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A new two-phase model for concentrated suspensions is derived that incorporates a con-

stitutive law combining the rheology for non-Brownian suspension and granular flow. The

resulting model exhibits a yield-stress behaviour for the solid phase depending on the collision

pressure. This property is investigated for the simple geometry of plane Poiseuille flow, where

an unyielded or jammed zone of finite width arises in the centre of the channel. For the steady

states of this problem, the governing equations are reduced to a boundary value problem for

a system of ordinary differential equations and the conditions for existence of solutions with

jammed regions are investigated using phase-space methods. For the general time-dependent

case a new drift-flux model is derived using matched asymptotic expansions that takes into

account the boundary layers at the walls and the interface between the yielded and unyiel-

ded region. The drift-flux model is used to numerically study the dynamic behaviour of the

suspension flow, including the appearance and evolution of an unyielded or jammed regions.

Key words: Suspensions, jamming, yield stress, averaging, multiphase model, phase-space

methods, matched asymptotics, drift-flux.

1 Introduction

Ever since the derivation of an effective viscosity for dilute suspensions by Einstein [18]

and its extensions by Batchelor & Green [4], there have been numerous investigations into

the rheological properties of suspensions. Since the experimental work by Gadala-Maria

& Acrivos [20] and Leighton & Acrivos [31], the discovery of physical phenomena related

to shear-induced particle migration for concentrated suspensions from regions of high

to low stress has spurred theoretical investigations that led to expressions for associated

diffusive flux terms as well as drift-flux models, see, for example, [10, 31, 35, 39].

Even though drift-flux models are quite popular and are frequently used as a transport

mechanism [11, 36, 54], they sometimes predict unphysical migration behaviour such as a

sharp peak in the particle volume fraction profile in the centre of flow through a channel,
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where the shear rate vanishes [37], whereas in experiments [22] the concentration profile

is in fact flattened there. While these issues were addressed by introducing a suspension

temperature as a measure of particle velocity fluctuations [28, 37, 52], or by slightly

changing parameter values such as the exponent in the Krieger–Dougherty law or in the

expressions for the relative suspension viscosity and the particulate phase pressure as the

maximum packing fraction is approached [45], it remains to understand how these models

can be based on their underlying two-phase models. This has been particularly difficult for

highly concentrated suspensions, when additional flow transitions, such as jammed states

may occur. Some fundamental studies of these flow regimes have been presented in Cassar

et al. [9], where it was shown that for highly dense suspensions of particles in a viscous

liquid that is sheared at a rate γ̇ under a confining pressure pp can be characterized by a

single dimensionless control parameter, the ‘viscous number’ Iv = ηfγ̇/pp, where ηf is the

fluid viscosity. These findings have been supported by experiments where the suspensions

are sheared with a constant particle pressure [5]. Their results show that, indeed, the

friction and volume-fraction law collapse onto universal curves when expressed in terms

of the dimensionless number Iv . By including hydrodynamic contributions, Boyer et al.

propose a model for the whole range of Iv , which has been discussed by [12], and also

by Trulsson et al. [48]. An earlier review of stress terms for dense suspensions can be

found in [47] and more recently for the special case of Houska fluids analytical solutions

for unidirectional pipe flow have been derived in [1], while other approaches such as

by Quemada in [41–44] introduce structural models for concentrated suspensions, where

shear-dependent effective volume fractions are introduced to take account of structures

of the flow, such as clusters into account.

Boyer et al. formulate their model in a form, where the shear stress and particle pressure

are expressed in terms of the strain rate and the volume fraction. Their expressions for

the shear and normal viscosities are similar to the ones found in Morris & Boulay [35],

and also Miller et al. [34], who investigated more general curvilinear flows, where the

migration behaviour was accommodated by allowing for anisotropy in the normal stresses.

In Section 2, we derive a new two-phase model for non-homogeneous shear flows

that captures the flow properties of non-Brownian dense suspensions by including the

constitutive equations proposed by Boyer et al. [5]. The derivation is based on the

averaging framework as given in Drew & Passman [14,16] and is formulated for a general

three-dimensional flow. For the remainder of the article, we focus on the pressure-driven

plane Poiseuille flow as our model example for non-constant shear flows and investigate

the flow behaviour predicted by the two-phase model as the particle volume fraction is

varied.

In Section 3, we first consider stationary solutions for the plane Poiseuille flow, for

which the model reduces to a boundary-value problem for a system of ordinary differential

equations. Using phase-space methods, we reveal the existence of solutions that show an

unyielded region similar due to a yield-stress condition for the solid phase that is similar

to the condition in Bingham-type flows. In this region, located at the centre of the channel,

the solid volume fraction is at its maximum and the solid phase has jammed to form

a porous matrix through which the fluid phase can still flow through. We study the

dependence of the width of the unyielded i.e., jammed region (for the solid phase) and

the flow fields for both phases upon varying the flow parameters. We then show that for
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typical ranges of the parameter Da = L/Kp � O(1) the flow field develops boundary

layers at the channel walls and at the interface between the unyielded and yielded regions,

where L is the characteristic scale of the channel width and Kp is proportional to the

particle size. Using matched asymptotic analysis as Da → ∞, we obtain an expression for

the flow field.

In Section 4, we generalize this analysis and for the first time present a systematic

asymptotic derivation of a time-dependent drift-flux model via matched asymptotic ex-

pansions. Our numerical simulations of the drift-flux model captures the emergence of a

jammed region and the evolution of the flow and phase field into a stationary state.

In Section 5, we summarize our results and give an outlook on future directions for

research.

2 Formulation of the two-phase model

We consider two inert phases, a solid phase of particles suspended in a liquid phase where

we denote with k ∈ {s, f}, the solid phase by s and the liquid phase by f. Inside each

phase the balance equations for mass and momentum

∂tρk + ∇ · (ρkuk) = 0, (2.1a)

∂t(ρkuk) + ∇ · (ρkuk ⊗ uk) −∇ · T k − fk = 0, (2.1b)

are satisfied together with the two jump conditions (see, e.g., [26])∑
k

ρk(uk − ui) · nk = 0, (2.1c)∑
k

ρkuk(uk − ui) · nk − T k · nk = 0, (2.1d )

at the interfaces of the phases with nk denoting the unit normal pointing out of phase

k and ui is the interface velocity. The quantities ρ, u, T and f denote density, velocity,

stress tensor and body force density in each phase, respectively. At an interface uk is

defined as

uk(x
∗, t) ≡ lim

x→x∗;x∈K
u(x, t),

where K denotes the set of points occupied by phase k, and similarly for the other

quantities.

In deriving a two-phase model, essentially three different averaging approaches have

been pursued in the literature. The volume average, the time average and the ensemble

average (sometimes also called statistical average). Although all three produce similar

balance equation for the phases their derivation and closure is distinct. Besides the

ensemble averaging developed by Drew & Passman in [16] and [14], volume averaging is

treated in Kolev [30] and Whitaker [50] and time averaging in Ishii et al. [26].

For the derivation of our two-phase model, we follow the mathematical framework by
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Drew [14] and Drew and Passman [16] and introduce a component indicator function

Xk(x, t) =

{
1, if (x, t) ∈ K

0, if (x, t) � K,
(2.2)

with K the set of states of the kth-phase to define the averaged quantities

φk ≡ 〈Xk〉, ρk ≡
〈Xkρ〉
φk

, ûk ≡
〈Xkρu〉
φkρk

, pk ≡
〈Xkp〉
φk

, τ k ≡ −〈Xkτ〉
φk

, (2.3)

which denote the volume fractions, the averaged densities, velocities, pressures and de-

viatoric stresses, respectively. For these quantities, we then derive the following balance

equations

∂tφs + ∇ · (φsûs) = 0, (2.4a)

∂tφf + ∇ · (φf ûf) = 0, (2.4b)

ρs∂t(φsûs) + ∇ · (φsρsûs ⊗ ûs) (2.4c)

−∇ · (φsτ s) + ∇(φsps) = Md
s + pf∇φs, (2.4d )

ρf∂t(φf ûf) + ∇ · (φfρf ûf ⊗ ûf) (2.4e)

−∇ · (φfτ f) + ∇(φfpf) = −Md
s + pf∇φf. (2.4f )

The detailed derivation is given in Appendix A, where we note that in the present study

we also have neglected the Reynolds stresses (see Drew [15]) and their possible impact

on dispersion and boundary layers.

