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In a family, parameterized by θ, of non-negative random variables with finite, positive
second moment, Taylor’s law (TL) asserts that the population variance is proportional to
a power of the population mean as θ varies: σ2(θ) = a[μ(θ)]b, a > 0. TL, sometimes called
fluctuation scaling, holds widely in science, probability theory, and stochastic processes.
Here we report diverse examples of TL with b = 2 (equivalent to a constant coefficient
of variation) arising from a difference of random variables in normed vector spaces of
dimension 1 and larger. In these examples, we compute a exactly using, in some cases,
a simple, new technique. These examples may prove useful in future models that involve
differences of random variables, including models of the spatial distribution and migration
of human populations.

Keywords: coefficient of variation, geometric probability, migration, signal-to-noise ratio,
Taylor’s law

1. INTRODUCTION

Ecological studies of the variation of species’ population density in space and time led several
ecologists to recognize, and Taylor [10] to bring to widespread attention, an empirical pattern
now often called Taylor’s law (TL) or fluctuation scaling (in the physical sciences). More
than a thousand papers were published on the empirical support and theoretical foundations
for TL according to a review by Eisler, Bartos, and Kertész [6], and many papers on TL
have been published since then.

TL may be described mathematically as a property of a family of non-negative random
variables X(θ) ≥ 0 indexed by a parameter θ. If, for all θ, each X(θ) has finite second
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moment, population mean μ(θ) and population variance σ2(θ) > 0, and if, for real a and b
independent of θ,

σ2(θ) = a[μ(θ)]b, a > 0, or
σ2(θ)
[μ(θ)]b

= a > 0,

then, by definition, TL holds. (We do not deal in this paper with the sample version of TL,
in which the population moments are replaced by their corresponding sample moments.)

Cohen and Courgeau [2] observed that TL with b = 2 exactly describes the distances
between pairs of randomly chosen points in various geometric shapes parameterized by their
dimension, and under more general conditions. For example, they noted that if X(μ, c2)
is defined as the difference between two independent random variables, each of which is
identically normally distributed with mean μ and variance c2, then X(μ, c2) satisfies TL
with a = π/2 − 1, b = 2 for all μ and for all c. As empirical motivation, they showed that in
Réunion Island and France, at some spatial scales, the empirical frequency distributions of
inter-individual distances are predicted accurately by the theoretical frequency distributions
of inter-point distances in models of geometric probability under a uniform distribution of
points. This empirical analysis follows earlier analysis by Courgeau [3,4] and Courgeau and
Baccäıni [5] of the spatial distribution of a human population within a region by means of
the frequency distribution of the distance between a pair of individuals chosen at random.
The larger goal of this work is to model a human population’s spatial distribution and
migration between points within a region.

Cases of TL with b = 2 have particular theoretical and practical interest because b = 2
if and only if the coefficient of variation (standard deviation divided by mean) and the
signal-to-noise ratio (mean divided by standard deviation) are constant (and equal to a±1/2,
respectively), regardless of the parameter θ. The family of exponential random variables is
a familiar example of TL with b = 2 and a = 1.

Here we report diverse examples of TL with b = 2 arising from a difference of random
variables. These examples are distinguished by our ability to compute a exactly. These
examples may prove useful for future models that involve differences of random variables.

In Section 2, we develop methods for computing the ratio of the variance to the square
of the mean of the difference between univariate random variables. Because b = 2 in all these
examples, this ratio is the squared coefficient of variation. We give examples. In Section 3,
we give examples of exact computations for vector-valued and Banach-space-valued random
variables.

2. DISTANCES BETWEEN INDEPENDENT AND IDENTICALLY DISTRIBUTED
(IID) RANDOM VARIABLES

Proposition 2.1: Let V1, V2 be iid ∼ V with 0 < V ar(V ) < ∞, R = |V1 − V2|, and Xi =
cVi + d, i = 1, 2, c �= 0. Then

V ar(|X1 − X2|)
(E|X1 − X2|)2 =

V ar(|V1 − V2|)
(E|V1 − V2|)2 =

V arR

(ER)2
.

In this section, we compute V arR/(ER)2 explicitly for several examples.

Example 2.2: Gamma Distribution
Let V ∼ Γ(k, λ), a gamma distribution with shape parameter k (a positive integer) and scale
parameter λ (a positive real number). As λ is a scale parameter, without loss of generality
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we set λ = 1. By definition, the probability density function (pdf) of V ∼ Γ(k, 1) is

fV (v) =
vk−1e−v

(k − 1)!
. (1)

In this case, EV = V arV = k.

