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Abstract.—A rich echinoid fauna within the middle Miocene carbonate sedimentary succession cropping out along the
coast between Santa Caterina di Pittinuri and S’Archittu (central-western Sardinia) allows the comparison of faunal gra-
dients and preservation potentials from both hard and soft substrata. Three echinoid assemblages are recognized. Faunal
composition, as well as taphonomic and sedimentological features and functional morphological interpretation of the
echinoid test indicate an outer sublittoral setting. Assemblage 1 represents a highly structured environment within the
photic zone, with mobile substrata occupied by infaunal irregular echinoids, mainly spatangoids, and localized hard sub-
strata, provided by rhodolith beds, with epibenthic regular echinoids represented by the co-occurrence of the diadematid
Diadema Gray, 1825 and the toxopneustids Tripneustes L. Agassiz, 1841 and Schizechinus Pomel, 1869. Assemblage 2
shows a higher diversity of irregular echinoids, dominated by the clypeasteroids Echinocyamus van Phelsum, 1774 and
Clypeaster Lamarck, 1801 and different spatangoids, with the minute trigonocidarid Genocidaris A. Agassiz, 1869
among regular echinoids. This assemblage points to a soft-bottom environment with moderate water-energy conditions,
periodically affected by storms. A low-diversity echinoid fauna in Assemblage 3, dominated by the spatangoids Brissop-
sis L. Agassiz, 1840 and Ova Gray, 1825, documents a deeper, soft-bottom environment, possibly below storm-wave
base. These results indicate that the diversity of echinoid faunas originating in sublittoral environments is related to:
(1) the presence of both soft and hard substrata, (2) differential preservation potentials of the various echinoid taxa,
(3) intense bioturbation, and (4) sediment deposition by sporadic storm events.

Introduction

Today echinoids form a successful group of marine invertebrates
living in a wide range of marine habitats from the equator to the
polar seas and from the intertidal zone to abyssal depths and
have left an extensive fossil record, dating back to the Ordovi-
cian (Pisera, 1994; Smith and Saville, 2001; Kroh and Smith,
2010; Smith and Kroh, 2011). The diversity, abundance, and
distribution of echinoids depend on numerous factors including,
among others, temperature, hydrodynamic regimes, substrate
types and complexity, nutrient availability, and distribution of
predators (see Ernst et al., 1973; Smith, 1984; McClanahan,
1995, 1998; Sala and Zabala, 1996; Guidetti and Mori, 2005;
Cordeiro et al., 2014; Labbé-Bellas et al., 2016; Petović and
Krpo-Ćetković, 2016).

Echinoids represent key benthic faunal elements in shallow
marine environments. Both regular echinoids, as dominant gra-
zers on hard substrata, and irregular echinoids, as deposit feeders
and bioturbators in or on unconsolidated sediments, are promin-
ent in structuring a wide range of marine communities (e.g.,
Lawrence, 1975; Carpenter, 1985; Harrold and Pearse, 1987;
Bak, 1990; Widdicombe and Austen, 1998; Lohrer et al.,
2005; Antoniadou and Vafidis, 2014; Cabanillas-Terán et al.,
2016).

In general, regular echinoids are more poorly represented
than irregular echinoids in the fossil record (Kier, 1977;
Smith, 1984; Greenstein, 1993b) and usually occur as

fragmented remains (e.g., Kier, 1977). Beside differences in
constructional morphology, this discrepancy is related to differ-
ences in paleoecology among regular and irregular forms and
taphonomic processes affecting the echinoid test (Kier, 1977;
Smith, 1984; Greenstein, 1993b; Nebelsick, 1996). Regular
echinoids diversified as grazers on hard substrata in shallow-
water environments that represent areas of active erosion,
whereas irregular echinoids diversified as deposit feeders often
buried within mobile substrata in areas of active sedimentation
where they have higher preservation potential (Smith, 1984;
Nebelsick, 1996). In addition, the poor fossil record of regular
echinoids could be related to a taxonomic bias due to the diffi-
culty in the identification of taxa based on fragmentary material
(Greenstein, 1993a, b).

Herein, an echinoid-rich sedimentary succession from the
Miocene of central-western Sardinia (Italy), cropping out
along the coast between S’Archittu and Santa Caterina di Pitti-
nuri, is described with the two-fold aim of: (1) reconstructing
paleoecological and associated paleoenvironmental conditions,
and (2) investigating factors influencing the preservation poten-
tial of echinoids and their representation in fossil deposits. This
succession includes an abundance of echinoid taxa that can be
interpreted with respect to functional morphology and taph-
onomy. The importance of functional morphological interpreta-
tions of skeletal morphologies as well as comparisons to
actualistic studies on echinoids for interpreting fossil echinoids
have been discussed in detail within an ongoing re-evaluation of
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the paleoecology and preservation of the rich Miocene echinoid
fauna of Sardinia (see Mancosu and Nebelsick, 2013, 2015,
2016, 2017a, b; Mancosu et al., 2015).

Geological setting

The development of the Oligo-Miocene volcano-sedimentary
succession of Sardinia that is related to the evolution of the
present-day Mediterranean area shows a three-fold subdivision:
(1) a Chattian to early Burdigalian first cycle, (2) a late Burdiga-
lian to early Serravallian second cycle, and (3) a Serravallian to
early Messinian third cycle (Assorgia et al., 1997a, b, c;
Carmignani et al., 2015). This succession is predominately pre-
sent in the NNW-SSE-oriented Sardinian Basin (Fig. 1.1),
which originated during Oligo-Miocene tectonic movements
of the Corsica-Sardinia Block (Cherchi and Montandert, 1982;
Thomas and Gennesseaux, 1986; Carmignani et al., 2001;
Facenna et al., 2002; Speranza et al., 2002).