2.1 Constitutive equations for a dense suspension

To close the model for the flow in the bulk, we need to specify constitutive equations

besides the assumptions already made. Essentially, we need four relations for the pressure

difference and stress between the phases ps − pf and Md
s , and for the stresses in each

phase, τ f and τ s. In addition, to simplify notation, we set φ ≡ φs.

For the momentum transfer

Md
s =

μfφ
2

Kp(1 − φ)
(ûf − ûs), (2.5)

we have used the Kozeny–Carman equation, with Kp depending on the particle diameter,

Kp ∝ a2, see, e.g., [6]. We note that more general closures could have been used for a wider

range of φs, in particular for the medium range, see, for example, [21] and references

therein and also [2].

The constitutive law for the remaining quantities extend the model for dense suspensions

given by Boyer et al. [5] for shear flow to a general flow situation. We state it in terms of

the (weighted) solid contact pressure, defined here as

pc ≡ φ(ps − pf), (2.6)
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and the shear rate tensors for each phase

γ̇f ≡ [∇ûf + (∇ûf)
T ], γ̇s ≡ [∇ûs + (∇ûs)

T ]. (2.7)

For the liquid phase stress, we have

τ f = μf γ̇f + (μ∗ − 2

3
μf)(∇ · ûf)I , (2.8a)

where μf denotes the viscosity of the pure liquid. The second term in the relation for

τ f will be dropped by setting the bulk viscosity μ∗ = 2
3
μf . This particular choice has no

influence on the solutions, since generally the bulk viscosity vanishes for stationary flows

and does not appear in the leading order approximation of the derived drift-flux term.

For the solid phase, we need to consider two cases for the constitutive law:

Either |γ̇s| > 0, then

τ s = μfηs(φ)γ̇s, (2.8b)

pc = μfηn(φ)|γ̇s|, (2.8c)

with

ηs(φ) = 1 +
5

2

φsc

φsc − φ
+ μc(φ)

φ

(φsc − φ)2
, (2.8d )

μc(φ) = μ1 +
μ2 − μ1

1 + I0φ2(φsc − φ)−2
, (2.8e)

ηn(φ) =

(
φ

φsc − φ

)2

, (2.8f )

where for tensors a, we define the norm as |a| = (1
2

∑
j,k |ajk|2)1/2. The parameters

μ2 � μ1 > 0, I0 � 0 characterize the contact contribution in the expression for ηs, and φsc

is the maximum volume fraction for the solid phase, which is attained when the solid phase

jams. We note from the experimentally fitted laws in Boyer et al. [5], (2.8d)–(2.8f) is found

from the friction law for dense suspensions μs = μ1 +(μ2−μ1)/(1+I0/Iν)+Iν +5/2φscI
1/2
ν

scaled by Iν = [(φsc − φ)/φ]2.

For the other case γ̇s = 0, we require

φ = φsc, (2.8g)

while τ s, ps and pf are left unspecified, except for the constraint

|φτ s| � μ1pc. (2.8h)

Conversely, if (2.8h) is satisfied, then it follows from equations (2.8b) to (2.8f) that |γ̇s|
cannot be positive. Thus, if the collision pressure pc is finite, our model for concentrated

suspensions is capable of exhibiting regions where the solid phase is jammed, whenever

|τ s| drops below a certain yield stress. In the jammed region, the solid phase flow is plug-

like. This is similar to the plug-like flow in a Bingham model, which, however, describes

single-phase rheology with a constant yield stress.
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The jammed regions are separated from the regions where |γ̇s| > 0 by yield surfaces.

Across a yield surface, we require φ, ûf , ûs, (−pfI + τ f) · ny , (−psI + τ s) · ny and |γ̇s| to be

continuous, where ny denotes the unit normal vector to the surface.

2.2 Non-dimensionalization

We introduce characteristic scales via

x = Lx′, y = Ly′, z = Lz′, t =
L

U
t′, (2.9)

uk = Uu′k, pk =
Uμf

L
p′k, τ k =

Uμf

L
τ ′
k, (2.10)

for k = s, f. After non-dimensionalization, we drop the primes and also the bars and hats

indicating averaging, and obtain the system

∂t(1 − φ) + ∇ · ((1 − φ)uf) = 0, (2.11a)

∂tφ + ∇ · (φus) = 0, (2.11b)

Re[∂t((1 − φ)uf) + ∇ · ((1 − φ)uf ⊗ uf)] (2.11c)

−∇ · (φfτ f) + (1 − φ)∇pf = −Da
φ2

(1 − φ)
(uf − us),

Re

r
[∂t(φus) + ∇ · (φus ⊗ us)] (2.11d )

−∇ · (φτ s) + φ∇pf + ∇pc = Da
φ2

(1 − φ)
(uf − us).

Three dimensionless numbers appear here, namely the Reynolds number Re = ULρf/μf ,

the Darcy number Da = L2/Kp and the density ratio r = ρf/ρs. We focus on the case

where liquid and solid phases are density matched and set r = 1.

The non-dimensional versions of the constitutive equations for the rheology are now as

follows: For the liquid phase, we have

τ f = γ̇f. (2.12a)

For the solid phase, either |γ̇s| > 0, then

τ s = ηs(φ)γ̇s, (2.12b)

pc = ηn(φ)|γ̇s|, (2.12c)

with (2.8d)–(2.8f); or γ̇s = 0, and then we require

φ = φsc

and

|φτ s| � μ1pc.
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Figure 1. Sketch of the flow situation in a channel.

The continuity conditions across yield surfaces carry over from the dimensional equations

and also the parameters, μ1, μ2 and I0 and φsc, which were non-dimensional to begin with.

3 Plane Poiseuille flow

It is instructive to investigate the properties of the model (2.11) for one of the classical

flow situations, namely, plane Poiseuille or channel flow, which we think is the simplest

flow geometry to exhibit the emergence of a jammed or unyielded regions. The dimensions

of the channel are 0 < x < xe and − 1
2
< y < 1

2
, where we have used the channel with for

the length scale L, and prescribe for the inlet conditions at x = 0

φ = φin, uf =

(
uf,in

(
1
4
− y2

)
0

)
, us =

(
us,in

(
1
4
− y2

)
0

)
, (3.1)

and for the outlet condition at x = xe,

n · (psI + φηs(∇us)
T ) = 0, n · (pfI + (1 − φ)ηs(∇us)

T ) = 0. (3.2)

Moreover, we can set uf,in = 1 by appropriately choosing the velocity scale U. In addition,

we only consider rectilinear flow, so the inertial terms vanish and we obtain for the bulk

equations

∂t(1 − φ) + ∇ · ((1 − φ)uf) = 0, (3.3a)

∂tφ + ∇ · (φus) = 0, (3.3b)

−∇ · ((1 − φ)τ f) + (1 − φ)∇pf = −Da
φ2

(1 − φ)
(uf − us), (3.3c)

−∇ · (φτ s) + φ∇pf + ∇pc = Da
φ2

(1 − φ)
(uf − us), (3.3d )
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where

τ f = γ̇f (3.4a)

|φτ s| � μ1pc, φ = φsc if |γ̇s| = 0 (3.4b)

τ s = ηs(φ)γ̇s, pc = ηn(φ)|γ̇s| if |γ̇s| �= 0. (3.4c)

At the channel walls, we assume the no-slip conditions

us = 0, uf = 0. (3.5)

For the two-phase model at hand, it turns out to be advantageous to formulate the

problem in terms of the flow variables

v ≡ (1 − φ)uf + φus, w ≡ uf − us. (3.6)

In these variables, noting that v +φw = uf , v − (1 − φ)w = us the problem can be written

as

∇ · v = 0, (3.7a)

∂tφ + ∇ · (φv − φ(1 − φ)w) = 0, (3.7b)

−∇ ·
(
(1 − φ)γ̇f

)
+ (1 − φ)∇pf = −Da

φ2

1 − φ
w, (3.7c)

−∇ · (φτ s) + φ∇pf + ∇pc = Da
φ2

(1 − φ)
w, (3.7d )

where τ s satisfies the constitutive law (3.4b), (3.4c). At the walls y = ± 1
2
, the no-slip

conditions are

v = 0, w = 0. (3.7e)

3.1 Formulation of the stationary problem

For the system (3.7a)–(3.7e), we now derive conditions for the existence of stationary

two-dimensional solutions where all quantities, except for the pressure, depend only on y,

