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Longwave Marangoni convection in two-layer films under the action of heating
modulation is considered. The analysis is carried out in the lubrication approximation.
The capillary forces are assumed to be sufficiently strong, and they are taken into
account. Periodic or symmetric boundary conditions are applied on the boundaries
of the computational region. Numerical simulations are performed by means of a
finite-difference method. Two regions of parametric instabilities have been found. In
the first region, one observes the competition or coexistence of standing waves parallel
to the boundaries of the computational region. The multistability of the flow regimes
is revealed. In the second region, the regimes found in the case of periodic boundary
conditions are more diverse than in the case of symmetric boundary conditions.
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1. Introduction
The Marangoni convection in liquid layers has been studied extensively in the past

few decades, due to its importance in microgravity engineering and microfluidics (for
a review, see Simanovskii & Nepomnyashchy 1993; Colinet, Legros & Velarde 2001;
Nepomnyashchy, Simanovskii & Legros 2012). Two basic cases have been studied in
detail: (i) the case where a temperature gradient is applied along the layer; (ii) the
case where a temperature gradient is applied across the layer.

In the former case, a thermocapillary flow is generated by the applied temperature
gradient. A simple parallel ‘return flow’ (Birikh 1966) with a flat surface does not
actually satisfy the physical boundary condition for normal stresses; it is valid only
in the limit of an infinitely strong surface tension. If the surface tension is finite, the
thickness of the layer is not uniform: in the ‘hot part’ of the layer it is smaller than
in the ‘cold part’ of the layer (Sen & Davis 1982; Pshenichnikov & Tokmenina 1983;
Floryan & Chen 1994; Hamed & Floryan 2000). Moreover, a ‘dry spot’ can appear
in a sufficiently long layer (Zuev & Pshenichnikov 1987; Floryan & Chen 1994).

In the latter case, the Marangoni convection is developed due to the instability of an
equilibrium state. The early works on the development of Marangoni convection in
a liquid layer heated from below have revealed two basic modes of Marangoni
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instabilities: (i) ‘the Pearson’s mode’ of cellular convection with a negligible
deformation of the interface (Pearson 1958); (ii) ‘the Scriven–Sternling’s mode’
which manifests itself through a longwave interface deformation leading to the
layer rupture (Scriven & Sternling 1964). The former instability mechanism prevails
in relatively thick layers, while the latter is observed only in very thin layers
(Van Hook et al. 1995, 1997) or under microgravity conditions. The separation of
‘non-deformational’ and ‘deformational’ types of instabilities is essential also in the
case of a thermocapillary flow generated by a temperature gradient applied along the
layer. The non-deformational type of instabilities creates hydrothermal waves (Smith
& Davis 1983a; Madruga et al. 2003), while the deformational type is responsible
for the development of long surface waves (Smith & Davis 1983b); the interplay of
both instability mechanisms was considered by Czechowsky & Floryan (2001).

An efficient method of excitation and control of instabilities is the modulation of
parameters. In order to influence the development of the Marangoni instability, one
can apply alternating electric and magnetic fields, oscillatory shear, vibrations or
heating modulations. Vibration is the most well-explored example of the parameter
modulation. Its studying was started by the famous work of Kapitza (1951) and
continued in numerous works, including a monograph devoted to the vibrational
convection (Gershuni & Lyubimov 1998).

Another important method of stability control, which can be more easily imple-
mented, is the modulation of heating. While the influence of the thermal modulation
on the buoyancy convection has been studied in detail (Gershuni & Zhukhovitsky
1963; Venezian 1969; Gershuni, Zhukhovitsky & Yurkov 1970; Rosenblat & Tanaka
1971; Yih & Li 1972; Smorodin & Lüecke 2009, 2010), the effect of the heat
flux modulation on the Marangoni convection is still less explored. Gershuni,
Nepomnyashchy & Velarde (1992) and Gershuni et al. (1994, 1996) have investigated
the excitation of Marangoni instability in a semi-infinite liquid layer by the modulation
of the heat flux on the free surface. The investigation revealed a competition between
subharmonic and synchronous instability modes. The longwave Marangoni instability
in a thin layer under the action of a temperature modulation or a heat-flux modulation
at the layer bottom has been studied by Or & Kelly (2002). Smorodin et al. (2009)
have found that the modulation of the heat flux at the liquid surface is a more
effective way to generate a parametric Marangoni instability than that at the bottom
of the layer. All of the investigations mentioned above have been devoted to systems
where the primary instability is monotonic. Those studies have been carried out in
the framework of the linear stability theory.

However, there exist physical systems where both monotonic and oscillatory
Marangoni instabilities are possible. The presence of a primary oscillatory instability
can be an origin of a specific kind of parametric excitation of waves. As an example,
let us mention the Marangoni instability in binary mixtures with the Soret effect,
first studied by Castillo & Velarde (1978, 1980). The linear stability analysis of the
heated binary liquid layer under the action of vibrations has been carried out by
Fayzrakhmanova, Shklyaev & Nepomnyashchy (2013a). The influence of heat flux
modulation on the Marangoni instability in binary mixtures with Soret effect has been
studied in the framework of the linear stability theory by Fayzrakhmanova, Shklyaev
& Nepomnyashchy (2013b). The weakly nonlinear theory describing the excitation of
a synchronous mode by a modulated heat flux was developed by Fayzrakhmanova,
Shklyaev & Nepomnyashchy (2014).

Another example of a system where both monotonic and oscillatory Marangoni
instabilities are possible, is a two-layer liquid film with deformable interfaces
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Generation of nonlinear Marangoni waves in a two-layer film 161

(Nepomnyashchy & Simanovskii 2007). The advantage of that physical system is
the possibility to apply a longwave asymptotic approach (‘lubrication approximation’)
which allows to reduce the full non-stationary three-dimensional problem to a
system of strongly nonlinear two-dimensional evolution equations that governs
longwave deformations of interfaces. It is significant that in a contradistinction
to the monotonic deformational mode which leads typically to the layer rupture,
the oscillatory deformational mode generates finite-amplitude, two-dimensional
and three-dimensional patterns (Nepomnyashchy & Simanovskii 2007, 2012). This
circumstance gives a unique opportunity to describe three-dimensional finite-amplitude
wavy motions generated by parameter modulation. Nepomnyashchy & Simanovskii
(2013) have applied the above-mentioned system for the simulation of nonlinear
resonant wavy patterns generated by vibrations. The excitation of diverse nonlinear
waves was observed when the ratio of the modulated frequency to the eigenfrequency
of Marangoni waves was close to two or four.