The studied sedimentary succession is located in the south-
western part of the Montiferru area (central-western Sardinia)
(Fig. 1.1–1.3) along the coast between the small villages of
S’Archittu and Santa Caterina di Pittinuri, and belongs to the
second sedimentary cycle (Assorgia et al., 1997c; Carboni
et al., 2010). In the Montiferru area, the Miocene volcano-
sedimentary sequence starts with andesitic lavas and pyroclastic
deposits of rhyolitic and dacitic composition (Assorgia et al.,
1997c; Bottero et al., 2002 and references therein) dated by
the K-Ar method to19–16 Ma and 17–13 Ma, respectively
(e.g., Assorgia et al., 1997a, c and references therein). These
deposits lie immediately beneath or are intercalated with a sedi-
mentary succession that consists of heterometric conglomerates,
epiclastites, and volcanoclastic deposits of fluviolacustrine ori-
gin (e.g., Assorgia et al., 1997c; Mighela et al., 1997) followed
by a thick marine sedimentary sequence ranging from late Bur-
digalian to early Serravallian in age based on their stratigraphic
position and macrofossil content (Comaschi Caria, 1951; Assor-
gia et al., 1997c). This sequence consists of calcareous sand-
stones with abundant macrofossils, mainly pectinids, e.g.,
Gigantopecten nodosiformis (Pusch, 1837), and echinoids (Cly-
peaster spp.), passing upward to fine-grained calcarenites,
marls, and limestones dominated by spatangoid echinoids.
Lower-middle Miocene sedimentary rocks are unconformably
overlain by subaerial, fluviodeltaic sandstones and conglomer-
ates intercalated with Pliocene to lower Pleistocene trachytic
and phonolitic lava flows (Beccaluva et al., 1974; Assorgia
et al., 1997c; Carboni et al., 2010). As noted by Mighela et al.
(1997), the tectonosedimentary development and the strati-
graphic framework of the Montiferru area is comparable in
part to that of the well-known Logudoro and Porto Torres basins
(northern Sardinia) as described by Mazzei and Oggiano (1990)
and Funedda et al. (2000, 2003).

The Miocene sedimentary sequence cropping out along the
coast between Santa Caterina di Pittinuri and S’Archittu consists
at the base of coralline algal grainstones to rudstones (Fig. 1.3,
Unit 1) passing upward to very fine-grained lithologies (calcar-
eous sandstones, mudstone, wackestones, and packstones) of
Unit 2 (Fig. 1.3) that contains the echinoid assemblages studied
herein. Fossil content is dominated by echinoid remains that

occur throughout the sedimentary sequence and have been
described in part by Comaschi Caria (1951, 1972).

Materials and methods

Paleontological, taphonomic, and sedimentological analyses
were conducted in the field and laboratory. Identification of car-
bonate rocks follows Embry and Klovan (1971) and Lokier and
Al Junaibi (2016).

Two stratigraphic sections within the marine sedimentary
sequencewere measured in which echinoid remains are common
throughout (Fig. 2.1, 2.2). These sections include three assem-
blages from beds that are particularly well exposed and charac-
terized by a large number of echinoid remains. The first echinoid
assemblage was found within the sedimentary succession east to
Santa Caterina di Pittinuri (40°06′27”N, 08°29′11′′E; Fig. 2.1).
The second and third echinoid assemblages studied herein were
found nearby within the sedimentary sequence cropping out
between S’Archittu (40°05′47′′N, 08°29′13′′E) and Punta Cajar-
agas (40°05′58′′N, 08°29′17′′E) (Fig. 2.2). These beds were
investigated in detail with respect to relative abundance of ech-
inoid and other taxa, test orientation, as well as taphonomic and
sedimentological features. Field determinations include abun-
dance, orientation, preservation, and packing fabric fragments
(following Kidwell and Holland, 1991). Numerous complete
and fragmented echinoid tests were systematically collected
throughout the succession in 2017 and 2018. Many test frag-
ments and spines could be attributed to specific echinoid taxa
due the presence of characteristic surface characters and their
excellent preservation. Taphonomic attributes observed in the
field included the degree of fragmentation and orientation with
respect to the bedding planes. The modes of life of the Recent
analogous taxa of the fossil echinoids recognized in the present
study were tabulated and compared with respect to their Recent
depth distribution. The combined analysis of sedimentary char-
acteristics, the functional-morphological interpretation of echi-
noids (and other bioclastic components), and taphonomic
interpretation of attributes allowed for a detailed interpretation
of paleoenvironment. Finally, the studied material was directly
compared to previously investigated echinoids from fossil sub-
littoral environments. Taxonomic classification at and above
genus level follows Kroh and Smith (2010) and Smith and
Kroh (2011). Although some echinoid taxa could be assigned
to a species level, rigorous taxonomic revision is beyond the
scope of this study. Descriptive terminology of the echinoid
test follows Smith (1978, 1980b) and Smith and Kroh (2011).

Repository and institutional abbreviation.—Samples are
stored in the Museo di Geologia e Paleontologia Domenico
Lovisato, Università di Cagliari (MDLCA), under registration
numbers MDLCA 23648–23655. Specimens figured herein
without registration numbers currently remain in situ.

Results

Facies description and echinoid diversity.—Assemblage 1
occurs within pale yellow to white, very fine-grained wacke-
to packstones that are intensely bioturbated by large,
branched, Thalassinoides-like burrows. This assemblage is

Mancosu and Nebelsick—Paleoecology and taphonomy of echinoids in sublittoral environments 765

https://doi.org/10.1017/jpa.2019.4 Published online by Cambridge University Press

https://doi.org/10.1017/jpa.2019.4


Figure 1. (1) Distribution of Miocene sedimentary rocks in Sardinia; (2) simplified geological map of the southwestern part of the Montiferru area (modified from
Carboni et al., 2010); (3) panoramic view of the studied sedimentary succession (see Geological setting section for subdivision of Units 1 and 2).
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dominated by spatangoid echinoids with the schizasterid Ova
Gray, 1825 and subordinately the brissopsid Brissopsis
L. Agassiz, 1840 (Fig. 3.1), along with rare test remains of the
loveniid Hemipatagus Desor, 1858 and the echinocardiid
Echinocardium Gray, 1825 (Fig. 3.2). Among irregular
echinoids, the minute clypeasteroid Echinocyamus van
Phelsum, 1774 is commonly found. Diadematid echinoid
remains also occur abundantly (Fig. 3.3, 3.4). These can occur
as articulated test elements (Fig. 3.3A) and isolated ambulacral
and interambulacral plates (Fig. 3.4A) and associated spines
(Fig. 3.3B, 3.4B), which can be present as long segments and
fragments. Isolated Aristotle’s lantern elements ascribed to
these diadematids consist of large hemipyramids, rotulae, and
grooved teeth. The regular toxopneustid echinoids Tripneustes
L. Agassiz, 1841 (Fig. 3.5) and Schizechinus Pomel, 1869
(Fig. 3.6) are also present. Other major biotic constituents are
common coralline algae rhodoliths (Fig. 4.1) present in
discrete layers. These rhodoliths range from 2–13 cm in
maximum length, and are dominated by subspherical shapes
with a few highly spherical, although more flattened examples
also present. Growth forms are dominated by the presence of
encrusting thalli and low protuberances. Encrustation by
densely packed barnacles reaching heights of ca. 1 cm is very
common. Rhodoliths also show bioerosion consisting of small
Trypanites Mägdefrau, 1932 and rare Gastrochaenolites
Leymerie, 1842. Further biotic remains consist of rare
pectinids and internal bivalve molds. Bioturbation is present,
with Thalassinoides-like burrows generally to 2 cm in
diameter (Fig. 4.2).

