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The interaction between turbulence in a minimal supersonic channel and radiative heat
transfer is studied using large-eddy simulation. The working fluid is pure water vapour
with temperature-dependent specific heats and molecular transport coefficients. Its
line spectra properties are represented with a statistical narrow-band correlated-k
model. A grey gas model is also tested. The parallel no-slip channel walls are treated
as black surfaces concerning thermal radiation and are kept at a constant temperature
of 1000 K. Simulations have been performed for different optical thicknesses (based
on the Planck mean absorption coefficient) and different Mach numbers. Results
for the mean flow variables, Reynolds stresses and certain terms of their transport
equations indicate that thermal radiation effects counteract compressibility (Mach
number) effects. An analysis of the total energy balance reveals the importance of
radiative heat transfer, compared to the turbulent and mean molecular heat transport.
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1. Introduction
In turbulent gaseous combustion systems, radiative heat transfer often plays an

important role besides heat transfer by conduction and convection. While heat
conduction is a short-range phenomenon, accomplished by molecules which on
average travel the distance of a mean free path (O(10−10 m) under standard conditions)
before they exchange energy in a collision, turbulent heat transport by convection
is managed by eddies of macroscopic size, which cover distances ranging from
the Kolmogorov microscale to a turbulent integral scale. Thermal radiation is a
phenomenon of much longer range than the other two, in general, because photons
can travel long distances before they interact with molecules. As a consequence,
partial differential equations (the compressible Navier–Stokes equations) suffice to
describe heat conduction and convection mechanisms, while an integro-differential
equation is needed to predict the directional dependence of the radiative intensity
inside absorbing/emitting gases. A further complication arises from the fact that
radiative properties of gases vary strongly with the frequency or wavenumber of the
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radiation (Modest 2003). Due to these difficulties which imply enormous costs of
numerical simulations, effects of radiative heat transfer are frequently predicted by
strongly simplified models or are neglected even in situations where they play a role.
There are indeed many examples in engineering science and technical applications
where thermal radiation cannot be neglected, e.g. in combustion systems such as
furnaces, boilers, scramjets and rocket engines. Coelho (2007) provides an extensive
overview of the current understanding of the turbulence–radiation interaction (TRI)
and its modelling in reactive low-Mach-number flows. Among the many interesting
issues discussed in this overview, two aspects of TRI may be quoted here, namely
the influence of heat radiation on the flow and species concentration fields on one
hand and the effect of the fluctuating species and temperature fields on radiation on
the other. While most work on TRI has been devoted to the influence of turbulence
on radiation, little work has concentrated on the question of how radiation affects
turbulence variables. It is the aim of this work to focus especially on the behaviour of
the turbulence structure under the influence of thermal radiation in inert, compressible,
wall-bounded shear layers.

The most accurate prediction technique for TRI is undoubtedly the direct numerical
simulation (DNS) of a turbulent flow, the photon Monte Carlo method for radiative
transfer (Wu et al. 2005) and spectral radiation gas properties based on high-
resolution measurements. Such an accurate approach is not feasible at present due
to the prohibitive numerical requirements, even for simple flow configurations where
turbulence is inhomogeneous in one space direction only. A good compromise with
respect to accuracy and cost is achieved by performing a large-eddy simulation
(LES) of the flow field, applying the method of discrete ordinates (DOM) (Modest
2003; Coelho 2007) to compute the radiative transfer equation (RTE) for an
absorbing/emitting gas and the statistical narrow-band correlated-k (SNB-cK) model
to account for the radiative properties of the gas. This approach has been mostly
adopted here, except for an attempt to reach higher optical thickness by using a
simple grey gas model with an artificially increased absorption coefficient.

The paper is organized as follows: the governing equations describing compressible
turbulent flow of a single-component gas that emits/absorbs thermal radiation are
presented in § 2 (§ 2.1), together with the LES approach for the flow field (§ 2.2).
Numerical and computational details in § 3 comprise a description of the Navier–
Stokes and RTE solvers (§ 3.1) and of the flow configuration (§ 3.2). Section 4 is
devoted to results for mean and instantaneous quantities and starts with transport
equations for mean momentum, energy and Reynolds stresses (§ 4.1). Results for low
and high supersonic channel flow of water vapour with and without radiation are
presented in §§ 4.2 and 4.3. Snapshots of emitted and absorbed radiative energies
between the channel walls are contrasted with the instantaneous temperature fields
in § 4.4. Section 4.5 discusses the effect of an artificially increased Planck mean
absorption coefficient on certain aspects of the mean momentum and heat transport.
Conclusions are drawn in § 5.

2. Mathematical model
2.1. Governing equations

In Cartesian tensor notation, the compressible Navier–Stokes equations for a single-
component thermally radiating gas read

∂ρ

∂t
+

∂ρuj

∂xj

= 0, (2.1)
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∂ρui

∂t
+

∂ρuiuj

∂xj

− ∂

∂xj

(−pδij + τij ) = fi, (2.2)

∂ρE

∂t
+

∂ρEuj

∂xj

− ∂

∂xj

(−uipδij + uiτij − qj ) = uifi. (2.3)

The set (2.1)–(2.3) of coupled differential equations describes the transport of mass,
momentum and total energy (ρE = ρ(e + 0.5uiui)). It is supplemented by Newton’s
viscous stress tensor (τij ), the sum (qj = qj,C + qj,R) of heat flux vectors for conduction
and radiation and the caloric and thermal equations of state:

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+

(
κ − 2

3
µ

)
∂uk

∂xk

δij , (2.4)

qj = −λ
∂T

∂xj

+ qj,R, (2.5)

de = cvdT , p = ρRT . (2.6)

