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SUMMARY
This paper presents the development of a model which can
adequately simulate the dynamic stability of manipulators
mounted on moveable platforms. The model takes into
account the dynamics of the base that can potentially rock
back-and-forth. Particularly, the model predicts the changes
in the velocities of the manipulator links and the base due to
impact with the ground. The application of the study is
directed at industrial machines that carry human-operated
hydraulic manipulators. The model is therefore used to
simulate for the first time, planar movements of'a Caterpillar
215B excavator-based log-loader. The results clearly show
the effect of the manipulator movement on turning the base
over. The results also show that by proper manipulation of
the arms, one can achieve a stable condition and even
reverse the ‘tipover’ situation in such machines.

KEYWORDS: Mobile platforms; Dynamic stability; Manip-
ulators; Industrial machines.

1. INTRODUCTION
The development of automated systems for the operation of
heavy-duty manipulator-like hydraulic machines, such as
log-loaders, has recently received increased attention. The
environments in which these machines operate are unstruc-
tured and potentially hazardous. The operator must remain
constantly alert in order to accomplish the work efficiently
and, at the same time protect his/her safety and that of
others. Current research effort has been to develop means
for converting these machines into teleoperated control
systems.1 One issue in the computer control of such
machines, is the ability to maintain stability. A heavy-duty
mobile manipulator while carrying a load, experiencing a
force, or operating on uneven terrain needs to maintain its
balance.

Early work on stability of mobile vehicles was only
concerned with the static stability and gait generation of
slow moving legged machines (see the work by Messuri and
Klein2 and the references listed therein). These methods
could deal with cases where the only destabilizing load is
due to the gravitational force. In a moving-base manip-
ulator, however, a large portion of destabilizing forces and
moments could be due to the inertial or external loads
arising from maneuvering the implement. Dubowsky and
Vance3 proposed a time optimal motion planning strategy

for manipulators that are mounted on mobile platforms. The
goal was to allow the manipulators to perform tasks quickly
without generating dynamic forces and moments that cause
the system to overturn. The method, however, did not
attempt to study the tipover case or to develop a measure of
stability. Sugano et al.4 and Huang et al.5 employed the
ZMP (Zero Moment Point) concept and constructed a
quantitative criterion for stability measure of manipulators
mounted on vehicles. In their work, the manipulator,
including the vehicle and the payload, was considered to be
a system of particles moving on only rigid horizontal floors.
ZMP concept is a moment-based approach and therefore
does not include the effect of the walking height in the
stability analysis. Papadopoulos and Rey6,7 proposed a
Force-Angle measure of tipover stability margin, which has
a simple graphical interpretation and is easy to compute.
The ‘Force-Angle’ method, however, predicts the same
stability measure for all locations of the center of gravity
that lie in a line passing through the edge of potential
overturning. Ghasempoor and Sepehri8 discussed that the
energy stability method by Messuri and Klein2 is the only
measure of stability that can quantitatively show the effects
of top-heaviness and sloping ground. They then extended
this method to also reflect the effect of forces and moments
arising from the manipulation of the implement. The
significance of this extension is that it can be used as an off-
line tool to provide the designer with an inexpensive and
fast method that helps to maintain the stability of mobile
manipulators. The extension, however, did not consider the
dynamic situation, i.e., tipover of the entire machine during
an unstable stance. Moreover, depending upon the sub-
sequent states of the implement motion, the entire machine
may rock back-and-forth, a phenomenon that cannot be
characterized by any of the previously developed methods
including the ones described above.

The goal of the work reported in this paper is to develop
a model that contains enough features to yield the
behavioral information on dynamic stability of heavy-duty
hydraulic machines that carry manipulators. The model is
built upon the simulation model, developed previously by
Sepehri et al.,1,9 for a Caterpillar 215B log-loader machine
(see Fig. 1 ) and includes models to accurately incorporate
the dynamics of the rocking base in such machines. These
machines incorporate many aspects of typical robotic
systems and are the basis for most heavy-duty hydraulic
machines. Thus, the analyses and development reported in
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this paper can be applied to other similar mobile robotic
systems or heavy-duty mobile manipulators.