Assemblage 2 occurs within highly bioturbated, pale yel-
low, very fine-grained wacke- to packstones. This assemblage
is dominated by the spatangoid Brissopsis (Fig. 5.1A) and the
minute clypeasteroid Echinocyamus (Fig. 5.1B). Also present
among spatangoids are Ova (Fig. 5.1C), Opissaster Pomel,
1883, and the loveniids Lovenia Desor in L. Agassiz and
Desor, 1847 andHemipatagus (Fig. 5.2). The clypeasteroidCly-
peaster marginatus Lamarck, 1816 also occurs (Fig. 5.3).
Among regular echinoids, test remains of the minute trigonoci-
darid Genocidaris A. Agassiz, 1869 (Fig. 5.4) occur frequently.
Small test and spine fragments of diadematid echinoids were
found sporadically along with large hemipyramids ascribed to
these echinoids. Other major biotic constituents are ossicles of
asterozoans, the epitoniid gastropod Cirsotrema Mörch, 1852,
the smooth and thin-shelled pectinid bivalve Amusium Röding,
1798, remains of the portuniid crab PortunusWeber, 1795 often
with articulated chelipeds, and isolated barnacles. Internal
molds of bivalves and gastropods were also found. The accom-
panying microfauna includes nodosariid foraminiferans. The
fine-grained carbonate deposits are intensely bioturbated by
large, branched Thalassinoides-like burrows that reach a diam-
eter of 4 cm. These burrows are often filled by coarse biogenic
material consisting predominately of spatangoid test fragments
and bivalve shell remains (Fig. 5.5). Complete tests of Echino-
cyamus and Genocidaris can be also found within these
burrows.

Assemblage 3 occurs within a highly bioturbated, whitish
mud- towackestone and is dominated by the spatangoidBrissopsis
(Fig. 6.1) along with subordinateOva (Fig. 6.2, 6.3). Sporadically
present are the irregular echinoids Opissaster, Hemipatagus, and
Echinocyamus and the regular echinoid Schizechinus.

Taphonomy.—The taphonomic attributes of different echinoid
taxa are summarized in Table 1. Echinoids are present as
complete specimens as well as variously sized test fragments
ranging from half tests to single isolated plates. Both inter-
and intraplate fragmentation are present. Evidence of abrasion
is lacking because echinoid tests and their fragments are very
well preserved. Encrustation of the echinoids was not
observed. Bioerosion is present as Oichnus-like circular
drillholes on Echinocyamus and the spatangoids.

Among regular forms, diadematid echinoids occur com-
monly as isolated interambulacral and ambulacral plates, Aristo-
tle’s lantern elements, and spine fragments; partially preserved
tests with associated spines were also found in Assemblage 1
(Fig. 3.3, 3.4). Tripneustes occurs almost exclusively as test
fragments, which consist of several ambulacral and interambula-
cral plates still sutured together (Figs. 3.5A, B) and spine frag-
ments. A single Tripneustes test with spines attached and
Aristotle’s lantern elements present was found in situ (Figs.
3.5C). Schizechinus occurs as complete tests lacking both spines
and the apical system (Fig. 3.6A), and rarely as test fragments
(Fig. 3.6B). In contrast, the minute Genocidaris is present
mainly as complete tests lacking spines, some of which still
retain the apical system (Fig. 5.4).

Clypeaster marginatus is present as complete tests but is
mostly represented by pie-shaped portions of tests and smaller
fragments. Fragments can be readily recognized due to the
small, evenly distributed, sunken tubercles on the surface as
well as presence of an internal support structure in the interior
of the test. The clypeasteroid echinoid Echinocyamus is present
mainly as complete tests, with fragmented material again show-
ing internal supports.

Spatangoid echinoids are especially common and are pre-
sent in all states of preservation from complete specimens to
fragmented materials. The remnants of these echinoids also
dominate the infillings of Thalassinoides-like burrows that can
also include complete Echinocyamus and very rarely small spe-
cimens of complete spatangoids.

The echinoid remains are not homogeneously distributed
within the deposit. In Assemblages 1 and 2, echinoid remains
range from densely to loosely packed and are dispersed with
complete tests reaching densities of 15 individuals/m2 on
exposed rock surfaces. In Assemblage 3, echinoid remains
range from loosely packed to dispersed. The echinoids show
no preferred orientation both in plan view and cross section.
Both complete specimens and fragments show orientations ran-
ging from concordant to perpendicular to the bedding plane. In
all three assemblages, complete specimens oriented aboral side
up and concordant to the bedding plane are less common than
oblique and overturned specimens (Fig. 7).

Figure 2. Stratigraphic sections of (1) Santa Caterina di Pittinuri and (2) S’Archittu-Cajaragas, with occurrence, relative abundance, and taphonomic signatures of
recognized echinoids (at genus levels) and associated macrofauna and flora within the assemblages studied herein.
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Discussion

Functional morphology of echinoid tests and actualistic
comparisons.—The interpretations of life styles, functional
morphological aspects, and actualistic comparisons of many of
these echinoid taxa have been reviewed in previous papers
dealing with the Miocene echinoids of Sardinia (see Mancosu
and Nebelsick 2013, 2015, 2016, 2017a, b; Mancosu et al.,
2015) as summarized in Table 2. Newly discussed taxa (see
below) include the diadematoid Diadema Gray, 1825, the
camarodont Schizechinus, the spatangoid Echinocardium
(recorded for the first time from the Miocene of Sardinia), and
two morphotypes of Ova.

Diadematid echinoid remains occur abundantly in Assem-
blage 1 and sporadically in Assemblage 2. Diadema and Cen-
trostephanus Peters, 1855 were reported from the Miocene of
Sardinia based on spine fragments (Cotteau, 1895; Lambert,
1907); however, as previously discussed (e.g., by Kroh, 2005
and Donovan et al., 2011), subfamilial classification of diadema-
tid echinoids based on spines and test fragments is problematic.
The discovered remains can be assigned to the genus Diadema

based on the presence of trigeminate ambulacral plates bearing
a single large tubercle, with pore-pairs of P2 type in a single ser-
ies that widen adorally to form a phyllode with pore-pairs of P3
type, interambulacral plates containing up to four subequal, per-
forated, crenulate tubercles, and hollow and verticillate spines
showing clearly asymmetrical distinct bases.