In the present paper, we consider the generation of long nonlinear Marangoni waves
in a two-layer liquid film by a slow heating modulation. The mathematical model is
formulated in § 2. In the framework of the approximation used, the problems with
temperature modulation and heat flux modulations are equivalent. Section 3 contains
a brief description of instabilities in the case of a constant substrate temperature;
the oscillatory instability boundary is presented. In § 4, results of the numerical
investigation of the problem are described. Section 5 contains concluding remarks.

2. Formulation of the problem
2.1. Longwave equations

Consider a system of two superposed layers of immiscible liquids with different
physical properties (see figure 1). The bottom layer rests on a solid substrate, the
top layer is in contact with the adjacent gas phase. The temperature of the gas Tg is
constant, while the temperature of the solid substrate is changed periodically in time,
Ts(t) = T0

s + Θ sin ωt. All of the variables referring to the bottom layer are marked
by subscript 1, and all of the variables referring to the top layer are marked by
subscript 2. The coordinates of the interfaces in a quiescent state are H0

m, m= 1, 2.
The deformable interfaces are described by equations z = H1(x, y, t) (liquid–liquid
interface) and z = H2(x, y, t) (liquid–gas interface). The mth fluid has density ρm,
kinematic viscosity νm, dynamic viscosity ηm = ρmνm, thermal diffusivity χm and heat
conductivity κm. The surface tension coefficients on the lower and upper interfaces,
σ1 and σ2, are linear functions of temperature T: σ1 = σ 0

1 − α1T , σ2 = σ 0
2 − α2T . The

gravity acceleration is g.
The complete system of nonlinear equations governing the Marangoni convection is

written in the following form (Simanovskii & Nepomnyashchy 1993):

∂vm

∂t
+ (vm · ∇)vm =− 1

ρm
∇Pm + νm1vm, (2.1)

∂Tm

∂t
+ vm · ∇Tm = χm1Tm, (2.2)

∇ · vm = 0, m= 1, 2. (2.3)

Here vm and Pm are the velocity and the difference between the overall pressure and
the atmospheric pressure in the mth liquid, correspondingly. The boundary conditions
on the rigid boundary are

v1 = 0, T1 = Ts(t); at z= 0. (2.4a,b)
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z
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FIGURE 1. Geometric configuration of the region and coordinate axes.

On the deformable interface z = H1, the following boundary conditions hold: the
balance of normal stresses,

P2 − P1 + 2σ1K1 =
[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
n1in1k; i, k= 1, 2, 3;

(2.5)
the balance of tangential stresses,[

−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
τ
(l)
1i n1k − α1τ

(l)
1i
∂T1

∂xi
= 0,

l= 1, 2; i, k= 1, 2, 3; (2.6)

the continuity of the velocity field,

v1 = v2; (2.7)

the kinematic equation for the interface motion,

∂H1

∂t
+ v1x

∂H1

∂x
+ v1y

∂H1

∂y
= v1z; (2.8)

the continuity of the temperature field,

T1 = T2; (2.9)

and the balance of normal heat fluxes,(
κ1
∂T1

∂xi
− κ2

∂T2

∂xi

)
n1i = 0. (2.10)

Similar boundary conditions are imposed on the deformable interface z=H2:

−P2 + 2σ2K2 =−η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
n2in2k, (2.11)

−η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
τ
(l)
2i n2k − α2τ

(l)
2i
∂T3

∂xi
= 0, l= 1, 2, i, k= 1, 2, 3, (2.12)

∂H2

∂t
+ v2x

∂H2

∂x
+ v2y

∂H2

∂y
= v2z. (2.13)

Here K1 and K2 are the mean curvatures, n1 and n2 are the normal vectors and τ
(l)
1 and

τ
(l)
2 are the tangential vectors of the lower and upper interfaces. In the quantities with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.178


Generation of nonlinear Marangoni waves in a two-layer film 163

two subscripts, the first subscript corresponds to the number of the liquid (m= 1, 2)
and the second subscript determines the number of the Cartesian coordinate (i, k =
1, 2, 3; x1= x, x2= y, x3= z). The usual summation convention is applied. Later on, we
disregard the dependences of the surface tension coefficients σ1, σ2 on the temperature
in the boundary conditions corresponding to normal stresses, i.e. we take σ1=σ 0

1 , σ2=
σ 0

2 in (2.5) and (2.11).
For a heat flux on the liquid–gas interface we use an empirical condition,

κ2
∂T2

∂xi
n2i =−q(T2 − Tg), (2.14)

where q is the heat exchange coefficient which is assumed to be constant.
In the case of thin film flows, when the fluid system is thin in one direction and

extended in other directions, a long-wavelength expansion is used as a powerful
tool for solving the problem. The leading order of this expansion is known as the
lubrication approximation. The longwave approach is based on the assumption that
the characteristic spatial scales in the directions x and y are much larger than that
in the direction z. It is assumed that the solution of the problem depends on the
scaled horizontal coordinates X= εx and Y = εy, ε� 1, rather than on x and y. Also,
it is assumed that the solution depends on the scaled time variable τ = εt. Let us
emphasize that the application of the longwave approach allows us to consider finite
(not small) deformations of interfaces. A comprehensive description of the longwave
approach can be found in the review papers of Davis (1987) and Oron, Davis &
Bankoff (1997).

In the present paper, we consider slow modulations of the substrate temperature,
ω = εω1, ω1 = O(1). At the leading order, the temperature fields in both layers are
determined by the following system of equations and boundary conditions:

T1zz = 0; 0< z<H1; T2zz = 0; H1 < z<H2; (2.15a,b)

z= 0 : T1 = Ts(τ ); (2.16)

z=H1 : T1 = T2; κ1T1z = κ2T2z; (2.17a,b)

z=H2 : κ2T2z =−q(T2 − Tg), (2.18)

where
Ts(τ )= T0

s +Θ sin(ω1τ). (2.19)

Solving problem (2.15a,b)–(2.19), we find

T1(z, τ )= Ts(τ )− (Ts(τ )− Tg)Dqκ2z; (2.20)
T2(z, τ )= Ts(τ )− (Ts(τ )− Tg)Dq[(κ2 − κ1)H1 + κ1z], (2.21)

where
D= [κ1κ2 + q(κ2 − κ1)H1 + qκ1H2]−1. (2.22)

Thus, in the limit of slow temperature modulation, the temperature profiles can be
obtained from those in the absence of temperature modulation by the replacement of
T0

s by Ts(τ ).
Note that the heat flux across the layers,

j(τ )=−κ1T1z =−κ2T2z =−[Ts(τ )− Tg)Dqκ1κ2, (2.23)
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does not depend on the vertical coordinate z. The same temperature profile (2.20) and
(2.21) can be obtained in the case where the heat flux

j(τ )= [T0
s − Tg +Θ cos(ω1τ)]Dqκ1κ2, (2.24)

rather than the temperature (2.19), is prescribed on the boundary with the solid
substrate, i.e. the boundary condition (2.16) is replaced by

z= 0 : −κ1T1z = j(τ ). (2.25)

Thus, the problems with boundary temperature modulation and heat flux modulation
are equivalent in the framework of the approximation used.