In (2.1)–(2.6), ρ, ui, p, T and e denote density, velocity, pressure, temperature and
internal energy, respectively. R is the gas constant per unit mass. Dynamic and bulk
viscosities, µ, κ , thermal conductivity, λ, and specific heat at constant volume, cv ,
depend on temperature. While the molecular transport coefficients are computed
efficiently using the code EGLib (Ern & Giovangigli 1995), polynomial expressions
are used to specify the temperature dependence of specific heats (Gardiner 1984).
fi represents a body force which is needed to drive a fully developed channel flow
and is specified in § 3.2. The radiative source term, ∂qj,R/∂xj , in the energy equation
is obtained by integrating the RTE over all wavenumbers and directions in which
radiation propagates. For an emitting–absorbing and non-scattering gas, the RTE
reads (Modest 2003)

dIη

ds
= κηIbη − κηIη. (2.7)

The spectral radiation intensity, Iη, depends on the wavenumber, η, and on the
direction s in which radiation propagates. Its time-dependency is neglected because
the speed of light is much larger than any flow velocity. κη and Ib,η denote the spectral
absorption coefficient and Planck’s black-body radiation intensity, respectively. The
first term on the right-hand side of (2.7) describes the gain of radiation intensity via
emission and the second term describes the loss by absorption. The radiative source
term is obtained from (2.7) through integration over wavenumber η and solid angle
Ω ,

divqR =

∫ ∞

0

κη

(
4πIbη −

∫
4π

Iη dΩ

)
dη = 4κP σT 4︸ ︷︷ ︸

emission

−
∫ ∞

0

∫
4π

κηIη dΩ dη︸ ︷︷ ︸
absorption

, (2.8)

where κP defines Planck’s absorption coefficient which is an average over all
wavenumbers:

κP =

∫ ∞

0

κηIbη dη∫ ∞

0

Ibη dη

=
π

σT 4

∫ ∞

0

κηIbη dη. (2.9)

σ is the Stefan–Boltzmann constant.
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2.2. LES approach

LES of a compressible turbulent flow needs modelling of many unclosed terms.
Techniques which circumvent the modelling of each individual unknown term in
the governing LES equations are therefore of great value. They may be of a purely
mathematical nature and need not make use of the flow physics in modelling effects of
the unresolved scales. The approximate deconvolution method presented by Stolz &
Adams (1999) is such a technique. We use a variant of this method here, namely
the explicit filtering technique of Mathew et al. (2003) and briefly discuss its main
characteristics using a generic one-dimensional transport equation for a variable
u(x, t) as an example:

∂u

∂t
+

∂f (u)

∂x
= 0, (2.10)

where f (u) is a nonlinear function. Computing a low-wavenumber solution, as in
LES, implies a spatial filtering of (2.10), to get

∂ūG

∂t
+

∂f (u)

∂x

G

= 0 or
∂ūG

∂t
+ G

∂f (u)

∂x
= 0, (2.11)

with a low-pass filter kernel G(x − x ′, ∆), its filter width 
 and the filtered (or LES)
variable,

ūG = G ∗ u =

∫
G(x − x ′, ∆)u(x ′) dx ′. (2.12)

Stolz & Adams (1999) close (2.11) by using a deconvolved field u∗ which
approximates u in the nonlinear term of (2.11) and is given by

u � u∗, u∗(x, t) = QN ∗ ūG = QN ∗ G ∗ u, QN =

N∑
ν=0

(I − G)ν ≈ G−1. (2.13)

G is a second-order Padé filter containing a parameter α and QN is the approximate
inverse of G, obtained from a van Cittert series and truncated at N = 5 or 6.

In subsequent publications (Adams & Leonard 1999; Stolz, Adams & Kleiser
2001), the authors add a relaxation term on the right-hand side of (2.11) to provide
the proper transfer of energy at the cutoff wavenumber between large and small
scales and to prevent divergence of the solution (regularization). In Mathew et al.
(2003) no relaxation term is needed and the fact that the desired dissipative action
can also be achieved by filtering the numerical solution explicitly at every time step
with a composite filter, (QN ∗ G)2, to get the LES variable ūQG = (QN ∗ G)2 ∗ u

is used. As seen in figure 1, (QN ∗ G)2 acts as a useful low-pass filter, i.e. it is
flat over a significant part of the represented wavenumber range and then falls off
smoothly at the high wavenumber end. This filter also has the advantage that the LES
result tends uniformly to the DNS result as the grid is refined and the filter cutoff is
moved towards the highest wavenumbers. It is, however, crucial that a high-resolution
numerical scheme can be used for spatial discretization so that the scheme does not
filter out any low wavenumber content. In the present computations the Fourier
transform of G has the following form:

Ĝ(k) =

(
α +

1

2

)
1 + cos k

1 + 2α cos k
, α = 0.2, (2.14)

in periodic directions. In the non-periodic direction, G has a form proposed by Stolz
(2000).
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Figure 1. Transfer functions of filters and their approximate inverse in periodic direction.
α = 0.2 and N = 6: —, G; - - -, QN ; .. .., QN ∗ G; -·-·-, (QN ∗ G)2.

Following Coelho (2009), low-pass filtering of the radiation transfer equation (2.7)
leads to subgrid-scale contributions for absorption and emission of the form (where
the overbar here denotes a suitable low-pass filtering operation),

(κηIη − κηIη), (κηIbη − κηIbη). (2.15)

Coelho (2009) has discussed several closures for these terms and has concluded that
an optically thin fluctuation approximation in the LES context (which neglects the
subgrid-scale contributions to the absorption term) may yield excellent predictions.
He also pointed out that errors arising from the complete neglect of TRI in the
filtered RTE are far less important than those resulting from ignoring TRI in the
statistically averaged RTE in Reynolds averaged Navier-Stokes (RANS) calculations.
In view of this fact we do not model any of the subgrid-scale contributions here and
solve the RTE using the described explicitly filtered variables.

