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We investigate the linear stability and nonlinear evolution of a three-dimensional
toroidal vortex of uniform potential vorticity under the quasi-geostrophic approxi-
mation. The torus can undergo a primary instability leading to the formation of a
circular array of vortices, whose radius is approximately the same as the major radius
of the torus. This occurs for azimuthal instability mode numbers m> 3, on sufficiently
thin tori. The number of vortices corresponds to the azimuthal mode number of the
most unstable mode growing on the torus. This value of m depends on the ratio of
the torus’ major radius to its minor radius, with thin tori favouring high mode m
values. The resulting array is stable when m= 4 and m= 5 and unstable when m= 3
and m > 6. When m = 3 the array has barely formed before it collapses towards
its centre with the ejection of filamentary debris. When m = 6 the vortices exhibit
oscillatory staggering, and when m > 7 they exhibit irregular staggering followed by
substantial vortex migration, e.g. of one vortex to the centre when m = 7. We also
investigate the effect of an additional vortex located at the centre of the torus. This
vortex alters the stability properties of the torus as well as the stability properties of
the circular vortex array formed from the primary toroidal instability. We show that
a like-signed central vortex may stabilise a circular m-vortex array with m > 6.

Key words: quasi-geostrophic flows, vortex instability

1. Introduction
Motivated by large-scale fluid flows in the Earth’s ocean and atmosphere, and in

the atmospheres of the gas-giant planets, all of which are strongly influenced by the
planetary rotation and stable density stratification, we use quasi-geostrophic (QG)
theory (see § 2) to study a set of vortex interaction problems of fundamental interest.
They are particularly relevant to the recent discovery, by the Juno spacecraft, of
circular arrays of vortices surrounding the poles of Jupiter (Adriani et al. 2018). As
is well known, QG theory is the simplest mathematical model that self-consistently
captures the essential dynamics of such flows, in which the potential vorticity (PV)
distribution evolves nonlinearly by advection and from which the advecting velocity
field is obtainable, together with the pressure and temperature fields, by PV inversion
(Hoskins, McIntyre & Robertson 1985), solving an elliptic problem for given PV at
each time step.

† Email address for correspondence: jean.reinaud@st-andrews.ac.uk
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In flows of this kind, the PV field tends to self-organise into elongated structures
such as jet streams and shear lines, or into compact structures such as vortices (e.g.
Williams 1978; Dritschel & McIntyre 2008). In this paper, we investigate the linear
stability and nonlinear evolution of an idealised shear line in the form of a torus of
uniform PV, embedded in an otherwise uniformly rotating and linearly stratified three-
dimensional fluid. We also investigate cases in which, at the outset, a compact vortex
is introduced at the centre of the torus. Such cases turn out to be of special interest
for Jupiter.

The torus is found to be generally unstable, depending on the ratio R0/r0 of
its major (centreline) radius R0 to its minor (cross-sectional) radius r0, and on the
strength and size of the central vortex if any. For R0/r0 & 5, the instability causes the
torus to self-organise into an array of similar-sized vortices lying approximately on
a circle. The number m of vortices is typically equal to the azimuthal mode number
of the most unstable mode of the torus. The value of m increases with the radius
ratio R0/r0. The circular vortex array may itself be unstable and is sometimes dubbed
‘Thomson’s vortices’ after the seminal work of Thomson (1883), who considered the
stability properties of a circular array of identical, equally spaced point vortices, with
no central vortex, governed by the two-dimensional Euler equations. (Henceforth,
though, we use self-explanatory terms such as ‘circular vortex array’, or ‘circular
m-vortex array’ as appropriate.)

Thomson showed that his circular m-vortex array is a steadily rotating equilibrium
state, stable to small disturbances for m6 7 (marginally so for m= 7) and unstable for
m > 7. Dritschel (1985) extended Thomson’s study to finite-sized, uniform-vorticity
two-dimensional vortices governed by Euler’s equations, still with no central vortex,
showing that m= 7 vortices are then unstable and that m< 7 vortices become unstable
at a critical vortex size that increases with decreasing m. Prior to that, Morikawa &
Swenson (1971) had extended Thomson’s point-vortex study by including a central
point vortex and by generalising to the QG shallow-water model, which contains
Euler’s equations as a special case. More recently, a corresponding set of problems
including finite-volume as well as point vortices were addressed by Reinaud (2019)
within the same three-dimensional, linearly stratified QG framework as in the present
paper. Reinaud found that, in the absence of a central vortex, only m65 point vortices
are stable while m> 6 are unstable, in contrast with Thomson’s results. Reinaud also
found unstable finite-volume vortex configurations for any given m when the vortices
are larger than a critical size, which again increases with decreasing m.

Precursors to the present torus problem include the work of Dritschel (1988) and
Kossin & Schubert (2001) on its two-dimensional counterpart, an annulus of uniform
PV, studying its early-time nonlinear evolution, and the work of Morel & Carton
(1994) on the stability of an annulus plus a finite-sized central vortex.