The derivation of the longwave equations is similar to that given by Nepomnyashchy
& Simanovskii (2007) (see also Fisher & Golovin 2005). In order to transform them
to a non-dimensional form, we choose the mean thickness of the lower layer, H0

1 ,
as the vertical length scale. The choice of the horizontal scale L∗ is arbitrary (see
Nepomnyashchy & Simanovskii 2012),

τ ∗ = η1(L∗)4

σ 0
1 (H

0
1)

3
(2.26)

is a time scale and

p∗ = σ
0
1 H0

1

(L∗)2
(2.27)

is a pressure scale.
The non-dimensional parameters of the problem are as follows:

M = α1(T0
s − Tg)

σ 0
1

(
L∗

H0
1

)2

(2.28)

is the modified Marangoni number,

A= Θ

T0
s − Tg

(2.29)

is the modulation amplitude,

Bi= qH0
1

κ2
(2.30)

is the Biot number,
d= [κ + Bi(1− κ)h1 + Bi κh2]−1, (2.31)

η= η1/η2, κ = κ1/κ2, σ = σ 0
2 /σ

0
1 , α = α2/α1, ρ = ρ2/ρ1, Ω =ω1τ

∗ and

Ga= gρ1(L∗)2

σ 0
1

(2.32)

is the modified Galileo number, which characterizes the relative strength of the gravity
with respect to capillary forces. Let us emphasize that the capillary forces are assumed
to be sufficiently strong, so that they are relevant even for longwaves.
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Finally, we arrive at the following mathematical model:

h1τ +∇ · q1 = 0, h2τ +∇ · q2 = 0, (2.33a,b)
q1 = f11∇p1 + f12∇p2 + qT

1 , q2 = f21∇p1 + f22∇p2 + qT
2 ; (2.34a,b)

where hj =Hj/H0
1 , pj = Pj/p∗, j= 1, 2,

f11 =− 1
3 h3

1, f12 =− 1
2 h2

1(h2 − h1), (2.35a,b)

f21 = 1
6

h3
1 −

1
2

h2
1h2, f22 = (h2 − h1)

[
h2

1

(
1
2
− η

3

)
+ h1h2

(
−1+ 2η

3

)
− η

3
h2

2

]
;

(2.36a,b)

p1 =−∇2h1 − σ∇2h2 +Gah1 +Gaρ(h2 − h1), (2.37)
p2 =−σ∇2h2 +Gaρh2. (2.38)

Recall that the deformations of interfaces are not assumed to be small. The
modulation of the substrate temperature influences the non-dimensional expressions
for the fluxes generated by the thermocapillary effect:

qT
1 =

M
2
(1+ A sinΩτ)h2

1∇[d(Bih1 − ακ)], (2.39)

qT
2 =

M
2
(1+ A sinΩτ){−h2

2∇(dηακ)+ (2h2 − h1)h1∇{d[Bih1 − ακ(1− η)]}}. (2.40)

2.2. Boundary conditions
In order to carry out the computations in a finite region, we have to impose definite
boundary conditions on lateral boundaries. To the best of the authors’ knowledge,
such boundary conditions have never been systematically derived for the longwave
system of (2.33). For the analysis of pattern formation, spatially periodic boundary
conditions,

hm(X+ L, Y, τ )= hm(X, Y, τ ), hm(X, Y + L, τ )= hm(X, Y, τ ), m= 1, 2, (2.41a,b)

are typically used, which allow the implementation of efficient integration methods
based on the Fourier expansions. These boundary conditions have been applied for
system (2.33), starting with the basic paper by Fisher & Golovin (2005). It is assumed
implicitly that the influence of the boundaries is negligible when the period L is large
with respect to the characteristic scale of patterns. In the matter of fact, even in the
case of stationary shortwave patterns, the boundary conditions are significant for the
pattern wavenumber selection (Cross et al. 1980; Zaleski 1984). In the problem under
consideration, the influence of boundary conditions is crucial, because of the following
reasons. First, in the case of an oscillatory instability, one cannot ignore the reflection
of waves on the distant boundaries, because a reflected wave returns. Second, the
scale of patterns generated by the longwave instability near the threshold is of the
same order as the size of the region. Therefore, it is desirable to replace the formal,
mathematically convenient boundary conditions (2.41) by physically relevant ones.

Partial differential equations (2.33), which contain fourth-order derivatives of h1
and h2, have to be supplemented by two pairs of conditions on the lateral boundary.
Assume that the boundary is impenetrable for liquids; then

qm · n= 0, m= 1, 2, (2.42)
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where n is the normal to the boundary. The second pair of boundary conditions is
determined by the type of the contact of the interfaces at the lateral walls (Sen &
Davis 1982). The contacts can be pinned (hm, m= 1, 2, are fixed), or contact angles
can be prescribed (n · ∇hm, m= 1, 2, are fixed). Later on, for the sake of simplicity,
we assume that the lateral walls are vertical and the contact angle is equal to π/2 for
each interface, thus

n · ∇hm = 0, m= 1, 2. (2.43)
Specifically, in a finite cavity of a square shape, 0 6 X 6 L̃, 0 6 Y 6 L̃, conditions

(2.42) and (2.43) become symmetry conditions,

hmX = hmXXX = 0 at X = 0, 0< Y < L̃ and X = L̃, 0< Y < L̃, (2.44)
hmY = hmYYY = 0 at Y = 0, 0< X < L̃ and Y = L̃, 0< X < L̃. (2.45)

Note that in the case L̃ = L/2, a symmetric continuation of a solution satisfying
boundary conditions (2.44) and (2.45) into the infinite region gives a spatially periodic
solution satisfying conditions (2.41). Thus, the set of solutions of the problem with
boundary conditions (2.44) and (2.45) is a subset of the set of solutions satisfying the
boundary conditions (2.41). However, solutions that are stable in the framework of the
symmetric boundary conditions (2.44) and (2.45) may be unstable in the framework
of the periodic boundary conditions (2.41) with respect to disturbances violating the
symmetry conditions. Therefore, one can expect that for the same values of other
parameters of the problem, the nonlinear dynamics of the system with boundary
conditions (2.41) is richer than that with boundary conditions (2.44) and (2.45),
L̃= L/2.