3. Numerical and computational details
3.1. Navier–Stokes and RTE solvers

The compressible Navier–Stokes equations (2.1)–(2.6) are solved numerically in a
characteristics-based form proposed by Sesterhenn (2001). The compact sixth-order
central scheme of Lele (1992) is chosen to discretize the convection and molecular
transport terms, respectively. A third-order low-storage Runge–Kutta scheme of
Williamson (1980) advances the solution in time. At each time step the discrete values
of p, T and ui defined on the Cartesian LES grid are filtered using the composite
filter (QN ∗G)2, so that the primitive LES-variables, p̄QG, T̄ QG and ūi

QG, are obtained.
We solve the RTE as in (2.7), using the DOM, implemented in the code PRISSMA

and the filtered pressure and temperature, p̄QG and T̄ QG, respectively. The three-
dimensional RTE is solved on a Cartesian, structured mesh using finite-volume
discretization. A second-order Diamond mean flux scheme (Joseph et al. 2005) is used
for the calculation of radiative intensity along a line of sight. Spectral integration can
be performed in PRISSMA using global spectral models or a SNB-cK model (Liu,
Smallwood & Gulder 2000). The latter is mostly used here for its accuracy, although
it is very expensive compared to global models. The parameters for the statistical
narrow-band model used here are described in Soufiani & Taine (1997). The flow
field and the radiation field are directly coupled using Message Passing Interface
(MPI) such that PRISSMA gets the pressure and temperature fields at about every
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characteristic convective time interval and the compressible LES solver receives the
radiative source term. This characteristic time interval is defined as 
tc = 
x/ūm,
where 
x is the streamwise grid spacing and ūm is the bulk velocity. The flow solver
uses domain decomposition, while the radiation solver employs parallelization in
wavenumbers, i.e. in narrow bands while using the SNB-cK model.

Our LES technique has been successfully tested against DNS data for supersonic
turbulent channel flow in Mathew et al. (2003). It has also been applied and again
successfully validated for supersonic pipe flow (Ghosh, Sesterhenn & Friedrich 2006)
and for nozzle flow (Ghosh, Sesterhenn & Friedrich 2008). The PRISSMA code has
been used and validated in Amaya et al. (2010). The numerical scheme implemented
in PRISSMA is detailed and tested in Joseph et al. (2005). In Jensen et al. (2007), the
DOM is compared with other methods to solve the RTE, and it is shown that DOM
using high-order quadrature provides accuracy levels comparable to the quasi-exact
methods (Monte Carlo and ray tracing).

We would like to point out that our notation will be simplified from here onwards,
in the sense that the specification of an LES variable by an overbar (f

QG
) is

suppressed. All variables without an overbar are henceforth low-pass filtered time-
and space-dependent quantities.

3.2. Flow configuration

The prediction of TRI in fully developed channel flow, using time-dependent
numerical simulations, has not been given much attention in the past. The only
two publications known to the authors, in which DNS/LES is used, deal with
incompressible turbulence, its interaction with and its modification by thermal
radiation. Gupta, Modest & Haworth (2009) use LES to investigate reacting and
non-reacting turbulent channel flows at a friction Reynolds number of 186 under
conditions where composition and temperature do not affect the hydrodynamics
(one-way coupling). The RTE is solved using a spherical harmonics (P1) method,
and radiation properties correspond to a fictitious grey gas with a composition- and
temperature-dependent Planck mean absorption coefficient that mimics that of a
typical hydrocarbon–air combustion product. Simulations have been performed for
different optical thicknesses and it was found that in the absence of chemical reaction,
radiation modifies the mean temperature profile, but has little effect on temperature
fluctuations and TRI. On the other hand, chemical reaction enhances the importance
of TRI via stronger composition and temperature fluctuations. Amaya et al. (2010)
perform DNS of a reacting turbulent minimal channel flow with and without radiative
source terms. The RTE is solved using the DOM and the radiation model used is the
global spectral FS-SNBcK model (Full spectrum statistical narrow band correlated-k
model, Poitou et al. 2009) which forms a compromise between cost and accuracy.
Radiation and flow dynamics are directly coupled in the sense that the Navier–Stokes
solver receives the radiative source term every convective characteristic time, whereas
the radiation solver gets the temperature, pressure and molar concentrations of the
species fields. Specific features of the incompressible flow are internal heat sources
to achieve a bulk temperature of 2000 K, a friction Reynolds number of 400, a
low optical thickness and isothermal, black walls, kept at a temperature of 1750 K.
The working gas is a mixture of seven reacting species typical of many industrial
applications: CO, CO2, H, H2, H2O, OH and N2. As a result of the low optical
thickness of the configuration, no coupling is detected between the radiation term
and other energy conservation contributions, so that the contribution of the radiative
heat fluxes at the walls can be calculated independently.
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Flow Reτ Mτ Rem Mm τH

Channel 1 1026(1041) 0.0681(0.068) 16477(17059) 1.26(1.32) 0.006

Channel 2 1368(1398) 0.119(0.1177) 17451(17590) 2.88(2.92) 0.003

Table 1. Flow parameters for supersonic turbulent channel flow of water vapour with
radiative heat transfer (values in brackets correspond to cases without radiation).