The organization of this paper is as follows. Section 2
describes the candidate machine, a Caterpillar 215 based
log-loader. Then the dynamic model of the machine during
a planar motion is outlined in Section 3. This includes
modelling of the linkages, collision of the base with the
ground during the rocking motion, as well as the hydraulic
driving unit. Particularly, the mathematical model of the
manipulator collision with the environment by Zheng and
Hemami11 has been adapted to model the impact of the base
with the ground. This present model requires the edge of
instability to be modeled as a free joint.

In order to facilitate the application of conventional
Lagrange-Euler method of modeling serial-link robot arms,
the free joint here is modeled by adding two virtual links
with two prismatic joints. Section 4 describes the computa-
tional algorithm. Section 5 demonstrates typical simulation
results. It is shown that by proper manipulation of the links,
one can achieve a stable condition and can even reverse the
tipover situation. The results are also shown to be in
agreement with the results obtained from the energy
stability method by Ghasempoor and Sepehri.8 Conclusions
are finally given in Section 6.

The novelty in this work, which is believed to be a further
contribution to the stability analysis of mobile manipulators,
is that the model considers both the tipover of the base and
the impact with the ground. The resulting model will
therefore, provide simulation capabilities to facilitate design
of suitable tipover prevention schemes.

2. MACHINE DESCRIPTION
The Caterpillar 215B based log-loader (see Fig. 1) is a
mobile three degree of freedom manipulator with an
additional moveable implement. The implement is a grapple
for holding and handling objects such as trees. The whole
machine can move forward or backward on its tracked
undercarriage. The upper structure of the machine rotates on

the carriage by a ‘swing’ hydraulic motor through a gear
train. ‘Boom’ and ‘stick’ are the two other links, which
together with the ‘swing’, serve to position the implement.
Boom and stick are operated through hydraulic cylinders.
The cylinders and the swing motor are activated by means
of pressure and flow through the main valves. Modulation of
the oil flow in the main valves is presently controlled by the
pilot oil pressure through manually operated pilot control
valves. This heavy-duty machine can be considered as a
manipulator mounted on a mobile platform.

3. OUTLINE OF THE MODELING
In this section, the equations describing the dynamic
stability of the log-loader are derived. Here, we assume that
the swing is locked thus, the movement of the implement is
limited to a planar motion. The treatment of the three-
dimensional movement of the end-effector is a
straightforward extension of the analysis presented here.
Furthermore, it is assumed that the contact ground is solid
and the impact of the base with the ground is plastic. With
reference to Fig. 2. the system to be modeled can be
characterized by three distinct phases:

Phase 1: The platform is stable and thus not moving (see
Fig. 2a). This refers to a case whereby the manipulator
movement does not affect the stability and the model
consists of only dynamic equations as that of a two-link
manipulator.

Phase 2: The base is turning over the rear edge or the front
edge. This situation is schematically shown in Fig. 2b. This
is the case whereby the forces and moments arising from the
implement movements can no longer be sustained by the
vehicle without overturning. Assuming that the friction
between the ground and the machine base is sufficient to
only allow the rotation, the machine can be modeled as a
three-link manipulator.

Phase 3: The base rocks back-and-forth. For example, with
reference to Fig. 2c, the machine rolls over edge A towards
a stable position. At the point of contact, the system suffers
an impulsive force, which causes discontinuities in joint
angular velocities of all links, including the base. The states
of the machine and the impulsive forces arising at the
instant of impact will determine the subsequent states after
the impact.

First the dynamic models for first and second phases are
briefly outlined. Then, the dynamic model for the third
phase is derived in detail.