For any type of boundary conditions, evolution equations (2.33) have to be solved
for t> 0 with some initial conditions h1(X, Y, 0) and h2(X, Y, 0) such that the mean
value of h1(X, Y, 0) is equal to 1 and the mean value of h2(X, Y, 0) is equal to h=
H0

2/H
0
1 , where h> 1.

In the present paper, we perform computations for the system of fluorinert
FC70 (liquid 1) and silicon oil 10 (liquid 2). This system of liquids was used in
microgravity experiments (see, e.g., Géoris et al. 1999), and its physical parameters
are well-known: η1 = 2.55 × 10−2 kg m−1 s−1, η2 = 8.40 × 10−3 kg m−1 s−1,
κ1 = 7.00× 10−2 J m−1 s−1 K−1, κ2 = 0.134 J m−1 s−1 K−1, ρ1 = 1.94× 103 kg m−3,
ρ2 = 0.935 × 103 kg m−3, σ 0

1 = 7.6 × 10−3 N m−1, σ 0
2 = 1.97 × 10−2 N m−1,

α1 = 3 × 10−5 N m−1 K−1, α2 = 6 × 10−5 N m−1 K−1 (see Prakash & Koster 1994;
Géoris et al. 1999; Zhou, Liu & Tang 2004). The non-dimensional parameters are as
follows: η= 3.04, κ = 0.522, α = 2, ρ = 0.482 and σ = 2.6.

3. The case of constant substrate temperature

Let us discuss briefly the case of a constant substrate temperature Ts(τ ) = T0
s

(Nepomnyashchy & Simanovskii 2012). Depending on the value of Bi, the instability
of the mechanical equilibrium state can be monotonic or oscillatory. While the
monotonic instability typically leads to a rupture of the film (Van Hook et al. 1997),
the longwave oscillatory instability, which is developed in two-layer films, creates
wavy patterns (Nepomnyashchy & Simanovskii 2007, 2012).

The oscillatory instability with a frequency ωo(k), where k is the wavenumber of the
disturbance, is developed by heating from below (M > 0) if Bi< Bic, and by heating
from above (M < 0) if Bi> Bic, where

Bic = 1+ α(1+ ηκa2 + 2κa)
a

, a= h− 1. (3.1)
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The oscillatory neutral curve is determined by the following expression:

Mo(k) = 2(κ + Bi+ Bi κa)2

Bi κa(Bic − Bi)

{[
1
3
+
[

a(a+ 1)+ 1
3
ηa3

]
ρ

]
Ga

+ k2

[
1
3
+ σ

[
a(a+ 1)+ 1

3
(1+ ηa3)

]]}
. (3.2)

Later on, we take L = 240, h = 2.5, Bi = 10. For the system of fluorinert FC70
and silicon oil 10, Bic ≈ 8.85. Therefore, an oscillatory instability appears by heating
from above (M< 0). At a fixed value of Ga, the instability takes place in the region
M <Mo(k). For the above-mentioned liquid system,

Mo(k)=−283Ga− 1.48× 103k2. (3.3)

Let us emphasize that the problem under consideration is a typical example
of a longwave pattern formation. There is a significant difference between the
developments of shortwave and longwave instabilities. In the former case, the critical
wavenumber kc 6= 0 has a crucial role. The patterns created by instabilities have a
characteristic spatial period Λc = 2π/kc, which does not depend on the size of the
region L, if L � Λc. In the latter case, the critical wavenumber kc = 0, therefore
the only spatial scale of patterns is L, which is one of the problem parameters. The
composition of a pattern is determined by the discrete set {(m, n)} of admissible
wavevectors with positive growth rates Re λ(mk0, nk0).

For instance, in the case of a computational region 0 6 X 6 L, 0 6 Y 6 L with
periodic boundary conditions, the set of admissible wavevectors is discrete:

kx =mk0, ky = nk0, k0 = 2π/L, (3.4a−c)

where m, n are integer numbers. Therefore,

k2 = (m2 + n2)k2
0. (3.5)

Owing to the conservation of liquid volumes, the Fourier components of hj(X,Y) with
m = n = 0 do not change in time. For unstable modes, the minimum value of the
wavevector compatible with the periodic boundary conditions is k0. The corresponding
modes (m = ±1, n = 0) and (m = 0, n = ±1) describe waves with the isolines of hj

parallel to axes X, Y . The next admissible wavevector, k1= k0

√
2, is characteristic for

modes with |m| = |n| = 1, m=±n, which correspond to waves with isolines parallel
to the diagonals of the square computational region.

Let us consider now the case of symmetric boundary conditions (2.44) and (2.45)
with L̃= L/2. The eigenmodes of the linear stability problem satisfying the imposed
boundary conditions have the spatial structure cos(mk0X) cos(nk0Y), where k0 is
determined by relation (3.4), m and n are integers. Therefore, the set of admissible
wavenumbers coincides with (3.5). Note that continuations of these eigenmodes to
the full plane (X, Y) satisfy the periodic boundary conditions (2.41). Thus, the set of
eigenfunctions with symmetric boundary conditions (2.44) and (2.45), L̃ = L/2 is a
subset of those with periodic boundary conditions (2.41).

For a square region, the eigenmodes with the spatial structure cos(mk0X) cos(nk0Y)
and cos(mk0Y) cos(nk0X) have the same growth rates (for m 6=n). That degeneracy may
lead to a richer nonlinear dynamics than in the case of a rectangular region, where
such a degeneracy is absent.
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If we apply the symmetric boundary conditions with L̃ = L, the eigenmodes
are cos(mk0X/2) cos(nk0Y/2), where k0 is determined by relation (3.4), m and n
are integer. The set of eigenmodes in that case does not coincide with the set of
eigenmodes in the case of boundary conditions (2.41), therefore we can expect that
nonlinear structures in both cases will be significantly different.

Let us emphasize that for any shape of the region and any boundary conditions,
the near-threshold instability patterns are determined by a discrete set of large-scale
unstable modes that depend significantly on the boundary conditions.

In the present paper, the simulations have been carried out for Ga= 0.025 and M=
−8. Note that for k0= 2π/L, L= 240, the critical Marangoni number M0(k0)=−8.09,
hence in the absence of modulation the quiescent state is stable. For M = −8, the
linear stability theory predicts the following values of the complex growth rates for
admissible disturbances: λ(k0)≈−4.32×10−7±0.696×10−3i; λ(k1)≈−1.02×10−5±
1.40× 10−3i.