Proposition 2.3: Define

p(k) = P

(
Bin

(
2k,

1
2

)
= k

)
=

(
2k

k

) (
1
2

)2k

, k = 1, 2, . . . .

Let Vi ∼ V, i = 1, 2. Then, continuing the notation of Proposition 2.1,

V arR

(ER)2
=

1
2kp2(k)

− 1. (2)

As k → ∞, (V arR)/(ER)2 → (π/2) − 1, which is the value of (V arR)/(ER)2 when V is
normally distributed.

Proof: Since V is distributed as the time of the kth event in a Poisson process of rate 1,
V exceeds v if and only if N(v), the number of events in [0, v], is at most k − 1. Hence, the
survival function (complement of the cumulative distribution function) of V is

FV (v) =
k−1∑
r=0

vre−r

r!
, v ≥ 0. (3)

N(v) is Poisson with parameter v. Define m = min(V1, V2). From (1) and (3), the pdf of m
by time t is

fm(t) = 2fV (t)FV (t) =
2

(k − 1)!

k−1∑
r=0

tr+k−1e−2t

r!
. (4)

Thus, using the gamma identity Γ(z) =
∫ ∞
0

xz−1e−xdx and a change of variables, we have

Em =
∫ ∞

t=0

tfm(t)dt =
2

(k − 1)!

k−1∑
r=0

1
r!

∫ ∞

t=0

tr+ke−2tdt

=
2

(k − 1)!

k−1∑
r=0

1
r!

∫ ∞

t=0

t(r+k+1)−1e−2tdt =
2

(k − 1)!

k−1∑
r=0

1
r!

Γ(r + k + 1)
2r+k+1

= 2k

k−1∑
r=0

(
r + k

k

)(
1
2

)r+k+1

= 2kP (Y ≤ k − 1),

(5)

where Y is distributed as the number of failures prior to the (k + 1)st success in Bernoulli
trials with success probability 1/2, so that P (Y = r) =

(
r+k

r

)
(1/2)r+k+1.
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Since

P (Y ≤ k) = P (k + 1 successes before k + 1 failures) = 1/2 (6)

and

P (Y = k) =
(

2k

k

)(
1
2

)2k+1

=
1
2
p(k), (7)

where (as above) p(k) = P (Bin(2k, (1/2)) = k), it follows from (4)–(7) that

Em = 2k[P (Y ≤ k) − P (Y ≤ k − 1)] = 2k

[
1
2
− 1

2
p(k)

]
= k(1 − p(k)). (8)

Define M = max(V1, V2). Then

ER = E|V1 − V2| = EM − Em (9)

and

2EV = E[V1 + V2] = EM + Em. (10)

From (9) and (10),

ER = 2(EV − Em). (11)

We will use (11) in some of our other examples. A consequence of (11) is that in examples
where Em is computable, then ER is also computable.

In this example, from (8) and (11),

ER = 2[k − k(1 − p(k))] = 2kp(k). (12)

Next,

ER2 = E{[(V1 − EV ) − (V2 − EV )]2} = 2V arV = 2k, (13)

so from (12) and (13),

V arR

(ER)2
=

ER2

(ER)2
− 1 =

1
2kp2(k)

− 1,

which is (2). From Stirling’s approximation Feller [7, p. 47], p(k)/(1/
√

πk) → 1 as k → ∞.
Thus from (2), (V arR)/(ER)2 → (π/2) − 1 ≈ 0.5708 as k → ∞. �

For k = 5, (V arR)/(ER)2 ≈ 0.6512; for k = 50, (V arR)/(ER)2 ≈ 0.5787.

Example 2.4: Symmetrized Distributions

If we can compute the coefficient of variation for R = |V1 − V2| corresponding to V ≥ 0
with pdf fV , then we can also do so for R∗ corresponding to V ∗, the symmetrized version
of V , which has (by definition) pdf

fV ∗(v) =
1
2
fV (|v|), −∞ < v < ∞.
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Proposition 2.5: Define R∗ = |V ∗
1 − V ∗

2 |, where V ∗
1 , V ∗

2 are iid ∼ V ∗. Then

V arR∗

(ER∗)2
=

2EV 2

(EV + (ER/2))2
− 1. (14)

If V ∼ Γ(k, 1), then (14) gives

V arR∗

(ER∗)2
=

2(k + 1)
k(1 + p(k))2

− 1. (15)

As k → ∞, (15) converges slowly to 1. For k = 5, 50, 102, 103, 104, respectively,
(V arR∗)/(ER∗)2 ≈ 0.5465, 0.7503, 0.8102, 0.9324, 0.9778.