3.1. Dynamic model for cases of no impact
As described in the previous section, the first and second
phases have no impact with the ground. So, the first phase
can be modeled as a two-link serial manipulator. The second
phase can be modeled as a three-link serial robot manip-
ulator assuming that there is a hypothetical joint at the point
of contact between the ground and the base. The dynamic
equations describing the above two phases are simply

Fig. 1. Typical mobile manipulator; a Caterpillar 215B excavator-
based log-loader.
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derived based on Lagrange equation as follows (see
reference [11] for details):

�(t)=D(q)q̈+C(q,q̇)+H(q) (1)

where � (t)={�1, �2, . . ,�n}
T is the generalized force vector

applied at joints i=1, 2, . . , n. D(q) is an n � n inertial
acceleration-related symmetric matrix whose elements are:

Dij =Trace ��i��n

p=j

TpJpT
T
p��T

j� ( j≥ i)

Dji =Dij (2)

C(q,q̇)={c1, c2, . . . , cn}
T denotes nonlinear coriolis and

centritugal forces; its elements are:

ci =�n

j=1
�n

i=1

cijkq̇jq̇k (3)

where

cijk =Trace��i��n

p=j

TpJpT
T
p��T

k�
T
j� ( j≥ i, k)

cikj =cijk & ckji =�cijk ( j≤ i, k)

and

Jp =�Ip +mprpr
T
p

mpr
T
p

mprp

mp
�

Finally H(q)={h1, h2, . . . , hn}
T in (1) is the gravitational

force vector whose elements are:

hi =� (gT; 0)�i��n

p=i

mpTp(r
p
p;1)� (4)

�i in the above equations is written as follows:11

�i =��iz̃i�1

0
[�ip̃i�1 +�iI]zi�1

0 � (5)

where �i =1 for revolute joints and �i =0 for prismatic joints,
and �i =1��i. I is a unity matrix. The symbol ‘~’ in (5)
denotes a skew symmetric matrix with zero diagonal values.
For example, given a vector u={ux, uy, uz}

T, ũ is defined
as:

ũ=� 0
uz

�uy

�uz

0
ux

uy

�ux

0
�

The remaining parameters are all defined in the nomen-
clature.

Equations (1) to (5) are used to model the system, where
n=2 is used for the first phase and n=3 is used for the
second phase.

3.2. Dynamic model for the case of impact
Consider the case whereby the base is rotating about edge A
(Fig. 2c). Due to the movement of the manipulator mounted
on the machine, the base may reverse its direction and
collide with the ground over edge B. This impact has effects
on the velocities and internal forces of the manipulator.
Firstly, the velocities representing joint rates change
instantaneously. Secondly, large impulsive torque develops
at each joint. Zheng and Hemami10 studied the collision of
a robot end-effector with the environment. Mathematical
models were derived, which established quantitative rela-
tions between impulsive torques, abrupt changes in
velocities and the severity of the collision. Their method has
been adapted to the case in this paper.

With reference to Fig. 2c, when the base touches the
ground at edge B. the contact between the base and the

Fig. 2. Different phases of the base in a mobile manipulator:
(a) base is stable; (b) base is turning over the rear edge; (c) just
before the impact with the ground.
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ground at edge A is lost. Therefore, in order to establish the
mathematical model during the period of collision, edge A
should be considered free to translate in both horizontal and
vertical directions. This means that the dynamic models
derived for the cases of no impact cannot be applied to
compute the instantaneous changes of the joint angular
velocities at the moment when the free end of the base
collides with the ground. Therefore, we first derive the
dynamic equations for the general case whereby both
contact edges are in the air. Joint A, on which the base was
originally rotating, is modeled by adding two virtual links
with prismatic joints. Figure 3 shows the schematics of the
manipulator including the virtual links. The virtual links
have no mass and no inertia. The advantage of this
assumption is that the dynamic model can be derived as that
of any serial manipulator. The manipulator configuration in
this phase is, the first two joints are prismatic and the last
three are revolute joints (PPRRR). The link coordinate
systems for this configuration are shown in Fig. 4. The
Denavit-Hartenberg link coordinate parameters are shown

in Table 1. Equation (1) can then be used to derive the
dynamic equations for this phase with n=5. The first two
links are the virtual links, the third one is the base, the fourth
link is the boom and the fifth link is the stick. When the free
end of the manipulator base comes in contact with the
ground, there wil1 be an instantaneous change in the
velocities. Since the other end of the base is free to move,
the instantaneous changes of the velocities will also be
reflected on the rotation of the base in the form of rotation
about the new contact point. The instantaneous change of
the speed for all degrees of freedom, �q̇= q̇after � q̇before