The present configuration is that of a supersonic turbulent flow in a minimal
channel (Jimenez & Moin 1991) with pure water vapour (being an important product
of combustion, besides CO2) as working fluid and black, no-slip surfaces kept at a
constant temperature of 1000 K. To mimic a high-altitude supersonic flight situation
and to keep the Reynolds number sufficiently low, the pressure level is kept at 0.05
bar. High temperatures are naturally created at supersonic speed in the channel core
by kinetic energy dissipation. Since the radiation model selected is mostly the time-
consuming SNB-cK model (Liu et al. 2000), DNS is not feasible and LESs which are
fully coupled with thermal radiation computations are performed instead. Two sets
of friction Reynolds and Mach numbers, Reτ and Mτ , have been selected (Channels 1
and 2) to compute effects of radiation on the turbulent-flow structure by comparison
with corresponding cases where thermal radiation is turned off. In table 1 we present
the friction Reynolds and Mach numbers for the case with radiation and in brackets
for the case without radiation. A special feature of compressible channel flow is that
these parameters cannot be chosen independently, even in the case without radiation.
This is obvious from their definitions:

Reτ =
ρ̄wuτH

µw

, Mτ =
uτ√

γRTw

, uτ =

√
τ̄w

ρ̄w

. (3.1)

While the dynamic viscosity and the speed of sound at wall temperature are
constants, the mean density at the wall, appearing in Reτ explicitly and in Mτ via the
friction velocity, is a result of the computation and cannot be specified in advance.
The wall–shear stress is related to the mean streamwise pressure gradient which drives
the flow in the form of a space/time constant body force in (2.2). For fully developed
channel flow, with the channel half-width H , we have

−∂p̄

∂x
=

τ̄w

H
= fiδix. (3.2)

When this body force is used in the momentum and energy equations (2.2) and
(2.3), the pressure p fluctuates along x around a mean value. It is this body force
which is kept constant in the LES with and without radiation. Hence the mass fluxes
differ, which is reflected in differences of Rem. The fact that these differences are
small (see table 1) already points towards a fairly weak effect of thermal radiation in
the present computations. Please note that we use the standard definitions common
in compressible turbulent flow, namely an overbar for a Reynolds average and a
tilde for a mass-weighted average. Usually density/pressure/shear stress and velocity/
temperature/internal energy are decomposed as follows:

ρ = ρ̄ + ρ ′, ui = ũi + u′′
i . (3.3)

It may sometimes be necessary to use the Reynolds decomposition for the velocity,
e.g. when it appears in a product with the pressure or the viscous stress.
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Flow Domain size No. of points Non-dimensional grid spacing
in (x, y, z) direction in (x, y, z) direction in (x, y, z) direction

Channel 1 3.5H × 2H × 1.35H 96 × 141 × 64 37, 2.1, 21

Channel 2 3.5H × 2H × 1.35H 96 × 141 × 64 50, 3, 29

Table 2. Details of computational domain and Cartesian grid in the (x, y, z) direction.

Besides the friction Reynolds and Mach numbers, table 1 also contains the
corresponding bulk Reynolds and Mach numbers for reference which are defined
using the cross sectionally averaged (bulk) mean density and velocity, ρ̄m and ūm:

Rem =
ρ̄mūmH

µw

, Mm =
ūm√
γRTw

. (3.4)

The last column contains values of the optical thickness computed via the
statistically averaged Planck mean absorption coefficient (2.9):

τH =

∫ H

0

κ̄P (y) dy. (3.5)

For very small values of τH , a linear relation holds between the fraction of radiated
energy that is absorbed and the optical thickness. Such a relation can be derived,

starting from the definition of absorptivity αη =1 − exp(−
∫ H

0
κη dy) (Modest 2003).

For a constant absorption coefficient the absorptivity depends on the thickness of
the gas layer. Replacing κη by κ̄P and assuming κ̄P and H to be small, provides the
desired linear relation. Hence τH = 0.006 indicates that about 0.6 % of the energy
emitted at the channel centre is absorbed by water vapour within the optical path
travelled by photons from the channel centre to the wall.

Table 2 describes the size of the computational domain in streamwise (x)-, wall-
normal (y)- and spanwise (z)-direction, the number of gridpoints and the grid spacing
in terms of semi-local wall units µ̄/(ρ̄

√
τ̄w/ρ̄). Values 2.1 and 3 of the dimensionless

wall-normal grid spacing refer to the first near-wall gridpoint.
The mass, momentum and total energy (or pressure, temperature and velocity) in the

minimal channel satisfy periodic boundary conditions in the streamwise and spanwise
directions. In these planes, diffusely reflecting boundaries (with zero emissivity) are
assumed in the radiative code, which ensure statistical homogeneity of the radiation
fields in the homogeneous directions. At the solid walls all velocity components
vanish, the temperature is kept at 1000 K in all computations and the emissivity is
that of a black body, εw = 1.

4. Mean flow variables and second-order turbulence statistics
4.1. Transport of momentum, energy and Reynolds stresses

Reynolds or Favre averages are obtained by sampling the LES data in time and
over the two homogeneous directions (x and z). The simulations without radiation
were performed over 180 non-dimensional times, H/uτ , on 96 processors of the SGI
Altix 4700 high-performance computer of the Leibniz Supercomputing Centre of the
Bavarian Academy of Sciences in Munich. One hundred and twenty non-dimensional
times out of these were used to collect statistics at each point of the flow field.
At the end of this time series, LES was fully coupled with the radiation solver to
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compute another 180 non-dimensional times of the flow field influenced by radiation.
One thousand samples of this time series were used for time-averaging. A coupled
simulation on 96 processors needed 276 480 CPU h when the SNB-cK spectral model
was used. A simulation without radiation was faster by a factor of 15.

