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Spectral energy transfer in a turbulent channel flow is investigated at Reynolds number
Reτ ' 1700, based on the wall shear velocity and channel half-height, with a particular
emphasis on full visualization of triadic wave interactions involved in turbulent
transport. As in previous studies, turbulent production is found to be almost uniform,
especially over the logarithmic region, and the related spanwise integral length scale is
approximately proportional to the distance from the wall. In the logarithmic and outer
regions, the energy balance at the integral length scales is mainly formed between
production and nonlinear turbulent transport, the latter of which plays the central role
in the energy cascade down to the Kolmogorov microscale. While confirming the
classical role of the turbulent transport, the triadic wave interaction analysis unveils
two new types of scale interaction processes, highly active in the near-wall and
the lower logarithmic regions. First, for relatively small energy-containing motions,
part of the energy transfer mechanisms from the integral to the adjacent small length
scale in the energy cascade is found to be provided by the interactions between larger
energy-containing motions. It is subsequently shown that this is related to involvement
of large energy-containing motions in skin-friction generation. Second, there exists
a non-negligible amount of energy transfer from small to large integral scales in
the process of downward energy transfer to the near-wall region. This type of scale
interaction is predominant only for the streamwise and spanwise velocity components,
and it plays a central role in the formation of the wall-reaching inactive part of
large energy-containing motions. A further analysis reveals that this type of scale
interaction leads the wall-reaching inactive part to scale in the inner units, consistent
with the recent observation. Finally, it is proposed that turbulence production and
pressure–strain spectra support the existence of the self-sustaining process as the
main turnover dynamics of all the energy-containing motions.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
The presence of multi-scale chaotic eddies is the key feature of turbulence, and the

understanding of their precise origin and interactions has been the central challenge

† Email address for correspondence: choi@snu.ac.kr
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over many years. Perhaps, the most well-known multi-scale behaviour of turbulence
is the Richardson–Kolmogorov energy cascade (Kolmogorov 1941, 1991) – production
of turbulent kinetic energy takes place at the integral length scale of given fluid flow,
and it is subsequently transported down to the smallest possible length scale, at which
viscous force in the fluid dissipates the produced turbulent kinetic energy into heat.
This feature, which arises essentially due to the interplay between inertial and viscous
forces, forms the backbone of dissipation process in turbulence, although its classical
scaling argument has recently been challenged (Vassilicos 2015).

When a turbulent flow is bounded by a solid surface (i.e. wall), the interplay
between inertial and viscous forces appears to be developed in a much more
complicated manner. In particular, the presence of the wall allows the viscous force
to act directly on the mean shear, the origin of turbulence production in shear flows.
Therefore, in wall-bounded shear flow, even energy-containing motions, which are the
direct outcomes of turbulence production, emerge at multiple length scales, forming
a highly complex topology of scale interaction and energy cascade. Such a complex
flow topology is perhaps best described by the so-called ‘attached eddy’ hypothesis
(Townsend 1976; Perry & Chong 1982). In wall-bounded shear flow, the smallest
energy-containing motions would be located in the near-wall region and scale in the
inner unit, while the largest ones would extend over the entire wall-normal location
with the length scale being the outer unit. In the intermediate region, the logarithmic
mean velocity profile gradually develops with increasing Reynolds number, and the
size of the energy-containing motions there is approximately proportional to distance
from the wall.

Townsend (1976) also hypothesized that the energy-containing eddies in wall-
bounded turbulent shear flow (especially in the logarithmic region) are statistically
self-similar, and subsequently made the seminal theoretical prediction that turbulence
intensity of wall-parallel velocity components would exhibit the logarithmic wall-
normal dependence. Further to the early refinement of the original theory (e.g. Perry
& Chong 1982; Perry, Henbest & Chong 1986; Perry & Marusic 1995), there has been
a growing body of evidence that supports the attached eddy hypothesis, especially in
recent years: for example, the logarithmic growth of near-wall streamwise turbulence
intensity with the Reynolds number (Marusic 2001), the linear growth of spanwise
integral length scale in the logarithmic region (Tomkins & Adrian 2003; del Álamo
et al. 2004), the observation of the logarithmic wall-normal dependence of turbulence
intensity of wall-parallel velocity components (Jiménez & Hoyas 2008; Marusic
et al. 2013), the linearly growing eddy-turnover time scale in the logarithmic region
(Lozano-Durán & Jiménez 2014; Hwang & Bengana 2016) and the self-similar
statistical behaviour in the logarithmic region (Hwang 2015; Mizuno 2016; Baars,
Hutchins & Marusic 2017). In particular, the self-similar statistical structure of the
individual energy-containing eddies has recently been fully calculated by Hwang
(2015), who showed that each of these eddies is composed of an elongated streak
and compact vortical structures statistically in the form of quasi-streamwise vortices.

With the growing recent evidence of the attached eddy hypothesis, it is also found
that the sustainment of the individual energy-containing eddies in the hierarchy
does not need any external energy input, as each bears a self-sustaining mechanism
essentially independent of the motions at other scales (Jiménez & Pinelli 1999;
Hwang & Cossu 2010b, 2011; Hwang 2015; Hwang & Bengana 2016). This feature
is consistent with the so-called ‘outer-layer similarity hypothesis’ of Townsend (1976),
and has also been well supported by rough-wall experiments and simulations (e.g.
Flores, Jiménez & del Álamo 2007; Chung, Monty & Ooi 2014). Nevertheless, it
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should be emphasized that the existence of such a self-sustaining mechanism does
not necessarily imply that the interactions between the energy-containing eddies are
unimportant. In particular, such interactive processes appear to be very crucial in the
near-wall region, to which all the energy-containing eddies in the hierarchy would
contribute, to a certain extent: for example, the scale interaction between the wall-
attached self-similar eddies was recently shown to play a crucial role in skin-friction
generation at high Reynolds numbers (de Giovanetti, Hwang & Choi 2016).

Indeed, understanding of the interactions between the inner and outer structures
has been an important issue of a large number of recent studies (Hutchins & Marusic
2007; Mathis, Hutchins & Marusic 2009; Agostini, Touber & Leschziner 2014; Talluru
et al. 2014; Agostini & Leschziner 2016; Agostini, Leschziner & Gaitonde 2016, and
many others). Most of them are focused on studying the near-wall region where the
self-sustaining near-wall structures and the wall-reaching part of the outer structures
are to interact. These studies often decompose the near-wall velocity field into the
inner and outer components, and seek their mutual statistical relations to understand
the superposition/modulation effect of the outer motion on the near-wall dynamics.
Despite the important progress made by these studies, it should be pointed out that
such a binary decomposition of the given near-wall velocity signal is not precisely
compatible to the notion of the attached eddy hypothesis of Townsend (1976), in
which the near-wall velocity fluctuation is viewed as an outcome of collective
influence of all the energy-containing eddies. Furthermore, it appears that the scale
interaction not only involves the superposition/modulation effect, but also plays an
important role in determining the near-wall scaling of the energy-containing eddies
itself. Indeed, Hwang (2016) has recently proposed that the near-wall penetration
of the outer structure and its Reynolds-number-dependent peak wall-normal location
result from a scale interaction process, which can be modelled by an inhomogeneous
eddy viscosity in the wall-normal direction.

Given the emerging evidence on the existence of self-similar energy-containing
eddies (attached eddy hypothesis), the issues of how the energy is transferred among
them and of what would be the consequences of this now appear to be of crucial
importance. The purpose of the present study is therefore to explore these issues with
a particular emphasis on unveiling the inter-scale energy transfer in the logarithmic
region where the eddies at almost all scales reside. Since the size of energy-containing
motions is well characterized by their spanwise wavelength (e.g. Hwang 2015), we
consider the equation of turbulent kinetic energy (TKE) for each spanwise Fourier
mode. In this equation, the nonlinear turbulent transport term appears in the form
of convolution between the spanwise Fourier modes (i.e. triadic wave interactions),
and we will focus on complete visualization of the triadic interactions. It should
be stressed that this approach should be able to unveil all the possible nonlinear
interactions, such as energy cascade, energy transfer across different integral length
scales and energy redistribution process among the velocity components, at least in a
statistical manner. Indeed, we shall see that this approach has enabled us to make new
observations, including energy cascade in terms of triadic wave interactions, the role
of large energy-containing motions in the energy cascade of small energy-containing
ones, and the existence of energy transfer from small to large scales that plays
a crucial role in the formation of the wall-reaching part of the energy-containing
motions in the log and outer regions (i.e. footprint).
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2. Problem formulation
2.1. Equation for turbulent fluctuation revisited

We consider a turbulent flow in a plane channel. We denote by x1, x2 and x3
the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively, and
the corresponding velocity components by u1, u2 and u3, which are also used
interchangeably with u, v and w. The height of the channel is given by 2h, and
the lower and upper walls are located at y= 0 and y= 2h, respectively. The standard
Reynolds decomposition leads to the following equation for turbulent fluctuation:

∂u′i
∂t
+Uj

∂u′i
∂xj
=−u′j

∂Ui

∂xj
+
∂τ ′ij

∂xj
, (2.1a)

with

τ ′ij =−
p′

ρ
δij − (u′iu

′

j − u′iu′j)+ ν
∂u′i
∂xj
, (2.1b)

where i, j = 1, 2, 3, Ui = (U(y), 0, 0) is the mean velocity, u′i the turbulent velocity
fluctuation, p′ the pressure fluctuation, ρ the fluid density, ν the kinematic viscosity
and the overbar indicates the time average.