(q̇before denotes the joint velocities before the impact and,
q̇after is joint velocity vector after the impact), upon collision
with the ground, is (see the appendix for detailed deriva-
tion):

�q̇=(D(q))�1JT(J (D(q))�1JT)�ẋb (6)

where D(q) is defined in Section 3.1 with n=5. J=
�xb

�q
is the

Jacobean matrix relating the collision point vector
xb =[xb, yb] to the corresponding joint vector. With reference
to Fig. 3, we have:

xb =q1 +l1 cos(q3)

yb =q2 +l1 sin(q3) (7)

where q1, q2, and q3 are elements of the joint angle vector
q=[q1, q2, q3, q4, q5]

T. l1 is the distance between edges A and
B. From the above relation, one can easily find the
Jacobean:

Fig. 3. Schematics of the manipulator including the virtual links.

Fig. 4. Link coordinate systems pertaining to Fig. 3.

Table I. Mobile Manipulator Link coordinate parameters.

Link �i di ai �i Variables

1 �/2 q1 0 �/2 q1

2 �/2 q2 0 �/2 q2

2a q3 0 af =�1 m ��/2 q3

or ar =4 m
3 0 d3 =1.5 m 0 �/2 –
4 q4 0 a4 =5.2 m 0 q4

5 q5 0 a5 =1.8 m 0 q5
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J=�1
0

0
1

� l1 sin q3

l1 cos q3

0
0

0
0� (8)

Assuming the impact is plastic, the velocity of point B
becomes zero after impact. Thus, �ẋb, the change of the
velocity of the point B due to the collision with the ground,
will be �ẋb =� ẋb before where ẋb before is the velocity of point
B just before the impact. Thus

q̇after = q̇before +(D(q))�1JT(J(D(q))�1JT)(� ẋb before) (9)

Equation (9) describes the instantaneous change in the joint
velocities immediately after the impact with the ground. The
new joint velocities, q̇after, along with current joint positions,
which remain unchanged during the short duration of
collision, constitute initial values of the system states for
subsequent simulation times.

3.3. Modeling of the Driving Unit
Figure 5 shows the schematics of the hydraulic actuator
system used in the machine under investigation. The
hydraulic cylinder is connected to an open-center valve
through flexible hoses. The valve monitors the flow to and
from the cylinder. This system works with a constant flow
pump system. With reference to Fig. 5, when the spool of
the open-center valve is in neutral position, the flow passes
through the valve and returns to the tank. As the spool
moves to the left or to the right, the flow is distributed to the
load and the tank, depending on the orifice arrangement and
the load. The equations governing the flow distribution
are:12

Qi =kai�Ps �Pi (10)

Qo =kao�Po �Pe (11)

Qe =Q�Qi =kae�Ps �Pe (12)

where Qi and Qo are the inlet and outlet flows to and from
the cylinder, respectively and Qe is the exit flow to the
tank.

The rate of change of the inlet pressure Ṗi and the outlet
pressure Ṗo are:

Ṗi =
	

Vi(X)
(Qi �AiẊ) (13)

Ṗo =
	

Vo(X)
(AoẊ�Qo) (14)

where X is the actuator displacement and Ẋ is the actuator
velocity. The output force from the actuator F is

F=Pi Ai �Po Ao (15)

Finally, the torque generated by the hydraulic cylinder is

�=F
dX
dq

(16)

where 
dX
dq

represents the nonlinear relationship between the

actuator linear velocity and the corresponding link rota-
tional velocity.