In this paper we show that for m> 3 the three-dimensional QG torus self-organises
into an approximately circular m-vortex array, of approximately equal-sized vortices,
which itself appears to be stable for just two values m= 4 or m= 5 on the evidence
from long-time numerical integrations. The addition of a like-signed central vortex
may stabilise arrays for which m > 5, in agreement with Reinaud (2019). In cases
where the m-vortex array is unstable, we find a rich variety of strongly nonlinear
behaviours, including a case with m = 8 where the central vortex undergoes chaotic
outward migration and becomes the outermost vortex.

The paper is laid out as follows. First we recall the standard QG equations in
§ 2. This is followed by a treatment of the linear stability properties of the torus in
§ 3, with and without a central vortex. In cases of instability, the long-time nonlinear
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evolution is studied in § 4. Finally, some conclusions and perspectives for future
research are offered in § 5, including a brief discussion of the cases m= 5 and m= 8
observed on Jupiter, near its south and north poles, respectively, in which stabilising
central vortices are present.

2. Mathematical set-up
We consider a continuously stratified, rapidly rotating flow using QG theory under

the Boussinesq approximation. In this study the fluid domain is taken to be infinite
in all directions. The vertical direction z coincides with the direction of gravity and
the axis of the background rotation. The flow is inviscid and adiabatic. We define the
Rossby number Ro = U/( fL) and the Froude number Fr = U/(NH), where U is a
typical horizontal velocity scale, f is the Coriolis frequency, assumed constant, L is a
typical horizontal length scale, N is the buoyancy or Brunt–Väisälä frequency and H
is a typical vertical length scale. The Rossby number may also be seen as the ratio of
a typical relative vertical vorticity U/L to the planetary vorticity f , while the Froude
number may also be seen as the ratio of a typical horizontal vorticity U/H to the
buoyancy frequency N. The QG model results from an asymptotic expansion in Ro
assuming Fr∼ Ro� 1.

For simplicity we assume both f and N are constant. By using new coordinates in
which the vertical coordinate is stretched by the ratio N/f , the equations of motion
become independent of both f and N. Hence the results presented in this paper are
valid for all constant N and f .

The QG equations of motion consist of an inversion problem giving the stream-
function ψ in terms of the QG PV,

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= q, (2.1)

which is Poisson’s equation in Cartesian coordinates, together with an equation
expressing material conservation of QG PV,

∂q
∂t
+ u

∂q
∂x
+ v

∂q
∂y
= 0, (2.2)

where
u=−

∂ψ

∂y
and v =

∂ψ

∂x
(2.3a,b)

is the advecting geostrophic horizontal velocity – see Vallis (2006) for details, and
also Hoskins et al. (1985, § 5b). The vertical velocity (appearing at second order in
Ro) is not involved in the advection of q.

3. Linear stability
3.1. The basic state

We consider a torus centred at the origin and spanned by nl� 1 horizontal layers of
equal thickness δz. Within the kth horizontal layer, the torus boundary is represented
by two contours, one at the inner boundary C−k and the other at the outer boundary C+k .
There are therefore nc = 2nl contours altogether bounding the torus. The contours C∓k
lying at height zk with |zk|< r0 are initially circular with radii r∓e (zk)=R0∓

√
r2

0 − z2
k .

We denote by r∓e,k(θ) the position vector of a point on the unperturbed circular contour
C∓k at azimuthal angle θ .
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3.2. The disturbance equation
We next consider infinitesimal radial perturbations of the form

r∓k (θ, t)= r∓e (zk)+
η∓k (θ, t)
r∓e (zk)

, (3.1)

where ηk has units of area (Dritschel 1995). Owing to symmetry, we may express η∓k
as

η∓k (θ, t)= η̂∓k eσ t+imθ , (3.2)

for each mode number m. It should be noted that mode m = 1 corresponds to a
horizontal displacement of entire contours.

For an axisymmetric flow, in the linearised equations, the evolution of the
disturbance area η∓k is governed by

∂η∓k

∂t
+Ω∓k

∂η∓k

∂θ
=
∂F∓k
∂θ

,

F∓k (θ)=−
nc∑

l=1

1ql

(∫ 2π

0
η+l (θ

′)Gk,l(|r∓e,k(θ)− r+e,l(θ
′)|) dθ ′

−

∫ 2π

0
η−l (θ

′)Gk,l(|r∓e,k(θ)− r−e,l(θ
′)|) dθ ′

)
,


(3.3)

where Ω∓k is the constant basic-state angular velocity around contour C∓k , 1ql is the
PV jump across contour C∓l (for a uniform-PV torus, all of the 1ql are equal), and
Gk,l(r) is the Green’s function giving the influence of a point in layer l on a point
in layer k separated by a distance r (see appendix A in Dritschel (2002) as well as
Dritschel (1995) and Reinaud & Dritschel (2002) for the derivation of (3.3)).