Diadema is interpreted herein as living epifaunally within
coralline algal beds as indicated by the presence of oral P3
type isopores. These are partitioned isopores surrounded by a
broad attachment area for the rectractor muscle of the tube feet
and are present in shallow-water species living on rocks or
reef structure, in crevices, or beneath boulders (Smith, 1978).
Diadematids, e.g., Diadema and Centrostephanus, are epifaunal
regular echinoids that inhabit mostly protected littoral and sub-
littoral environments (Mortensen, 1940). Diadema is among
the most ecologically important echinoids in tropical oceans
(Andrew and Byrne, 2007; Muthiga and McClanahan, 2007
and references therein) and has only been recently observed in
the shallow water of the Mediterranean Sea, representing an
invasive Lessepsian migrant from the Red Sea (Yokes and
Galil, 2006; Nader and El Indary, 2011; Bronstein et al.,
2017). Species of Diadema, e.g., D. antillarum Philippi, 1845,
D. setosum (Leske, 1778), D. mexicanum A. Agassiz, 1863,
and D. ascensionis Mortensen, 1909, occupy diverse habitats
from shallow water to a depth of 400 m, although they are
most abundant in littoral areas, on rock and sandy substrata,
coral reefs, mangrove roots, and seagrass beds (Randall et al.,
1964; Chesher, 1972; Kier, 1975; Smith, 1978; Serafy, 1979;
Coppard and Campbell, 2005, 2007; Lessios, 2005; Muthiga
and McClanahan, 2007; Gondim et al., 2013; Nateghi Shahro-
kni et al., 2016). They are mainly omnivorous grazers and
detritus feeders, scraping algal films off hard substrata and feed-
ing on seagrasses, foraminiferans, crustaceans, and small organ-
isms found on the sea floor (Mortensen, 1940; Lewis, 1964;
Randall et al., 1964; Pearse, 1970; Serafy, 1979; De Ridder
and Lawrence, 1982). Diadema, as many other diadematids, is
highly light sensitive, often foraging at night and remaining hid-
den in rocky crevices and holes during the day (Mortensen,
1940; Tuya et al., 2004; Andrew and Byrne, 2007).

The toxopneustid Schizechinus from Assemblages 1 and 3,
which was described by Cotteau (1895) and Comaschi Caria
(1951) as Psammechinus calarensis Cotteau, 1895, is a small
to medium-sized echinoid interpreted herein as living in low
to moderate energy environments as suggested by the presence
of oral P2 isopores (Smith, 1978). Schizechinus is exclusively
known from fossils and occurs commonly in carbonate and
less commonly in siliciclastic shallow-water sediments in Mio-
cene sedimentary successions of the Mediterranean and central
Paratethys (see Challis, 1980; Schmid et al., 2001; Kroh, 2005).

Schizechinus is closely similar to the extant toxopneustid
Sphaerechinus Desor, 1856, a monotypic genus living in the
Mediterranean and eastern Atlantic Ocean. Sphaerechinus gran-
ularis (Lamarck, 1816) occurs from the littoral zone to depths of
120 m on a wide variety of substrata, including mud and fine- to

Figure 3. Assemblage 1: (1)Brissopsis in overturned position and spatangoid fragments; (2)Echinocardium (MDLCA 23648); (3, 4) test (A) and spine remains (B)
of Diadema; (5) remains of Tripneustes interambulacral (A; MDLCA 23649) and (B) ambulacral (B; MDLCA 23650) plates, Aristotle’s lantern (C), and spines
(MDLCA 23651); (6) remains of Schizechinus complete test (A; MDLCA 23652) and test fragment (B; MDLCA 23653).

Figure 4. (1) Rhodoliths from Assemblage 1 with encrusting barnacles; (2)
detail of the sedimentary succession of Santa Caterina di Pittinuri showing
Thalassinoides-like burrows.
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coarse-grained sands, rocky bottoms, seagrass, and algal mea-
dows, and also in coarse-grained, coralline-algae-dominated
sediments (e.g., Koehler, 1927; Mortensen, 1943; Tortonese,
1965; Ernst et al., 1973; Smith, 1978; Harmelin and Duval,
1983; Riedl, 1983; Guillou and Michel, 1993; Unger and Lott,
1994; Sartoretto and Francour, 1997; Palacín et al., 1998;
Zavodnik, 2003; Koukouras et al., 2007; Despalatović et al.,
2009; Antoniadou and Vafidis, 2014; Petović and
Krpo-Ćetković, 2016; Sievers and Nebelsick, 2018). Sphaere-
chinus is mainly herbivorous, feeding on seagrass, encrusting
coralline algae, and soft algae. It also selectively consumes
detritus when living in soft-bottom environments (De Ridder
and Lawrence, 1982; Guillou and Lumingas, 1998; Martínez-
Pita et al., 2008; Elmasry et al., 2013).

The echinocardiid Echinocardium sp. from Assemblage 1
represents the first report of this genus in theMiocene of Sardinia.
Its globular test (sensu Kanazawa, 1992) with a keeled plastron,
the presence of nonconjugated, partitioned isopores for funnel-
building tube feet in ambulacrum III, together with an inner
fasciole, allowed this spatangoid echinoid to burrow deeply in
fine-grained sediments. The presence of minute pores within
the shield-shaped subanal fasciole indicates that Echinocardium
sp. was possibly able to construct and maintain a single sanitary
drain, as reported, e.g., by Nichols (1959) for extant species of
Echinocardium, e.g., E. cordatum (Pennant, 1777), E. pennatifi-
dum Norman, 1869, and E. flavescens (O.F. Müller, 1776).

Extant species of Echinocardium are infaunal deposit fee-
ders that inhabit a wide range of environments from intertidal
to midshelf burrowing in different types of sediments, mostly
fine sands to mud, predominantly in temperate regions (Morten-
sen, 1951; Nichols, 1959; Buchanan, 1966; Tortonese, 1977; De
Ridder, 1982; Duineveld and Jenness, 1984; Kanazawa, 1992;
Nakamura, 2001; Zavodnik, 2003). Field studies onE. cordatum
show that this spatangoid inhabits both littoral and offshore
environments burrowing at depths from a few to∼ 20 cm deep

in sandy and silty sediments. Ursin (1960) and Buchanan
(1966) documented populations of E. cordatum from North
Sea coasts occurring offshore at depths of 30–40 m, dispersed
in large discrete patches at maximum densities of 40 indivi-
duals/m2. Higher densities of Echinocardium (to 200 indivi-
duals/m2) were reported from Seto Inland Sea, Japan
(Nakamura, 2001) and from the Belgian continental shelf
(Degraer et al., 2006).