The following mean flow equations look very similar to those derived by Huang,
Coleman & Bradshaw (1995), except for the appearance of the heat flux by radiation.
Subgrid-scale terms do not appear in our equations, since we use an explicit
filtering approach to account for the energy transfer at the cutoff wavenumber.
The equations for mean streamwise and wall-normal mass flux in statistically steady
and fully developed channel flow read, after integration in wall-normal direction and
normalization by wall units, uτ =

√
τ̄w/ρ̄w , µw/(ρ̄wuτ ):

µ̄

µw

dū+

dy+
− ρu′′v′′

τ̄w

= 1 − y+

H+
, (4.1)

p̄

p̄w

= 1 +
τ̄yy − τ̄yy |w − ρv′′v′′

p̄w

� 1 − γM2
τ

ρv′′v′′

τ̄w

. (4.2)

y+ = ρ̄wyuτ/µw is the so-called wall coordinate. Equation (4.1) expresses the fact
that the sum of mean viscous stress and Reynolds stress varies linearly across the
channel. Equation (4.2) contains a contribution from the mean wall-normal viscous
stress which, however, turns out to be negligibly small. In both equations correlations
involving viscosity fluctuations have been neglected. This is an acceptable assumption
for supersonic flows (see Huang et al. 1995), but perhaps not for hypersonic flows.
It will also be applied to conductive heat fluxes below. The second term on the
right-hand side of (4.1) results from the driving pressure gradient and contains the
friction Reynolds number in the denominator, H+ = Reτ . While the mean pressure
has a streamwise gradient which is homogeneous everywhere in the channel, its wall-
normal variation follows approximately the variation of the wall-normal Reynolds
stress (4.2) and is much smaller than the variation of mean density and temperature.
Hence mean density and temperature vary inversely with each other.

For comparison of the streamwise velocity with its incompressible counterpart in
the log region, it is usual to present it in its Van Driest transformed version:

ū+
V D =

∫ ū+

0

√
ρ̄

ρ̄w

dū+. (4.3)

To discuss the importance of the radiative heat flux, q̄y,R , compared to the other
heat fluxes, we start from the mean total energy balance and integrate it from the
wall to a point y below the centreline. This leads to

− q̄y︸︷︷︸
I

− ρv′′e′′︸ ︷︷ ︸
II

− ρv′′u′′2
i /2︸ ︷︷ ︸

III

− (ũρu′′v′′ − ūτxy)︸ ︷︷ ︸
IV

− v̄(p̄ − τyy)︸ ︷︷ ︸
V

− (v′p′ − u′
iτ

′
iy)︸ ︷︷ ︸

VI

= − qw︸︷︷︸
VII

− τ̄w

H

∫ y

0

ūdy︸ ︷︷ ︸
VIII

. (4.4)

The terms I–VIII have the following meaning:
I: heat flux by conduction and radiation;
II: turbulent heat flux;
III: turbulent transport of kinetic energy;
IV: work done by viscous and Reynolds stresses;
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V: work done by mean flow in wall-normal direction;
VI: work done by turbulent fluctuations;
VII: wall heat flux by conduction and radiation;
VIII: pressure work done between the wall and position y.

Concerning term V one must keep in mind that it is very small, because v̄ is
very small. While the mass-averaged normal velocity, ṽ, is zero in fully developed
channel flow, the Reynolds averaged velocity is proportional to the weak wall-normal
turbulent mass-flux, v̄ = − v′′ = − ρ ′v′/ρ̄.

On the centreline all terms on the left-hand side of (4.4) vanish due to symmetry
and we obtain

qw = −
[
λ̄
dT̄

dy

]
w

+ qw,R = − τ̄w

H

∫ H

0

ū dy = −τ̄wūm = H
∂p̄

∂x
ūm. (4.5)

This relation expresses the fact that the sum of conductive and radiative heat fluxes
into the wall equals the total mechanical work done in the channel by the mean
pressure. Hence, the right-hand side of (4.4) can also be cast in the following form:

−qw − τ̄w

H

∫ y

0

ū dy =
τ̄w

H

∫ H

y

ū dy (4.6)

Taking into account that the heat flux at a distance y from the wall is the sum
of conductive and radiative fluxes, q̄y = − λ̄(dT̄ /dy) + q̄y,R , we obtain the following
balance equation:

λ̄
dT̄

dy
− q̄y,R︸ ︷︷ ︸
I

− ρv′′e′′︸ ︷︷ ︸
II

− ρv′′u′′2
i /2︸ ︷︷ ︸

III

− (ũρu′′v′′ − ūτxy)︸ ︷︷ ︸
IV

− v̄(p̄ − τyy)︸ ︷︷ ︸
V

− (v′p′ − u′
iτ

′
iy)︸ ︷︷ ︸

VI

=
τ̄w

H

∫ H

y

ū dy︸ ︷︷ ︸
VII +VIII

. (4.7)

This equation must, in principle, be integrated in y-direction, in order to allow
for conclusions concerning the effect of radiation on the distribution of the mean
temperature. In its present form, however, (4.7) already presents valuable insight,
which will be discussed in §§ 4.2 and 4.3.

The transport of Reynolds stresses, ρu′′
i u

′′
j , is controlled in fully developed channel

flow by the following balance equation:

0 = −ρu′′
j v

′′ dũ

dy
δix − ρu′′

i v
′′ dũ

dy
δjx︸ ︷︷ ︸

Pij

− d

dy
ρu′′

i u
′′
j v

′′︸ ︷︷ ︸
T Tij

− d

dy

(
u′

ip
′δjy − u′

jp
′δiy

)
︸ ︷︷ ︸

PDij

+
d

dy

(
u′

iτ
′
jk + u′

j τ
′
ik

)
δky︸ ︷︷ ︸

V Dij

−u′′
i

(
∂p̄

∂xj

− dτjy

dy

)
− u′′

j

(
∂p̄

∂xi

− dτiy

dy

)
︸ ︷︷ ︸

Mij

+ p′
(

∂u′
i

∂xj

+
∂u′

j

∂xi

)
︸ ︷︷ ︸

PSij

−τ ′
jk

∂u′
i

∂xk

− τ ′
ik

∂u′
j

∂xk︸ ︷︷ ︸
DSij

. (4.8)

The labels of the various tensors in this equation have the following meaning: Pij :
production, T Tij : turbulent transport, PDij/V Dij : pressure and viscous diffusion,
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Figure 2. Mean temperature (a) and mean density distribution (b). Dashed line: with
radiation, solid line: without radiation.