If F is the standard normal cdf and f = F ′ is the standard normal pdf, so that f ′ = −xf ,
then f(0) = (2π)−1/2 and f ′(0) = 0. Asymptotically as k → ∞,

p(k)/[2F ((2k)−1/2) − 1] → 1.

Thus,
p(k) = 2(1/2 + 1/(2(kπ)1/2) + o(1/k)) − 1 = (kπ)−1/2 + o(1/k).

Hence,
(p(k) + 1)−2 = 1 − 2(kπ)−1/2 + 3/(kπ) + o(1/k)

and
2(k + 1)

k(1 + p2(k))
− 1 =

V arR∗

(ER∗)2
= 1 − 4√

kπ
+

2
k

[
1 +

3
π

]
+ o(k−1).

For k = 102, 103, 104, the first three terms on the right give, respectively, 0.8134, 0.9325,
0.9778.

Proof: To prove (14), we construct V ∗
1 by letting V ∗

1 = V1 with probability 1/2 and V ∗
1 =

−V1 with probability 1/2. We construct V ∗
2 similarly by letting V ∗

2 = V2 with probability
1/2 and V ∗

2 = −V2 with probability 1/2. To have V ∗
1 , V ∗

2 independent, we independently
choose their signs, for example with independent flips of a fair coin. If V ∗

1 , V ∗
2 have the same

sign, which happens with probability 1/2, then R∗ ∼ R. If V ∗
1 , V ∗

2 have opposite signs, then
R∗ ∼ V1 + V2. Thus,

ER∗ =
1
2
[ER + 2EV ] = EV +

ER

2
= 2EV − Em, (16)

where the last equality follows from (11). Arguing similarly to (16),

ER∗2 =
1
2
[ER2 + E(V1 + V2)2] =

1
2
[2V arV + 2EV 2 + 2(EV )2] = 2EV 2. (17)

Result (14) then follows from (16) and (17).
When V ∼ Γ(k, 1), it follows from (12) and (16) that

ER∗ = k(1 + p(k)), (18)

and, from (17), that

ER∗2 = 2EV 2 = 2(V arV + (EV )2) = 2k(k + 1). (19)

Result (15) then follows from (18) and (19). �
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Example 2.6: Half-normal Distributions

Let Z,Zi ∼ N(0, 1), Vi = |Zi|, i = 1, 2. Then ER = E||Z1| − |Z2||, which appears diffi-
cult to compute directly. Instead, we compute the simpler ER∗ = E|Z1 − Z2| and then
invert (16) to get ER.

Since R∗ = |Z1 − Z2| ∼
√

2|Z|,

ER∗ =
√

2E|Z| =
√

2

√
2
π

. (20)

Then from (16) and (20),

ER = E
∣∣|Z1| − |Z2|

∣∣ = 2[ER∗ − EV ] = 2[ER∗ − E|Z|] = 2

√
2
π

[
√

2 − 1]. (21)

From (12),

ER2 = 2V arV = 2V ar(|Z|) = 2
[
1 − 2

π

]
. (22)

From (21) and (22), we obtain

V arR

(ER)2
=

V ar[
∣∣|Z1| − |Z2|

∣∣]
(E

∣∣|Z1| − |Z2|
∣∣)2 =

π − 2
2(2 −√

2)2
− 1 ≈ 0.6634. (23)

Example 2.7: Beta Distributions

Suppose V ∼ Beta(a,1) with pdf fV (t) = ata−1, 0 < t < 1, a > 0. Then
FV (t) = 1 − ta, 0 ≤ t ≤ 1. We calculate

Em =
∫ 1

0

(1 − 2ta + t2a)dt =
2a2

(a + 1)(2a + 1)
, (24)

ER = 2(EV − Em) =
2a

(a + 1)(2a + 1)
, (25)

ER2 =
2a

(a + 1)2(a + 2)
. (26)

It follows that
V arR

(ER)2
=

2a2 + 1
2a(a + 2)

def
= g(a). (27)

The global minimum of g(a) is 1/2 at a = 1, when Beta(1,1) = Uniform(0,1) distribu-
tion. g(a) decreases from ∞ to 1/2 as a goes from 0 to 1, and increases from 1/2 to 1 as a
goes from 1 to ∞; g(a) = 1 at the single point a = 1/4.