φ = φ(y), v = v(y), w = w(y), (3.8)

τ f = τ f(y), τ s = τ s(y), pf = pf(x, y). (3.9)

The combination of no-slip boundary conditions (3.7e) with (3.7a), (3.7b) yields (if v1,

v2 and w1, w2 denote the components of the vectors v and w, respectively.)

v2 = 0, w2 = 0, (3.10)
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therefore

γ̇s =

(
0 ∂y(v1 − (1 − φ)w1)

∂y(v1 − (1 − φ)w1) 0

)
, (3.11a)

γ̇f =

(
0 ∂y(v1 + φw1)

∂y(v1 + φw1) 0

)
. (3.11b)

The momentum balances (3.7c) and (3.7d) become, in components,

−∂y

(
(1 − φ)∂y(v1 + φw1

)
+ (1 − φ)∂xpf = −Da

φ2

(1 − φ)
w1, (3.12a)

∂ypf = 0, (3.12b)

−∂y (φτs12) + φ∂xpf + ∂xpc = Da
φ2

(1 − φ)
w1, (3.12c)

−∂y (φτs22) + φ∂ypf + ∂ypc = 0. (3.12d )

From (3.12b), we conclude that pf = pf(x) is a function of x only, and the same is true

for φτs22 + ∂ypc = c1(x). The momentum balance requires continuity of stresses and hence

these two relations must be satisfied even across yield surfaces. If we assume that the

solid is not stagnant everywhere, that is, (3.4c) holds for some y, we can deduce (because

of (3.11a)) that τs22 = 0 there and hence pc = c1(x) and τs22 = 0 everywhere. Using now

the second condition in (3.4c) we see that, because the right hand side depends only on

y, pc must in fact be a constant, which is free and thus acts as an additional parameter.

Using this in (3.7c), (3.7d) and adding the two equations gives

∂xpf = ∂yτ12, (3.13)

where we have introduced the total stress τ ≡ (1 − φ)τ f + φ τ s = (1 − φ)γ̇f + φ τ s. Since

the left-hand side only depends on x and the right-hand side only on y, both have to be

constant, and we get

pf(x) = p1x + p0, (3.14a)

where p0 is a constant of integration, which by a choice of origin, we can assume, without

loss of generality, to be zero, and

τ12(y) = p1y. (3.14b)

Here and from now on, we will only look at the case of solutions with velocities and

volume fractions that are symmetric with respect to y = 0, so that we have in particular

set the integration constant that would normally appear in (3.14b) to 0 and will only

consider one half of the channel, 0 � y � 1/2. Moreover, we assume that we have at most

one unyielded region 0 � y � yB that is located at the centre of the channel and ends at

yB , 0 � yB � 1/2, which is an unknown of the problem.
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Overall we get the system: For y ∈ [yB; 1/2], φ, τs12, τf12, v1 and w1 satisfy

∂y((1 − φ)τf12) = (1 − φ)p1 + Da
φ2

1 − φ
w1, (3.15a)

φτf12 = ∂y(v1 + φw1), (3.15b)

φτs12 = p1y − (1 − φ)τf12, (3.15c)

∂yw1 = τf12 −
τs12
ηs(φ)

, (3.15d )

pc = ηn(φ)|∂y(v1 − (1 − φ)w1)|. (3.15e)

In the unyielded region y ∈ [0; yB[, equations (3.15a)–(3.15c) stay the same, but the two

remaining ones are replaced by

∂y(v1 − (1 − φ)w1) = 0 and φ = φsc, (3.15f )

The boundary conditions are the no-slip

v1 = 0, w1 = 0, at y = 1/2, (3.15g)

and symmetry conditions

∂yv1 = 0, ∂yw1 = 0, at y = 0. (3.15h)

In case the unyielded region fills up the whole channel, i.e., yB = 1/2, the no-slip

boundary conditions together with (3.15f) gives v1− (1−φ)w1) = 0. Then, (3.15a) becomes

the Brinkman equation, cf. [7]. For the yield surface at y = yB , we demand the continuity

conditions

[τs12]
+
− = 0, [τf12]

+
− = 0, [v1]

+
− = 0, (3.15i )

[w1]
+
− = 0, [φ]+− = 0, (3.15j )

where we denote [g]+− = limy↘yB g − limy↗yB g. We remark that these conditions are not

all independent, as, for example, the second condition in (3.15h) can be obtained from the

first via (3.15f), and the continuity of one of the stresses in (3.15j) implies the other via

(3.15c).

Notice that (3.4c) applies in the region [yB; 1/2], where γ̇s > 0, so that if yB < 1/2

(i.e., excluding the special case where the entire channel is jammed with φ = φsc), then

pc = 0 implies φ = 0.

Notice that if pc = 0, then (3.4c) implies that φ = 0 in the region [yB; 1/2]. This

would mean that all particles have moved to the unyielded region and, unless we are in

the special case where yB = 1/2 and hence φ = φsc everywhere, have left a clear liquid

phase behind. This is unplausible and certainly not what is observed in experiments, e.g.,

in [22], and it is not the type of solution that arises from a homogeneous initial state in

the time-dependent version of the equations discussed in Section 4.1, see Figure 5. We

therefore assume pc > 0. Then, we can remove pc from the equations by rescaling

τs12 = pcτ̃s12, τf12 = pcτ̃s12, p1 = pcp̃1, v1 = pcṽ1, w1 = pcw̃1. (3.16)
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The fact that pc can be scaled out of the problem in this way implies that the width of

the unyielded region i.e., yB does not depend on pc, as was reported in [25]. We note that

in conventional Herschel–Bulkley models, which are also able to capture yield stress and

shear-thinning, the unyielded region would change with pc.

3.2 Phase space analysis

We now derive conditions for the existence of solutions to system (3.15). For this, it is

convenient to reduce the system into a second order, non-autonomous system of ordinary

differential equations for w ≡ w1 and φ. For convenience, we also introduce the notation

uf ≡ uf1 = v1 + (1 − φ)w1 and us ≡ us1 = v1 − (1 − φ)w1 for the first components of uf
and us, respectively.

We first note that in the fluid region y ∈ [yB; 1/2] combining the definition of the solid

stress (3.4c) and (3.15e) yields

φτs12 = φηs∂yus =
φηs

ηn
sign(∂yus) = −φηs

ηn
sign(y), (3.17)

Here, we have used that sign(∂yus) = sign(τs12) = −sign(y), where we recall that due to

(3.14b) the total stress is just a linear function of y. Then, using (3.15c) in (3.15a) and

(3.17) yields

∂yN(φ) = −φp1 + Da
φ2

1 − φ
w, (3.18a)

which will be used as an equation for the solid volume fraction. We get an equation for

w by combining (3.15c) and (3.15d) to give

∂yw =
p1y + N(φ)

1 − φ
+

1

ηn(φ)
. (3.18b)

The function N is given by

N(φ) ≡ φηs(φ)

ηn(φ)
.

In the unyielded region y ∈ [0; yB[ we already know

φ = φsc, (3.18c)

and since ∂yus = 0, we have τf12 = ∂yuf = ∂yw, which together with (3.15a) is

∂yyw = p1 + Da
φsc

2

(1 − φsc)2
w. (3.18d )

At the channel wall and centre, we have the boundary conditions

w = 0 at y = 1/2, (3.18e)

∂yw = 0 at y = 0, (3.18f )
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and at the yield surface,

φ = φsc, [w]+− = 0, [wy]
+
− = 0, at y = yB. (3.18g)

The problem for w in the unyielded region, (3.18d) and (3.18f), can now be solved explicitly.

For Da > 0, we have

w = α1 cosh

(
Da1/2φsc

1 − φsc
y

)
− (1 − φsc)

2

Daφsc
2
p1, (3.19)

where α1 is a constant of integration. We can use this in the last two conditions in (3.18g)

to get

∂yw =

(
w +

(1 − φsc)
2

Daφsc
2
p1

)
Da1/2φsc

1 − φsc
tanh

(
Da1/2φsc

1 − φsc
yB

)
, at y = yB, (3.20)

and from this a new formulation of the free-boundary condition

φ = φsc, (3.21a)

w = W (yB) ≡ p1yB + μ1

Da1/2φsc tanh
(

Da1/2φsc

1−φsc
yB

) − (1 − φsc)
2

Daφsc
2
p1, at y = yB. (3.21b)

We have thus reduced the problem to a free-boundary value problem for a second-order

system of ordinary differential equations (3.18a), (3.18b) with a condition (3.18e) at the

fixed boundary and two at the free boundary (3.21a), (3.21b).

