and negligible and if we let

g(x) =
(

1

n

) 
xn�∑
j=1

(
Vj + ρ√

2β

)
,

then

κ exp

(√
2β

n

n∑
j=1

(
Vj + ρ√

2β

))
− 1

n

n−1∑
k=0

exp

(√
2β

n

k∑
j=1

(
Vj + ρ√

2β

))

= κ exp(
√

2βg(1)) −
∫ 1

0
exp(

√
2βg(x)) dx.
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The map g �→ κexp(
√

2βg(1)) − ∫ 1
0 exp(

√
2βg(x)) dx is continuous in the supremum

norm and by the contraction principle, P(κStn − An ∈ ·) satisfies a large deviation principle
with the rate function

H(x) = inf
g∈AC0[0,1], κ exp(

√
2βg(1))−∫ 1

0 exp(
√

2βg(y)) dy=x/S0

1

2

∫ 1

0

(
g′(y) − ρ√

2β

)2

dy.

As n → ∞, κStn −An → κS0eρ −S0((eρ − 1)/ρ) a.s. When κ < (1−e−ρ)/ρ, the call option
is OTM and

C(n) = e−nH(0)+o(n) as n → ∞,

and by put-call parity, when ρ �= 0,

C(n) − P(n) = exp(−rtn)E[κStn − An]
= κS0 exp

(
− r

r − q
ρ

)
− exp

(
− r

r − q
ρ

)
S0

exp(ρ) − 1

n(1 − exp(−ρ/n))

= κS0 exp

(
− r

r − q
ρ

)
− S0 exp

(
− r

r − q
ρ

)
exp(ρ) − 1

ρ

− exp(−rρ/(r − q))S0(exp(ρ) − 1)

2n
+ O(n−2).

Therefore, as n → ∞, the asymptotics for the ITM put option are

P(n) = −κS0 exp

(
− r

r − q
ρ

)
+ S0 exp

(
− r

r − q
ρ

)
exp(ρ) − 1

ρ

+ exp(−rρ/(r − q))S0(exp(ρ) − 1)

2n
+ O(n−2).

When ρ = 0,
P(n) = (1 − κ)S0 + e−nH(0)+o(n) as n → ∞.

When κ = (1 − e−ρ)/ρ, that is, ATM, the asymptotics for C(n) and P(n) are governed by
the central limit theorem. We can approximate (κStn − An)/

√
nS0 by

κ exp(ρ)

√
2β√
n

n−1∑
j=0

Vj −
√

2β

n3/2

n−1∑
j=0

Vj

n∑
i=j+1

exp

(
ρ

i

n

)

with Vj = N(0, 1) i.i.d. random variables. The variance of this expression converges to

∫ 1

0

[
κeρ

√
2β −

√
2β

ρ
(eρ − eρx)

]2

dx = 2β

ρ2

∫ 1

0
(1 − eρx)2 dx

= 2β

ρ2

[
1 − 2

ρ
(eρ − 1) + e2ρ − 1

2ρ

]
.

We can further use the nonuniform Berry–Esseen bound for the central limit theorem to
obtain the following asymptotics:

lim
n→∞

√
nC(n) = lim

n→∞
√

nP (n) = S0 exp

(
− rρ

r − q

)
E[Z 1{Z≥0}],
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where Z is a normal random variable with mean 0 and variance

2β

ρ2

[
1 − 2

ρ
(eρ − 1) + e2ρ − 1

2ρ

]
.

When κ > (1 − e−ρ)/ρ, the put option is OTM and

P(n) = e−nH(0)+o(n) as n → ∞,

and when ρ �= 0, we have, for the ITM call option,

C(n) = κS0 exp

(
− r

r − q
ρ

)
− S0 exp

(
− r

r − q
ρ

)
exp(ρ) − 1

ρ

− exp(−rρ/(r − q))S0(exp(ρ) − 1)

2n
+ O(n−2),

and when ρ = 0,
C(n) = S0(κ − 1) + e−nH(0)+o(n) as n → ∞. �

Proof of Proposition 11. (i) The price of an undiscounted European option in the BS model
depends only on σ 2T and K/F with F the forward asset price. In our case given by (37), we
have F = A∞, and we denote this dependence as e−rT A∞C̄BS(K/A∞, σ 2T ), with

C̄BS(k, v) := �

(
1√
v

(
−log k + v

2

))
− k�

(
1√
v

(
− log k− v

2

))
.

By definition of the equivalent log-normal implied volatility, we have

C(n) = e−rT A∞C̄BS

(
K

A∞
, �2

LNT

)
.

Consider an OTM Asian call option K > A∞. We have, from Proposition 6,

lim
n→∞

1

n
log C(n) = − 1

2β
J

(
K

S0
, ρ

)
.

Also, we have

lim
T →0

(�2
LNT ) log

(
A∞C̄BS

(
K

A∞
, �2

LNT

))
= −1

2
log2

(
K

A∞

)
.

We thus obtain, setting T = tn,

lim
n→∞ �2

LN(K, n)n2τ = lim
n→∞

�2
LN(K, n)nτ log[A∞C̄BS(K/A∞, �2

LNT )]
(1/n) log C(n)

= β
log2(K/A∞)

J(K/S0, ρ)
.

Recalling that β = 1
2σ 2n2τ , this is written equivalently as

lim
n→∞

1

σ 2 �2
LN(K, n) = 1

2

log2(K/A∞)

J(K/S0, ρ)
,

which reproduces the result (38).
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(ii) ATM Asian option. For this case, the BS formula yields

C̄BS(1, �2
LNT ) = �

(
�LN

√
T

2

)
− �

(
−�LN

√
T

2

)
= 1√

2π
�LN

√
T (1 + O(�2

LNT )).

The large n asymptotics of the ATM Asian option given in Proposition 8 reads as

C(A∞, n) = 1√
π

S0 exp

(
− rρ

r − q

)√
βv(ρ)

1√
n

.

The two results are related as C(A∞, n) = e−rT A∞C̄BS(1, �2
LNT ). Recalling that we have

σ
√

tn = √
2β/

√
n, we obtain the asymptotics of the equivalent implied volatility of the ATM

Asian option

lim
n→∞

�LN(A∞, n)

σ
= S0

A∞

√
v(ρ).

This reproduces (40).
The proof of (39) proceeds in a similar way, starting with the Bachelier formula for the call

option prices. �
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