Two morphotypes of the schizasterid Ova were identified
within the studied assemblages (see Fig. 6.2, 6.3). Morphotype
1 has a test with a subcircular outline and a relatively narrow and
shallow ambulacrum III. Morphotype 2 differs in having a test
with a more depressed wedge-shaped profile, slightly elongated
outline, and larger and deeper ambulacrum III with a greater
number of partitioned isopores. Both Ova morphotypes
co-occur within Assemblages 2 and 3; morphotype 1 has not
been recognized within Assemblage 1.

Both Ova morphotypes are interpreted here to have bur-
rowed deeply in fine-grained sediments. Morphotype 1, how-
ever, owing to its more wedge-shaped profile, deeper and
wider frontal ambulacrum with more numerous well-developed
partitioned isopores for funnel-building tube feet, posteriorly
located apical system, keeled posterior interambulacrum, long
and curved anterior-paired petals, shorter posterior-paired
petals, as well as peripetalous and lateroanal fascioles possibly
buried deeper than morphotype 2. In both forms, the aboral
tuberculation is fine, uniform, and dense indicating the presence
of a dense canopy of spines enabling burrowing within fine-
grained substrata with the spines used to support the top of the
burrow and maintain a space for water circulation (e.g., Gale
and Smith, 1982; Kanazawa, 1992). The presence of a lateroanal
fasciole and partitioned isopores in the subanal region enabled
the construction of sanitary drains.

Most extant species of the genusOva and the closely related
genus Schizaster include shallow and deeper burrowing forms

Figure 5. Assemblage 2: (1) spatangoid remains (A) and Echinocyamus (B) in fine-grained sediments within the sedimentary sequence of S’Archittu; (2) Hemi-
patagus (MDLCA 23654); (3) test remains of Clypeaster marginatus; (4) remains of Genocidaris (A) and Echinocyamus (B) (MDLCA 23655); (5) Thalassinoides-
like burrows partially filled with fragments of echinoids and bivalves.

Figure 6. Assemblage 3: (1) Brissopsis; (2) Ova morphotype 1; (3) Ova morphotype 2.
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and inhabit inner neritic environments shallower than 100 m
depth (Mortensen, 1951). Ova canalifera (Lamarck, 1816)
from the Mediterranean is known to live buried in fine-grained
sediments to 20 cm deep, with maximum abundances between
20 and 70 m depth (Tortonese, 1965; Schinner, 1993; Bromley
et al., 1995; Zavodnik, 2003; Koukouras et al., 2007). This ech-
inoid constructs both a respiratory funnel and a subanal sanitary
drain (Schinner, 1993; Asgaard and Bromley, 2007). Schizaster
lacunosus (Linnaeus, 1758) is a deposit feeder that occurs bur-
ied in fine-grained sediments at 5–90 m depth (Mortensen,
1951; Schin and Thompson, 1982; Kanazawa, 1992; Chao,
2000; Banno, 2008). Schizaster floridiensis (Kier and Grant,
1965) from the Caribbean Sea lives at water depths of 9–65 m
(Rodríguez-Barreras, 2014) burrowing in mud and sand bottoms
to 25 cm below the sediment surface (Chesher, 1966). The dis-
tribution of Ova seems to be primarily controlled by the avail-
ability of a suitable soft substratum consisting of silts to
fine-grained sands within which this echinoid burrows. If such
suitable substrata are present, these echinoids can occur both
in protected shallow water as well as in deeper environments.

Paleoenvironmental reconstruction of the echinoid
assemblages.—The Miocene echinoid fauna found within the
studied sedimentary succession, which is dominated by
irregular echinoids (mainly spatangoids) as well as associated
fauna and flora, lithology, and sedimentary features, points to
relatively deep, sublittoral environments (Figs. 8, 9). The
echinoid assemblages are interpreted as autochthonous to
parautochthonous. Although taphonomic signatures, e.g., the
state of disarticulation and fragmentation and orientation with
respect to the bedding plane, clearly show that echinoid
remains are not preserved in life positions; they are exquisitely
preserved with respect to surface details, including
tuberculation, ambulacral pore-pairs, and fascioles, and were
not transported for any appreciable distance before final burial.
The preservation of a large number of complete tests lacking
spines and showing no evidence of encrustation indicates
short surface-residence times on the sediment/water interface

before being buried in the sediment. Differences among the
three studied assemblages with respect to echinoid diversity,
the relative abundance of taxa, and the associated fauna, flora,
and trace fossils can be detected (see Table 3, Fig. 9).

In Assemblage 1, the co-occurrence of the camarodonts
Tripneustes and Schizechinus and the diadematoid Diadema
among regular forms, the spatangoid echinoids Ova, Brissopsis,
Hemipatagus, Echinocardium, and the clypeasteroid Echino-
cyamus, and the presence of rhodoliths loosely scattered
throughout the fine-grained sediments, indicate a highly struc-
tured sublittoral environment still within the photic zone, with
soft substrata and rhodolith patches.

Rhodolith beds frequently occur today in themesophotic zone
mostly at∼ 40–60 m water depth (Bassi et al., 2009; Foster et al.,
2013; Basso et al., 2016) where there are low, but still sufficient
light levels for photosynthesis (Littler et al., 1991; Foster, 2001).
Rhodolith beds provide three-dimensional hard substrata and sup-
port a high diversity and abundance of marine flora and fauna (e.g.,
Steller et al., 2003; Pascelli et al., 2013; Teichert, 2014; Horta et al.,
2016; Hernandez-Kantun et al., 2017, and references therein),
including echinoids (James, 2000; Kamenos et al., 2004; Gagnon
et al., 2012; Gondim et al., 2014; Horta et al., 2016).

Assemblage 2, with the co-occurrence of the spatangoids
Ova,Opissaster,Brissopsis, Lovenia, andHemipatagus, the cly-
peasteroids Echinocyamus and Clypeaster marginatus, and the
camarodont Genocidaris, represents a relatively deep, outer-
sublittoral environment with low to moderate water energy and
mobile, fine-grained sand substrate. The sediments were heavily
affected by Thalassinoides-like burrows presumably produced
by thalassinid shrimps that can form large populations in extant
littoral and sublittoral environments (see Dworschak, 2000).
Sporadic high-energy events not only led to temporarily exhum-
ation, overturning, and reworking of the echinoids, but also to
the infilling of burrows by densely packed echinoid remains.
The Thalassinoides-like burrows filled by echinoid test frag-
ments and bivalve shell remains are interpreted as tubular tem-
pestites that represent open tubes produced by burrowing
animals subsequently filled with sediments and bioclasts trans-
ported by storm-generated currents (Wanless et al., 1988;
Tedesco and Wanless, 1991).