Mij : mass–flux contribution, PSij : pressure–strain correlation and DSij : viscous or
turbulent dissipation. Thermal radiation can, of course, affect the Reynolds stress
transport only implicitly, and it will be interesting to learn through which terms this
will happen. From previous comparisons of DNS and LES of the Reynolds stress
transport in pipes Ghosh et al. (2006), we conclude that the production and the
pressure–strain correlation terms are predicted in our LES with sufficient accuracy,
whereas the dissipation term lacks the contribution of the unresolved small scales.
This, however, is not a critical issue, since our aim is primarily a comparison of flow
with and without radiation effects at very similar Reynolds and Mach numbers, in
order to detect trends of the effect of radiation. Moreover, the smallest (unresolved)
turbulent scales will be optically transparent to photons in the flow cases investigated
and hence may not contribute to TRI.

4.2. Case of low supersonic Mach number

Before we contrast the two flow cases, we first analyse the influence of radiation
on turbulent channel flow at a low supersonic Mach number, where the temperature
increase in the channel core is roughly 20 % of the wall temperature (case: Channel 1).
We assume the fluid, pure water vapour, to be an emitting/absorbing but non-
scattering medium and recall the characteristics of the flow: a bulk Mach number
of 1.26, a friction Reynolds number of 1026 and a mean optical thickness of 0.006.
The wall temperature is kept at 1000 K in the cases with and without radiation.
The medium appears optically ‘thicker’ than that of Channel 2 because, in order to
achieve comparable Reynolds numbers, the lower mass flux of Channel 1 had to be
multiplied by a value of H which is higher than that of Channel 2. Moreover, the
lower temperature level at Mach 1.26 leads to higher mean absorption coefficients
than those at higher temperature (Gupta et al. 2009).

As expected, the effect of radiation is to decrease the mean temperature in the
channel core compared to its value when radiation is turned off (figure 2a, solid line).
The near-wall rise in mean temperature from 1000 K at the wall to 1190 K in the core
region is due to kinetic energy dissipation. As a result of emission and absorption of
radiated heat between the channel centreline and the wall, the temperature in the core
is reduced by about 20 K (figure 2a, dashed line). Consequently, the mean density
(figure 2b) falls off more gently from its wall value, is higher in the core region and,
as discussed above, varies inversely with the mean temperature.
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Figure 3. Mean pressure distribution (a), mean streamwise, Van Driest transformed velocity
(b). Lines as in figure 2.

Using the averaged thermal equation of state and its form in the immediate vicinity
of the wall,

p̄ = ρ̄RT̄ + Rρ ′T ′, p̄w = ρ̄wRTw, (4.9)

and considering that the wall-normal variations of the density–temperature correlation
and of the mean pressure are small compared to corresponding variations of ρ̄, T̄ ,
we obtain

1

ρ̄/ρ̄w

dρ̄/ρ̄w

dy
� − 1

T̄ /Tw

dT̄ /Tw

dy
. (4.10)

Hence, the normalized mean density and temperature gradients are practically
equal in magnitude, but opposite in sign. Figure 3 presents the effect of radiation on
the mean pressure, p̄, and the mean streamwise velocity, ū, which we conveniently
plot in its Van Driest transformed version, (4.3), against the wall coordinate. The
log-law, u+ = 2.44lny+ + 5.2, is also plotted for reference. Let us now look at the
effect of thermal radiation on second-order moments and start with the variances of
density and temperature fluctuations or their r.m.s. values, which we plot against the
semi-local coordinate y∗ = ρ̄y

√
τ̄w/ρ̄/µ̄. While the normalized mean density increase

in the channel core, compared to the flow without radiation, is less than 2 % of the
local value (figure 2), the decrease in the r.m.s. density fluctuations, normalized by
the local mean density, reaches 18 % and more in the log layer (figure 4a). It was
shown by Lechner, Sesterhenn & Friedrich (2001) that the production of density
variances in fully developed channel flow is only by mean density gradients and
not by mean dilatation, since the flow is neither accelerated nor retarded in the
streamwise direction. Hence, the reduction in ρrms/ρ̄ is consistent with the increase
of ρ̄/ρ̄w . Similar arguments hold for the r.m.s. temperature fluctuations in figure 4(b),
which are reduced by about 25 % in the log layer, due to thermal radiation, since
the mean temperature gradients are smaller across the channel. For completeness we
also present the r.m.s. pressure fluctuations, normalized with the wall-shear stress, in
figure 5. Here, a similar observation is made, namely a reduction of the order of 10 %
due to radiation.

Plots of each of the four Reynolds stresses in figures 6 and 7 show that radiation
counteracts effects of compressibility. In the following we will explain what we mean
by this. It was first discussed by Coleman, Kim & Moser (1995) and Huang et al.
(1995) that compressibility manifests itself in terms of mean property variations, i.e. in
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Figure 4. RMS density (a) and temperature (b) fluctuations. Lines as in figure 2.
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Figure 5. RMS pressure fluctuations. Lines as in figure 2.
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Figure 6. Streamwise (a) and spanwise (b) Reynolds stresses. Lines as in figure 2.

the decrease of mean density and increase of mean viscosity from wall values. Later
Foysi, Sarkar & Friedrich (2004) provided an explanation for the decrease in the
pressure–strain correlations and increase in the Reynolds stress anisotropy, compared
to incompressible flow. They found, using a Green’s function analysis of the pressure
fluctuations and computing the pressure–strain correlation tensor as a convolution
integral, that the fall-off of mean density from its wall value causes a decrease of
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Figure 7. Wall-normal Reynolds stress (a) and Reynolds shear stress (b). Lines as in figure 2.

the pressure–strain correlation tensor compared to its incompressible counterpart. A
reduced pressure–strain correlation in the streamwise Reynolds stress balance (while
production does not change noticeably) means that less kinetic energy is transferred
to the other normal Reynolds stresses via redistribution, so that the streamwise stress
increases in the wall layer compared to the incompressible case, while all other stresses
obtain less energy and hence show reduced amplitudes there. Following the same line
of argument, we conclude that an increase in mean density compared to the case
without thermal radiation (figure 2b) will reduce the streamwise Reynolds stress and
increase the other three stress components in the wall layer, where the production of
the turbulence kinetic energy and the pressure–strain correlations for the streamwise
and spanwise Reynolds stress balances peak (0 � y∗ � 50). This behaviour is indeed
observed, although changes in amplitudes are not very pronounced (see figures 6 and
7). The Reynolds shear stress in figure 7(b) is even slightly increased everywhere,
which is consistent with the decrease in the mean velocity.