3.3. The eigenvalue problem
Substituting ηk and ηl by their expressions in equation (3.2) leads to an eigenvalue
problem involving a real matrix of size 2 × nc squared – for each azimuthal mode
number m. The eigenvalues σ are generally complex. The real part σr is the growth
rate while the imaginary part σi is the frequency. Since the original system is
Hamiltonian, if σ is an eigenvalue, then so are −σ , σ ∗ and −σ ∗, where ∗ denotes
complex conjugation.

Without loss of generality, we take the uniform PV in the torus to be q0 = 2π (all
PV jumps 1ql are then equal to q0). This defines a PV-based time scale TPV =6π/q0=

3, which physically corresponds to the rotation period of a spherical vortex of PV q0.
The volume of the torus is exactly V0 = 2π2R0r0. Without loss of generality we set
r0 = 0.5 so that the total vertical extent of the torus is h0 = 1. The layer thickness is
then δz= h0/nl = 1/nl.

3.4. Results
The results presented are obtained using the highest vertical resolution, nl = 51.
Smaller values of nl were used for testing and give closely similar results. Each
contour C∓k is discretised by an equal number of nodes, np = 400.

The growth rates σr of the unstable modes are summarised in figure 1 for 1.2 6
R0/r0 6 12. An increment in relative radius R0/r0 of 1(R0/r0)= 0.2 is used between
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m σr/q0 σi/q0

5 6.46× 10−2
±4.58× 10−2

6 6.14× 10−2
±5.53× 10−2

4 5.73× 10−2
±3.82× 10−2

7 4.45× 10−2
±6.86× 10−2

3 4.13× 10−2
±3.13× 10−2

2 1.71× 10−2
±2.42× 10−2

TABLE 1. Mode numbers m, growth rates σr and frequencies σi of the six most unstable
modes (arising as complex conjugate pairs) for R0/r0 = 7.2.

cases. The frequencies of the modes are generally non-zero, and so the disturbances
propagate while amplifying. We find that, for each m, at most only one eigenvalue is
found with σr > 0. This allows us to refer to m as the ‘mode’ of instability.

Notably, the vertical eigenstructures of the modes are, with few exceptions, upright
or quasi-barotropic in the sense of being nearly independent of z, hence nearly free
of vertical shear. The mid-levels near z = 0 are generally most amplified, but the
vertical variation is weak apart from near the top and bottom of the torus, where the
amplitudes diminish.

The growth rates and frequencies of the modes for R0/r0 = 7.2 are summarised in
table 1. The unstable modes, sorted in order of decreasing σr, are m= 5, 6, 4, 7, 3
and 2.

Overall, we find that unstable modes with increasing azimuthal mode number m
appear sequentially as R0/r0 increases. Thus thick tori with small R0/r0 are most
unstable to low m, while thin tori are most unstable to relatively high m. As R0
increases, the perimeter of the torus increases, allowing more room to fit disturbances
of a characteristic wavelength λ. Qualitatively, m ∝ R0/r0. When R0/r0� 1, figure 1
indicates that a number of modes have closely comparable growth rates. This is
important for the nonlinear dynamics discussed in § 4.

The growth-rate curves σr versus R0/r0 have a similar shape for each mode m> 1.
Indeed, for each m except m = 1, 2, there is a region of neutral stability σr = 0 for
R0/r0 less than a threshold which depends on m. This means that most modes are
neutrally stable for thick tori. The value of this threshold in R0/r0 increases with m,
nearly proportionally.

For m = 2, our results indicate that σr → 0 as R0/r0 → 1, the limit where the
innermost edge of the torus shrinks to a point. As R0/r0 increases, σr first reaches
a maximum then slowly decreases to 0 as R0/r0→∞.

Finally, the relatively weak m = 1 instability is associated, exceptionally, with a
vertical shearing of the torus, in which the mid-section at z= 0 is displaced relative
to the edges at z = ±r0 (as deduced from the vertical eigenstructure). The m = 1
instability also occurs when a central vortex is present (see below), and can be much
stronger in this case. There is no analogue of this instability in the two-dimensional
case of a vorticity annulus; then m= 1 corresponds to a uniform displacement of the
entire vortex and is thus neutrally stable (Dritschel 1986).

3.5. The influence of a central vortex
We next consider the influence of a spherical vortex of uniform PV qc and of radius
rc= r0 located at the centre of the torus. The sphere then has the same vertical extent
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FIGURE 1. (Colour online) Growth rates σr of the unstable modes versus the torus
normalised radius R0/r0 for 1 6 R0/r0 6 12, with 1(R0/r0) = 0.2. Symbols indicate the
azimuthal mode number of the mode: m= 1 (×), 2 (u), 3 (p), 4 (f), 5 (q), 6 (E), 7 (@),
8 (6), 9 (A), 10 (s), 11 (D), 12 (r). The vertical line marks the case R0/r0 = 7.2 which
is further detailed in table 1.

as the torus. The linear stability method is readily extended to include an extra contour
in each layer bounding the central vortex – see Reinaud & Dritschel (2002) for the
general framework.

Four cases are considered with qc/q0 = 1, −1, 3 and −3. We consider tori with
radius ratios 2.2 6 R0/r0 6 12. The limiting case R0/r0 = 2 corresponds to when the
central vortex touches the innermost edge of the torus.