This free-boundary value problem contains the parameters Da, φsc, p1, μ1, μ2, I0.

The critical volume fraction φsc is typically chosen between 0.63–0.68 (volume fraction

at maximum random packing). The channel pressure gradient value p1 will always be

negative and for concentrated suspensions Da, which proportional (L/a)2 is typically quite

large, see e.g., [35, 37]. The three parameter μ1, μ2 and I0 are material parameters. In our

study, we fix

φsc = 0.63, μ1 = 1, I0 = 0.005, (3.22)

and vary p1 and Da for μ1 and μ2.

For the solution of the boundary value problem (3.18), we proceed as follows. We solve

(3.18a), (3.18b) as an initial value problem with initial values φ(1/2) = φ0 and w(1/2) = 0

using e.g., Matlab’s ode15s solver. The solution is followed for decreasing y until the

volume fraction hits the value φsc or y reaches zero. The situation is shown for a range

of φ0 in Figure 2. It turns out that typically there is a value 0 < φ∗ < φsc so that the

former case happens for φ0 � φ∗ and the latter if φ0 < φ∗. We discard these values since

only trajectories that intersect with φ = φsc can lead to solutions of the boundary value

problem (3.18). For the remaining φ0 in the interval [φ∗, φsc], we determine yB and w(yB)

and plot the curve (yB(φ0), w(yB(φ0))) as we vary φ0. The intersection of this curve with

the graph of the function W (yB) (as defined in (3.21b)), shown in Figure 2 identifies the

unique value for φ0 that gives rise to a solution of (3.18). The corresponding trajectory
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Figure 2. (left) The w(yB) solution curve together with the W -boundary condition and the projec-

tion of trajectories for (3.18a), (3.18b) onto the φ-y-plane with initial values w = 0, φ = φ0 for a

range of values. For the other parameters, we used Da = 1, 000, μ1 = μ2 = 1 (middle) and μ1 = 1,

μ2 = 1.5 (right), where the latter case shows the impact of the viscosity term (2.8e) proposed in

Boyer et al. [5], which is zero for μ1 = μ2.

is the unique symmetric solution with a single unyielded region and its projection on the

y-φ-plane in Figure 2 is emphasized by bullets.

We note that the solution of the boundary value problem (3.18), can also be obtained

by rewriting (3.18a) for w, i.e.,

w =

(
∂yN + φp1

)
(1 − φ)

Daφ2
, (3.23)

and using it in (3.18b) and in the boundary conditions. This yields an equation solely in

φ, i.e.,

∂y

((
∂yN + φp1

)
(1 − φ)

Daφ2

)
=

p1y + N

1 − φ
+

1

ηn
, (3.24a)

with boundary conditions

0 = ∂yN + φp1 at y =
1

2
, (3.24b)

φ = φsc at y = yB, (3.24c)(
∂yN + p1

)
(1 − φsc)

Daφsc
2

=
p1yB + μ1

Da
1
2 φsc tanh

(
Da

1
2 φsc

1−φsc
yB

) at y = yB. (3.24d )

We transform the free-boundary problem (3.24) into fixed-domain problem via

y =

(
yB − 1

2

)
ζ +

1

2
, (3.25)

where ζ ∈ [0, 1], which introduces the free-boundary coordinate as an explicit parameter

in the system and then we add the trivial differential equation for the constant yB to get
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Figure 3. The dependence of the yield surface position yB on the pressure gradient magnitude p1,

for parameters (3.22), μ2 = 1. The solid curve shows the results for Da = 1, 000; the dashed curve

for Da = 10, 000; the dotted-dashed curve for Da = ∞. The dotted vertical line represents the

minimum pressure gradient pmin ≈ 2, where the unyielded region fills the entire channel.

the boundary value problem

1

yB − 1
2

∂ζ

⎛⎝
(

1
yB− 1

2

∂ζN + φp1

)
(1 − φ)

Daφ2

⎞⎠ =
p1

(
(yB − 1

2
)ζ + 1

2

)
+ N

1 − φ
+

1

ηn
, (3.26a)

∂ζyB = 0 (3.26b)

with boundary conditions

0 = ∂ζN +

(
yB − 1

2

)
φp1 at ζ = 0, (3.26c)

φ = φsc at ζ = 1, (3.26d )

∂ζφ = −
2(yB − 1

2
)

5(1 − φsc)

Da
1
2 φsc(p1yB + μ1)

tanh

(
Da

1
2 φsc

1−φsc
yB

) +
2

5

(
yB − 1

2

)
p1 at ζ = 1. (3.26e)

After solving for φ, we can determine the remaining variables by first using (3.23) for

w, next solving for (1 − φ)τf12 via (3.15a) with ((1 − φ)τf12)(0) = 0 and then get the fluid

velocity via (3.15e) with uf(1/2) = 0. The solid variables are then easily computable by

(3.15c) and us = uf − w.

The dependence of the width of the unyielded zone on the pressure gradient is shown

in Figure 3. As the magnitude of the pressure gradient −p1 decreases, the thickness of

the unyielded zone increases until the interface between the yielded and unyielded zones

reaches the wall, that is, yB = 1/2, for −p1 � pmin. Setting y = 1/2 in (3.21b) and solving

for p1 gives an explicit expression for this minimum pressure,

pmin =
φscDa μ1

tanh

( √
Daφsc

2(φsc − 1)

)
√

Da (1 − φsc)
2 + Daφsc/2

, (3.27)

https://doi.org/10.1017/S095679251800030X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251800030X


Models for concentrated suspensions 599

below which the solid phase is jammed in the entire cross-section of the channel. On the

other hand, for −p1 > pmin the phase plane analysis suggests that there is always a unique

and strictly positive value for yB , which moreover tends to zero as p1 → −∞. We also

note that for large Da and fixed p1, the interface position tends to a finite value,

yB → −μ1

p1
. (3.28)

Remark. For a finite length channel, the two free parameters p1 and pc in the solution

for the solid fraction φs and for the velocity profiles us and uf are typically fixed by,

e.g., inlet conditions for the solid and liquid fluxes. Notice that here we are reverting to

the original parameter p1 prior to the rescaling in (3.16). Mass conservation dictates that

for each phase, the total fluxes must be constant along the channel, thus we have the

conditions

2pc

∫ 1/2

0

(1 − φ(y; p1/pc))uf(y; p1/pc)dy =
1 − φin

6
, (3.29a)

2pc

∫ 1/2

0

φ(y; p1/pc)us(y; p1/pc)dy =
φinus,in

6
, (3.29b)

where φin and us,in are the solid phase volume fraction and the scaling factor for the

parabolic solid phase velocity profile assumed at the inlet (see (3.1)). Also, recall that

uf,in = 1 by our choice of the velocity scale. From our previous investigation, we know

that the flow will always produce a plug in the centre where the solid phase is jammed,

that is, φ = φsc. This is possible by having a solid phase profile that is equal to φsc only in

a very narrow region at the centre of the channel and then rapidly decays to zero towards

the walls. Thus, the total solid flux through the cross-section can be arbitrarily small. For

such solutions, however, finite size effects may come into play that are neglected in the

continuum model.

3.3 Asymptotic analysis for large Da

The stationary solutions show that the solid volume fraction increases towards the

channel centre, where a finite size region at maximum packing is located, see Figure 4.

The solid phase velocity increases towards the centre but is constant in the region where

φ = φsc, so that there, the solid phase is jammed, or unyielded and effectively forms

a porous medium. The fluid velocity increases at first but then decreases towards the

centre of the channel, where it has a local minimum. The difference between the two

velocities achieves a maximum away from the jammed region. Moreover, for growing

Da the solution of the stationary problem develops boundary layers, in particular the

velocity w shows a pronounced sharp drop as y approaches the boundary y = 1/2.

In addition, as Da increases, the velocity difference w decreases by approximately the

same factor. This observation and the large values of Da suggest that we seek and

asymptotic approximation in the limit ε ≡ 1/Da → 0 with the ansatz w = εw̃. The

asymptotic analysis of the stationary solution will yield the key ideas for the derivation of

a new drift-flux model from the time-dependent two-phase flow model for concentrated
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Figure 4. (left) The solid volume fraction φ, (middle) the velocities us, uf , u and (right) the velocity

difference w obtained by using the ODE problem (3.18). The parameters are given by (3.22), μ2 = 1,

and p1 = −10. Top figures show results for Da = 1, 000 and bottom figures for Da = 10, 000.

suspensions, which we then use to study the formation and evolution of jammed regions in

the flow.