It is worth noting that the behaviour of the mean pressure, as predicted by (4.2), is
also consistent with that of the wall-normal Reynolds stress, since the turbulent Mach
number shows a negligible variation due to radiation. Hence, a local decrease in the
mean pressure is the consequence of a local increase in the wall-normal Reynolds
stress and vice versa.

We now present the effect of radiation on the behaviour of two terms of the
pressure–strain correlation tensor (PSij ), normalized with the wall-shear stress squared
divided by the local mean viscosity, in order to provide physical support for the implicit
effect of radiation on the corresponding Reynolds stresses. Figure 8 contains profiles
of the normalized terms PSxx and PSzz, for the cases with and without radiation. All
dashed curves show larger amplitudes in the wall layer as a result of a mean density
increase by radiation. This translates into an enhanced redistribution mechanism,
meaning that the streamwise Reynolds stress is reduced in the wall layer, because
PSxx (being negative) takes more energy out of this component and transfers it to the
other two components. PSzz has more energy in the case with radiation than without
radiation and hence causes the spanwise stress to increase. This reasoning comprises
the assumption that the production term, appearing in the balance equation (4.8)
for the streamwise Reynolds stress, normalized in the same way as PSxx , is hardly
affected by radiation. Figure 9(a) indeed confirms this assumption.

Finally, we display the important terms of the heat flux balance in figure 9(b),
normalized by the total heat flux at the wall (4.7). These terms are, using the labels
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Figure 8. Pressure–strain correlations PSxx (a) and PSzz (b) normalized with τ̄ 2
w/µ̄. Lines as

in figure 2.
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Figure 9. Production term Pxx (a) normalized with τ̄ 2
w/µ̄. Heat flux balance (4.7) in

Channel 1 scaled by the total heat flux at the wall (b). Lines as in figure 2.

of (4.7), the heat fluxes by conduction and radiation (term I), q̄y,C , q̄y,R , the turbulent
heat flux (term II), the work done by the sum of viscous and Reynolds shear stresses
(term IV) and the pressure work done between position y and the centreline (terms
VII +VIII). Starting with the pressure work (right-hand side of (4.7)), we note that
the term corresponds to the total wall heat flux at y = 0 and is zero at the centreline. It
varies nonlinearly in between. The effect of radiation (dashed curve) is fairly weak, but
still clearly visible. This is also true for the heat flux by conduction, which amounts to
96 % of the total heat flux at the wall. To show this more clearly, it is convenient to
display the terms only in the wall layer versus the semi-local coordinate (see figure 10).
The heat flux by radiation is zero at the centreline for symmetry reasons (figure 9b)
and increases roughly linearly towards the wall, since the optical thickness is quite
low (Amaya et al. 2010). A large contribution to the heat flux in the wall layer and in
parts of the channel core comes from the work done by viscous and Reynolds stresses
(term IV). The effect of radiation is to decrease this flux slightly. The turbulent heat
flux which peaks, where the turbulence production peaks, shows a decrease due to
thermal radiation as well. The next section provides evidence that smaller optical
thickness and a higher temperature level in the channel core decrease this coupling
even more and underline that there is no need for fully coupled simulations.
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Figure 10. Heat flux balance (4.7) in Channel 1 scaled by the total heat flux at the wall.
Lines as in figure 2.
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Figure 11. Mean temperature (a) and r.m.s. temperature fluctuations (b). Dashed line: with
radiation, solid line: without radiation.

4.3. Case of high supersonic Mach number

The flow parameters for Channel 2, listed in table 1, reveal that an increase in friction
Mach number or bulk Mach number entails an increase in friction Reynolds number,
which, in principle, is not desired, if the aim is a discussion of effects of compressibility
at equal Reynolds number. However, to keep the friction Reynolds number equal
to that of Channel 1 while increasing the friction Mach number would involve an
iterative process of successive LES with step-by-step changing parameters, which was
not undertaken. In the present case, the optical thickness of the gas layer averaged
over the channel half-width drops by a factor of 2 compared to that of Channel 1. This
is so, because the higher mass flux in Channel 2 implies a lower thickness of the gas
layer (channel half-width) to keep the Reynolds number close to that of Channel 1.
At the same time the absorption coefficient has lower values at higher temperatures.
As figure 11(a) shows, kinetic energy dissipation raises the mean temperature steeply
from 1000 K at the wall to 1998 K at the channel centreline, when radiation is turned
off. Now, radiative transfer of energy brings it down to 1971 K, which is a maximum
difference of 27 K. As a result of the strong temperature gradients the generation
of temperature fluctuations is higher than in Channel 1, reaching a maximum value
of 140 K, and when normalized with the local mean temperature, reaching a peak
value of 0.09 (figure 11b). Mean velocity and Reynolds stresses show a behaviour
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Figure 13. Normalized pressure–strain correlations, PSxx (a) and PSzz (b). Lines as in
figure 11.

under the influence of radiation which is very similar to that in the lower Mach-
number case, with the only difference that the effect of radiation is now considerably
weaker than before (see figure 12). A well-known compressibility effect is that the Van
Driest transformed velocity moves further away from the log law, u+ = 2.44lny+ +5.2,
as the Mach number increases. This is quite obvious when figures 3(b) and 12(a)
are compared. When we contrast the streamwise Reynolds stress in the present case
(figure 12b) with that for Channel 1 (figure 6a), we observe an effect already discussed
by Foysi et al. (2004), namely the increase in the peak value when the Mach number
increases. Here, the higher Reynolds number (compared to Channel 1) adds to this
effect. Radiation counteracts the effect of compressibility, in agreement with the lower
Mach-number case. The other Reynolds stresses (not depicted here) show exactly the
same behaviour as presented in figures 6 and 7, however with even smaller effects
of radiation in the wall layer (0 � y∗ � 50). The extreme values of the pressure–strain
correlations in figure 13 are smaller than those in Channel 1 due to the higher Mach
numbers, although the Reynolds numbers are increased. This is a clear effect of
compressibility, while the enhancement of these correlations in the wall layer (dashed
curves) is a radiation effect.