Assemblage 3, with its lower diversity and the dominance
of burrowing spatangoid echinoids including Brissopsis and,
subordinately, Ova, and the sporadic occurrence of Opissaster,
Hemipatagus, Echinocyamus, and Schizechinus represents a
slightly deeper and quieter environment with muddy substrate,
possibly slightly below normal storm wave base. Depositional
environments characterized by fine-grained, carbonate sedi-
ments with highly bioturbated internal structures resulting
from the activities of infaunal animals, including echinoids
and crustacean decapods, occur today in relatively shallow sub-
littoral settings with low energy conditions and episodic storm
events (e.g., Blom and Aslop, 1988; Scoffin, 1988; Bentley
and Nittrouer, 2012) and provide an analog for the environments
described herein.

Various trophic resources were exploited, as denoted by the
co-occurrence of omnivorous and algal-grazing regular echi-
noids and both shallow- and deeper-burrowing, deposit-feeding
irregular echinoids. Niche separation among regular echinoids
was reported according to food preferences, type of foraging,

Table 1. Taphonomic attributes of the various echinoid taxa recognized within
the assemblages studied herein. 1 = whole test with spines; 2 = whole test
without spines; 3 = quarter to half tests; 4 = larger fragments of articulated
ambulacral/interambulacral plates still sutured together; 5 = isolated plates, spine
fragments.

State of disarticulation

Taxon 1 2 3 4 5

DIADEMATOIDA
Diadema Gray, 1825 − − − x x
CAMARODONTA
Tripneustes L. Agassiz, 1841 x − − x x
Schizechinus Pomel, 1869 − x − x −
Genocidaris A. Agassiz, 1869 − x x − −
CLYPEASTEROIDA
Clypeaster Lamarck, 1801 − x x x x
Echinocyamus van Phelsum, 1774 − x x x −
SPATANGOIDA
Ova Gray, 1825 − x x x x
Brissopsis L. Agassiz, 1840 − x x x x
Opissaster Pomel, 1883 − x x x x
Hemipatagus Desor, 1858 − x x x x
Lovenia Desor in L. Agassiz and Desor, 1847 − x x x x
Echinocardium Gray, 1825 − x x − −
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morphological adaptations, predation, and water depth (e.g.,
Keller, 1983; McClanahan, 1988; Jacob et al., 2003; Coppard
and Campbell, 2005; Privitera et al., 2008; Bonaviri et al.,
2011; Cordeiro et al., 2014; Cabanillas-Terán et al., 2016). A
further example of habitat/resource partitioning has been
reported for the sea urchins Arbacia lixula (Linnaeus, 1758)
and Paracentrotus lividus (Lamarck, 1816), which can coexist
even at relatively high densities in the infralittoral zone of the
Mediterranean due to nonoverlapping feeding preferences

(Régis, 1979; Privitera et al., 2008; Bonaviri et al., 2011; Anto-
niadou and Vafidis, 2014, and references therein).

The co-occurrence of different deposit-feeding irregular
echinoids was observed in all assemblages. Interspecific compe-
tition below the sediment-water interface among different burrow-
ing, deposit-feeding echinoids could have been limited by their
different burrowing depths, feeding strategies, and food selection
leading to infaunal tiering (see discussion byMancosu andNebel-
sick, 2017a, b, and references therein). Spatangoid-dominated

Figure 7. Orientation data of complete echinoid specimens within the assemblages studied herein. N = number of counted specimens.
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echinoid assemblages that indicate outer sublittoral environments
with low-energy conditions have been reported to occur through-
out Miocene deposits of the circum-Mediterranean area (e.g.,
Néraudeau et al., 2001; Kroh and Nebelsick, 2003; Mancosu
and Nebelsick, 2016, 2017b). A comparable echinoid fauna as

those described herein was recognized in the lower/middle Mio-
cene sedimentary succession of the Porto Torres area, northern
Sardinia (see Mancosu and Nebelsick, 2017b).

Differences with respect to lithology and echinoid diversity
are recognized (see Table 4). In Porto Torres, the fine-grained

Table 2. Palaeoecological interpretation of the echinoid taxa recognized herein, with comparisons with Recent analogs.

Echinoid taxa Recent taxon comparisons Interpretation of studied echinoid References

DIADEMATOIDA
Diadema sp. Diadema antillarum Philippi, 1845;

D. setosum (Leske, 1778); D.
mexicanum A. Agassiz, 1863; D.
ascensionis Mortensen, 1909

Omnivorous grazer and detritus feeder
scraping off algal films and other
organisms encrusting rhodoliths

Mortensen, 1940; Lewis, 1964; Randall et al., 1964;
Pearse, 1970; Chesher, 1972; Kier, 1975; Smith,
1978; Serafy, 1979; De Ridder and Lawrence, 1982;
Tuya et al., 2004; Coppard and Campbell, 2005, 2007;
Andrew and Byrne, 2007; Muthiga and McClanahan,
2007; Gondim et al., 2013;
Nateghi Shahrokni et al., 2016

CAMARODONTA
Tripneustes planus
L. Agassiz in
L. Agassiz and
Desor, 1846

Tripneuestes ventricosus (Lamarck,
1816);
T. gratilla (Linnaeus, 1758)

Epibenthic grazer and detritus feeder
living between and on rhodoliths in
rhodoliths patches

Mortensen, 1943; De Ridder and Lawrence 1982;
Bacolod and Dy, 1986; Smith, 1978; Koike et al.,
1987; Tertschnig, 1989; Nebelsick, 1992a, b; Lessios
et al., 2003; Vaïtilingon et al., 2003; Kehas et al.,
2005; Lawrence and Agatsuma, 2007, 2013; Stimson
et al., 2007; Vonk et al., 2008; Macía and Robinson,
2009; Regalado et al., 2010; Lyimo et al., 2011;
Seymour et al., 2013; Rodríguez-Barreras, 2014

Schizechinus sp. Sphaerechinus granularis (Lamarck,
1816)

Algivores on and between rhodoliths
and detritus feeder on soft bottom

Koehler, 1927; Mortensen, 1943; Tortonese, 1965; Ernst
et al., 1973; Smith, 1978; De Ridder and Lawrence,
1982; Harmelin and Duval, 1983; Riedl, 1983;
Guillou and Michel, 1993; Unger and Lott, 1994;
Sartoretto and Francour, 1997; Guillou and Lumingas,
1998; Palacín et al., 1998; Zavodnik, 2003; Koukouras
et al. 2007; Martínez-Pita et al., 2008; Despalatović
et al. 2009; Elmasry et al., 2013; Antoniadou and
Vafidis, 2014; Petović and Krpo-Ćetković, 2016