4. Nonlinear simulations
Equations (2.33)–(2.38) have been discretized by central differences for spatial

derivatives. Evolution equations (2.33) have been solved using an explicit scheme.
Appropriate boundary conditions have been applied on the boundaries of the
computational region. For any set of parameters, the evolution equations have been
solved for two kinds of initial conditions hj(X, Y, 0): either (i) the initial conditions
were chosen as their mean values plus small random deviations imposed using a code
creating pseudo-random numbers, or (ii) they have been adopted from the simulations
formerly carried out for another set of parameters.

4.1. Periodic boundary conditions
4.1.1. Methodology

The computations have been performed in the square region 0 6 X 6 L, 0 6 Y 6 L,
L= 240 using the grids 60× 60, 80× 80, and 100× 100. The time step was changed
in the interval between 0.0005 and 0.005.

The primary analysis of the obtained nonlinear regimes has been done using
snapshots of the fields of hj(X, Y, τ ), j = 1, 2. Note that in all of the figures
demonstrating these snapshots, the X-axis is horizontal and the Y-axis is vertical. The
snapshot analysis has been supplemented by studying the time dependence of the
maximum values of variables hj,

hmax,j(τ )=max hj(X, Y, τ ), (4.1)

and Fourier components

ac(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) cos

2πX
L

dXdY, (4.2)

as(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) sin

2πX
L

dXdY, (4.3)

bc(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) cos

2πY
L

dXdY, (4.4)

bs(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) sin

2πY
L

dXdY, (4.5)
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12.8 13.6 14.4 15.2

A

FIGURE 2. The diagram of flow regimes in the plane (Ω, A) for Ω close to 2ωo(k0).
Triangles, equilibrium; squares, two-dimensional waves; asterisks, time-periodic three-
dimensional waves; circles, non-periodic three-dimensional waves.

ãc(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) cos

2π(X + Y)
L

dXdY, (4.6)

ãs(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) sin

2π(X + Y)
L

dXdY, (4.7)

b̃c(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) cos

2π(X − Y)
L

dXdY, (4.8)

b̃s(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) sin

2π(X − Y)
L

dXdY. (4.9)

We have used also quantities

r(τ )=
√

a2
c(τ )+ a2

s (τ ), q(τ )=
√

b2
c(τ )+ b2

s (τ ), (4.10a,b)

r̃(τ )=
√

ã2
c(τ )+ ã2

s (τ ), q̃(τ )=
√

b̃2
c(τ )+ b̃2

s (τ ), (4.11a,b)

which characterize the amplitudes of corresponding complex Fourier harmonics.

4.1.2. Subharmonic waves parallel to X- or Y-axes
It is natural to expect that the modulation of the Marangoni number with frequency

Ω will create waves periodic in time with the period equal to T = 2π/ω, ω =Ω/2,
when ω is close to the critical eigenfrequency ωo = ωo(k0) ≈ 0.696 × 10−3. Indeed,
a parametric excitation of waves due to the gravity modulation has been found in
a certain region of parameters (Ω, A) around the value Ω = 2ωo(k0) (see figure 2).
Typically, a two-dimensional ‘roll-like’ wavy regime with spatial period L is generated
(see figure 3).

Examples of the obtained dependences hmax,2(τ ) are shown in figure 4. One can see
that the lines for different grids are almost indistinguishable. The maximum values of
hmax,2(τ ) obtained using the grids 60× 60, 80× 80, and 100× 100, are 3.874, 3.886
and 3.888, correspondingly. The main computations have been done using the grid
80× 80. The change of the time step in a wide interval did not lead to any visible
changes of the results.
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FIGURE 3. (a) A snapshot of isolines of h2(X, Y, τ ) − h; (b) a snapshot of isolines of
h1(X, Y, τ )− 1. Here Ω = 1.392× 10−3, A= 1 and τ = 8× 105.
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FIGURE 4. The dependences of hmax,2(τ ) obtained using the grid 60× 60 (line 1), 80× 80
(line 2), 100× 100 (line 3). Here Ω = 1.392× 10−3 and A= 1.
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 0
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FIGURE 5. The dependences of as(τ ) (solid line) and ac(τ ) (dashed line). Here Ω =
1.392× 10−3 and A= 1.

The stripes can be parallel (i) to the X-axis or (ii) to the Y-axis. In the latter case,
the Fourier components bc= bs= 0 (see (4.4) and (4.5)), while the Fourier components
ac and as defined by formulas (4.2) and (4.3) oscillate with the period T = 2π/ω =
4π/Ω . In the course of oscillations, ac and as are perfectly proportional to each other
(see figure 5), which are characteristic for standing waves. This wavy pattern can be
considered as a superposition of two travelling waves with equal amplitudes moving
to the left and to the right.

The quantity r(τ ) is exactly equal to zero at some time instants (figure 6). Standing
waves on both interfaces oscillate in phase. The amplitude of the liquid–gas interface
oscillations is significantly larger than that of the liquid–liquid interface oscillations
(cf. figure 3a,b). Note that the maximum values of variables hm (m= 1, 2) determined
by (4.1) oscillate with the period T/2 equal to the period of temperature modulation
(see figure 7). The phase trajectory in the plane (hmax,2, as) illustrates the 1:2 relation
between the oscillation periods of hmax,2(τ ) and as(τ ) (see figure 8).

In a definite region of parameters (see figure 2), three-dimensional flow regimes are
generated. For those regimes, all of the Fourier components ac, as, bc, bs are non-zero.

One of these regimes is periodic in time: all of the above-mentioned Fourier
components oscillate synchronously with period T = 2π/ω = 4π/Ω . The quantities
r(τ ) and q(τ ) are exactly equal to each other, and they oscillate with period 2π/Ω

(figure 9).
The quantities hmax,j, j= 1, 2, oscillate with the same period as r and q (figure 10).

Snapshots of time-periodic oscillatory patterns are presented in figures 11 and 12. The
pattern has four symmetry axes; two of them are parallel to axes X or Y , and the other
two axes are parallel to diagonals of the computational region.

The regime described above is obtained using three-dimensional initial conditions.
In the case of two-dimensional initial conditions, a motionless state is established at
the same values of parameters, i.e. a bistability takes place.
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FIGURE 6. The dependence of r(τ ). Here Ω = 1.392× 10−3 and A= 1.
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FIGURE 7. The dependences of hmax,2(τ ) (solid line) and F(τ )≡ 2+ (1/2) sin(Ωτ)
(dashed line). Here Ω = 1.392× 10−3 and A= 1.