Before the equation for TKE of each spanwise Fourier mode is introduced, it
is useful to discuss some features of (2.1). First, the left-hand side of (2.1a) is a
simple linear advection operator with the mean velocity. Therefore, it would mainly
describe the downstream advection of turbulent velocity fluctuation with the local
mean velocity (i.e. Taylor’s hypothesis), as also shown by del Álamo & Jiménez
(2009) who directly calculated the advection velocities of turbulent fluctuation at
different wall-normal locations. Indeed, the left-hand side of (2.1a) is transformed
into the advective transport term in the standard TKE equation (Pope 2000), thereby
not being directly involved in any TKE production.

Second, the first term on the right-hand side of (2.1a) is directly transformed into
the turbulence production term in the TKE equation: multiplying this term by u′i and
averaging it in time yields the standard turbulence production in parallel shear flow
(i.e. −u′v′dU/dy). It should be realized that this term is from the linear part of (2.1)
and that (2.1) itself turns out to be the linearized Navier–Stokes equation around
the mean flow if the nonlinear term and the Reynolds stress in (2.1b) are ignored.
Furthermore, multiplying (2.1a) by u′i and integrating over the given control volume
Ω yields

d
dt

∫
Ω

1
2

u′iu
′

i dV =
∫
Ω

−u′iu
′

j
∂Ui

∂xj
dV −

∫
Ω

ν
∂u′i
∂xj

∂u′i
∂xj

dV, (2.2)

where the first and second terms on the right-hand side are total turbulence production
and dissipation, respectively. Since

∫
Ω

u′iu
′

i dV is bounded in time, the left-hand side
of (2.2) should vanish with time averaging, indicating the balance between the total
production and dissipation. We also note that (2.2) is identical to the Reynolds–Orr
equation in a flow instability problem, where u′i and Ui become finite-size disturbance
and laminar base flow, respectively (Joseph 1976). In such a problem, the Reynolds–
Orr equation has been used to emphasize the central role played by linear mechanisms
in disturbance energy growth even in the nonlinear regime (Henningson 1996). In a
similar manner, here one may argue that the TKE production in any turbulent shear
flow should be mediated by linear mechanisms. This observation is also probably
one of the reasons why a large number of previous linear analyses have been so
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useful for the description of coherent structures in both free (Ho & Huerre 1984)
and wall-bounded shear flows (Butler & Farrell 1993; del Álamo & Jiménez 2006;
Cossu, Pujals & Depardon 2009; Pujals et al. 2009; Hwang & Cossu 2010a, and many
others), even if the considered mean flows are not in the rapid-distortion limit.

Lastly, when the nonlinear and Reynolds stress terms in (2.1b) are ignored, taking
curl to (2.1a) leads to the following equation:

∂ω′y

∂t
+U

∂ω′y

∂x
=−

∂v′

∂z
dU
dy
+ ν∇2ω′y, (2.3)

where ω′y is the wall-normal vorticity fluctuation. This equation is the Squire equation
in physical space, and the first term on its right-hand side is the driving term,
directly originating from the first term on the right-hand side of (2.1a). We note
that the driving term in (2.3) represents the so-called ‘lift-up’ effect, and it plays a
key role in the generation of streaky motions (Butler & Farrell 1993; del Álamo &
Jiménez 2006; Cossu et al. 2009; Pujals et al. 2009; Hwang & Cossu 2010a, and
many others). This also implies that, in wall-bounded shear flows where inflection
points are typically absent in the mean velocity profile, the lift-up effect should
become a direct mechanism of turbulence production.

2.2. Equation for spectral TKE
Since the size of the energy-containing motions in wall-bounded turbulence is well
characterized by the spanwise length scale (e.g. Hwang 2015), we first consider a
Fourier-mode decomposition of turbulent velocity fluctuation in the spanwise direction:

u′i(t, x, y, z)=
∫
∞

−∞

û′i(t, x, y, kz)eikzz dkz, (2.4)

where ·̂ denotes the Fourier-transformed coefficient and kz is the spanwise wavenumber.
We then take the Fourier transformation (2.4) to (2.1) and multiply it by û′i

∗

(kz) (the
superscript ∗ denotes the complex conjugate). Taking the average in time and the
streamwise direction yields

∂ ê(kz)

∂t
=

〈
Re
{
−û′

∗

(kz)v̂′(kz)
dU
dy

}〉
x︸ ︷︷ ︸

P̂(y,kz)

+

〈
−ν

∂ û′i(kz)

∂xj

∂ û′i
∗

(kz)

∂xj

〉
x︸ ︷︷ ︸

ε̂(y,kz)

+

〈
Re
{
−û′i

∗

(kz)
∂

∂xj
(τ̂ ′ij,SGS(kz))

}〉
x︸ ︷︷ ︸

ε̂SGS(y,kz)

+

〈
Re
{
−û′i

∗

(kz)
∂

∂xj
(û′iu′j(kz))

}〉
x︸ ︷︷ ︸

T̂turb(y,kz)

+

〈
Re

{
d
dy

(
−

p̂′(kz)v̂′
∗

(kz)

ρ

)}〉
x︸ ︷︷ ︸

T̂p(y,kz)

+

〈
ν

d2ê(kz)

dy2

〉
x︸ ︷︷ ︸

T̂ν (y,kz)

, (2.5)

where · denotes the time average, 〈 · 〉x the spatial average in the x-direction, ∂̂/∂x3=

ikz, ê(kz)= (|û′(kz)|
2
+ |v̂′(kz)|

2
+ |ŵ′(kz)|

2)/2 and Re{ · } the real part. We note that
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τ ′ij,SGS in (2.5) is the subgrid-scale stress (SGS) fluctuation, and this is introduced
here because the present study is based on a large-eddy simulation (LES) with an
eddy-viscosity model (see also § 2.3). In (2.5), the left-hand side now turns out to be
the rate of each spanwise Fourier mode of TKE, which should vanish in a statistically
steady flow. The terms on the right-hand side are the rate of turbulence production,
viscous dissipation, SGS dissipation, turbulent transport, pressure transport and viscous
transport at a given spanwise wavenumber, respectively. Here, it is worth noting that
all the linear terms on the right-hand side of (2.5), except the nonlinear term T̂turb,
should only contain the given spanwise wavenumber kz due to their mathematical
nature in the Fourier space, indicating that they do not involve any direct interactions
between different scales. In contrast, the nonlinear term T̂turb(y, kz), which represents
the contribution of Reynolds stress transport to TKE at a given kz, involves interactions
between multiple scales, as it can be written in the form of triadic wave interactions
(see (3.1)). We note that, unless this term is written in the form of triadic wave
interactions as in (3.1), it is difficult to gain any useful physical insight into scale
interactions solely from this term in the form given in (2.5).

From (2.5), the standard TKE budget equation (Pope 2000) is also obtained.
Integration of (2.5) over the entire domain of spanwise wavenumber leads to

0=−u′v′
dU
dy︸ ︷︷ ︸

P(y)

−ν

(
∂u′i
∂xj

)2

︸ ︷︷ ︸
ε(y)

−u′i
∂τ ′ij

∂xj︸ ︷︷ ︸
εSGS(y)

−
dev′

dy︸ ︷︷ ︸
Tturb(y)

−
1
ρ

dp′v′

dy︸ ︷︷ ︸
Tp(y)

+ν
d2ē
dy2︸ ︷︷ ︸

Tν (y)

. (2.6)

Here, we note that integration of each of the last three transport terms over the wall-
normal domain results in zero. This indicates that all the transport terms in (2.5)
should satisfy

2
∫ h

0

∫
∞

0
T̂turb(y, kz) dkz dy = 2

∫ h

0

∫
∞

0
T̂p(y, kz) dkzdy

= 2
∫ h

0

∫
∞

0
T̂ν(y, kz) dkzdy= 0, (2.7)

and, equivalently,

2
∫ logh

−∞

∫
∞

−∞

kzyT̂turb(y, kz) dlog kz dlog y= 2
∫ logh

−∞

∫
∞

−∞

kzyT̂p(y, kz) dlog kz dlog y

= 2
∫ logh

−∞

∫
∞

−∞

kzyT̂ν(y, kz) dlog kz dlog y= 0. (2.8)