For the excavator under study, we have two hydraulic
actuators, one for the boom and one for the stick.

4. COMPUTATIONAL ALGORITHM
During the simulation, it is important to identify different
phases of the operations of the machine, i.e., whether the
manipulator is going to tip over or not and if it is going to
tip over about which edge it will. This is done by calculating
the net moment about the front and rear edges of the base.

Fig. 5. Open-center valve used in mobile hydraulic manipulators.
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To calculate the net moment, the interaction forces and
torque between the manipulator and the base should
continuously be determined. The forces and torque are
shown in Fig. 6 as Fx, Fy, and �, respectively. They are
calculated using any conventional method such as Newton-
Euler. The virtual link method developed by Abo-Shanab et
al.13 is used in this paper which is an easy and straightfor-
ward method of modeling the coupling forces for
interconnected rigid bodies. Once the forces are calculated,
the net moments about the rear and front edges are
computed (see Fig. 6):

Mf =�+wbase(af �xcg)�Fx d3 �Fy af (17)

Mr =��wbase(ar +xcg)�Fx d3 +Fy ar (18)

Fig. 6. Base under gravitational force and interaction forces/
torque from the manipulator.

Fig. 7. Flow chart of simulation.
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According to the values of Mf (net moment about the front
edge) and Mr (net moment about the rear edge), one can
determine about which edge the mobile manipulator is
going to tip over:

Mf > 0 and Mr < 0 the base is stationary (phase 1).
Mf > 0 and Mr > 0 the base turns over the rear

edge (phase 2a). (19)
Mf < 0 and Mr < 0 the base turns over the front

edge (phase 2b).

Figure 7 shows the flow chart of the simulation. With
reference to this figure, the computational algorithm is
stated as follows:

1. Input the initial values for the joint variables, q, joint
velocities, q̇, and the voltage signals applied to the
hydraulic valves.

2. Calculate the net moments about the front and rear
edges, Mf and Mr, from (17) and (18).

3. Determine the status of the manipulator, from (19);
(i) Phase 1; use dynamic model 1, equation (1) with

n=2, to calculate the joint variables q4 and q5.

(ii) Phase 2a; use dynamic model 2a, equation (1) with
n=3 and a3 =ar to calculate the joint variables q3,
q4, and q5.

(iii) Phase 2b; use dynamic model 2b, equation (1) with
n=3 and a3 =�af, to calculate the joint variables q3,
q4, and q5.

4. For cases (3ii) and (3iii), if the joint variable q3 becomes
less than a small value, 
, this means that there is an
impact with the ground. So, equation (9) is used to
calculate the new values of the joint velocities after the
impact.

5. If the new rotational velocity of the base, q̇3, is
negligible, then the machine is considered to be resting
on both edges and the first phase of the simulation is
applied. Otherwise, it will start to turn over the other
edge, i.e., if the base is rotating about the front edge then,
after the impact it will turn over the rear edge and vice
versa.

5. SIMULATION RESULTS
In this section, the results of simulation studies are
presented to demonstrate the usefulness of the simulation

Table II. Dynamic Parameters.

Mass Mass moment of inertia Center of gravity Coordinate
(kg) (kg m2) (x, y, z) m frame

base 12,000 90,523 (�2.0, �0.6, 0.0) (x3, y3, z3)
Boom 1,830 15,500 (�2.9, 0.2, 0.0) (x4, y4, z4)
Stick 688 610 (�0.9, 0.1, 0.0) (x5, y5, z5)

Fig. 8. Simulation results for excavator-based log-loader over a horizontal plane.
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Fig. 9. Input and output line pressures.