For the remaining analysis, we drop the tilde and obtain from (3.18a)

w = p1
1 − φ

φ
+

1 − φ

φ2
N′(φ)∂yφ. (3.30a)

Substitution the rescaled version of (3.18b) yields a second-order equation for φ,

ε ∂y

(
p1

1 − φ

φ
+

1 − φ

φ2
N′(φ)∂yφ

)
=

p1y + N(φ)

1 − φ
+

(φsc − φ)2

φ2
. (3.30b)

The boundary conditions at the yield interface y = yB are

φ = φsc, (3.30c)

∂yφ = −2

5

φsc

1 − φsc

p1yB + μ1

tanh
(

φsc

1−φsc
ε−1/2yB

) ε−1/2 +
2

5
p1, (3.30d )

and at the channel wall we have w = 0, so that from (3.30a), we get

∂yφ = −p1
φ

N′(φ)
at y =

1

2
. (3.30e)

Clearly, this is a singular perturbed problem with a boundary layer at y = 1/2 and y = yB .
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In fact, if we assume that φ and yB have asymptotic expansions

φ(y) = φ0(y) + ε1/2φ1(y) + O(ε), yB = yB0 + ε yB1 + O(ε2). (3.31)

Then to leading order we have

0 =
p1y + N(φ0)

1 − φ0
+

(φsc − φ0)
2

φ2
0

. (3.32)

When we use this in (3.30a) the boundary conditions for w are not satisfied.

3.3.1 Boundary layer problem at y = 1/2

For the boundary layer variables z = (1
2
−y)ε−1/2 and Φ(z) = φ(y) the governing equation

is

∂z

(
−ε1/2 p1

1 − Φ

Φ
+

1 − Φ

Φ2
N′(Φ)∂zΦ

)
=

p1/2 + N(Φ) − ε1/2 z

1 − Φ
+

(φsc − Φ)2

Φ2
, (3.33a)

with boundary condition at z = 0

(1 − Φ) N′(Φ) ∂zΦ = ε1/2 p1 (1 − Φ)Φ. (3.33b)

Assume the asymptotic expansion of the inner variables can be written as

Φ(z) = Φ0(z) + ε1/2Φ1(z) + O(ε), (3.34)

so that the solution satisfies to leading order the problem

∂z

(
1 − Φ0

Φ2
0

N′(Φ0) ∂zΦ0

)
=

p1/2 + N(Φ0)

1 − Φ0
+

(φsc − Φ0)
2

Φ2
0

, (3.35a)

∂zΦ0 = 0 at z = 0+, (3.35b)

since (1−Φ0) N
′(Φ0) �= 0. As z → ∞ the solution approaches a constant, say Φ0 → Φ0,∞,

which satisfies

p1/2 + N(Φ0,∞)

1 − Φ0,∞
+

(φsc − Φ0,∞)2

Φ2
0,∞

= 0. (3.36)

Hence, since for y → (1/2)− in the leading order outer problem, then

0 =
p1/2 + N

(
φ0(1/2)

)
1 − φ0(1/2)

+

(
φsc − φ0(1/2)

)2

φ2
0(1/2)

. (3.37)

Therefore, matching yields Φ0,∞ = φ0(1/2).
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It is straightforward to solve the next order problem to obtain

Φ1(z) =
A2N

′(φ0

(
1/2

)
) − p1φ0

(
1/2

)
A1

A
3/2
1 N′(φ0

(
1/2

)
)

exp
(
−

√
A1z

)
+

A2

A1
z, (3.38)

where

A1 =
φ2

0

(
1/2

)
(1 − φ0

(
1/2

)
)2

+
φ2

0

(
1/2

)
N′(φ0

(
1/2

)
)

1
2
p1 + N(φ0

(
1/2

)
)

(1 − φ0

(
1/2

)
)3

− 2

N′(φ0

(
1/2

)
)

φsc

φ0

(
1/2

) φsc − φ0

(
1/2

)
1 − φ0

(
1/2

) , (3.39a)

A2 =
p1

N′(φ0

(
1/2

)
)

φ2
0

(
1/2

)
(1 − φ0

(
1/2

)
)2
, (3.39b)

thus, using (3.37)

A2

A1
= p1

[
N′(φ0

(
1/2

)
) +

(
φsc − φ0

(
1/2

)) (
φ2

0

(
1/2

)
− 2φsc + φscφ0

(
1/2

))
φ3

0

(
1/2

) ]−1

. (3.40)

Taking the y-derivative of (3.32), we get

∂yφ0 = −p1

[
N′(φ0) +

φsc − φ0

φ3
0

(
φ2

0 − 2φsc + φ0φsc

)]−1

. (3.41)

Therefore, the linear term in the expansion of the outer solution φ0 and in the inner

solution Φ1, see (3.38), match as required.

3.3.2 Boundary layer problem at y = yB

Similarly, we let the boundary layer variables be

ξ =
y − yB

ε1/2
, ϕ(ξ) = φ(y). (3.42)

To leading order the problem now reads

∂ξ

(
1 − ϕ0

ϕ2
0

N′(ϕ0) ∂ξϕ0

)
=

p1 yB0 + N(ϕ0)

1 − ϕ0
+

(φsc − ϕ0)
2

ϕ2
0

, (3.43a)

with boundary condition at ξ = 0+

ϕ0(0) = φsc, (3.43b)

and

∂ξϕ0(0) = −2

5

φsc

1 − φsc
(p1 yB0 + μ1) = 0. (3.43c)

Note, if we assume that in the leading order outer equation, φ also satisfies φ = φsc at

y = yB then we must have that p1 yB0 + μ1 = 0, since N(φsc) = μ1. Hence, the second
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boundary condition is also zero. This suggests ϕ0 = φsc. Matching this to the leading

order outer problem

p1 yB0 + N(φ0(yB0)

1 − φ0(yB)
+

(φsc − φ0(yB))2

φ2
0(yB)

= 0. (3.44)

Hence, φ0(yB) = φsc. Solving the next order problem

∂ξξϕ1 =

(
ϕ1 −

2

5
p1 ξ

)
φsc

2

(1 − φsc)2
, (3.45a)

with boundary conditions

ϕ1(0) = 0, ∂ξϕ1(0) =
2

5
p1, (3.45b)

gives

ϕ1(ξ) =
2

5
p1ξ. (3.46)

This needs to be matched with the linear term in the Taylor expansion of the leading

order outer solution φ0, which can be obtained by taking the limit φ → φsc in (3.41).

That limit gives ∂yφ0(yB) = −p1/N
′(φsc) = −p1/(−5/2), that is, the coefficients are equal,

hence the terms match.

4 Drift-flux model for plane Poiseuille flow

While drift-flux models have been proposed to study the evolution of two-phase flows

of suspensions [31, 39] and are also used as transport equations for a suspended phase

and combined with hydrodynamic equations [11, 36] a systematic asymptotic derivation

from the underlying two-phase model is still open. Here, we will use matched asymptotics

along the lines of the analysis of the stationary problem, for the derivation of a new

drift-flux model for the cross-sectional flow of the channel. Our analysis shows that the

inclusion of the boundary layers leads to a drift-flux model that naturally accounts for

the shear-induced flux of the suspended phase away from the boundaries. Moreover, the

constitutive law for concentrated suspensions leads to the appearance of unyielded and

yielded regions, which needs to be captured by the new drift-flux model.

4.1 Asymptotic derivation of the drift-flux model

To capture the evolution towards a Bingham-type flow, it will be instructive to investigate

the problem for the cross-section. We assume therefore that all the variables depend only

on y and t, except for the pressure variables, which also depend on x.