Finally, it should be mentioned that the analysis given here may also be performed
with streamwise Fourier modes of turbulent fluctuation. However, given the statistical
structure of the energy-containing motions at each scale (Hwang 2015), such an
analysis does not appear to be particularly useful to understand the interactions
between the energy-containing motions at different scales. Indeed, the self-sustaining
energy-containing motion at a given spanwise length scale λz was previously found
to be composed of two structures, i.e. an elongated streak and streamwise vortical
structures (Hwang 2015). The former has a long streamwise extent characterized by
λx' 10λz, whereas the latter is only λx' 2− 3λz. These two elements are dynamically

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

64
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.643


480 M. Cho, Y. Hwang and H. Choi

0

1

2

3

4 4

2

0

-2

-4
10-1 100 101 102

y+

y/h(a) (b) y/h

y+
103 10-1 100 101 102 103

10-4 10-3 10-2 10-1

p+
rms

y+P+

y+Tv
+

y+Tp
+

y+T+
turb

y+(Ó+ + Ó+
SGS) or y+ Ó+

u+
rms

w+
rms

√+
rms

100 10-4 10-3 10-2 10-1 100

FIGURE 1. Turbulence statistics: (a) root-mean-square velocity and pressure fluctuations;
(b) turbulent kinetic energy budget. ——, Present LES; – – –, DNS at Reτ = 1995 (Lee &
Moser 2015b).

interconnected and they are known to form self-sustaining process. Therefore, the
spectral energy transfer between the streamwise Fourier modes would include not
only the inter-scale process (like scale interactions) but also the intra-scale one (like
self-sustaining process), resulting in a difficulty to distinguish one from another. For
example, λ+x ' 1000 indicates near-wall streaks in the near-wall region, but the vortical
structures at λ+z ' 500 in the logarithmic region have the same streamwise length
scale from λx ' 2 − 3λz. However, this difficulty does not arise with the spanwise
Fourier mode, as demonstrated by the numerical experiment in Hwang (2015).

2.3. Numerical method and verification
In the present study, an LES is conducted by imposing a constant mass flux across the
channel. The wall-normal velocity and vorticity form of the Navier–Stokes equation
is integrated, as in Kim, Moin & Moser (1987). For the spatial discretization, the
Fourier–Galerkin method is used in the x- and z-directions with dealiasing, and
the Chebychev-tau method is used in the y-direction. The time advancement is
accomplished using a second-order semi-implicit scheme: a second-order Crank–
Nicolson method for the diffusion terms and a third-order Runge–Kutta method for
the convection terms. For the SGS model, a dynamic global eddy-viscosity model
(Park et al. 2006; Lee, Choi & Park 2010) is utilized. The computation is carried
out in the domain size of 8πh(x)× 2h(y)× πh(z) with the number of grid points of
512(x)× 145(y)× 128(z) (after dealiasing). The resulting grid spacings are 1x+= 82,
1y+= 0.4− 36.4 and 1z+= 41 (the superscript + indicates the inner-scaled variables).
The Reynolds number of the present LES is Reτ (≡ uτh/ν) = 1672, where uτ is the
wall shear velocity.

Figure 1 compares turbulent statistics of the present LES at Reτ = 1672 with
those of direct numerical simulation (DNS) at Reτ = 1995 by Lee & Moser (2015b).
The root-mean-square (rms) velocity and pressure fluctuations show good agreement
with those of DNS (figure 1a). The constituents of (2.6) are also compared in
figure 1(b). Here, since the present LES is based on a dissipative SGS model, the
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viscous dissipation from the DNS is compared with sum of the viscous dissipation
and SGS dissipation. All constituents of the balance equation agree reasonably well
with those from the DNS. It should be noted that the difference between the present
LES and DNS does not change the results in the present study, in the sense that all
the qualitative features from DNS are recovered by the present LES (see § 3.1 for
further details).

3. Results
3.1. One-dimensional spectra

The constituents in the spectral TKE budget equation (2.5) have recently been
computed by Lee & Moser (2015a) and Mizuno (2016). Therefore, we start this
section only by briefly reporting them in figure 2. Overall, the spectra of the
present LES qualitatively capture all the important features reported by the previous
DNS studies (Lee & Moser 2015a; Mizuno 2016), except for very high spanwise
wavenumbers, at which the present simulation would exhibit lack of resolution.
However, this is not a great limitation of the present study, as the main scope of the
present study is to explore interactions between ‘energy-containing’ motions and the
region of high spanwise wavenumbers is mostly related to the classical energy cascade.
Furthermore, the resolution of the present LES does not appear to be particularly bad
either, as it covers the Kolmogorov length scale in the dissipation range at least to
some extent (see also figure 2b).

Figure 2(a) shows one-dimensional spanwise wavenumber spectra of turbulent
production. Here, the spectra are premultiplied by kz and y to represent their spectral
intensity in logarithmic axes (see (2.8)). The turbulent production spectra appear
to be almost uniformly distributed along λz = 5y, especially over the range of the
spanwise wavelength associated with the log layer (300δν . λz . 1h in figure 2(a)
where δν = ν/uτ ). This indicates that the turbulence production at each scale is
roughly identical throughout the log region. The spectra are also well aligned along
the dashed-lined linear ridge λz = 5y, consistent with the attached eddy hypothesis
(Townsend 1976).

The spectra of viscous and SGS dissipation are reported in figures 2(b) and 2(c),
respectively. The dashed line in these figures is λz= 57η, where η is the Kolmogorov
length scale with the dissipation rate ε = u3

τ/(κy) (κ is the Kármán constant set to
be κ=0.41). We note that this dissipation rate is derived using the production in the
logarithmic region, and it would be a reasonable first approximation at least roughly
between y+ ' 50 and y/h ' 0.2. The viscous dissipation spectra are reasonably well
aligned with λz = 57η, although the small-scale eddies associated with turbulent
dissipation are not supposed to be fully resolved by the present LES (figure 2b)
(note that the typical size of the eddies at the Kolmogorov microscale is only O(η)
(Jiménez & Wray 1998)).

Unlike the production and dissipation spectra, the premultiplied transport spectra in
figure 2(d–f ) have energy gain (red) and loss (blue) due to their nature in (2.8). Given
the relatively high Reynolds number in the present study, the dominant mechanism
of energy transfer across the scales would be turbulent transport especially in the
log and outer regions, where the values of its spectra are much larger than those
of pressure and viscous transport spectra. Throughout the log and outer regions, the
turbulent transport spectra exhibit large negative values along λz = 5y, which are
comparable to those of the positive counterpart in the production spectra (figure 2a).
This suggests that the main role played by turbulent transport in the log and outer
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FIGURE 2. (Colour online) Premultiplied one-dimensional spanwise wavenumber spectra:
(a) production (ReτkzyP̂+); (b) viscous dissipation (Reτkzyε̂+); (c) SGS dissipation
(Reτkzyε̂+SGS); (d) turbulent transport (ReτkzyT̂+turb); (e) pressure transport (ReτkzyT̂+p ); ( f )
viscous transport (ReτkzyT̂+ν ). Here, the production and dissipation spectra are energetic
along λz = 5y and 57η, respectively.

regions is to transfer most of the TKE produced at the integral length scales to the
other scales, at which the turbulent transport spectra are positive (figure 2d). There
are two regions of positive turbulent transport spectra, one of which appears in λz< 5y
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and the other is in λz> 5y. In the former region, both the viscous and SGS dissipation
spectra exhibit large negative values (figure 2b,c), indicating that the related turbulent
transport mechanism is the Richardson–Kolmogorov energy cascade. Indeed, it was
recently shown that the DNS data of Lee & Moser (2015b) exhibit the typical inertial
range spectra (i.e. k−5/3

z law) in this region (see also Agostini, Leschziner & Gaitonde
2017). In the DNS data of Lee & Moser (2015a), the negative dissipation spectra
also well extend to the near-wall region, indicating that the energy cascade is also the
primary turbulent transport mechanism in this region. In the present LES where this
near-wall dissipation cannot be properly resolved, this energy cascade in the near-wall
region is mainly replaced by SGS dissipation. In the latter region, the emergence of
positive turbulent transport spectra is a little surprising, as it is not expected from the
view of classical energy cascade. The emergence of weak positive turbulent transport
spectra in the near-wall region was also reported by previous DNS studies (Lee &
Moser 2015a; Mizuno 2016), and this has been speculated to represent the near-wall
modulation of large-scale structures (Lee & Moser 2015a). However, we shall later
see that this is actually associated with turbulent transport from smaller scales (see
figure 8). It is also important to point out that, despite the small values of the spectra
in this region, the related turbulent transport cannot be simply ignored because the
premultiplication factors (kz and y) for the turbulent spectra in figure 2 are given
to highlight the contribution to the global turbulent transport. This part of positive
turbulent transport can certainly have an important local effect on the near-wall region
where scale interactions would be highly active. Indeed, in § 4.2, we shall see that
the positive turbulent transport plays a crucial role in the formation of the near-wall
TKE spectra. Finally, the pressure and viscous spectra are found to be very small in
the log and outer regions (see the contour legends in figure 2e, f ). In the near-wall
region, the viscous transport spectra are important, but their importance is limited
only for y+ . 20 as is Tν(y) in figure 1(b) (see also figure 13).