Genocidaris sp. Genocidaris maculata A. Agassiz,
1869

Epibenthic grazer and detritus feeder Mortensen, 1943; Pérès and Picard, 1964; Tortonese,
1965; Serafy, 1979; De Ridder and Lawrence, 1982;
Grubelic, 1998; Koukouras et al., 2007; Como et al.,
2008; Sciberras et al., 2009; Smith and Gale, 2009;
Hernández et al., 2013

CLYPEASTEROIDA
Clypeaster marginatus
Lamarck, 1816

Clypeaster humilis (Leske, 1778);
C. subdepressus (Gray, 1825)

Shallow infaunal to semi-infaunal
detritus feeder

Chesher, 1969; James and Pearse, 1969; Kier, 1975;
Seilacher, 1979; Serafy, 1979; Hopkins, 1988; Telford
et al., 1987; Nebelsick, 1992b; Hendler et al., 1995;
Velluttini and Bigotto, 2010; Rodríguez-Barreras,
2014; Nateghi Shahrokni et al., 2016

Echinocyamus sp. Echinocyamus pusillus (O.F.
Müller, 1776);
E. crispus Mazzetti, 1893

Shallow infaunal detritus feeder Mortensen, 1948; Nichols, 1959; Durham, 1966;
Telford, 1985; Telford et al. 1983; Tortonese, 1965;
Nebelsick, 1992a, b; Nebelsick and Kowalewski,
1999; Zavodnik, 2003; Degraer et al., 2006; Grun
et al., 2014

SPATANGOIDA
Ova sp. Ova canalifera (Lamarck, 1816);

Schizaster lacunosus (Linnaeus,
1758)

Deep-burrowing detritivore in
fine-grained sediments, constructing
a funnel to the sediment surface as
well as constructing a sanitary drain

Mortensen, 1951; Tortonese, 1965; Schin and
Thompson, 1982; Kanazawa, 1992; Schinner, 1993;
Bromley et al., 1995; Chao, 2000; Zavodnik, 2003;
Banno, 2008; Asgaard and Bromley, 2007; Koukouras
et al., 2007

Opissaster sp. Brisaster fragilis (Düben and Koren,
1846)

Shallow to moderately
deep-burrowing detritivore

Gibbs, 1963; Smith, 1980b; Walker and Gagnon, 2014

Brissopsis sp. Brissopsis lyrifera (Forbes, 1841);B.
elongataMortensen, 1907; B. alta
Mortensen, 1907; B. atlantica
Mortensen, 1907

Shallow to moderately
deep-burrowing detritivore, with
vertical funnel and sanitary drain

Nichols, 1959; Tortonese, 1965; Chesher, 1968; Smith,
1980a; Kier, 1975; Kanazawa, 1992;Widdicombe and
Austen, 1998; Hollertz and Duchêne, 2001; Hollertz
et al., 1998; Zavodnik, 2003

Hemipatagus sp. Lovenia elongata (Gray, 1845) Shallow infaunal to semi-infaunal
detritivore, with double sanitary
canal

Kanazawa, 1992

Lovenia sp. Lovenia elongata (Gray, 1845); L.
cordiformis A. Agassiz, 1872; L.
hawaiiensis Mortensen, 1950;
L. subcarinata Gray, 1851;
L. camarota H.L. Clark, 1917

Shallow infaunal detritivore Mortensen, 1951; Lawrence and Ferber, 1971; Ferber
and Lawrence, 1976; Kanazawa, 1992; Nebelsick,
1992b; Rowe and Gates, 1995; Miskelly, 2002;
Schultz, 2005; Saitoh and Kanazawa, 2012

Echinocardium sp. Echinocardium cordatum
(Pennant, 1777); E. mortenseni
Thiéry, 1909; E. mediterraneum
(Forbes, 1844)

Shallow to deep-burrowing detritivore Mortensen, 1951; Nichols, 1959; Ursin, 1960;
Buchanan, 1966; Tortonese, 1977; De Ridder, 1982;
Duineveld and Jenness, 1984; Kanazawa, 1992;
Nakamura, 2001; Zavodnik, 2003; Degraer et al., 2006
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sandstones, which have a higher terrigenous content than the
fine-grained deposits of Santa Caterina-S’Archittu, are also
intensely bioturbated by Thalassinoides-like burrows and are
likewise associated with intercalated rhodolith beds. This suc-
cession contains a higher echinoid diversity, with nine genera
of spatangoids, the presence of the echinoneid Koehleraster
Lambert and Thiéry, 1921 and clear differences in the regular
echinoids associated with the rhodolith beds, with spines and
test fragments of the cidaroids Prionocidaris A. Agassiz, 1863
and Eucidaris Pomel, 1883 along with the remains of Schizechi-
nus and trigonocidarids. Differences in echinoid diversity and
composition between Porto Torres and Santa Caterina-
S’Archittu could be related to the preference for particular sub-
strata in some echinoid taxa.

In Porto Torres, rhodoliths and accompanying echinoid
faunas are associated with tubular tempestites, whereas those
in the present study occur with Thalassinoides-like burrows
containing surrounding sediment. This could indicate a lack
of high storm activity in Assemblage 1, although more studies
are needed in this respect on the morphologies and coralline
algal diversities within the rhodoliths of the two localities. In
both this study and Porto Torres, a general low-energy, moder-
ately deep, sublittoral environment with high rates of bioturb-
ation and episodes of sediment deposition by storms is
interpreted.

Preservation potential of echinoids and comparative
taphonomy.—Paleoecological interpretation can be biased

by taphonomic and sedimentological overprinting that affects
the preservation of the various echinoid taxa and their
representation within the assemblages. The factors leading to
the taphonomy of Miocene echinoids has been discussed in
detail (see Mancosu and Nebelsick, 2013, 2015, 2016, 2017a, b;
Mancosu et al., 2015). The results of the present study show
that preservation potentials can vary widely among different
taxa in sublittoral environments (see Table 1). Regular
echinoid preservation displays a taphonomic gradient ranging
from intact tests with spines attached to isolated plates and
spine fragments. These differences in preservation can be
related to differences in skeletal microstructure as well as
variations in paleoenvironmental and taphonomic conditions
and episodic events. Diadematids, for example, have tests
with imbricate or only slightly interlocking plates that tend
to disarticulate rapidly when subjected to postmortem
transportation and reworking. These echinoids thus show a
lower preservation potential than camarodont echinoids
(Smith, 1984; Greenstein, 1989, 1991, 1992, 1993a, b, 1995;
Kidwell and Baumiller, 1990; see discussion by Mancosu
et al., 2015). The occurrence of diadematid test remains and
associated spines are interpreted to be the result of a rapid
influx of sediments in an otherwise relatively calm
background depositional environment.