As in our previous section, the drift-flux regime is established for large Da and small

velocity differences w, and in addition on a long-time scale. Hence, we let ε = 1/Da and

w1 = εw∗
1 , w2 = εw∗

2 , t =
t∗

ε
. (4.1)
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The governing equations are then, after we drop the ‘∗’

∂tφ− ∂y(φ (1 − φ)w2) = 0, (4.2a)

−∂y

[
(1 − φ) ∂yv1 + ε(1 − φ) ∂y(φw1)

]
+ (1 − φ)∂xpf = − φ2

1 − φ
w1, (4.2b)

−∂y

[
2ε(1 − φ) ∂y(φw2)

]
+ (1 − φ)∂ypf = − φ2

1 − φ
w2, (4.2c)

−∂y

[
φηs∂yv1 − εφηs∂y((1 − φ)w1)

]
+ φ∂xpf =

φ2

1 − φ
w1, (4.2d )

∂y

[
2εφ ∂y((1 − φ)w2)

]
+ φ∂ypf + ∂ypc =

φ2

1 − φ
w2, (4.2e)

pc = ηn(φ)
[
(∂yv1 − ε∂y((1 − φ)w1))

2 + 2ε[∂y((1 − φ)w2)]
2
]1/2

+ ε4φ, (4.2f )

and no-slip conditions at y = ±1/2

v1 = 0, w1 = 0, w2 = 0. (4.2g)

To leading order, we obtain for the outer problem

∂tφ− ∂y(φ(1 − φ)w2) = 0, (4.3a)

−∂y[(1 − φ)∂yv1] + (1 − φ)∂xpf = − φ2

1 − φ
w1, (4.3b)

(1 − φ)∂ypf = − φ2

1 − φ
w2, (4.3c)

−∂y[φηs∂yv1] + φ∂xpf + ∂xpc =
φ2

1 − φ
w1, (4.3d )

φ∂ypf + ∂ypc =
φ2

1 − φ
w2, (4.3e)

pc = ηn |∂yv1| , (4.3f )

and no-slip conditions at y = ±1/2,

v1 = 0, w1 = 0, w2 = 0. (4.3g)

We note that for ease of notation, we have dropped the indices in the variables that

denote the leading order solutions. Adding (4.3c) and (4.3e) yields ∂y(pf + pc) = 0, hence

pf + pc = f(x). Adding (4.3b) and (4.3d) yields

−∂y

(
[φηs + (1 − φ)] ∂yv1

)
+ ∂x(pf + pc) = 0. (4.4)

Since the left-hand side is only dependent on y and the right-hand side only on x, they

must be constants. Thus, defining ∂x(pf + pc) = p2, so that after integration

[φηs + (1 − φ)] ∂yv1 = p2y + α. (4.5)
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Adding (1 − φ)∂ypc on both sides of (4.3c) yields

∂ypc =
φ2

(1 − φ)2
w2. (4.6)

We have

w2 =
(1 − φ)2

φ2
∂y

(
ηn|∂yv1|

)
=

(1 − φ)2

φ2
∂y (ηnγ̇) . (4.7)

In addition note that from (4.5), we obtain

∂yv1 =
p2 y

φηs + 1 − φ
, (4.8)

where due to symmetry we have set α = 0. Since p2 < 0 the negative of this expression

will always be positive and we set

γ̇ = − p2 y

φηs + 1 − φ
, (4.9)

so that

w2 = −p2
(1 − φ)2

φ2
∂y

[
ηny

φηs + 1 − φ

]
. (4.10)

Hence, we obtain for the drift-flux model

∂tφ = −p2∂y

[
(1 − φ)3

φ
∂y

(
y

N(φ) + 1−φ
ηn(φ)

)]
. (4.11)

We note at this point that the drift-flux model we have just derived (4.11) is a non-linear

diffusion equation that admits constant solutions, say φ0. Linearizing about these base

states by making the ansatz φ(t, y) = φ0 + δ φ1(t, y) + O(δ2), we obtain to O(δ)

∂tφ1 = −p2 ∂y

[
M′(φ0)

F(φ0)
φ1 −M(φ0)

F ′(φ0)

F2(φ0)
∂y (yφ1)

]
, (4.12)

where M(φ) = (1 − φ)3/φ and F(φ) = N(φ)+ (1−φ)/ηn(φ). We supplement this equation

with boundary conditions and assume no-flux conditions at the wall y = 1/2. Indeed, as

shown in Appendix B, matching to a boundary layer there gives w2 = 0. We seek solutions

that are symmetric with respect to the middle axis of the channel, thus we also impose

w2 = 0 at y = 0.

Clearly, if F ′(φ0) < 0, which holds true for all φ0 ∈ [0, φsc] as long as μ2 � μ1 and I0 � 0,

then any perturbation of the constant base states is damped out and the flow remains.

But we note that non-zero constant solutions of (4.11) do not satisfy the boundary

conditions. Hence, we expect a non-linear structure to arise from the interplay between

the drift-flux equation and the no-flux condition. Indeed, the flux of the solid phase leads

to an increase of φ at the centre of the channel, until the solid volume fraction reaches φsc

there and jamming of the solid phase occurs in a region y < yB with a time-dependent

free boundary yB(t). In fact, w2 = 0 cannot be achieved by the channel centre y = 0 at

the right-hand side of (4.10), thus the jammed region emerges instantaneously, that is,
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yB(t) > 0 for all t > 0. In the jammed region, the solid volume fraction is constant so that

mass conservation gives w2 = w2(t). Assuming symmetry at y = 0 then fixes w2 to be zero

to all orders in ε for 0 < y < yB . At y = yB , we therefore impose φ = φsc and w2 = 0, so

that we have two boundary conditions as required at a free boundary. Figure 5 shows a

numerical solution for the drift-flux model (4.11) with

∂y

(
y

N(φ) + 1−φ
ηn(φ)

)
= 0 (4.13)

imposed at y = 1/2 and at y = yB . The second condition

φ = φsc at y = yB, (4.14)

is used to update the free boundary yB . A central finite difference scheme of second order

with a fully implicit Euler–Euler-2-step method was used to discretize the problem. The

results in Figure 5 clearly display the emergence and evolution of the jammed region in

the cross-sectional channel flow.

The evolution eventually tends to a stationary state that can be obtained from (4.11)

by letting ∂tφ = 0. Integrating once and using (4.13) at y = 1/2 and then integrating once

again leads to
y

N(φ) + 1−φ
ηn(φ)

= c1. (4.15)

With c1 = −1/p1, we recover the stationary outer equation (3.32) from Section 3. Its value

is fixed here by the requirement that the total amount of solid phase material

Vs =

∫ 1/2

0

φ dy, (4.16)

is equal to the total amount present in the initial condition φ(y, 0) for the time-dependent

problem. This follows from the observation that Vs is a conserved quantity for the time-

dependent problem. The corresponding solution is indicated in the figure by open circles.

It agrees well with the long-time profile for φ obtained from the time-dependent problem.

Remark. Before we continue with our analysis, we like to note that it is well-known that

the non-viscous one-pressure two-fluid system contains an ill-posedness, that manifests

itself in the occurrence of complex characteristics in the system and a subsequent loss

of hyperbolicity in time, see also the recent discussion in [32]. The problem exists even

for models that include viscous terms [40]. Although there has been progress towards a

mathematical understanding during the last decade, see, e.g., [29] and references therein,

until now there is no consistent and at the same time physically meaningful approach

that resolves this problem. For the model above, we propose a mathematically motivated

regularization to avoid the problem of loss of hyperbolicity. If we introduce a modified

expression for the collision pressure of the form

pc = ηn(φ)|γ̇s| + cφ, (4.17)
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Figure 5. Time evolution of solid volume fraction using the outer drift-flux approximation (4.11)

for the parameters from (3.22) with μ1 = μ2 and p1 = −10, starting from an initial uniform profile

of φ(0, y) = φsc/2. The profile first changes near the channel centre and wall. The volume fraction

increases near the centre until maximum packing is reached, which spawns an unyielded region.

This unyielded region then grows so that yB approaches the stationary value obtained from (3.28)

and y converges to the stationary solution.

where c is a constant regularization parameter that is only slightly larger than

cm =
(uf − us)

2

Da2
, (4.18)

then the equation is hyperbolic i.e., all characteristics are real [32], but the additional term

does not interfere with the derivation of the drift-flux model for Da � 1.

5 Discussion and outlook

In this study, we systematically derived a new two-phase model through ensemble av-

eraging along the lines of Drew et al. [17] while incorporating recent non-Brownian

constitutive laws by Boyer et al. [5] for the shear and normal viscosities for concentrated

suspensions. Our study of plane Poiseuille flow using the two-phase model shows that

solutions of this model naturally give rise to unyielded or jammed regions centred at the

axis of symmetry for the channel. The width of such a region depends on the value of the

applied pressure for a given volume fraction of the solid phase.