3.2. Triadic interactions and nonlinear energy transfer

Now, to understand the precise origin of the turbulent transport, T̂turb in (2.5) is written
in the following form of the discretized convolution:

T̂turb(y, kz,0)=

〈
Re

−û′i
∗

(y, kz,0)
∂

∂xj

∑
l+m=kz,0

û′i(y, l)û′j(y,m)


〉

x

, (3.1)

where l and m are the spanwise wavenumbers for the convolution sum. The turbulent
transport spectrum at the given spanwise wavelength λz,0(= 2π/kz,0) and the wall-
normal location y is represented by triadic wave interactions between the spanwise
Fourier modes of the wavenumbers l and m(= kz,0 − l). Since the Fourier transform
here is taken for real variables, the Fourier coefficients for negative wavenumbers
correspond to complex conjugate of the ones for positive wavenumbers. Therefore, for
positive kz,0, the convolution in (3.1) is written as∑

l+m=kz,0

û′i(l)û′j(m) =
∑

l+m=kz,0
l,m>0

û′i(l)û′j(m)

+

∑
−l+m=kz,0

l,m>0

û′i(−l)û′j(m)+
∑

l−m=kz,0
l,m>0

û′i(l)û′j(−m), (3.2)
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FIGURE 3. (Colour online) Premultiplied one-dimensional spanwise wavenumber spectra:
(a) turbulent kinetic energy, ê(y, kz); (b) turbulent transport, T̂turb(y, kz). Here, λz= 3y is a
boundary that distinguishes between the energy-containing eddies and the ones related to
energy cascade.

indicating that T̂turb(y, kz,0) in this case can be represented over l+m= kz,0, l−m=
kz,0 and −l + m = kz,0 in the first quadrant of the l–m plane (i.e. l, m > 0; see also
figure 6a). Furthermore, (3.1) implies

T̂turb(y,−kz,0)= T̂∗turb(y, kz,0)= T̂turb(y, kz,0). (3.3)

Therefore, the case of negative kz,0 is not considered separately.
Although (3.1) enables us to examine all the triadic interactions between the

spanwise Fourier modes, it should be reminded that each of these Fourier modes
resolves not only the energy-containing eddies but also the ones generated by energy
cascade. Therefore, it would be useful to distinguish the part of each Fourier mode
representing the energy-containing eddies from the rest that would indicate the eddies
involved in energy cascade. For this purpose, we further examine one-dimensional
spanwise wavenumber spectra of turbulent kinetic energy and turbulent transport, as
shown in figure 3. The TKE spectra contain most of energy for λz > 3y (figure 3a).
Furthermore, in this region, the turbulent transport spectra are mostly negative
(figure 3b), suggesting that λz = 3y would be considered as a reasonable boundary
that distinguishes between the energy-containing eddies and the ones related to energy
cascade in the spanwise wavenumber spectra. In other words, for a given spanwise
Fourier mode with the wavelength λz,0, the wall-normal profile with y< λz,0/3 would
mainly resolve the energy-containing eddies, while the rest given by y> λz,0/3 would
capture the motions involved in energy cascade.

This setting now allows us to more precisely understand the origin of turbulent
transport for given kz,0 and y based on the size and nature of the eddies involved in
the triadic interactions. Figure 4(a) describes a classification of the triadic interactions
for turbulent transport in the l–m plane based on the spanwise size of the eddies
relative to that of the given Fourier mode (λz,0(= 2π/kz,0)). We first normalize the l
and m axes by kz,0, and divide the l–m plane into four regions with l/kz,0=m/kz,0= 1.
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FIGURE 4. (Colour online) Classifications of the origin of turbulent transport based on
(a) the spanwise wavelength of the eddies relative to that of the given Fourier mode (λz,0)
and (b) the nature of eddies (i.e. energy-containing ones or the ones involved in energy
cascade).

Any combinations of l and m emerging in the right-upper region (l, m > kz,0) for
T̂turb(y, kz,0) are then identified to originate from the interactions between the eddies,
the spanwise size of which is smaller than λz,0 (see also figure 6 for application of
this classification). On the other hand, those given in the lower-left region (l, m <

kz,0) are from the interactions of the eddies larger than λz,0. In the remaining two
regions, the combinations of l and m for T̂turb(y, kz,0) are from a pair of the eddies,
one of which has larger spanwise wavelength than λz,0 and the other does not. In
a similar manner, the origin of turbulent transport can also be classified in the l–m
plane based on the nature of the eddies (i.e. energy-containing eddies versus eddies
generated by energy cascade), as described in figure 4(b). The two blue dashed lines
in figure 4(b) are l = 2π/(3y0) and m = 2π/(3y0), respectively, and they are given
from λz = 3y in figure 3 (i.e. y0 = λz,0/3). These lines also divide the l–m plane into
four regions. In this case, the combinations of l and m given in the right-upper region
(l, m > 2π/(3y0)) are from the triadic interactions between the eddies generated by
energy cascade, whereas those in the left-lower region (l,m< 2π/(3y0)) are from the
interactions between the energy-containing eddies. In the remaining two regions, the
rest of the combinations appear and they would represent the interactions between a
pair of an energy-containing eddy and an eddy from energy cascade.

Now, we investigate the turbulent transport using the triadic interactions in (3.1)
and (3.2). To avoid any unnecessary repetition of the same discussion, particular focus
of our investigation is given along the three lines in figure 5: i.e. λz = 57η, λz = 5y
(figure 5a; see also figure 2d) and λ+z = 3(y+)2 (figure 5b). The first line is placed in
the middle of large positive T̂turb, and it is set to scale in the Kolmogorov microscale.
Therefore, the triadic interactions associated with T̂turb along this line are expected to
be the outcome of energy cascade (see also discussion below). The second line is
given by λz = 5y, and T̂turb is largely negative along this line. This line also passes
through the region where TKE production is intense (figure 2a). Finally, the third line
is given by λ+z = 3(y+)2, to represent positive T̂turb in the region close to the wall
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FIGURE 5. (Colour online) Premultiplied one-dimensional spanwise wavenumber spectra
of turbulent transport (ReτkzyT̂+turb), marked with the locations to be analysed using
(3.1). In (a), the dots along λz = 57η are placed at y+0 = 67, 157, 391, 1033 (y0/h =
0.04, 0.09, 0.23, 0.62), while those along λz = 5y are at y+0 = 25, 67, 157, 391 (y0/h =
0.01, 0.04, 0.09, 0.23). In (b), the dots along λ+z = 3(y+)2 are located at y+0 = 10, 14, 19, 25.
Note that the contour levels in (b) are adjusted to emphasize the positive values in the
region close to the wall.

(figure 5b). In this region, T̂turb is positive, although it is weak. As already mentioned
in § 3.1, we shall see that this part of the spectra plays a crucial role in the formation
of the near-wall part of the TKE spectra especially at large λz (see also § 4.2).

First, the triadic interactions responsible for the positive turbulent transport along
λz = 57η are visualized in figure 6 using (3.1) at the given wall-normal location (y0)
and spanwise wavenumber (kz,0 = 2π/λz,0). Here, positive (red) turbulent transport
indicates energy influx to the given motion through interactions between eddies of
wavenumber l and m, while negative (blue) turbulent transport represents energy
outflux. The positive turbulent transport is dominated by the interactions in the region
of l,m< kz,0 at all the wall-normal locations considered (figure 6a–d). This suggests
that the TKE influxes to the motions scaling with λz= 57η are mainly from the eddies
larger than the given ones, indicating that the related turbulent transport mechanism
is the energy cascade. In the near-wall region where the integral length scale (the
viscous inner length scale) is identical to the Kolmogorov microscale (figure 6a), it
is difficult to identify whether the eddies involved in the positive turbulent transport
are the energy-containing ones or the ones from the energy cascade due to the
poor separation between the integral and dissipation length scales. However, as the
wall-normal location is gradually increased, the majority of the triadic interactions
for the positive turbulent transport appears in the right-upper region distinguished by
the blue dashed lines (figure 6b–d). This suggests that the positive turbulent transport
along λz = 57η is from the eddies in the inertial subrange, since the given motions
are set to scale in the Kolmogorov microscale. Finally, it is also worth pointing out
that the turbulent transport in the region of l < kz,0 and m > kz,0 is mostly negative
at all the wall-normal locations considered. This suggests that the energy cascade is
not a simple one-way forward transfer of energy from large to small scales, but an
interactive process involving both forward and backward transfers of energy.
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FIGURE 6. (Colour online) Triadic interactions (T̂turb) at the locations of black dots along
λz = 57η in figure 5(a): (a) y+0 = 67 (y0/h= 0.04); (b) y+0 = 157 (y0/h= 0.09); (c) y+0 =
391 (y0/h = 0.23); (d) y+0 = 1033 (y0/h = 0.62). Here, the black and blue dashed lines
correspond to l=m= kz,0 and l=m= 2π/(3y0), respectively (figure 4), and the positive
(red) and negative (blue) colours indicate the values of energy influx and outflux in the
summation notation of (3.1), respectively.