The method developed in Example 2.4 yields in this Beta(a,1) case that

V arR∗

(ER∗)2
=

V arR

(ER)2
= g(a).

This equality between the squared coefficient of variation of R and R∗ does not hold in any
of our other examples. It is a curiosity.
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Example 2.8: Completely Monotone Distributions

Completely (or totally) monotone distributions are mixtures of exponential distributions
(Bernstein’s theorem). We can represent a completely monotone distribution as

V = Uε

where U and ε are independent, ε is exponentially distributed with mean 1, and U is a non-
negative random variable (not necessarily Uniform(0,1) here). If EU < ∞, then EV = EU ,
and if EU2 < ∞, then

EV 2 = 2(EU2), V arV = 2V arU + (EU)2. (28)

Completely monotone distributions form a subclass of distributions with decreasing
failure rate (DFR) (e.g., Barlow and Proschan [1], Marshall and Olkin [9]). Completely
monotone distributions are studied in Feller [7], and applied to first-passage times for time-
reversible Markov chains in Keilson [8].

For the next results, we recall that if X and Y are independent exponentials with
means c1 and c2, respectively, then E min(X,Y ) is exponential with mean 1/(1/c1 + 1/c2) =
c1c2/(c1 + c2).

Let Vi = Uiεi, i = 1, 2, be iid. Then U1ε1, U2ε2, given U1 = u1, U2 = u2, are independent
exponentials with parameters u1, u2. Then, by the preceding facts,

E(m|U1, U2) = E(min(U1ε1, U2ε2)|U1, U2) = E

[
U1U2

U1 + U2

]
, (29)

ER = 2[EV − Em] = 2E

[
U1 − U1U2

U1 + U2

]
= 2E

[
U2

1

U1 + U2

]
.

From (28) and (29),
V arR

(ER)2
=

2σ2
U + (EU)2

2
(
E

[
U2

1
U1+U2

])2 − 1. (30)

Expression (30) is difficult to compute in general. We compute it in a few special cases
and then derive two-sided bounds in (37) by exploiting the DFR property.

Case 2.9: P (U = 1) = p = 1 − P (U = 2), where P (U = 2) = q and 0 < p < 1, a mixture of
two exponential distributions with means 1 and 1/2, respectively. In this case,

E

(
U2

1

U1 + U2

)
=

1
6
(3p2 + 10pq + 6q2), (31)

ER =
1
3
(6 − 2p − p2). (32)

From (28), (30), and (32),

V arR

(ER)2
=

36 − 12p − 10p2 − 4p3 − p4

(6 − 2p − p2)2
, (33)

which is maximized at p =
√

3 − 1, where the maximum equals 5/4; (33) exceeds 1 for all
p, converging to 1 as p goes to 0 or 1.
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Case 2.10: U ∼ Uniform(0,1), V = Uε. In this case,

ER = 2
[
2
3

log 2 − 1
6

]
,

V arR

(ER)2
=

5/6
4 [(2/3) log 2 − (1/6)]2

− 1 ≈ 1.3870.

Case 2.11: U ∼ (1/Γ(α, λ)), α > 2, λ > 0, V = Uε. In this case,

ER =
2αλ

(α − 1)(2α + 1)
,

V arR

(ER)2
=

2α2 + 1
2α(α − 2)

.

The above distribution has survival function

F (t) =
(

λ

λ + t

)α

,

the survival function of Uε coinciding with the Laplace transform of U−1.

Bound: Define K(t) = E[V − t|V > t], the mean residual life or remaining life
expectancy at t. Then

ER = E[M − m] = EK(m),

where (as above) m = min(V1, V2). This is true since given m = y,M − m ∼ (V − y|V > y),
and E[M − m|m = y] = K(y). Thus, ER = E[E(R|m)] = E[K(m)].

If V has DFR with hazard rate h(s) = f(s)/F (s), the hazard rate of (V − t|V > t) at s
equals h(t + s); thus (V − t|V > t) has DFR, and R is thus a mixture of random variables
with DFR, which is DFR. As R has DFR,

V arR ≥ (ER)2. (34)

Further, R is stochastically larger than V . Thus,

ER ≥ EV = EU(if V = Uε). (35)

Thus

V arR

(ER)2
=

2V arV

(ER)2
− 1 ≤ 2V arV

(EV )2
− 1 =

2[2V arU + (EU)2]
(EU)2

− 1 = 1 +
4V arU

(EU)2
. (36)

From (35) to (36) for V DFR,

1 ≤ V arR

(ER)2
≤ 2V arV

(EV )2
− 1. (37)

If V = Uε (which implies that V completely monotone, a subclass of DFR),

2V arV

(EV )2
− 1 = 1 +

4V arU

(EU)2
. (38)

Thus (37) gives a two-sided bound for the squared coefficient of variation of a DFR
distribution, and (38) an equivalent bound for completely monotone distributions.
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When U is a constant, or equivalently V is exponentially distributed, the lower and
upper bounds coincide, giving the value 1, from Example 2.2 with k = 1.