Taphonomic signatures show that additional factors other
than test stability and infaunal mode of life play important
roles in the preservation of irregular echinoids. In the interpreted
moderately deeper-water environments with low to moderate

Figure 8. Bathymetric distributions andmodes of life of the Recent analogous taxa of the fossil echinoids recognized in the present study with interpreted depths for
the three assemblages described herein. Each box plot represents 25% and 75% quartile of all values, Q1 and Q3, respectively. Black line inside box represents the
median. Whiskers drawn from Q1 and Q3 to the largest values < 1.5 times the interquartile range (Q1–Q3). Outliers indicated by black dots. A1 = Assemblage 1; A2
= Assemblage 2; A3 = Assemblage 3.
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water energies, the echinoid tests were only sporadically
exposed to high water movement and sediment reworking (see
discussion by Mancosu and Nebelsick, 2017b, and references
therein). A further important factor influencing the preservation
potential of infaunal echinoids is sediment disturbance due to
the pervasive bioturbation by deep-tier thalassinid decapod crus-
taceans and infaunal echinoids themselves, specifically spatan-
goids, which are among the most active and widespread
bioturbators in extant marine environments, able to rework rela-
tively large volumes of sediment (e.g., Hollertz et al., 1998; Hol-
lertz and Duchêne, 2001; Lohrer et al., 2005; Thompson and
Riddle, 2005; Gingras et al., 2008). Bioturbation thus represents
a source of echinoid test breakage in quiet sublittoral environ-
ments (see discussion by Mancosu and Nebelsick, 2017b).

Conclusions

An echinoid-dominated, fine-grained, carbonate sedimentary
succession from the middle Miocene of central-western Sardinia
has been recognized. Three assemblages have been detected
based on echinoid diversity and relative abundance as well as
associated fauna and flora, trace fossils, and lithological/sedi-
mentological features. The results of this study allow an outer

sublittoral environment at moderate depth, below fair-weather
wave base, to be reconstructed. Differences among the assem-
blages can be related to substrate variation and the availability
of food resources.

Assemblage 1 occurs in very fine-grained packstone to
wackestone with rhodolith patches and is characterized by the
co-occurrence of infaunal deposit feeders, mainly spatangoids
and epibenthic grazers, e.g., the diadematid Diadema and the
toxopneustids Tripneustes and Schizechinus. This assemblage
represents a sheltered environment with structural substrate
complexity, including hard substrata, represented by rhodolith
patches, and fine-grained soft substrata, where different food
resources could be exploited.

Assemblages 2 occurs in very fine-grained packstones to
wackestones, highly bioturbated by Thalassinoides-like burrows
filled by echinoid and bivalve debris that are interpreted as tubu-
lar tempestites. The assemblage is dominated by burrowing
deposit feeding spatangoids (Brissopsis, Ova, Opissaster, Love-
nia, andHemipatagus) and, subordinately, clypeasteroids (Echi-
nocyamus and Clypeaster marginatus), with regular echinoids
represented by the small trigonocidarid Genocidaris. This
assemblage indicates a moderately energetic environment with
fine-grained sediments.

Figure 9. Paleoecological reconstruction of the echinoid assemblages from the investigated levels in the sedimentary successions studied herein. The presence and
depths of bioturbation are indicated; depth scale is the same for Assemblage 1, 2, and 3. See text for density and preservation of the various taxa within the
assemblages.

Table 3. Summary of taxonomic, sedimentological, and taphonomic features of the echinoid assemblages from Santa Caterina di Pittinuri and S’Archittu-Cajaragas.

ASSEMBLAGE 1 2 3

SEDIMENTARY ENVIRONMENT carbonate carbonate carbonate
Lithology wacke- to packstones wacke- to packstones pack- to mudstones
Bioturbation highly bioturbated highly bioturbated highly bioturbated

with tubular turbidites
TAXONOMIC COMPOSITION
Diadema Gray, 1825 abundant rare -
Tripneustes L. Agassiz, 1841 rare − -
Schizechinus Pomel, 1869 rare - rare
Genocidaris A. Agassiz, 1869 − common -
Clypeaster Lamarck, 1801 - common -
Echinocyamus van Phelsum, 1774 common very common -
Ova Gray, 1825 abundant common common
Opissaster Pomel, 1883 - rare rare
Brissopsis L. Agassiz, 1840 very common abundant abundant
Hemipatagus Desor, 1858 rare common rare
Lovenia Desor in L. Agassiz and Desor, 1847 - common -
Echinocardium Gray, 1825 rare - -
SEDIMENTARY FABRIC
Density densely packed to dispersed densely packed to dispersed loosely packed to dispersed
Imbrication absent absent absent
Orientation of complete specimens chaotic chaotic chaotic
TAPHONOMY
Spine disarticulation total total total
Fragmentation high high low
Surface abrasion low low low
Encrustation absent absent absent
Bioerosion absent low absent
ADDITIONAL FAUNA AND FLORA
Pectinids common common -
Cirsotrema Mörch, 1852 - rare -
Portunus Weber, 1795 - rare -
Rhodoliths common - -
PALEOENVIRONMENT
Littoral zone inner sublittoral outer sublittoral outer sublittoral
Energy moderate moderate low
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Assemblage 3 occurs in mudstone and is largely dominated
by the spatangoid Brissopsis and, subordinately, by two differ-
ent morphotypes of Ova. Associated echinoid taxa, including
the spatangoids Opissaster and Hemipatagus, the clypeasteroid
Echinocyamus, and the regular echinoid Schizechinus, are rarely
encountered. Assemblage 3, with its lower echinoid diversity,
points to a deeper-water environment with muddy substrata,
low-energy conditions, and limited food resources.

The co-occurrence of different regular and irregular echi-
noids within each assemblage indicates resource partitioning
among both epifaunal regular echinoids and infaunal deposit-
feeding irregular forms. These findings of the present study
complement those of recent paleoecological investigations on
the echinoid fauna of the Miocene of Sardinia and indicate
that the diversity pattern of echinoids in sublittoral environ-
ments is a reflection of both environmental factors and tapho-
nomic processes that affect preservation of the echinoid taxa.
Substrate heterogeneity, including both hard and soft bottoms,
low-energy conditions with sporadic episodes of rapid sedi-
mentation, possibly related to storms, and pervasive bioturb-
ation, which is potentially a source of shell breakage, led to
the composition and preservation of a highly diversified echin-
oid fauna.
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