The negative turbulent transport along λz = 5y in figure 5(a) is investigated in
figure 7. In the region close to the wall (figure 7a,b), the triadic interactions resulting
in the negative turbulent transport mainly occur in the region of l,m< kz,0, indicating
that the negative turbulent transport along λz= 5y is mediated by the triad interactions
between the eddies which have larger spanwise size than the given ones. Here, it is
important to point out that these larger eddies participating in the negative turbulent
transport are mostly the energy-containing ones, as the related triadic interactions
appear mainly in the region of l,m<2π/(3y0). This finding therefore suggests that the
interactions between large energy-containing eddies provide an important mechanism
for the nonlinear turbulent transport that balances out the TKE production of smaller
energy-containing eddies at the integral length scales. However, this mechanism of
TKE balance at the integral length scale for such small energy-containing eddies
should gradually diminish, as the wall-normal location is increased. This is because
the number of the energy-containing eddies larger than the given spanwise length
scale becomes reduced on increasing the wall-normal location (see figures from 7a–d).
Indeed, in the case of the highest wall-normal location considered (figure 7d), the
negative turbulent transport is generated mostly by the interactions between the eddies
at similar size (i.e. l,m' kz,0).
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FIGURE 7. (Colour online) Triadic interactions (T̂turb) at the locations of black dots along
λz = 5y in figure 5(a): (a) y+0 = 25 (y0/h = 0.01); (b) y+0 = 67 (y0/h = 0.04); (c) y+0 =
157 (y0/h = 0.09); (d) y+0 = 391 (y0/h = 0.23). See the caption of figure 6 for the black
and blue dashed lines and for the contour label. Note that the blue dashed lines do not
appear in (a) because they are located at very large l and m.

Finally, in figure 8, the origin of the weak positive turbulent transport along
λ+z = 3(y+)2 (figure 5b) is explored. In this case, the majority of the related triadic
interactions appear in the region of l, m > kz,0, indicating that the positive turbulent
transport along λ+z = 3(y+)2 is due to the interactions between the eddies, the spanwise
size of which is smaller than the given ones. Furthermore, all these smaller eddies
involved in the positive turbulent transport are the energy-containing ones, since
all of the energetic triadic interactions emerge in the lower-left region divided
by the blue-dashed lines in figure 4(b). Therefore, the positive turbulent transport
along λ+z = 3(y+)2 indicates the existence of positive energy transfer from small to
large energy-containing eddies. However, it is important to note that the amount
of the positive turbulent transport is considerably smaller than that of turbulence
production at each scale (see figure 2). Therefore, disruption of this process would
not significantly change the statistics in the outer region, as already demonstrated
by a number of previous rough-wall experiments (e.g. Flores et al. 2007). In any
case, the precise dynamical mechanism by which the ‘statistically’ positive turbulent
transport is generated remains to be understood, and, interestingly, such an energy
transfer from small to large scale was very recently observed by Kawata & Alfredsson
(2018) in plane Couette flow at low Reynolds numbers (Reτ 6 108). In this respect, it
would be interesting to explore whether this feature has any link with the inner–outer
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FIGURE 8. (Colour online) Triadic interactions (T̂turb) at the locations of black dots along
λ+z = 3(y+)2 in figure 5(b): (a) y+0 = 10; (b) y+0 = 14; (c) y+0 = 19; (d) y+0 = 25. Here, the
black dashed lines correspond to l=m= kz,0. See the caption of figure 6 for the contour
label.

interactions reported previously (e.g. Hutchins & Marusic 2007). Lastly, it is worth
reminding that the region of l, m < kz,0 in figure 8 also indicates negative turbulent
transport by the interactions between larger eddies (note that this mechanism should
also diminish gradually as the wall-normal location is increased), consistent with the
result in figure 7.

3.3. Componentwise turbulent transport

We further investigate the TKE equation to understand the energy redistribution
mechanism between individual velocity components. Each velocity component of
(2.5) is written as follows:

i= 1 : 0 =
〈

Re
{
−û′

∗

(kz)v̂′(kz)
dU
dy

}〉
x︸ ︷︷ ︸

P̂(y,kz)

+

〈
Re

{
p̂′(kz)

∂ û′
∗

(kz)

∂x

}〉
x︸ ︷︷ ︸

Π̂x(y,kz)
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+

〈
−ν

∂ û′(kz)

∂xj

∂ û′
∗

(kz)

∂xj

〉
x︸ ︷︷ ︸

ε̂x(y,kz)

+

〈
Re

−û′
∗

(kz)
∂τ̂ ′1j(kz)

∂xj


〉

x︸ ︷︷ ︸
ε̂SGS,x(y,kz)

+

〈
Re

{
−û′

∗

(kz)
∂

∂xj

∑
l+m=kz

û′(l)û′j(m)

}〉
x︸ ︷︷ ︸

T̂turb,x(y,kz)

+

〈
ν

d2

dy2

(
1
2

∣∣∣û′(kz)

∣∣∣2)〉
x︸ ︷︷ ︸

T̂ν,x(y,kz)

,

(3.4a)

i= 2 : 0 =

〈
Re

{
p̂′(kz)

∂v̂′
∗

(kz)

∂y

}〉
x︸ ︷︷ ︸

Π̂y(y,kz)

+

〈
−ν

∂v̂′(kz)

∂xj

∂v̂′
∗

(kz)

∂xj

〉
x︸ ︷︷ ︸

ε̂y(y,kz)

+

〈
Re

−v̂′∗(kz)
∂τ̂ ′2j(kz)

∂xj


〉

x︸ ︷︷ ︸
ε̂SGS,y(y,kz)

+

〈
Re

{
−v̂′

∗

(kz)
∂

∂xj

∑
l+m=kz

v̂′(l)û′j(m)

}〉
x︸ ︷︷ ︸

T̂turb,y(y,kz)

+

〈
Re

{
d
dy

(
−

p̂′(kz)v̂′
∗

(kz)

ρ

)}〉
x︸ ︷︷ ︸

T̂p(y,kz)

+

〈
ν

d2

dy2

(
1
2

∣∣∣v̂′(kz)

∣∣∣2)〉
x︸ ︷︷ ︸

T̂ν,y(y,kz)

, (3.4b)

i= 3 : 0 =
〈

Re
{

p̂′(kz)
(

ikzŵ′(kz)
)∗}〉

x︸ ︷︷ ︸
Π̂z(y,kz)

+

〈
−ν

∂ŵ′(kz)

∂xj

∂ŵ′
∗

(kz)

∂xj

〉
x︸ ︷︷ ︸

ε̂z(y,kz)

+

〈
Re

−ŵ′
∗

(kz)
∂τ̂ ′3j(kz)

∂xj


〉

x︸ ︷︷ ︸
ε̂SGS,z(y,kz)

+

〈
Re

{
−ŵ′

∗

(kz)
∂

∂xj

∑
l+m=kz

ŵ′(l)û′j(m)

}〉
x︸ ︷︷ ︸

T̂turb,z(y,kz)

+

〈
ν

d2

dy2

(
1
2

∣∣∣ŵ′(kz)

∣∣∣2)〉
x︸ ︷︷ ︸

T̂ν,z(y,kz)

, (3.4c)

where Π̂x, Π̂y and Π̂z are the spanwise wavenumber spectra of the streamwise, wall-
normal and spanwise components of pressure–strain terms, respectively. We note that
the pressure–strain terms do not appear in (2.5) because the continuity leads to

Π̂x(y, kz)+ Π̂y(y, kz)+ Π̂z(y, kz)= 0. (3.5)

This relation also indicates that the pressure–strain terms play a central role in the
TKE distribution to the individual velocity components. Equation (3.4) evidently
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FIGURE 9. (Colour online) Premultiplied one-dimensional spanwise wavenumber spectra
of pressure–strain: (a) Π̂x(y, kz); (b) Π̂y(y, kz); (c) Π̂z(y, kz).

suggests that the turbulence production appears only in (3.4a) and there is no such
terms in (3.4b) and (3.4c). Therefore, the pressure terms Π̂y and Π̂z should act as the
driving terms in (3.4b) and (3.4c), respectively, and this is the only possible way to
distribute the TKE produced at the streamwise component to the other components.