The growth rates of the unstable modes are presented in figures 2 and 3, the latter
showing a zoom of the small R0/r0 region where growth rates are significantly larger.
First of all, the results converge as R0/r0 increases since (i) the influence of the central
vortex weakens as R0/r0 increases, and (ii) a spherical vortex alone is stable and
is expected to be stable for a distant toroidal PV distribution (R0/rc � 1). Results,
however, differ for small to moderate values of R0/r0. The modes most affected by
the presence of the central vortex have m6 3. The curves σr versus R0/r0 are almost
identical for m > 4, with a slight increase in σr for decreasing qc/q0. An opposite-
signed central vortex is destabilising, while a like-signed one is stabilising, except for
small R0/r0.

For a like-signed central vortex, the peak growth rates are shifted to larger R0/r0,
but a second instability emerges at small R0/r0 as shown in figure 3, which focuses on
the range 2.026R0/r0 6 3. In this range of R0/r0, in particular near the limiting case
R0/r0 = 2, several unstable modes with large growth rates appear. Recall that, when
R0/r0 = 2, the central vortex touches the innermost edge of the torus. These unstable
modes are therefore associated with the strong shear created in the gap between the
sphere and the torus. This shear enables waves propagating on the two vortices to
phase-lock and therefore grow. The shear is opposite and therefore stabilising for an
opposite-signed central vortex. Finally, figure 3 shows that thick tori surrounding a
central vortex can be unstable to mode m= 1. This mode predominantly displaces the
central vortex towards a portion of the inner edge of the torus, the whole disturbance
having relatively little vertical shear.
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FIGURE 2. (Colour online) Growth rates σr of the unstable modes versus the torus
normalised radius R0/r0 for 2.2 6 R0/r0 6 12, with 1(R0/r0) = 0.2, and for a
central spherical vortex of radius rc = r0. The PV ratio between the central vortex
and the torus is (a) qc/q0 = 1, (b) qc/q0 = −1, (c) qc/q0 = 3 and (d) qc/q0 =

−3. Symbols indicate the azimuthal wave number of the mode: m = 1 (×), 2 (u),
3 (p), 4 (f), 5 (q), 6 (E), 7 (@), 8 (6), 9 (A), 10 (s), 11 (D), 12 (r).
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FIGURE 3. (Colour online) Growth rates σr of the unstable modes versus the torus
normalised radius R0/r0 for (a) qc/q0 = 1 and (b) qc/q0 = 3 covering the range 2.02 6
R0/r0 6 3, with 1(R0/r0)= 0.02. Symbols are the same as used in figure 2.

4. Nonlinear evolution

We next investigate the nonlinear evolution of the torus for various values of R0/r0.
We first consider the torus alone, then include a central vortex.
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FIGURE 4. Evolution of a uniform-PV torus with R0/r0 = 2. The view is from the top
showing all of the bounding contours (at all heights z) at t= 0, 40, 49 and 61. The same
view is used in subsequent figures of the flow evolution, unless otherwise stated. In panel
(d) only contours in every fifth layer are shown. If all contours were included, then the
figure would be almost black with contours.

4.1. Numerical method
Numerical simulations are conducted using the purely Lagrangian contour surgery
algorithm (Dritschel 1988; Dritschel & Saravanan 1994) developed for unbounded
QG flow in Dritschel (2002). Time integration is performed using a fourth-order
Runge–Kutta algorithm with a PV-controlled time step 1t = 2π/(20 max(|q0|, |qc|))
which is the standard setting. Node redistribution and contour surgery are periodically
carried out (approximately every eight time steps) to maintain resolution and to limit
the complexity of the contours. We use a dimensionless node-spacing parameter of
µ= 0.15 and a large-scale length `= d0 = 2r0 = 1, the diameter of the torus section.
From these, for consistency, the surgical cutoff length is δ = µ2`/4 = 5.625 × 10−3.
These are standard parameter choices (Dritschel 1988). The torus is represented by
contours in 51 layers in all numerical experiments, unless stated otherwise. Initial
conditions are the basic state plus numerical noise only, unless stated otherwise.

4.2. Torus evolution
We first consider a thick torus with R0/r0 = 2. The most unstable mode has m = 2
and its normalised growth rate is σr/q0 = 3.86 × 10−2. The nonlinear evolution of
the torus is presented in figure 4. In this simulation, disturbances grow from the
background numerical noise arising from truncation errors and the finite discretisation
of the vortex. The mode m = 2 clearly emerges as the torus deforms. Two opposite
parts then approach and eventually merge, creating a bridge of PV. The subsequent
evolution is complex and the three-dimensional structure of the vortex becomes
highly convoluted. The inner region initially devoid of PV at the centre of the torus
cannot disappear since, at each height, the area of this region is conserved. Instead,
it becomes split and further fragmented in time from t = 50 onwards. At late times,
due to contour surgery, this area may escape to the exterior (not shown).