The parameter Da that appears in the model is typically very large because of small

particle sizes. We use this here to derive a new drift-flux model that captures the shear-

induced particle drift across the channel towards the centre and the format of a jammed

region in the solution. The model also predicts that the particle drift across the pipe is by

O(1/Da) smaller than the average flow along the channel. Our numerical results for the

time-dependent drift-flux model reveal how the jammed region emerges first at the centre

and then expands until the stationary state is reached. It would be interesting to relate

this evolution to experimental results on the transition length over which a steady state

develops in space from homogeneous inlet conditions.
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At this point, it seems sensible to summarize the assumptions that underlie our model.

While the general framework is based on the averaging of a microscopic model, much

in the spirit of Drew [14], the non-linear nature of the microscopic equations requires

additional constitutive laws for the macroscopic variables to obtain closure. The most

important of these here is the stress–strain relation for the solid (i.e., particulate) phase

(3.4b) and (3.4c). The justification of this law is based on the experiments by Boyer

et al. [5], which clearly demonstrate the power law behaviour of ηn near a critical packing

fraction and the presence of a yield stress that depends on the pressure excercized on the

solid phase of the suspension. These experiments use a modified conical viscosimeter with

a perforated surface so that pressure can be applied to the particles only, while permitting

the liquid to leave or enter the suspension. A motion of the mixture is only achieved if a

certain minimal torque is applied that increases with the applied pressure. Since the flow

situation studied there is of Couette type with both phases moving at the same speed,

our generalization needs to make a decision how to generalize the constitutive law to a

situation where the relative speed is non-zero, and we resolve this here by applying the

empirical law in Boyer et al. [5] to the solid phase only, while the liquid phase remains

Newtonian.

A key aim of our paper is then to study the implications of such a law for Poiseuille

flow as the simplest flow with spatially varying strain rate, and in particular address the

important question if the pressure dependent yield stress leads to the formation of a plug

similar to single-phase fluids. This is indeed the case for the solid phase, where a jammed

region is formed, while the liquid is allowed to move relative to the solid phase. The strain

rate dependence of the collision pressure and the decrease of the strain rate away from the

channel walls impart a drift to the particles that leads to a net flux towards the channel

centre in a homogeneous particle distribution. In the equilibrium density distribution, the

density increases just enough to compensate the effect and leading to a zero pressure

cross-flow gradient of the collision pressure and hence zero net flux. However, for the

constitutive law considered here, the density profile reaches the critical volume fraction

before the channel centre, and the solid phase jams.

An explanation for the occurrence of shear induced migration in connection with the

drift-flux models was given in [31], see also [37, 39]. There, shear induced migration is

the result of two effects, first, a spatially varying interaction frequency and second, of the

spatially varying viscosity. If we consider only the first contribution, the key observation

is that if the strain rate varies spatially over the typical size of a particle, then the collision

frequency, which is given by the particle density times the strain rate, decreases over the

cross-section of a particle in directions where the density is uniform but the strain rate

decreases. This gradient in the collision frequency creates a flux of particles towards the

region of lower strain rate. This picture holds up to particles located at the edge of a

jammed region. Inclusion of the second effect results in a very similar condition, where the

strain rate times a monotone function of the particle density has to be constant in steady

state, which is exactly what we obtain from our drift-flux model if we set w2 = 0 in (4.6) and

use (4.3f). Thus, the particle distribution evolves into a non-uniform steady state, which,

for our model, creates a jammed region at the centre of the channel as shown in Figure 5.

In any case, the prediction of a jammed region provides scope for further investigation.

For example, such a region should be suppressed for smaller average solid volume fraction.
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While our results show that the region decreases for less concentrated suspensions, it is

always finite as long as a solid phase fraction is present at all. Even for very dense

suspension, it is conceivable that the plug region is in a state where the particles are

still permitted to have a small relative motion. In fact, previous modelling efforts using

two-phase averaged models (or suspension balance models) have introduced various types

of non-local terms to prevent the maximum solid volume fraction from being reached,

especially in cases where a cusp forms at the centre line of pipe or channel flow, see,

e.g., [33, 37], while others have not [53].

Moreover, the role of friction, as the solid volume fraction increases, needs to be

considered more closely [13,23,51], to fully understand the physics that underly the trans-

itions into the jammed state. Further insight into this could come from more experimental

investigations, such as [38, 46] and the recent study [27], but also a more detailed un-

derstanding of the microscopic force balance in the concentrated suspension at the yield

surface.

On the other hand, the derivation of the drift-flux model from the full two-phase

model presented here could be extended further. The fact that the shear-induced particle

transport acts on a different velocity scale than the phase-averaged flow field indicates

how to systematically develop an asymptotic theory leading to a complete coupled flow

model that includes both transport and jamming of particles. Such an analysis could

also rationalize some suspension flow models that are found in the literature. In fact, the

methods presented in this study should also enable the systematic derivation of drift-flux

models for more complex flow geometries, for example, at the free boundary between the

suspension and the surrounding atmosphere, or non-Newtonian carrier fluids [24], and

will be part of our future work.

Finally, questions such as stability of dense suspension flows are rarely considered; for

the model we develop here, a first step in this direction can be found in [3].

Acknowledgements

The authors are thankful to Prof. Andrew Fowler (Mathematical Institute, University of

Oxford) for very fruitful discussions.

References

[1] Ahmadpour, A. & Sadeghy, K. (2013) An exact solution for laminar, unidirectional flow of

Houska thixotropic fluids in a circular pipe. J. Non-Newton. Fluid Mech. 194, 23–31.

[2] Ahnert, T. (2015) Mathematical Modeling of Concentrated Suspensions: Multiscale Analysis and

Numerical Solutions. PhD Thesis, Technical University Berlin, November.

[3] Ahnert, T., Münch, A., Niethammer, B. & Wagner, B. (2018) Stability of concen-

trated suspensions under Couette and Poiseuille flow. J. Eng. Math. 1–27. https://doi.org/

10.1007/s10665-018-9954-x

[4] Batchelor, G. K. & Green, J. T. (1972) The determination of the bulk stress in a suspension

of spherical particles to order c2. J. Fluid Mech. 56(03), 401–427.
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Appendix A Derivation of the two-phase flow model

A.1 Averaging rules

We will follow the mathematical framework by Drew and Passman [14,16] in this section.

Let f and g be arbitrary measurable functions, c a constant and 〈·〉 an average operator

obeying the so-called Reynolds’ rules

〈f + g〉 = 〈f〉 + 〈g〉, (A 1)

〈〈f〉g〉 = 〈f〉〈g〉, (A 2)

〈c〉 = c, (A 3)

the Leibniz’ rule

〈∂tf〉 = ∂t〈f〉, (A 4)

and the Gauss’ rule

〈∂if〉 = ∂i〈f〉. (A 5)

The functions should be weakly differentiable up to the required order. Admissible

operators are, for example, the volume average [30, 49], time averages [26], the ensemble

average [16] or a mixture of these [17]. However, note the derivatives are defined in the

sense of distributions in this work. This implies 〈∇f〉 can have a Dirac delta property

yielding additional surface integrals, whereas in classical theories the Leibniz’ and Gauss’

rule are written explicitly with surface integrals, cf. [16] and [49].

We further need a component indicator function

Xk(x, t) =

{
1, if (x, t) ∈ K

0, if (x, t) � K,
(A 6)

with K the set of states of the kth-phase. In our model, we use the average operator in a

weighted form. There are in general two averages in use, the intrinsic or phasic average

g ≡ 〈Xkg〉
〈Xk〉

, (A 7)

and the mass-weighted or Favré average (in its three common forms)

bg ≡ ρg

ρ
=

〈Xkρg〉
〈Xk〉 〈Xkρ〉

〈Xk〉
=

〈Xkρg〉
〈Xkρ〉

. (A 8)

When we have multiple indicator functions, an index states the indicator function, we

used in the average, e.g., gs means we used Xs in the average. We define a fluctuation field

(cf. [16]) as

g′ := g − g, (A 9)

g◦ := g − bg, (A 10)

and due to the Reynolds rules g′ = bg◦ = 0 holds. This splitting together with the Reynolds
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rules yields the identity

fg = fg + f′g′, (A 11)

and similar for the Favré average

cfg =bfbg + bf◦g◦. (A 12)

The characteristic function fulfills the so-called topological equation (cf. [16])

∂tXk + ui · ∇Xk = 0, (A 13)

with ui the interface velocity.