Since the pressure–strain spectra and their scaling behaviour with the Reynolds
number have recently been discussed in detail by Lee & Moser (2015a) and Mizuno
(2016), here we only briefly report the pressure–strain spectra in figure 9. As expected,
the pressure–strain spectra for the streamwise component of TKE are negative,
confirming its role of transferring TKE to the other velocity components (figure 9a).
The pressure–strain spectra for the wall-normal and spanwise velocity components are
positive almost everywhere in the λz–y plane, except in the near-wall region where
the spectra for the wall-normal component are slightly negative. This tendency of the
present LES is consistent with that of the DNS data (Hoyas & Jiménez 2008; Mizuno
2016). Here, we only stress that all the pressure–strain spectra are well aligned with
λz = 5y, implying that the energy distribution process to each component takes place
at the integral length scale. We will discuss this issue later in § 4.3.

Figure 10 shows turbulent transport spectra for each component of the TKE.
Similarly to the turbulent transport spectra for the total TKE (figure 2d), all the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

64
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.643


492 M. Cho, Y. Hwang and H. Choi

10-3

101 102 103 104

101 102 103 104

104

103

102

101

100

10-1

100

10-1

10-2

10-3

10-4

100

100

10-1

10-1

10-2

10-2 10010-110-2

10010-110-2

10-4

100

10-1

10-2

10-3

10-4

104

103

102

101

100

10-1

y+

y+

¬z
+

¬z
+

¬z
+

(a) (b)

(c)

¬z/h

y/h

y/h

¬z/h

¬z/h

¬z = 5y ¬z = 5y

¬z = 5y

104

103

102

101

100

10-1
101 102 103 104

0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8

0.300
0.250
0.200
0.150
0.100
0.050
0
-0.050
-0.100

0.200

0.150

0.100

0.050

0

-0.050

-0.100

-0.150

-0.200

FIGURE 10. (Colour online) Premultiplied one-dimensional spanwise wavenumber spectra
of the (a) streamwise, (b) wall-normal and (c) spanwise components of turbulent transport.

spectra reveal the typical feature associated energy cascade: the negative parts of
the spectra are approximately aligned along λz = 5y, while the positive parts appear
in the region where energy cascade and dissipation are relevant. However, it is
important to note that the weak positive parts in the spectra appear only for the
streamwise and spanwise components, whereas the spectra for the wall-normal
component do not exhibit such a behaviour. This observation reminds us of the
statistical structure of the individual energy-containing motions (i.e. attached eddies)
hypothesized by Townsend (1976) – only their streamwise and spanwise components
contain the wall-reaching part, which is inactive in the sense that they do not carry
any Reynolds shear stress. In this respect, this also suggests that the weak positive
part in the near-wall turbulent transport spectra would probably be related to the
formation of the wall-reaching part of the streamwise and spanwise components of
the energy-containing eddies. In § 4.2, we shall indeed see that it plays a crucial role
in the formation of the wall-reaching part of the energy-containing motions in the
log and outer regions. Finally, it is worth noting that the spanwise component of
the near-wall positive turbulent transport spectra appears further away from the wall
than the streamwise one. This feature is difficult to provide a satisfactory explanation
solely with the present statistical analysis, as it would require a detailed knowledge
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of the related fluid motions. However, the spanwise component of energy-containing
eddies has been associated with the self-similar vortical structures statistically in the
form of quasi-streamwise vortices (Hwang 2015). These structures tend to appear
to be located a little further away from the wall than the streaky motions at the
same spanwise length scale (Hwang 2015), and this might be related to different
wall-normal locations of the positive turbulent transport spectra for the streamwise
and spanwise components.

4. Discussion
Thus far, we have explored the detailed processes of spectral energy transfer

and scale interactions using the spanwise spectral TKE equation (2.5). Turbulence
production is almost uniform over the entire integral scale, especially in the log region
(figure 2a), and it originates from the linear part of the Navier–Stokes equation. The
transfer of the produced TKE and the related scale interactions are investigated by
analysing the triadic interaction form of turbulent transport T̂turb(y, kz). The major
role played by the turbulent transport is the energy cascade down to the Kolmogorov
microscale, as in many other turbulent shear flows. Further to this, in the present
study, two new types of scale interactions have been discovered. First, for relatively
small energy-containing motions, part of the energy transfer mechanisms from the
integral to the adjacent length scale in the energy cascade is found to be provided by
interactions between larger energy-containing motions (figure 7). Second, there exists
a non-negligible amount of energy transfer from small to large scales (figure 8), and
this is particularly important for the streamwise and spanwise velocity components in
the near-wall region (figure 10a,c). It is finally worth noting that both of the scale
interaction processes found in the present study are highly active in the near-wall
region where all the energy-containing motions would reach to some extent.

4.1. Energy cascade and dissipation of small energy-containing motions
The production (figure 2a) and turbulent transport (figure 2d) spectra suggest that, at
the integral length scales (i.e. λz ∼ 5y), turbulence production in the log and outer
regions is mainly balanced with nonlinear turbulent transport (negative (blue) region
in figure 2d). This is a natural consequence of small dissipation at such large length
scales because dissipation is inversely proportional to the square of given length
scale. In the region close to the wall where the integral length scale is relatively
small (i.e. the near-wall region and lower part of the log layer), we have seen that a
significant amount of the negative turbulent transport is provided by the interactions
between the energy-containing motions at larger integral length scales (figure 7).
This implies that part of the energy cascade mechanisms for the energy-containing
motions in this region is associated with the presence of larger energy-containing
motions. It is yet to be understood what kind of dynamical processes of such large
energy-containing motions are precisely responsible for this. However, it should be
noted that this observation appears to be linked to previous studies by Hwang (2013)
and de Giovanetti et al. (2016), who have shown appreciable contribution of large
energy-containing motions to skin-friction generation by artificially removing them.

We imagine a situation where some of relatively large energy-containing motions are
artificially removed by an external means (e.g. control, artificial damping, confinement
of the domain size, etc.). From the triadic interaction analysis in figure 7, the small
energy-containing motions in the region close to the wall are expected to lose some
of the energy transfer mechanisms to the adjacent smaller length scale in the energy
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cascade process. Then, one may expect that the reduced turbulent transport would not
fully remove the original turbulence production, seemingly breaking the TKE balance
at the integral length scales. However, it should be remembered that the removal of
such large energy-containing motions also leads to reduction of skin friction, thereby
reducing the corresponding friction velocity. Therefore, in such a circumstance, the
turbulence production for the small energy-containing motions would also be reduced
because turbulence production is proportional to the cube of the friction velocity:
i.e. P(y)' u3

τ/(κy). In this respect, the loss of turbulent transport mechanism by the
removal of large energy-containing motions does not necessarily imply the broken
TKE balance at small integral length scales in the region close to the wall, because
the reduced negative turbulent transport could be equalized by the reduced turbulence
production.

However, it is also worth mentioning that the same scenario would not hold in the
near-wall region where the smallest inner-scaling energy-containing motions reside.
In this region, there is very little separation between the integral and dissipation
length scales, indicating that the related turbulence production is directly balanced
with dissipation without having energy cascade. Therefore, the removal of large
energy-containing motions would simply cause an excess of dissipation at the given
integral length scale because the turbulence production would be weakened by
the reduced friction velocity. In this case, the energy-containing motions at the
original smallest integral length scale would not be sustained anymore because the
dissipation at this length scale is expected to be greater than the reduced production.
Consequently, the new smallest energy-containing motions would be formed at a
larger length scale where the reduced turbulence production would be balanced
with dissipation. If the near-wall motions are assumed to be universal, the expected
spanwise length scale of the new smallest energy-containing motions would be
λ+z ' 100 based on the reduced friction velocity. This is consistent with our recent
observations (Hwang 2013; de Giovanetti et al. 2016), where the removal of large
energy-containing motions was shown not to change the inner-scaled spectra in the
near-wall region.

Finally, it is worth mentioning that the discussion given here places an emphasis on
the relevance of turbulence control targeting relatively large energy-containing motions,
since their removal or suppression would automatically reduce turbulence production
of the near-wall energy-containing motions as well. However, to our knowledge, such
flow control strategies resulting in any appreciable amount of turbulent drag reduction
(say 20 %) are not available yet, and their development remains an important task to
be achieved in the near future.

4.2. Positive near-wall turbulent transport and the formation of inactive motion
Penetration of the energy-containing motions of the log and outer regions into the
near-wall region has been repeatedly reported by a number of recent studies (e.g.
Hutchins & Marusic 2007; Mathis et al. 2009). This feature was also described in
the attached eddy hypothesis (Townsend 1976), where each of the energy-containing
motions in the log and outer regions is modelled to reach the near-wall region through
their streamwise and spanwise components. In the original theory of Townsend (1976),
this is the key statistical feature of each attached eddy, as it is the mathematical
origin of the logarithmic wall-normal dependence of the streamwise and spanwise
turbulence intensities. He also pointed out that the wall-reaching part of each attached
eddy would be ‘inactive’ in the sense that it does not carry any Reynolds shear stress,
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FIGURE 11. Premultiplied one-dimensional spanwise wavenumber spectra of (a)
streamwise, (b) wall-normal, (c) spanwise velocities and (d) turbulent kinetic energy.

and this is the natural consequence of the fact that the wall-normal component of the
attached eddy cannot be large in the near-wall region due to the boundary condition
at the wall.