Next consider a thinner torus with R0/r0 = 4. The most unstable mode is now
m= 3 with σr/q0= 5.94× 10−2. However, there are two competing instabilities: m= 4
with σr/q0 = 4.70 × 10−2, and m = 2 with σr/q0 = 3.44 × 10−2. Figure 5 shows the
evolution in this case, perturbed only by numerical noise. The m= 3 mode emerges
first and dominates the evolution. The torus nearly breaks into three vortices but not
before the main parts of the torus collapse and merge near the origin, leaving a small
triangular hole there. The concentration of PV around the origin is compensated by
the ejection of tongues of PV further away, primarily to conserve angular impulse
J=

∫∫∫
V q(x2

+ y2) dV . The tips of these tongues of PV begin to roll up at late times
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FIGURE 5. Evolution of a uniform-PV torus with R0/r0 = 4. Top view of the bounding
contours at t= 0, 23, 29, 35, 40, 50, 60 and 85. In panels (e–h) only contours in every
fifth layer are shown. If all contours were included, then the figure would be almost black
with contours.
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FIGURE 6. Evolution of a uniform-PV torus with R0/r0 = 6. Top view of the bounding
contours at t= 0, 20, 50 and 140.

since the shear (or differential rotation) associated with the collapsed central region is
too weak to keep them filamentary. The later evolution is complex; a large portion of
PV merges into a large vortex near the centre encircled by a sea of secondary vortices
and small-scale debris.

For larger R0/r0 > 6, the general topology of the late-time PV distribution changes
significantly. Figure 6 shows the evolution of an unstable torus having R0/r0= 6. The
three most unstable modes are m= 4 with σr/q0 = 6.20× 10−2, m= 5 with σr/q0 =

6.11 × 10−2, and m = 3 with σr/q0 = 4.85 × 10−2. For illustration purposes and due
to the close proximity of the growth rates of modes m= 4 and 5, a small-amplitude
disturbance is initially introduced to excite the most unstable mode m= 4. The torus
self-organises into a four-vortex circular array within a sea of low-energy filaments
and very small vortices. Unlike in the previous cases, the vortices remain far away
from each other and do not merge together. The four vortices instead rotate around
the centre of the domain in a quasi-stable manner until at least t= 1000, the end of
the simulation. There is no indication that the quasi-periodic rotation of the four main
vortices would cease or change significantly for longer integration times. The stability
of the circular four-vortex array could have been anticipated from the linearly stable
QG four-point-vortex case studied in Reinaud (2019).
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FIGURE 7. Evolution of a uniform-PV torus with R0/r0= 7.2. Top view of the bounding
contours at t= 0, 26, 129 and 408.

FIGURE 8. (Colour online) Orthographic view of the PV field at an angle of 60◦ from the
vertical for the torus with R0/r0= 7.2 at t= 100. The horizontal lines indicate the vertical
extent of the domain of view, here |z|6 0.5. Flow structures seen through the lower front
face are slightly faded.

The situation is similar for R0/r0 = 7.2, with m = 5 the most unstable mode
(figure 7), again paralleling the linearly stable five-point-vortex case of Reinaud
(2019). The growth rates of the six most unstable modes on a torus with R0/r0= 7.2
were listed in table 1. In this case the m= 5 mode is significantly more unstable than
the closest competitors m= 6 and m= 4, and dominates the nonlinear evolution even
without the introduction of a small initial disturbance favouring it. Figures 7 and 8
show that a circular five-vortex array rapidly forms, then persists at least until the
end of the simulation t= 1000' 333 TPV , with no indication of significant change at
later times.

Since m= 5 is not the only unstable mode, other unstable modes play a role in the
deformation of the torus. As a result, the five vortices which emerge differ in volume
by up to 9 %. The evolution of the volumes of the five largest vortices identified in the
simulation after the destabilisation of the torus is shown in figure 9. The structures are
identified as contiguous regions of PV (horizontally and vertically). The fluctuations in
volume are associated with the erosion or absorption of filaments and debris from and
into the vortices. Figure 9 also shows the near-circular trajectories of the five vortex
centroids, confirming the stable nature of the quasi-periodic rotation. The stability
of the five-vortex array is striking considering that the volume fluctuations may be
regarded as a significant perturbation to a configuration of five otherwise identical
vortices.

Reinaud (2019) showed that a circular array of six identical point vortices is weakly
unstable. The instability expresses itself as a small-amplitude oscillation in the radial
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FIGURE 9. (Colour online) (a) Volume fraction V/V0 of the five largest vortices formed
by the instability of a torus with R0/r0 = 7.2. (b) Near-circular trajectories of the vortex
centroids for 40 6 t 6 900.
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FIGURE 10. Evolution of a uniform-PV torus with R0/r0 = 8. Top view of the bounding
contours at t= 0, 40, 90 and 161.

coordinate of the point vortices, with neighbouring vortices in antiphase. For a torus,
the most unstable mode is m = 6 when R0/r0 = 8, and the normalised growth rate
is σr/q0 = 6.53 × 10−2. But there are many competing modes, and the second most
unstable mode is m= 5 with σr/q0= 6.32× 10−2. In order to favour the formation of
six vortices and examine their long-time stability, we introduce a small disturbance
with the spatial structure of the most unstable mode. The evolution is shown in
figure 10. The initial stages are similar to the previous cases for m = 4 and 5. The
wave m=6 amplifies along the torus and rapidly leads to the formation of six vortices.
However the six-vortex array is unstable and oscillates between two states, of which
the first is a circular six-vortex array (as in figure 10b) and the second a staggered
six-vortex array, the vortices being displaced inwards and outwards alternately. In the
second state (figure 10c), the six vortices are close to forming a triangle.