Another regime is quasiperiodic in time. The oscillations of r(τ ) and q(τ ) are
similar to those observed in the case of the periodic regime, but for the present
regime r(τ ) and q(τ ) are not equal to each other (figure 13), and the amplitude of
their oscillations is slowly changed in a rather wide interval with the period which is
much larger than the period of modulations. For instance, for the set of parameters

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.178


Generation of nonlinear Marangoni waves in a two-layer film 173

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

FIGURE 8. The phase trajectory in the plane (hmax,2, as). Here Ω = 1.392× 10−3

and A= 1.
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FIGURE 9. The dependence of r(τ )= q(τ ). Here Ω = 1.435× 10−3 and A= 0.5.

corresponding to figure 13, the period of the amplitude modulation is ∼2.5 × 105,
while the period of substrate temperature modulation is 2π/Ω ≈ 4.33 × 103. The
spatial structure of patterns is similar to that in the periodic regime, but it is less
symmetric: there are no axes of symmetry parallel to the diagonals (see figures 14
and15).

Note that wavy regimes described above are quite similar to those observed in the
case of gravity modulation (Nepomnyashchy & Simanovskii 2013).
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FIGURE 10. The dependences of hmax,2(τ ) (solid line) and F(τ )≡ 2+ (1/2) sin(Ωτ)
(dashed line). Here Ω = 1.435× 10−3 and A= 0.5.
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FIGURE 11. (Colour online) Snapshots of the isolines of h2(X,Y, τ )− h; (a) τ = 2302 500;
(b) τ = 2303 750; (c) τ = 2304 000; (d) τ = 2304 500. Here Ω = 1.435× 10−3 and A= 0.5.
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FIGURE 12. (Colour online) Snapshots of the isolines of h1(X,Y, τ )− 1; (a) τ = 2302 500;
(b) τ = 2303 750; (c) τ = 2304 000; (d) τ = 2304 500. Here Ω = 1.435× 10−3 and A= 0.5.
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FIGURE 13. The dependences of r(τ ) (solid line) and q(τ ) (dashed line). Here Ω=1.45×
10−3 and A= 1.
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FIGURE 14. (Colour online) Snapshots of the isolines of h2(X,Y, τ )− h; (a) τ = 2200 000;
(b) τ = 2200 750; (c) τ = 2201 000; (d) τ = 2201 180. Here Ω = 1.45× 10−3 and A= 1.

4.1.3. Nonlinear resonant wavy patterns
A number of wavy regimes have been observed for modulation frequencies around

Ω = 4ωo(k0)= 2ωo(k1). It should be emphasized that the observed waves are not just
subharmonic waves with basic wavevectors (±k0, ±k0), which are characterized by
the Fourier amplitudes ãs(τ ), ãc(τ ), b̃s(τ ) and b̃c(τ ). For all of the observed regimes,
the Fourier amplitudes as(τ ), ac(τ ), bs(τ ), bc(τ ), which correspond to wavevectors
(±k0, 0) and (0, ±k0), are also present. The interaction of both systems of waves
creates a plethora of different dynamical regimes. Let us list some of them.

Symmetric wavy patterns. The simplest dynamical regime has been found for
Ω = 2.922× 10−3 and A= 1. This regime is periodic in time. The Fourier components
as(τ ), ac(τ ), bs(τ ), bc(τ ) oscillate with the period 8π/Ω as ‘alternating rolls’,
i.e. as(τ ) is proportional to ac(τ ), and bs(τ ) is proportional to bc(τ ), but the standing
waves (as(τ ), ac(τ )) and (bs(τ ), bc(τ )) oscillate with a phase shift; r(τ ) and q(τ )
oscillate with the period 4π/Ω (see figure 16). Note that the Fourier amplitudes ãs(τ ),
ãc(τ ), b̃s(τ ) and b̃c(τ ) oscillate synchronously with the period 4π/Ω (see figure 17).
The quantities r̃(τ ) and q̃(τ ) are exactly equal to each other, and they oscillate with
the period 2π/Ω .

Thus, the regime is a synchronized superposition of alternating rolls with
wavevectors (±k0, 0), (0, ±k0), which oscillate with the period 8π/Ω and pulsating
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FIGURE 15. (Colour online) Snapshots of the isolines of h1(X,Y, τ )− 1; (a) τ = 2200 000;
(b) τ = 2200 750; (c) τ = 2201 000; (d) τ = 2201 180. Here Ω = 1.45× 10−3 and A= 1.

squares with wavevectors (±k0, ±k0), which oscillate with the period 4π/Ω .
Snapshots of the motion are shown in figure 18. One can see that the patterns
are symmetric with respect to reflection axes parallel to the boundaries of the
computational region. Note that two-dimensional disturbances decay for this choice
of parameters.

Asymmetric wavy patterns. The regime observed at Ω = 2.87 × 10−3 and A = 0.75
is rather similar to that described above, but now the standing waves (ãs(τ ), ãc(τ ))

and (b̃s(τ ), b̃c(τ )) have different amplitudes. The quantities r̃(τ ), q̃(τ ) are different,
and they oscillate with a phase shift. The pairs of Fourier components (as(τ ), ac(τ ))
and (bs(τ ), bc(τ )) form alternating rolls, as in the regime described in the previous
subsection. Snapshots for this regime are shown in figure 19. While the wavy regimes
mentioned above are superpositions of standing waves, the dynamics in the point Ω =
2.87× 10−3, A= 1 is more complex. The pair (b̃s(τ ), b̃c(τ )) forms a perfect standing
wave with b̃s(τ ) and b̃c(τ ) mutually proportional. The oscillations of ãs(τ ) and ãc(τ )
are periodic, but these functions are not proportional to each other, i.e. the wave
resembles a standing wave but it is not ‘perfectly standing’. The oscillations of as(τ ),
ac(τ ) are quasiperiodic (see figure 20); they correspond to pulsating travelling waves.
Therefore, the fields of hm(X, Y, τ ), m = 1, 2, are quasiperiodic in τ . Note that the
global quantities hm,max(τ ) and the combinations r̃(τ ), q̃(τ ), r(τ ), q(τ ), which do not
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FIGURE 16. The dependences of r(τ ) (solid line) and q(τ ) (dashed line). Here Ω =
2.922× 10−3 and A= 1.
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FIGURE 17. The dependences of ãs(τ ) (line 1), ãc(τ ) (line 2), b̃s(τ ) (line 3), b̃c(τ )
(line 4). Here Ω = 2.922× 10−3 and A= 1.

include phases of waves, are periodic in time (see figure 21). Snapshots of height
isolines for that regime are shown in figure 22.