The inactive wall-reaching part of the energy-containing motions can also be found
by examining the premultiplied one-dimensional spanwise wavenumber spectra of
each velocity component. In figure 11, it is seen that the spectra of the streamwise
and spanwise velocities exhibit a non-negligible amount of energy in the region close
to the wall (figure 11a,c), and this part of the spectra does not precisely follow
any linear scaling in that region. To clearly show this, a dashed line (λz ' 300y)
is drawn at the lower part of the spectra. On the other hand, the spectra of the
wall-normal velocity do not show any substantial amount of energy in the near-wall
region, and the lower part of the spectra follows a linear scaling fairly well (λz' 14y
in figure 11b). The spectra of the TKE are fairly similar to those of the streamwise
velocity because the TKE is dominated by the streamwise component (figure 11d).
For the same reason, the spectra of the TKE also reveal an appreciable amount of
energy in the near-wall region, and do not follow any linear scaling in that region
(figure 11d). Finally, it should be mentioned that exactly the same feature appears in
the streamwise wavenumber spectra, as recently shown by Hwang (2016).
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FIGURE 12. (Colour online) Overlapped premultiplied one-dimensional spanwise
wavenumber spectra of turbulent kinetic energy (red), Reynolds shear stress (blue) and
the near-wall positive turbulent transport (black). Here, the contour lines for both turbulent
kinetic energy and Reynolds shear stress indicate 15 % of their respective maxima, while
that of turbulent transport indicates 10 % of the maximum.

In figure 12, the spectra of the TKE, the Reynolds shear stress and the near-wall
positive turbulent transport are plotted together. This figure now confirms that
the wall-reaching part of the energy-containing motions at large λz carries little
Reynolds shear stress. As discussed with figure 11, this part of the TKE spectra is
mainly contributed by the streamwise and spanwise components, thereby consistently
representing the wall-reaching inactive part of each attached eddy (Townsend 1976). It
should be mentioned that the Reynolds shear-stress spectra in figure 12 should be very
similar to those of turbulence production because kzyP̂(y, kz) = −kzyEuv(y, kz) dU/dy
(Euv(y, kz) is the spectrum of Reynolds shear stress) and dU/dy ∼ 1/y. Therefore, it
would be difficult to imagine that the near-wall inactive part of the TKE spectra is
a direct outcome of turbulence production. In this respect, it is important to note
that this part of the TKE spectra significantly overlaps with the near-wall positive
turbulent transport, indicating that the main driving mechanism of the inactive part of
the motion is likely to be the positive turbulent transport in the region close to the
wall.

If the positive turbulent transport becomes the driving mechanism of the near-wall
part of large energy-containing motion, it is evident that the classical energy cascade
is not the way to form the TKE balance in the near-wall region at large λz – indeed,
the positive turbulent transport in the near-wall region has been shown to be the
consequence of energy transfer from smaller energy-containing eddies (figure 8). To
gain further physical insight into the mechanism of the near-wall TKE balance at
such a large length scale, the wall-normal profiles of the terms on the right-hand
side of (2.5) for λz = 0.5h and 1.5h are examined in figure 13. Here, we note that
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FIGURE 13. (Colour online) Wall-normal profiles of the terms on the right-hand side of
(2.5) for (a) λz = 0.5h and (b) λz = 1.5h: ——, (red), production; ——, (blue), sum of
viscous and SGS dissipations; ——, (black), turbulent transport; – · –, pressure transport;
– – –, viscous transport. Here, the vertical dashed lines indicate the wall-normal location
given by λ+z = 3(y+)2 (figure 5).

the vertical dashed lines correspond to the wall-normal location given by λ+z = 3(y+)2
(figure 5) and that the dissipation term is the sum of the viscous and SGS dissipations.
It turns out that the main TKE balance at large λz (small kz) in the near-wall region
(y+ . 20) is formed between the positive turbulent transport and dissipation, and
this is more apparent for larger spanwise wavelength (figure 13b). Assuming that
the SGS dissipation is negligible in a fully resolved simulation such as a DNS, the
approximate TKE balance in the near-wall region for large λz is therefore given by

T̂turb(y, kz)'

〈
−ν

∂ û′i(y, kz)

∂xj

∂ û′i
∗

(y, kz)

∂xj

〉
x

. (4.1)

Now, let us recall the form of turbulent transport T̂turb(y, kz) in (2.5). Due to
the large λz of interest (i.e. λz � y), ∂/∂xj ∼ ∂/∂y and û′iu′j ∼ û′iv′. Here, we note
that, given T̂turb(y, kz) in the form of (3.1), û′iv′ becomes the non-zero driving term
stemming mostly from the other wavenumbers (see also (4.7) for a further discussion).
In particular, it includes û′v′ and v̂′v′. These two terms resemble the Reynolds stress
components that scale very well with the inner units in the near-wall region, due
to the presence of v′ (see also the DNS data in Lee & Moser 2015b). From this
observation, we assume û′iv′ ∼ u2

τ . Then, the magnitude of the left-hand side of (4.1)
would be given at O(û′i(y, kz)u2

τ/y). Similarly, that of the right-hand side is given at
O(ν(û′i(y, kz)/y)2). The order of magnitude balance in (4.1) subsequently leads to

û′i(y, kz)
u2
τ

y
∼ ν

(
û′i(y, kz)

y

)2

, (4.2)
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where y indicates the wall-normal location of the wall-reaching inactive part of the
given large energy-containing motion, the spanwise wavenumber of which is given by
kz(≡ 2π/λz). Then, (4.2) yields the strength of the inactive part in the region close to
the wall, such that:

û′i(y, kz)

uτ
∼ y+, (4.3a)

or, equivalently,
û′i(y, kz)

uτ
∼ Reτ

y
h
. (4.3b)

Here, it is important to note that the scaling (4.3) is strictly valid for λz� y. This is
also the reason why the strength of the inactive motion û′i(y, kz)/uτ becomes only a
function of y.

The order of magnitude balance (4.2) and its consequence (4.3) provide some
important physical insight into the scaling of inactive motions and the associated
dissipation. First, (4.3) suggests that the wall-normal profile of large energy-containing
motions in the near-wall region should scale in the inner unit as long as λz� y. This is
consistent with the observation by Hwang (2016), who showed that the wall-reaching
inactive part of large energy-containing motions scales in the inner unit. He further
explained that this is also the essential reason why the wall-normal location of the
so-called outer peak in the streamwise wavenumber spectra of streamwise velocity
becomes a function of Reτ (for detailed discussion, see Hwang 2016). Second, (4.3)
is only valid for the streamwise and spanwise components of the motion (i.e. i= 1, 3).
This is because the left- and right-hand sides of (4.2) are proportional to û′i(y, kz)

and (û′i(y, kz))
2. If i = 2, the impermeability condition for the wall-normal velocity

makes both left- and right-hand sides of (4.2) become zero at the leading order in
the region close to the wall. Finally, (4.2) and (4.3) indicate that dissipation at large
λz is given by

ε̂(y, kz)∼
u4
τ

ν
, (4.4)

which still scales in the inner units. However, this does not necessarily imply that
the inner-scaled near-wall dissipation ε+(y) is not a function of Reτ . The inner-scaled
dissipation is given by

ε+(y)= 2
∫
∞

0
ε̂+(y, kz) dk+z = 2

∫ k+z,u

k+z,lReτ

ε̂+(y, kz) dk+z , (4.5)

where k+z,lReτ and k+z,u are the lower and upper bounds of the compact support of
ε̂+(y, kz) in the inner unit, respectively, Here, we note that the lower bound is given by
k+z,lReτ as it should scale in the outer unit. Therefore, (4.5) indicates that ε+(y) in the
near-wall region would have a dependency on the Reynolds number, even if ε̂(y, kz)
scales in the inner unit, and this is consistent with its behaviour reported by Hoyas &
Jiménez (2008). It has been speculated that this behaviour is due to the inactive part
of large energy-containing motions in the near-wall region (Bradshaw 1967; Hoyas &
Jiménez 2008), and the present analysis provides direct support of this idea.

The analysis above evidently suggests the crucial role played by the positive
turbulent transport in the formation and scaling of the inactive part of large
energy-containing motions in the near-wall region. We note that the positive turbulent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

64
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.643


Scale interactions and spectral energy transfer in turbulent channel flow 499

transport in the near-wall region should originate from the log and outer regions, as
the following quantity representing the wall-normal advective TKE flux (see (2.5) and
(2.6)) is negative for sufficiently small y and large λz (see also Mizuno 2016):

Θ̂turb(y, kz)=−

∫ y

0
T̂turb(y, kz) dy. (4.6)

This feature is seemingly consistent with the recent linear analysis by Hwang (2016),
who proposed that the downward TKE transport into the near-wall region is the feature
recovered by a simple mixing length model based on inhomogeneous eddy viscosity
in the wall-normal direction. In that model, the formation of the wall-reaching inactive
motion was described by diffusive transport of TKE, and this process takes place
only within the considered λz because of the linear nature of the model that does
not allow for any energy transfer across different length scales. However, the triadic
interaction analysis in the present study suggests that the actual mechanism of the
downward turbulent transport into the near-wall region is much more complicated than
that described by the simple mixing length model.