Example 2.12: Truncated Exponential Distributions

Let T > 0 be a constant and let X be exponential with parameter λ. Then λX is
exponential with parameter 1. Define V = min(X,T ). Then

λV = min(λX, λT ) = min(Exponential(1), λT ).

Since V arR/(ER)2 is the same for λV as for V , we can without loss of generality work with

V = min(ε, w), ε ∼ Exponential(1), constant w > 0.

In any given example (λ, T ), replace w by λT to get the value of (V arR)/(ER)2. Now

EV =
∫ w

0

e−xdx = 1 − e−w,

Em = E min(V1, V2) =
∫ w

0

e−2xdx =
1 − e−2w

2
.

Thus by (11),

ER = 2(EV − Em) = (1 − e−w)2.

Next, EV 2 =
∫ w

0
2xe−xdx = 2(1 − (w + 1)e−w), so V arV = 1 − 2we−w − e−2w. From (10)

and (30),

V arR

(ER)2
=

2(1 − 2we−w − e−2w)
(1 − e−w)4

− 1 =
1 − 4(w − 1)e−w − 8e−2w + 4e−3w − e−4w

(1 − e−w)4
. (39)

This ratio converges to 1 (the value for an untruncated exponential distribution) as w → ∞,
and converges to ∞ as w ↓ 0.

Example 2.13: Weibull Distributions

The Weibull distribution is used in survival analysis, extreme value theory, industrial
and reliability engineering. One of its two parameters is a scale parameter, which we ignore
because it has no effect on V arR/(ER)2.

Let ε be exponential with mean 1. Define

Yα = ε1/α, α > 0.

The survival function of Yα is

Fα(t) = P (Yα > t) = P (ε > tα) = e−tα

, t ≥ 0.

This distribution is Weibull with shape parameter α and scale parameter 1.
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The hazard function of the Weibull distribution is hα(t)
def
= fα(t)/Fα(t) = αtα−1. For

α < 1, Yα has DFR, for α > 1 has increasing failure rate (IFR), and for α = 1 is exponential.
Some well-known Weibull properties are (40)–(42) below:

EYα = Γ
(

1
α

+ 1
)

(by definition of the gamma function). (40)

EY 2
α = Γ

(
2
α

+ 1
)

. (41)

V arYα = Γ
(

2
α

+ 1
)
− Γ2

(
1
α

+ 1
)

(by (40) and (41)). (42)

Emα =
∫ ∞

0

e−2tαdt =
1
α

∫ ∞

0

z(1/α)−1e−2zdz (where z = tα)

=
(1/α)Γ(1/α)

21/α
=

Γ((1/α) + 1)
21/α

. (43)

Define Rα = |Yα,1 − Yα,2|. Then by (11),

ERα = 2(EYα − Emα) = 2Γ
(

1
α

+ 1
)

(1 − 2−1/α). (44)

Thus,
V arRα

(ERα)2
=

2V arYα

(ERα)2
− 1 =

Γ((2/α) + 1) − Γ2((1/α) + 1)
2Γ2( 1

α + 1)(1 − 2−1/α)2
− 1.

For example, if α = 2,

V arR2

(ER2)2
=

Γ(2) − Γ2(3/2)
2Γ2(3/2)(1 − 2−1/2)2

− 1 =
1 − (π/4)

(π/2)(1 − 2−1/2)2
− 1

=
4 − π

π(
√

2 − 1)2
− 1 =

4 − π

π(3 −√
8)

− 1 =
4 − π(4 −√

8)
π(3 −√

8)
≈ 0.5926.

Example 2.14: Correlated Normal Distributions

The iid univariate normal case was considered in Example 2.4. Here we consider two
correlated normals. Assume(

V1

V2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, ρ �= 1. (45)

Then V1 − V2 ∼ N(0, 2(1 − ρ)) ∼ √
2(1 − ρ)Z, with Z ∼ N(0, 1). Define R = |V1 − V2|.