As an example of a quasiperiodic regime, let us describe the wavy regime at Ω =
2.83× 10−3, A= 0.75. Figure 23 shows the temporal evolution of r̃ and q̃. While the
evolution of the larger quantity r̃(τ ) looks periodic, the smaller quantity q̃(τ ) is not
periodic. That is especially clear from the phase trajectory on the plane (b̃s(τ ), b̃c(τ ))

(see figure 24; recall that q̃(τ )=
√

b̃2
s (τ )+ b̃2

c(τ )).
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FIGURE 18. (Colour online) Snapshots of the isolines of h2(X,Y, τ )− h: (a) τ = 2400 000;
(b) τ = 2400 500; (c) τ = 2401 000; (d) τ = 2401 500. Here Ω = 2.922× 10−3 and A= 1.

The diagram of periodic and non-periodic regimes for Ω around 2ω0(k1) is shown
in figure 25.

Note that the nonlinear resonant wavy regimes in the region around Ω = 2ω0(k1)

obtained in the case of the substrate temperature modulation, are strongly different
from those obtained in the case of vibrations (see Nepomnyashchy & Simanovskii
2013).

4.2. Symmetric boundary conditions with L̃= L/2
As explained in § 2, solutions of problem (2.33) with symmetric boundary conditions
(2.44), (2.45), L̃= L/2, form a subset of the set of solutions with periodic boundary
conditions (2.41). Thus, not all of the nonlinear regimes described in § 4.1 survive
under the symmetric boundary conditions.

The following definitions of Fourier components are used in the present section:

ac(τ )= 2
L2

∫ L/2

0

∫ L/2

0
h1(X, Y, τ ) cos

2πX
L

dXdY, (4.12)

bc(τ )= 2
L2

∫ L/2

0

∫ L/2

0
h1(X, Y, τ ) cos

2πY
L

dXdY. (4.13)
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FIGURE 19. (Colour online) The snapshots of the isolines of h2(X, Y, τ ) − h: (a) τ =
2400 000; (b) τ = 2400 250; (c) τ = 2400 750; (d) τ = 2401 750. Here Ω = 2.87 × 10−3

and A= 0.75.

In the case of vanishing ac, bc, we have calculated the quantities

b̄c(τ )= 2
L2

∫ L/2

0

∫ L/2

0
h1(X, Y, τ ) cos

4πY
L

dXdY, (4.14)

b̂c(τ )= 2
L2

∫ L/2

0

∫ L/2

0
h2(X, Y, τ ) cos

4πY
L

dXdY. (4.15)

4.2.1. Region of Ω around 2ω0(k0)

First, let us consider the region of subharmonic waves (Ω around 2ω0(k0)) and
examine whether nonlinear regimes described above satisfy conditions (2.44) and
(2.45) for an appropriate location of the origin X = 0, Y = 0.

The two-dimensional subharmonic waves shown in figure 3 satisfy boundary
conditions (2.44), (2.45) if the origin X= 0, Y = 0 is fixed in such a way that as= 0.
The fields of isolines (figure 26) and the dependence h2,max(τ ) (figure 27) obtained
by numerical simulations with symmetric boundary conditions are identical to those
obtained with periodic boundary conditions (recall that stripes parallel to X-axis and
to Y-axis are equivalent).
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FIGURE 20. The phase trajectory in the plane (as, ac). Here Ω = 2.87× 10−3 and A= 1.
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FIGURE 21. The dependences of r(τ ) (solid line) and q(τ ) (dashed line). Here Ω=2.87×
10−3 and A= 1.

The three-dimensional waves shown in figures 11 and 12 have symmetry axes
parallel to axes X and Y . Therefore, this kind of structures is also retained. Note
that for the same values of parameters two-dimensional disturbances decay, i.e. a
motionless state is stable as well. Another kind of bistability has been revealed for
Ω = 1.435× 10−3 and A= 1. Depending on the initial conditions, one obtains either
a periodic two-dimensional wave or quasiperiodic three-dimensional oscillations.

The quasiperiodic regime shown in figures 14 and 15 is also retained for symmetric
boundary conditions.
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FIGURE 22. (Colour online) The snapshots of the isolines of h2(X, Y, τ ) − h: (a) τ =
2200 000; (b) τ = 2201 000; (c) τ = 2201 500; (d) τ = 2202 000. Here Ω = 2.87 × 10−3

and A= 1.

4.2.2. Region of Ω around 4ω0(k0)

In that region, as a rule, a multistability of regimes has been observed.
For Ω = 2.922 × 10−3, A = 1, the pattern found in the case of periodic boundary

conditions is symmetric to reflections. Therefore, one can expect that this pattern will
be retained under symmetric boundary conditions. Indeed, three-dimensional initial
disturbances generate a three-dimensional oscillatory regime of alternating rolls similar
to that observed in the case of periodic boundary conditions. In figure 28, a trajectory
in the phase plane (ac,bc) is shown. The trajectory is closed, hence the oscillations are
strictly periodic in time. If the initial disturbances are two-dimensional, they decay and
a motionless state is established. Thus, we have found that both the three-dimensional
regime and the motionless state are stable.

Another kind of bistability has been observed for Ω = 2.87 × 10−3 and A = 1.
Using two-dimensional initial conditions, we obtain a two-dimensional periodic
standing wave, which is characterized by non-zero values of the Fourier components
b̄c(τ ), b̂c(τ ). The dependences b̄c(τ ), b̂c(τ ) are shown in figure 29. The period of
oscillations is equal to the modulation period. Three-dimensional initial conditions
generate a three-dimensional oscillatory regime of alternating rolls similar to the
regime found for Ω = 2.922× 10−3 and A= 1. Note that the regime obtained in the
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FIGURE 23. The dependences of r̃(τ ) (solid line) and q̃(τ ) (dashed line). Here Ω=2.83×
10−3 and A= 0.75.
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FIGURE 24. The phase trajectory in the plane (b̃s, b̃c). Here Ω=2.83×10−3 and A=0.75.

case of symmetric boundary conditions is simpler than that observed in the case of
periodic boundary conditions. The simplification of the pattern dynamics is due to
the following reason. The stripes with the axes directed along the diagonals of the
computational region play an important role in the dynamics of patterns under the
periodic boundary conditions. In the case of symmetry conditions (2.44) and (2.45),
the stripes of this kind do not appear.
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FIGURE 25. The diagram of the flow regimes in the plane (Ω, A) for Ω close
to 4ωo(k0); periodic boundary conditions. Triangles, equilibrium; asterisks, symmetric
patterns; diamonds, asymmetric patterns.
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FIGURE 26. (a) A snapshot of isolines of h2(X, Y, τ )− h; (b) a snapshot of isolines of
h1(X, Y, τ )− 1 for symmetric boundary conditions with L̃= 120. Here Ω = 1.392× 10−3,
A= 1 and τ = 2× 106.