For R0/r0 = 10, the most unstable mode has m= 7 with σr/q0 = 6.67× 10−2. The
second most unstable mode has m = 8 with σr/q0 = 6.41 × 10−2. For illustrative
purposes, the m = 7 mode is initially excited by a small-amplitude disturbance. The
evolution of the flow is presented in figure 11. Growth of the m= 7 mode leads to
the formation of a circular seven-vortex array with vortices of roughly equal size.
The array is unstable, however, again as anticipated from the point-vortex results
of Reinaud (2019). The array undergoes a kind of irregular staggering (figure 11c)
followed by migration of one of the vortices towards the centre of the domain
(figure 11d). From then on, the configuration appears robust and persistent in time,
with the same vortex staying near the centre.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1013


Quasi-geostrophic toroidal vortices 71

(a)

-5

0

5

-5 0 5

(b)

-5

0

5

-5 0 5

(c)

-5

0

5

-5 0 5

(d)

-5

0

5

-5 0 5

FIGURE 11. Evolution of a uniform-PV torus with R0/r0= 10. Top view of the bounding
contours at t= 0, 60, 105 and 200.
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FIGURE 12. Evolution of a uniform-PV torus with R0/r0= 12. Top view of the bounding
contours at t= 0, 20, 60, 82, 92, 112, 132 and 200.

Such persistence is consonant with the fact that a circular array of six identical point
vortices together with an identical central vortex is linearly stable (Reinaud 2019),
even though, due to asymmetries, the arrangement of peripheral vortices is far from
regular in figure 11(d). We note further that conservation of angular impulse J implies
that the motion of one of the vortices towards the centre must be accompanied by an
overall outward motion of the others, or at least some of them. The peripheral vortices
take turns at being the outermost vortex.

Finally, consider a torus with R0/r0 = 12, the largest value examined. The six
most unstable modes and their growth rates are listed in table 2. For illustrative
purposes, we again initially introduce a small-amplitude disturbance corresponding to
the most unstable mode m= 8. The evolution of the flow is presented in figures 12
and 13. Following the initial growth of the m = 8 mode, a circular eight-vortex
array is formed around t = 20, persisting until t ' 75. At this stage the vortices
stagger, with four vortices moving inwards and four outwards, alternately. The vortex
configuration resembles a square for 90 . t . 100. Then the relative motion of the
vortices accentuates and becomes less regular, as shown in figure 12( f –h). The inward
motion of four of the vortices is associated with the shedding of filaments.

The subsequent loss of volume within these vortices can be seen in figure 14(a).
Figure 14(b) confirms the inward motion of these vortices. This motion is, however,
irregular due to the accumulation of asymmetries. This causes some vortices to get
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FIGURE 13. (Colour online) Orthographic view of the PV field at an angle of 60◦ from
the vertical for the torus with R0/r0 = 12 at t= 92.
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FIGURE 14. (Colour online) (a) Volume fraction V/V0 of the eight largest vortices formed
by the instability of a torus with R0/r0 = 12. (b) Trajectories of the vortex centroids for
60< t< 170.

close enough to each other to merge briefly before breaking apart. These interactions
are known as ‘weak exchange’ or ‘partial merger’ depending on the volume of
material exchanged by the two vortices (see Reinaud & Dritschel 2002). At least
seven instances of such interactions occur by t = 1000, the end of the simulation.
The important point is that the eight vortices generated early on do not remain in a
stable configuration, but nor do they readily merge with one another. Figure 14(a)
shows that their volumes settle down to being roughly constant, and indeed that they
stay within approximately 10 % of V0/8 at least until t= 170.

When an initial eigenmode disturbance is not added, the evolution of the torus with
R0/r0 = 12 is more complex (see figure 15). Recall from table 2 that in this case
several modes with similar growth rates are unstable. The evolution shown in figure 15
is asymmetric due to a strong competition between modes. Here, disturbances grow
from numerical noise, which depends on resolution, and hence the outcome of the
instability also depends on resolution. The outcome can also depend on external
forcing not included in the current work. We conclude that the evolution of thin tori
is sensitive to disturbances within the surrounding flow. On the other hand, thicker
tori, for which fewer modes are unstable and for which one mode has a growth rate
significantly larger than the others, tend to evolve more symmetrically. As an example,
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m σr/q0 σi/q0

8 6.70× 10−2
±3.32× 10−2

9 6.66× 10−2
±3.73× 10−2

7 6.35× 10−2
±2.96× 10−2

10 6.18× 10−2
±4.19× 10−2

6 5.69× 10−2
±2.62× 10−2

11 5.15× 10−2
±4.75× 10−2

TABLE 2. Mode numbers m, growth rates σr and frequencies σi for the six most
unstable modes (arising as complex conjugate pairs) when R0/r0 = 12.
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FIGURE 15. Evolution of the unstable uniform PV torus with R0/ro = 12 perturbed by
pseudo-random numerical noise only: top view on the vortex bounding contours at t =
20, 30, 40 and 55.

the torus with R0/r0= 7.2 in figure 7 self-organises into a persistent five-vortex array
even in the absence of an initial eigenmode disturbance.