To demonstrate this, let us first set l = kz(≡ 2π/λz) and m = 0 in the convolution
of (3.1). The turbulent transport can then be rearranged to yield the wall-normal
derivative of the downward TKE flux within the given λz, such that:

T̂turb(y, kz)=

〈
Re
{
−
∂

∂y
(ê(kz)v̂′(0))

}〉
x

, (4.7)

where v̂′(0) is the spatial average of the wall-normal velocity in the homogeneous
directions. Therefore, for infinitely large computational domain, v̂′(0) = 0, indicating
that the downward turbulent transport within the given λz should be zero. Indeed,
in figure 8, the values of T̂turb around l = kz and m = 0 are either close to zero or
very small. This suggests that the positive turbulent transport in the near-wall region
cannot originate from the energy-containing motions at the same spanwise length scale.
Instead, it is primarily from the interactions between the energy-containing motions,
the spanwise size of which is smaller than the given λz (figure 8). It is important to
point out that this conclusion is also consistent with the observation by Mizuno (2016),
who showed that the positive turbulent transport in the near-wall region at large λz
becomes enhanced with an increase of the Reynolds number (figure 3b in Mizuno
2016): for λz chosen to scale in the outer unit (e.g. λz = 1h), the increase of the
Reynolds number should increase the number of smaller energy-containing motions,
thereby elevating the value of the near-wall positive turbulent transport at the given
λz. This also suggests that the wall-reaching inactive part of energy-containing motions
in the log and outer regions would be developed more on increasing the Reynolds
number, as also shown with (4.3b).

4.3. Pressure–strain spectra and self-sustaining process
An important limitation of the present analysis is that it does not connect to
‘dynamical features’ of fluid motions. Indeed, it only analyses statistical features
in the energetics, and it does not provide any information about how such energetics
is linked to the actual motions of eddies. However, there are some interesting features
that can be discussed in terms of self-sustaining process of energy-carrying eddies
(Hwang 2015; Hwang & Bengana 2016), and the pressure–strain spectra (figure 9)
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streaks

FIGURE 14. Energy distribution mechanism via self-sustaining process.

provide particularly useful information in this regard. It has been found that all the
pressure–strain spectra are well aligned with λz = 5y, consistent with the attached
eddy hypothesis. This indicates that the TKE distribution process takes place at
each integral length scale, which support the so-called self-sustaining process for all
the energy-containing motions in the form of Townsend’s attached eddies (Hwang
2015; Hwang & Bengana 2016). As discussed in § 2.1, turbulence production can
be viewed as a scale-independent process in the sense that it originates from the
linearized Navier–Stokes equation. In the absence of any inflection point in the mean
shear, the turbulence production should involve the lift-up effect, as they share the
same mathematical origin in (2.1). The lift-up effect has been firmly understood as the
amplification mechanism of streaky motions. However, this amplification mechanism
is only active in the presence of the driving nonlinearity (i.e. second term in (2.1b))
due to the marginally stable or stable nature of the linearized Navier–Stokes equation
around the mean flow (Malkus 1956; Pujals et al. 2009). In particular, the driving
nonlinearity should be able to excite the wall-normal velocity fluctuation v′ for the
generation of such streaky motions, given the wall-normal velocity and vorticity
form of the linearized Navier–Stokes equation (for a detailed discussion, see also de
Giovanetti, Sung & Hwang 2017).

In figure 2(a), we have shown that the production spectra are well aligned along
the linear ridge λz = 5y. This suggests that the lift-up effect takes place in the form
of Townsend’s attached eddies, consistent with the previous linear theory (Hwang &
Cossu 2010a). However, the direct association of the lift-up effect with turbulence
production itself does not necessarily indicate that the dominant dynamics of the
energy-containing motions is governed by the self-sustaining process (e.g. Hamilton,
Kim & Waleffe 1995; Waleffe 1997; Schoppa & Hussain 2002), as the lift-up
effect is only a single element that constitutes the self-sustaining process (see also
figure 14). Indeed, the streak amplification via the lift-up effect is possible whenever
the driving nonlinearity can excite any wall-normal velocity, as previously shown
with the stochastic response of the linearized Navier–Stokes equation (Gayme et al.
2010; Hwang & Cossu 2010a). Therefore, without understanding of the origin of
v′, the link between lift-up effect and turbulence production alone does not lead
to the conclusion that the self-sustaining process is directly involved in turbulence
production.

The better understanding of the origin of v′ is gained by inspecting pressure–strain
spectra in figure 9. The streamwise component of the pressure–strain spectra is shown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

64
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.643


Scale interactions and spectral energy transfer in turbulent channel flow 501

to be aligned along λz = 5y (figure 9a), the linear ridge associated with production
spectra (figure 2a). Consequently, the wall-normal and spanwise components of the
pressure–strain spectra should be well aligned along the same linear ridge λz = 5y
(figure 9b,c) because all the pressure–strain terms in (3.4) are only a function of
the given spanwise wavenumber kz and they should satisfy (3.5). These features
imply that the distribution of the streamwise TKE generated by turbulence production
to the cross-streamwise TKE takes place at the integral length scale, as in the
self-sustaining process. Furthermore, the streamwise component of pressure–strain
terms is composed of p′ and ∂u′/∂x, indicating that the distribution of the streamwise
TKE to the other components is possible only if ∂u′/∂x is present. The presence of
∂u′/∂x in the streamwise pressure–strain is reminiscent of the streak instability
(Hamilton et al. 1995; Schoppa & Hussain 2002; Cassinelli, de Giovanetti & Hwang
2017) and the following vortex stretching in the self-sustaining process (Schoppa
& Hussain 2002), as it represents the meandering motion of streaks (Hwang &
Bengana 2016). Indeed, it was recently shown that the streak instability exists for
the large-scale outer structures, and, in particular, it acts as the seeding mechanism
of the large-scale motion (Kovasznay, Kibens & Blackwelder 1970) that carries an
intense cross-streamwise TKE (de Giovanetti et al. 2017).

Lastly, the form of the streamwise component of pressure–strain terms suggests that
any efficient distribution of the streamwise TKE to the other components requires a
strong correlation between p′ and ∂u′/∂x. The continuity then automatically ensures
a strong correlation between p′ and ∂v′/∂y or between p′ and ∂w′/∂z (i.e. correlation
with the cross-streamwise velocity components). In this respect, it would also be
interesting to examine how these correlations are related to the self-sustaining
process. Our preliminary investigation has recently revealed that both rapid and
slow pressures are strongly correlated with the streak instability and the regeneration
of the streamwise vortices in the self-sustaining process (Cho, Choi & Hwang 2016).
This observation finally enables us to propose a schematic diagram of turbulence
production and energy distribution in the self-sustaining process, as depicted in
figure 14. This is, however, not a complete picture of the entire process yet, and
a detailed investigation on the role of the pressure in the self-sustaining process is
currently underway.

5. Concluding remarks
In the present study, we have investigated the spectral energy transfer process and

scale interactions in a turbulent channel flow using the equation for spectral TKE. The
main findings are summarized as follows:

(i) One-dimensional spanwise wavenumber spectra of each constituent in the spectral
TKE equation (2.5) have been investigated: (a) turbulent production is uniformly
distributed especially in the log region and the relevant spanwise length scale is
proportional to the wall-normal distance; (b) the related spanwise length scale
of the dissipation spectra is proportional to the Kolmogorov length scale; (c) the
produced TKE in the log and outer regions is mainly balanced with turbulent
transport at the integral length scales, and is transferred to the other length scales,
at which the turbulent transport spectra are positive (Richardson–Kolmogorov
energy cascade).

(ii) The visualization of triadic interactions in turbulent transport has confirmed that
the dominant transfer mechanism is the classical energy cascade. In addition to
this, two new types of scale interaction processes in the near-wall region have
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been revealed. First, the interactions between larger energy-containing motions
are found to be involved in the process of the energy cascade from relatively
small energy-containing motions. This is proposed to be linked to skin-friction
generation by large energy-containing motions. Second, the downward positive
energy transfer processes from small to large scales in the streamwise and
spanwise velocity components are identified. It is shown that the formation
and scaling of the wall-reaching inactive part of large energy-containing motions
(Townsend 1976) are strongly related to this near-wall positive turbulent transport.

(iii) Finally, the analysis of the pressure–strain spectra and the relation between the
TKE production and lift-up effect have indicated that the self-sustaining process
is presumably the dominant dynamics of the energy-containing motions given in
the form of Townsend’s attached eddies.
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