In general, periodic oscillations in the form of alternating rolls are typical
in the case of symmetric boundary conditions (see figure 30). Nevertheless, a
quasiperiodic temporal evolution is also possible, even with a simplified spatial
structure (see figure 30). An example of quasiperiodic oscillations is shown in
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FIGURE 27. The dependence of hmax,2(τ ) obtained for symmetric boundary conditions
with L̃= 120, Ω = 1.392× 10−3 and A= 1.
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FIGURE 28. The phase trajectory in the plane (ac, bc). Symmetric boundary conditions,
L̃= 120, Ω = 2.922× 10−3 and A= 1.

figure 31. Three-dimensional quasiperiodic oscillations in the form of alternating rolls
look like periodic ones (with the period about 4π/Ω ≈ 4.4 × 103) during relatively
short time intervals, but those oscillations are modulated with the long period (about
8× 105).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.178


186 A. Nepomnyashchy and I. Simanovskii

 0

–0.05

–0.10

0.05

 0.10

0.15

–0.15

995993 994 996 997 998 999

FIGURE 29. The dependences of bc(τ ), b̂c(τ ) obtained for symmetric boundary
conditions with L̃= 120, Ω = 2.87× 10−3 and A= 1.
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FIGURE 30. The diagram of flow regimes in the plane (Ω, A) for Ω close to
4ωo(k0). Triangles, equilibrium; squares, two-dimensional waves; asterisks, time-periodic
three-dimensional waves; circles, quasiperiodic three-dimensional waves.

4.3. Symmetric boundary conditions with L̃= L

We return to definitions (4.2) and (4.4). As explained in § 2, solutions of problem
(2.33) with symmetric boundary conditions (2.44) and (2.45), L̃= L, generally can be
extended as functions satisfying spatially periodic boundary conditions with periods
2L in both variables X, Y . Nevertheless, we observe solutions with periods smaller
than 2L in some simulations.

For instance, we obtain quasiperiodic oscillations of the type of alternating rolls at
Ω = 0.00283 and A = 1 (see figure 32). The spatial structure of pattern is periodic
with period L (figure 33). For Ω = 0.00287 and A = 1 we obtain periodic standing
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FIGURE 31. The dependences of ac(τ ) (solid line) and bc(τ ) (dashed line) for
symmetric boundary conditions with L̃= 120, Ω = 2.83× 10−3 and A= 0.5.
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FIGURE 32. The dependences of ac(τ ) (solid line) and bc(τ ) (dashed line) for
symmetric boundary conditions with L̃= 240, Ω = 2.83× 10−3 and A= 1.

waves with the spatial period L/2 (see figure 34); the period of oscillation is equal to
the period of the parameter modulation 2π/Ω .

Note that the above-mentioned structures are not observed, when periodic boundary
conditions with periods L are imposed, because in the latter case they are unstable
with respect to disturbances violating symmetry conditions.
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FIGURE 33. (Colour online) Snapshots of the isolines of h1(X, Y, τ )− 1 for symmetric
boundary conditions with L̃= 240, Ω = 2.83× 10−3 and A= 1: (a) τ = 616 695; (b) τ =
616 990; (c) τ = 617 017; (d) τ = 617 651.

5. Conclusions
We have investigated Marangoni waves generated in a two-layer film by the

modulation of a temperature or a heat flux at the solid substrate. The analysis has
been carried out using a closed system of strongly nonlinear equations, which allows
us to calculate parametrically excited waves far from the instability threshold. The
major attention has been paid to waves excited parametrically in two intervals of
frequencies Ω , around 2ωo(k0) and around 4ωo(k0). The first interval corresponds
to stripes parallel to the boundaries of the computational region, while the second
interval corresponds to stripes parallel to the diagonals of the computational region.
Two types of lateral boundary conditions, periodic and symmetric ones, have been
used. While the linear mechanism of the excitation is identical for both types of
waves, the dynamics of nonlinear waves in both cases turns out to be different.

In the former case, for both kinds of boundary conditions the dynamics is
determined by the nonlinear interaction of two standing waves, corresponding to
stripes parallel to the X-axis and Y-axis. These waves either compete or coexist.
If the waves compete, two-dimensional patterns are generated. In the case of the
coexistence, both waves can oscillate in a synchronous or asynchronous way. The
multistability of regimes is observed.
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FIGURE 34. Snapshots of the isolines of h1(X, Y, τ ) − 1 for symmetric boundary
conditions with L̃ = 240, Ω = 2.87× 10−3 and A = 1: (a) τ = 633 415; (b) τ = 633 559;
(c) τ = 633 565; (d) τ = 633 605.

In the latter case, a much more extensive set of regimes has been observed
for periodic boundary conditions, where a nonlinear resonant interaction of waves
with orientations parallel to axes and to diagonals takes place. Depending on
the modulation parameters, one can obtain structures with different degrees of
synchronization, from a full synchronization of pulsating squares and alternating
rolls to a desynchronized nonlinear superposition of pulsating travelling waves. These
novel three-dimensional flows have never been described formerly, and they are
significantly different from those obtained in the case of vibration. The patterns
observed in the case of symmetric boundary conditions, are strongly different from
those found for periodic boundary conditions, because the waves with orientation
parallel to diagonals are not allowed. Due to the latter circumstance, one can observe
some new symmetric patterns that are unstable in the case of periodic boundary
conditions.

Let us discuss the possibility of the experimental observation of the phenomena
described in the paper. In general, the deformational longwave mode of Marangoni
instability is developed only in sufficiently thin films. For instance, the monotonic
deformational longwave instability was observed by Van Hook et al. (1997) in
films with the thickness of the order of 100 µm and the characteristic temperature

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.178


190 A. Nepomnyashchy and I. Simanovskii

difference about 5 K. The computations carried out in the present paper correspond
to even thinner films (H0

1 is about 10 µm) and larger temperature differences (about
20 K). The value Ga= 0.025 used in the computations corresponds to L∗ = 0.1 mm,
thus the lateral size of the film L∗= 24 mm is large with respect to the film thickness.
The parametric excitation of Marangoni waves is expected for the temperature
modulation with the frequency 0.03–0.06 Hz.

In conclusion, let us note that another interesting method of convection stability
control is the spatial modulation of the temperature along the layer. Until now, that
method of control have been studied only for buoyancy convection (for a review, see
Freund, Pesch & Zimmerman 2011; Hossain & Floryan 2013). The development of a
corresponding theory for the Marangoni convection is beyond the scope of this paper.
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