4.3. Torus plus central vortex evolution
Reinaud (2019) found that a like-signed central vortex may stabilise a circular eight-
vortex array. We next examine if this is also possible for finite vortices emerging from
the instability of a torus when a central vortex is also present. We also explore other
cases when the central vortex is not strong enough to stabilise the configuration but
is still able to ensure quasi-regular behaviour to late times.

We first consider the same torus R0/r0 = 12 as in figure 12, but now with a
spherical vortex of the same uniform PV qc = q0 = 2π, and of radius rc = r0. Hence
the central vortex has a volume Vc = V0/(18π). The strength qcVc of the central
vortex is therefore small not only in comparison with the strength of the whole
torus but also in comparison with one-eighth thereof, the order of magnitude for an
individual vortex in the expected circular eight-vortex array. The evolution of the flow
is shown in figure 16. Since the central vortex is weak, the overall evolution of the
flow is closely similar to the previous case without a central vortex. The torus first
forms a circular eight-vortex array, as expected (figure 16b), followed by staggering
(figure 16c). Significant differences appear when the inward-moving four vortices get
close to the central vortex. For a while, the central vortex remains almost equidistant
from these four peripheral vortices, limiting their further inward motion. Owing to
the build-up of asymmetries, two vortices eventually move further inwards while two
back outwards. At a later stage of the evolution, the small central vortex becomes
close enough to one of the large peripheral vortices and the two vortices partially
merge, generating a slightly larger structure and a small secondary one. Nonetheless,
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FIGURE 16. Evolution of a uniform-PV torus with R0/r0 = 12 and a spherical central
vortex with rc/r0 = 1 and qc/q0 = 1. Top view of the bounding contours at t =
0, 50, 100, 149, 237, 239, 243 and 249.
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FIGURE 17. (Colour online) (a) Volume fraction V/V0 of the nine largest vortices formed
from the torus in figure 16. (b) Trajectories of the vortex centroids for 24< t< 228.

the vortex volumes remain approximately constant, as shown in figure 17(a). The
merged vortex moves towards the centre of the domain, while the other vortices
organise into an irregular array around it (see figure 17b). Similar behaviour has been
observed in simulations using fewer layers, for both nl = 21 and nl = 15.

Next consider the effect of a larger, initially spheroidal central vortex with the same
PV qc= q0 and half-height hc= r0= 0.5 as before, but with a larger horizontal radius
rc > r0 corresponding to an oblate spheroid such that Vc = V0/16, half the expected
strength of a peripheral vortex. This results in a spheroid of horizontal radius rc =√
(3π/32)(R0/r0)r0' 1.88r0. To favour the formation of eight peripheral vortices, the

torus and central vortex are initially perturbed by the m= 8 eigenmode.
The flow evolution is shown in figure 18. Comparing figure 18 with figures 12

and 16, we see that the evolution of the flow is similar to the previous cases, from
the formation of the circular eight-vortex array followed by staggering and then
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FIGURE 18. Evolution of a uniform-PV torus with R0/r0 = 12 and a spheroidal central
vortex with V0/Vc= 16, hc/r0= 1 and rc/r0= 1.88. Top view of the bounding contours at
t= 0, 90, 130, 500, 700, 800, 900 and 1000.
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FIGURE 19. (Colour online) (a) Volume fraction V/V0 of the nine largest vortices formed
from the torus in figure 18. (b) Trajectories of the vortex centroids for 25< t< 388.

irregular motion. The main difference from the case with no central vortex is the
time scale over which the flow evolves after the formation of the eight-vortex array.
In the present case with the larger, like-signed central vortex, the eight vortices
formed from the torus appear by t' 24, but these only reorganise into a square-like
configuration by t ' 100. The configuration remains square-like (approximately)
until t ' 230. Eventually, due to the build-up of asymmetries, one of the peripheral
vortices interacts strongly with the central vortex, and the two vortices start to rotate
around each other. This is clearly visible in the vortex centroid trajectories shown in
figure 19. Eventually, one the peripheral vortices moves close to the centre of the
domain, taking the place of the initially central vortex, and the remaining vortices
move in an irregular way without merging. The initially central vortex, which is
smallest in size, moves furthest out and slowly migrates around the group of vortices
as a whole.
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FIGURE 20. Evolution of a uniform-PV torus with R0/r0 = 11.8 and a spheroidal central
vortex with V0/Vc = 8, hc/r0 = 1 and rc/r0 = 2.64. Top view of the bounding contours at
t= 0, 110, 230 and 1000.