Fig. 10. Simulation results for excavator-based log-loader over an inclined plane.
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model developed here. Key system parameters are listed in
Table II. Two case studies are simulated. The first case
simulates a typical operation of the log-loader staying on a
horizontal ground. The task is to have the machine end
effector to perform a pick and place operation. In this task,
the end-effector starts from a position close to the base
carrying a 5000 kg load. The base is initially stable. The
manipulator extends the arms to a possible ‘dumping
position’ far from the base (see Figs. 8a and 8b). With
reference to Fig. 8c, this move causes the machine to topple
over. After the base rotates about 6 degrees over the front
edge, the end-effector retracts back to regain the stability. As
is seen, the machine starts to roll back to a stable position.
Figure 9 shows the input and output line pressures for both
boom and stick hydraulic actuators.

The second case describes a task whereby the machine
picks up a 4000 kg load while it is on an inclined plane
(�20 degrees slope). When the machine starts to lift the
load, it starts to tip over. After the base rotates about 15
degrees over the front edge, the load is dropped. As shown
in Fig. 10, the machine regains stability after dropping the
load.

The model developed in this paper is also compared with
the energy stability measure developed by Ghasempoor and
Sepehri.8 Quantitatively, the two methods give similar
indication about the stability of the mobile manipulator
except for the stances where the base is tipping over. The
energy stability measure does not predict the states of the
mobile manipulator during this period; thus, it cannot advise
of any movements of the boom or the stick in order to help
recover from the tipover. The present model can describe the
states of the mobile manipulator during the tipover and
potentially can help to recover from it. For example, the
energy stability level of the manipulator has been calculated
for the first case study and the result is shown in Fig. 11.
Comparing Fig. 11 with Fig. 8c, the two methods give the
same indication about the stability of the mobile manip-
ulator before the tipover (time period 0 to 9 seconds), and
after the tipover (time period 13.5 to 20 seconds). During
the time period 9 to 13.5 seconds, where the tipover occurs,
the energy stability measure calculation is not valid whereas
the present method gives information about the manipulator
states.

6. CONCLUSION
In this paper, a dynamic model for a two-link planar
manipulator mounted on a moveable platform, was devel-
oped. Building upon the model that was developed and
tested in Sepehri et al.,9 the current model takes into account
both the hydraulic actuation function and the detailed
dynamics of the base that can rock back-and-forth during
the movement of the manipulator. Also, the current model
takes into account the impact with the ground. Both aspects
of the impact, i.e., changes in the generalized states of the
system and creation of impulsive forces, are incorporated in
the model. Simulation results were presented to substantiate
the model development presented here. In particular, the
results were found to be consistent with the ones from the
previously developed energy stability method by Gha-
sempoor and Sepehri.8 The energy stability method,
however, does not predict how the base responds to the
movement of manipulator links, whereas, the present
method produces detailed behavior of the manipulator
including the movement of the base.

The results of this work, which will serve as a good guide
to the stability analysis of manipulators mounted on mobile
platforms, clearly showed the effect of the manipulator
movement on the overturning of such machines. Also, it was
shown that by proper manipulation of the linkages, one can
achieve a stable condition and even reverse tipover situa-
tions. This is significant, since with the introduction of
computer control, safety, productivity and lifetime of
mobile manipulators could be improved by automatic
prediction, prevention and recovering from tipover. Cur-
rently we are investigating how to incorporate the flexibility
of the contact between the ground and the base in the
models developed here.
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APPENDIX

Derivation of instantaneous velocity change due to
collision with the ground10, 14

When a manipulator comes in contact with the environment,
a geometric constraint is enforced to the system motion. The
result will be an impact with a sharp change of the joint
velocities.10 lt is therefore required to compute the new joint
velocities just after each collision. Consider an n-link
manipulator with the following dynamics:

�=D(q)q̈+C(q, q̇)+H(q) (A1)

Suppose that the end-effector of one part of the manipulator
collides with the environment. The position of the contact
point on this manipulator is denoted by xb in the base
coordinate system. xb can be expressed in terms of the
generalized coordinates, q as

xb = f(q) (A2)

Let the contact point of the environment be xs. When
xb =xs = f(q), this means that an external constraint is
applied. In association with each constraint, a generalized
force �, acts on the system equations:

�=��f(q)

�q �
T

	=J T 	 (A3)

Where J is the Jacobean and 	 is a suitable column vector
of Lagrange multipliers. Then, the equation of motion for
the constraint system is:

�+J T	=D(q)q̈+C(q, q̇)+H(q) (A4)

In the case of collision, the constraint is brought about at the
moment of impact. The constraint force is subject to an
abrupt change immediately after the collision. As the time
of collision is infinitesimally short the constraint force can
be modeled as an impulse at the moment of collision. Let
the generalized constraint force vector be denoted as

�
 =��f
�q�

T

	=JT	

In the case of collision, equation (A4) becomes

�+�
 =D(q)q̈+C(q, q̇)+H(q) (A5)

During the infinitesimally short time interval of collisions,
the joint positions of the system remain unchanged since
joint angular velocities are finite whose integrals over an
infinitesimally short time interval are zero. According to this
basic assumption, one may integrate both sides of equation
(A5) in an infinitesimally short time interval and have

� lim
�t→0

� tO +�t

tO
�
 dt=

lim
�t→0

� tO +�t

tO
D(q)q̈dt+ lim

�t→0
� tO +�t

tO
[C(q, q̇)+H(q)��]dt (A6)

The second term of the left side vanishes as �t→0. Equation
(A6) becomes

� tO +�t

tO
�
dt=D(q)[q̇(to +�t)� q̇(to)] (A7)

Since the magnitude of an impulse tends towards infinite as
�t→0, the right side of equation (A7) converges to finite
quantity. We may further denote the generalized impulsive

force, T
 =�to +�t

to
�
dt. Then,

T
 =JT� tO +�t

tO
	dt (A8)

From equation (A7) one may have

�q̇= q̇(to +�t)� q̇(to)=D�1(q)T
 (A9)

where q̇(to) and q̇(to +�t) represent the joint angular
velocities just before and immediately after the collision,
respectively. Thus, the mathematical relation between the
instantaneous change of the joint angular velocities and the
generalized impulsive force is established. The relation
between the change of the velocity of the point of contact on
the robot and the change of the generalized angular velocity
vector is:

J[q̇(to +�t)� q̇(to)]= ẋb(to +�t)� ẋb(to) (A10)

Using equations (A8), (A9) and (A10), we have

�ẋb = ẋb(to +�t)� ẋb(to)=JD�1(q)JT� tO +�t

tO
	dt

Then

(JD�1(q)JT)�1�ẋb =� to +�t

to
	dt (A11)
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Multiplying both sides of equation (A11) by JT

JT(JD�1(q)JT)�1�ẋb =JT� to +�t

to
	dt (A12)

From (A8) and (A12)

T
 =JT(JD�1(q)JT)�1�ẋb

Equation (A9) will then be

�q̇=D�1(q)JT(JD�1(q)J�1�ẋb (A13)

Equation (A13) determines the velocity change due to
collision with the ground.

Nomenclature

q, q̇ and q̈: vectors of the joint variables. velocities and
accelerations.

Tj: homogeneous transformation matrix from coordinate
frame i to base coordinate frame.

zi: Z-axis of coordinate frame i.

pi: position vector of the origin of coordinate frame i.

Ii: 3�3 inertial matrix of link i about its mass center in
coordinate frame i.

ri: position vector of mass center of link i in coordinate
frame i.

g: gravitational acceleration vector in base coordinate
frame.

xb and ẋb: instantaneous position and velocity vectors of a
robotic point coming in contact with the environment.

J: Jacobean matrix.

k: orifice coefficient.

ai, ao and ae: inlet, outlet and exit areas, respectively.

Pi and Po: input and output pressures, respectively.

Ps and Pe: supply and tank pressures, respectively.

X: actuator displacement.

Vi(X) and Vo(X): volumes of the fluid trapped at the sides of
the actuator.


: effective bulk modulus.

m: link mass.
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