Then

ER =
√

2(1 − ρ)

√
2
π

= 2

√
1 − ρ

π
,

ER2 = 2(1 − ρ).

Because ρ �= 1 by assumption in (45), we have ER > 0, ER2 > 0, and

V arR

(ER)2
=

π

2
− 1. (46)
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More generally, if either ρ �= 1 or σ1 �= σ2 and(
V1

V2

)
∼ N

((
μ
μ

)
,

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

))
, σ1 > 0, σ2 > 0

then (46) holds.

3. VECTOR AND BANACH-VALUED RANDOM VARIABLES

Let V m×1
1 and V m×1

2 be iid random vectors of m components, c �= 0 be a scalar, Γm×m be
orthogonal (i.e., ΓΓ′ = Γ′Γ = I), and

Xi = μ + cΓVi, i = 1, 2.

Define R = V1 − V2 and ‖xm×1‖ =
√

x′x =
∑

x2
i . Then

D
def
= ‖X1 − X2‖ = ‖cΓ(V1 − V2)‖ = |c|‖ΓR‖ = |c|‖R‖.

Thus, ED = |c|E(‖R‖), and ED2 = c2E(‖R‖2), so

V arD

(ED)2
=

E(‖R‖2)
(E(‖R‖))2 − 1 =

V ar(‖R‖)
(E‖R‖)2 , (47)

independently of μ, c, and Γ.

Example 3.1: Uncorrelated Normal Vectors

Let Zm×1
i ∼ N(0, I), i = 1, 2, Z1, Z2 independent. Then R = Z1 − Z2 ∼ √

2N(0, I) ∼√
2Z with Z ∼ N(0, I). Thus,

‖R‖ ∼
√

2
√

χ2
m (48)

where χ2
m is the chi-squared distribution with m degrees of freedom. Since

E(
√

Γ(α, λ)) =
λα

Γ(α)
Γ(α + (1/2))

λα+1/2
=

1√
λ

Γ(α + (1/2))
Γ(α)

,

it follows that

E
√

χ2
m = E

√
Γ

(
m

2
,
1
2

)
=

√
2
Γ((m + 1)/2)

Γ(m/2)
.

Thus,

E(‖R‖) = 2
Γ((m + 1)/2)

Γ(m/2)
, (49)

E(‖R‖2) = 2Eχ2
m = 2m. (50)

Consequently, from (42) and (43),

V ar(‖R‖)
(E‖R‖)2 =

mΓ2(m/2)
2Γ2((m + 1)/2)

− 1. (51)

For m = 1, the squared coefficient of variation of ‖R‖ equals (π/2) − 1, agreeing with (46).
For m = 5, V ar(‖R‖)/(E(‖R‖))2 = (45π/128) − 1 ≈ 0.1045.
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Example 3.2: Banach-valued Random Variables

To find a computable case, we deal with a squared norm (rather than a norm, as in
previous examples). Suppose that V1 and V2 are iid standard Brownian motion processes on
[0, T ], T > 0. V1 and V2 take values in the Banach space L2([0, T ], β, l), with β the Borel
sets of [0, T ] and l the Lebesgue measure, which contains real-valued square-integrable
functions x on [0, T ] with ‖x‖2 =

∫ T

0
x2(s)ds. Define R2 = ‖V1 − V2‖2 ∼ 2‖V ‖2, where V is

the standard Brownian motion on [0, T ]. Then

ER2 = 2E

[∫ T

0

V 2(s)ds

]
=

∫ T

0

2sds = T 2.

Let Ṽ be the standard Brownian motion on [0, T ], independent of V . Using stationary
and independent increments,

ER4 = 8
∫ T

u=0

∫ u

v=0

E
[
V 2(v)[V 2(v) + 2V (v)Ṽ (u − v) + Ṽ 2(u − v)]

]
dvdu

= 8
∫ T

u=0

∫ u

v=0

(2v2 + vu)dvdu = 8
∫ T

0

7
6
u3du =

7
3
T 4.

Thus,
V arR2

(ER2)2
=

7
3
− 1 =

4
3
.

If
Xi(s) = m(s) + cVi(s), i = 1, 2, 0 ≤ s ≤ T,

then X1(s) − X2(s) = c(V1(s) − V2(s)), and

V ar(‖X1 − X2‖2)
(E‖X1 − X2‖2)2

=
4
3
,

independently of m, c, and T . Thus, TL holds for ‖X1 − X2‖2 with exact coefficient a = 4/3
and exact exponent b = 2.
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