A.2 The two-phase flow model

Multiplication of (2.1a)–(2.1d) with Xk , followed by usage of the average operator and its

linearity together with Gauss’ and Leibniz’ rules yield

∂t〈Xkρ〉 + ∇ · 〈Xkρu〉 = 〈ρ(∂tXk + ui∇ ·Xk)〉 (A 14)

+ 〈ρ(u − ui) · ∇Xk〉, (A 15)

∂t〈Xkρu〉 + ∇ · 〈Xkρu⊗u〉 − ∇ · 〈XkT 〉 = 〈Xkf〉 (A 16)

+〈(∂tXk + ui · ∇Xk)ρu〉 (A 17)

+〈[(u − ui) · ∇Xk]ρu〉 − 〈∇Xk · T 〉. (A 18)

In the above, we assume that the interface velocity ui has been smoothly extended for all

x. Since the indicator function satisfies the so-called topological equation (cf. [16])

∂tXk + ui · ∇Xk = 0, (A 19)

the first- and the second-term equations (A 14) and (A 17) drop out, respectively, and we

can write the system as

∂t〈Xkρ〉 + ∇ · 〈Xkρu〉 = Γk, (A 20)

∂t〈Xkρu〉 + ∇ · 〈Xkρu ⊗ u〉 (A 21)

−∇ · 〈XkT 〉 = 〈Xkf〉 + M k, (A 22)

where

Γk ≡ 〈ρ(u − ui) · ∇Xk〉, (A 23)

M k ≡ 〈∇Xk · [ρ(u − ui) ⊗ u − T ]〉, (A 24)

denotes the average interfacial mass source and the average interfacial momentum source

for the kth phase, respectively.
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To obtain the averaged form of the jump conditions, we note first the Dirac delta

property of the component indicator functions’ derivative

〈∇Xkf〉 = −
∫
Sk

nkfkdS , (A 25)

with Sk the interface of phase k. Using this and (A 23), (A 24) in the jump conditions for

mass (2.1c) and momentum (2.1d), these conditions become∑
k

Γk = 0, (A 26)∑
k

M k = 0. (A 27)

We further introduce the following averaged quantities

φk ≡ 〈Xk〉,

for the volume fraction, and

ρk ≡
〈Xkρ〉
φk

,

ûk ≡
〈Xkρu〉
φkρk

,

T k ≡ −〈XkT 〉
φk

,

T Re
k ≡ −〈Xkρu◦k ⊗ u◦

k 〉
φk

,

fk ≡
〈Xkf〉
φk

,

Sd
k ≡ −〈∇Xk · T 〉,

ukiΓk ≡ 〈∇Xk · ρ(u − ui) ⊗ u〉,

for the average density, velocity, stress, Reynolds stress, body forces, interfacial stress and

interfacial velocity of the kth phase, respectively.

Then, after we split the interfacial momentum source as

M k = Sd
k + ukiΓk, (A 28)

and the momentum flux into an average flux and a Reynolds stress

〈Xkρu ⊗ u〉 = φkρkûk ⊗ ûk − φkT Re
k , (A 29)

and use the product rule (A 12) for the velocity, we obtain the following system of phase
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averaged mass and momentum equations

∂t(φkρk) + ∇ · (φkρkûk) = Γk, (A 30)

∂t(φkρkûk) + ∇ · (φkρkûk ⊗ ûk) −∇ · (φkT k) = (A 31)

∇ · (φkT
Re
k ) + fk + Sd

k + ukiΓk. (A 32)

The Reynolds stress T Re
k consists of two parts – liquid turbulence and pseudo-turbulence.

As we are interested in the laminar flow regime, we neglect the liquid turbulence. Addi-

tionally, our derivations show uf − us has a very small value in the considered flow cases.

Since the pseudo-turbulence scales as (uf −us)
2φs, see, e.g., [8,19], it will also be neglected.

Further, we assume no phase change occurs at the interface between particles and liquid,

Γk = 0.

We introduce the stress tensor as the sum of pressure and deviatoric stress in the form

T = −pI + τ , (A 33)

so that for the averaged quantities T k and

pk ≡
〈Xkp〉
φk

, (A 34)

τ k ≡ −〈Xkτ〉
φk

, (A 35)

we have correspondingly

T k = −pkI + τ k. (A 36)

The interfacial pressure of phase k and the interfacial force density is defined as

p̃ik ≡
〈∇Xkpk〉
〈∇Xk〉

=
〈∇Xkpk〉
∇φk

, (A 37)

M d
k ≡ Sd

k − 〈∇Xkpk〉 = 〈∇Xk · ((pk − p̃ik)I − τ )〉, (A 38)

respectively, where the second equality in (A 37) follows from an application of Gauss’

rule (A 5). We have (from (A 28))

M k = M d
k + p̃ik∇φk, (A 39)

so that we obtain for the mass and momentum balance equations

∂t(φkρk) + ∇ · (φkρkûk) = 0, (A 40)

∂t(φkρkûk) + ∇ · (φkρkûk ⊗ ûk) (A 41)

−∇ · (φkτ k) + ∇(φkpk) = M d
k + p̃ik∇φk, (A 42)

where we have also assumed that no external body forces are applied, i.e., f = 0.
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We neglect surface tension forces between the solid and the liquid phase, so the

interfacial pressure difference becomes [14]∑
k

p̃ik∇φk = 0, (A 43)

and we obtain together with the interfacial momentum jump condition (A 27) the relation

Md
s = −Md

f . (A 44)

Since we only have two phases, we know φs+φf = 1, which directly leads to ∇φs = −∇φf .

Thus, equation (A 43) yields

p̃is = p̃if .

For the case of identical liquid interfacial and bulk pressure

p̃if = pf,

and constant densities ρk within each phase, the balance equations then reduce to the

system (2.4).

Appendix B Boundary layer analysis for the drift-flux model

In this appendix, we complete the perturbation analysis used for the derivation of the

drift-flux model in Section 4.1 by considering the inner layer near the wall. The purpose

of this is to show that we recover the no-flux condition w2 = 0 used to complete the

drift-flux model (4.11), but we note that for a correct description of the density profile

in the inner layer, which has a width ε1/2 =Da−1/2 ∼ K
1/2
p ∼ a i.e., of the size of the

particles, we would have to include the possibility of a depletion layer, which, however,

should not affect the no-flux condition on (4.11).

For the boundary layer analysis at the wall we introduce variable

z =
1
2
− y

ε1/2
, Φ(t, z) = φ(t, y). (B 1)

Then, we obtain

ε1/2∂tΦ + ∂z(Φ (1 − Φ)w2) = 0, (B 2a)

−∂z [(1 − Φ) ∂zv1 + ε(1 − Φ) ∂z(Φw1)] + ε(1 − Φ)∂xpf = −ε
Φ2

1 − Φ
w1, (B 2b)

ε1/2∂z [2(1 − Φ) ∂z(Φw2)] + (1 − Φ)∂zpf = ε1/2
Φ2

1 − Φ
w2, (B 2c)

−∂z [Φηs∂zv1 − εΦηs∂z((1 − Φ)w1)] + εΦ∂xpf = ε
Φ2

1 − Φ
w1, (B 2d )

ε1/2∂z [2Φ ∂z((1 − Φ)w2)] − Φ∂zpf − ∂zpc = ε1/2
Φ2

1 − Φ
w2, (B 2e)
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and

pc = ηn

[
1

ε
(∂zv1 − ε∂z((1 − Φ)w1))

2 + 2[∂z((1 − Φ)w2)]
2

]1/2

, (B 2f )

and no-slip conditions at z = 0,

v1 = 0, w1 = 0, w2 = 0. (B 2g)

The leading order system is

∂z(Φ (1 − Φ)w2) = 0, (B 3a)

−∂z [(1 − Φ) ∂zv1] = 0, (B 3b)

(1 − Φ)∂zpf = 0, (B 3c)

−∂z [Φηs∂zv1] = 0, (B 3d )

−∂zpc = 0, (B 3e)

and

pc = ηn
[
(∂zv1)

2
]1/2

, (B 3f )

and no-slip conditions at z = 0,

v1 = 0, w1 = 0, w2 = 0. (B 3g)

We see immediately that w2 = 0, which provides, via matching, the boundary condition

for the drift-flux model at y = 1/2 as claimed in the text.
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