We next consider a larger central vortex with the same PV, qc = q0, but with
volume Vc = V0/8 comparable to the volume of a peripheral vortex. This requires
rc =
√
(3π/16)(R0/r0) r0 ' 2.64r0. In this case we use R0/r0 = 11.8 to ensure that

the most unstable mode is m = 8. A circular eight-point-vortex array with an
equal-strength, like-signed central vortex is linearly stable (Reinaud 2019), so we
expect to see the analogue of this here after the destabilisation of the torus. As in
the previous case, we take the half height of the central vortex to be the same as
that of the torus, hc = r0, and again give it the same PV, qc = q0. We only increase
the horizontal radius rc to rc ' 2.64r0. The initial configuration is weakly perturbed
by the m= 8 eigenmode.

The flow evolution is shown in figure 20. As previously, an eight-vortex array forms,
but it now appears to remain stable for the entire period of integration up to t= 1000.
The same is observed using a lower vertical resolution of nl = 15 layers. There is no
evidence that the configuration formed will ever change significantly.

In the last case studied, we examine a much thicker torus with a like-signed
spherical central vortex. Recall that thick tori, for which the most unstable mode is
either m= 2 or m= 3, do not self-organise into regular vortex arrays (see figures 4
and 5 for R0/r0 = 2 and 4, respectively). Consider then a torus with R0/r0 = 2.4
and a central vortex with hc = rc = r0 and qc = q0. This equilibrium state lies in
a region of the parameter space containing a large number of competing unstable
modes arising from the strong shear between the central vortex and the inner side of
the torus (see figure 3a). The flow evolution at early times is shown in figure 21. The
central vortex and the inner part of the torus deform mostly through a combination
of modes m= 3 and 2. Eventually the central vortex and torus merge, creating three
bridges of PV at the edges of the deformed central vortex. The complexity of the
flow then grows rapidly. The central vortex and the torus later merge into a large
compound structure, most visible in figure 21(d–h). Notably, the early evolution
in figure 21(a–c) is quasi-barotropic, as the contours at opposite heights nearly
coincide. This is consistent with the vertical eigenstructures of the linearly unstable
modes discussed in § 3.4. At later times, however, vertical asymmetries develop and
accelerate the growth in complexity of the flow.

5. Conclusion and discussion
We have investigated the formation of circular vortex arrays arising from the

instability of a torus of uniform potential vorticity in an unbounded quasi-geostrophic
(QG) flow under the Boussinesq approximation, with and without a central vortex.
We have also investigated the subsequent nonlinear evolution.
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FIGURE 21. Evolution of a uniform-PV torus with R0/r0 = 2.4, and a spherical central
vortex with rc/r0 = 1 and qc/q0 = 1. Top view of the bounding contours at t =
0, 11, 14, 22, 26, 30 and 35. In panels ( f –h) only contours in every fifth layer are
shown. If all contours were included, then the figure would be almost black with contours.

We have first shown that a torus of uniform potential vorticity is unstable to
azimuthally wavy disturbance modes, over a large range of torus radius ratios R0/r0.
The azimuthal mode number m of the most unstable such disturbance increases with
R0/r0, roughly in proportion to it. The most unstable mode has azimuthal length scale
comparable to 2r0, the diameter of the cross-section of the torus.

In the nonlinear dynamics, an unstable mode with azimuthal wavenumber m > 3
leads to the formation of a circular array of m vortices initially lying along the mean
radius of the torus. The configuration is stable for m= 4 and 5 but unstable otherwise.
For m > 6 the growth of a subharmonic instability staggers the vortices.

When a central vortex is introduced, the linear and nonlinear evolutions are
modified. When the central vortex has the same sign of potential vorticity as the
torus, and has a strength comparable to or larger than a vortex in the circular array,
the array is kept stable apparently indefinitely. Weaker central vortices can still lead
to quasi-regular vortex evolution without any merging, over long times, such as
oscillatory staggering.

A question currently under investigation, and to be reported on in future work,
is the effect of a vertical offset of the central vortex above or below the torus. In
the Boussinesq model, which provides a good approximation for the ocean over
modest height scales, the sign of the offset is immaterial. However, the Boussinesq
model does not accurately account for the exponential density stratification typical
of planetary atmospheres, including the Earth’s and Jupiter’s. The quasi-geostrophic
model can account for this stratification by the introduction of a new length scale,
the density scale height H, while retaining the simplicity of an unbounded geometry
(Scott & Dritschel 2005). The sign of the offset then matters, as interactions decay
more rapidly upwards but more slowly downwards (Hoskins et al. 1985, equations
(33); Scott & Dritschel 2005). The formation and stability of circular vortex arrays
are likely to depend on H, especially when this height is comparable to the minor
radius r0 of the torus. This is ongoing research which will bring us a step closer
to understanding, for instance, the formation and longevity of circular vortex arrays
such as those recently observed near Jupiter’s poles (Adriani et al. 2018).
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