We complete the discussion of Mach-number effects here by presenting important
heat flux terms in Channel 2 (see figure 14). When comparing these terms with those
for the lower Mach-number case (figure 9b), one obvious and noteworthy difference is
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Figure 14. Heat flux balance (4.7) in Channel 2 scaled by the total heat flux at the wall.
Lines as in figure 11.

that the heat flux by radiation is smaller, relative to the total heat flux at the wall and
that, as a consequence, the remaining curves representing the flow with and without
radiation are closer to each other than that for Channel 1. Hence, in this specific case,
there is no need for fully coupled simulations between compressible turbulent flow
and thermal radiation, so that the radiative energy flux at the wall can be computed
from the flow data using the radiation solver.

4.4. Radiative energy emitted and absorbed across the channel

We have seen how thermal radiation affects the structure of supersonic turbulent flow
in a channel and how the interaction between turbulence and radiation decreases as
the Mach number increases, partly because the absorption coefficient decreases at
higher temperature levels and partly because the width of Channel 2 is smaller than
that of Channel 1, in order to keep the Reynolds numbers roughly fixed.

Now we ask the question, how the energies which are emitted and absorbed by
water vapour change between the channel walls when we contrast the two cases of
table 1. Before answering this question we present a snapshot of the integrals on
the right-hand side of (2.8) for Channel 1. The first of these integrals defines the
energy emitted by the gas at a point (x, y, z), whereas the second integral describes
the absorbed energy at the same point. The difference between these two integrals
corresponds to the instantaneous source term in the energy equation, which is the
divergence of the radiative heat flux. This source term is not zero close to the wall,
but it is quite small, corresponding to the weak gradient of the radiative heat flux (see
figure 10). Figure 15(a) shows the instantaneous emission and absorption integrals in
1/8 of the vertical plane at z/H = 0.675.

In figure 15(b) we have plotted the instantaneous temperature field which is the
reason for the emission and absorption integrals in figure 15(a). Although these
integrals and the radiative properties of water vapour are nonlinear functions of
temperature, we are able to make out certain characteristic flow structures in the
emission and temperature fields. We also note that the amount of absorption in the
channel is, on average, not more than 8 % of emission at wall temperature. Figure 16
shows snapshots of emission/absorption and temperature in Channel 2 at Mm =2.88,
again in 1/8 of the vertical plane at z/H = 0.675. The emission integral reaches values
which are by a factor of 4 to 5 larger than at the wall, while the magnitude of the
absorption integral is of the order of 10 % of the emission integral at the wall. Again
characteristic flow structures can be made out in the emission and temperature fields.
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Figure 15. (Colour online available at journals.cambridge.org/FLM) (a) Snapshots of
emission and absorption integrals (2.8) for Channel 1, normalized with the emission at wall
temperature. (b) Snapshot of the temperature field used to compute the emission and absorption
fields shown in (a).
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Figure 16. (Colour online) (a) Snapshots of emission and absorption integrals (2.8) for
Channel 2, normalized with the emission at wall temperature. (b) Snapshot of the temperature
field used to compute the emission and absorption fields shown in (a).

We conclude that, although the source term due to radiation in the energy balance
(2.3) increases dramatically with the Mach number, TRI loses importance.

4.5. Case of a fictitious grey gas with a temperature-dependent Planck mean
absorption coefficient

The previous flow cases have revealed weak effects of radiation on the statistics of
the velocity vector and the state variables ρ, T , etc., as a result of the very low
optical thickness of the gas layer between the channel walls. A straightforward way
to increase τH would be to enlarge the plate distance H . An order of magnitude
increase in H would, however, lead to Reynolds numbers which cannot be handled
with the presently available supercomputer power. An alternative way is to enhance
the absorption coefficient artificially. We adopt this possibility suggested by a referee
and assume the following form of the Planck mean absorption coefficient:

κP = Ck

[
co + c1

(
A

T

)
+ c2

(
A

T

)2

+ c3

(
A

T

)3

+ c4

(
A

T

)4

+ c5

(
A

T

)5
]

. (4.11)

This form was used by Gupta et al. (2009). The coefficients co–c5 and A were taken
from a radiation model suggested for water vapour (Sandia National Laboratories
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Flow Reτ Mτ Rem Mm τH

SNB-cK 1026(1041) 0.0681(0.068) 16477(17059) 1.26(1.32) 0.006

Grey gas 1027 0.0684 16481 1.265 0.0062

Table 3. Flow parameters for Channel 1 computed with the SNB-cK model and with the
grey gas model, coefficient Ck = 0.0121 (values in brackets correspond to the case without
radiation).
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Figure 17. Mean temperature (a) and mean density distribution (b). Dashed line: SNB-cK,
dash-dotted line: grey gas, solid line: without radiation.

Combustion Research Facility, International Workshop on Measurements and
Computation of Turbulent Nonpremixed Flames, 2002). The coefficient Ck allows
for a variation of the optical thickness independent of the other parameters. In this
study we have chosen the values Ck = 0.0121, 0.1.

In order to check the behaviour of model equation (4.11), we have recomputed
Channel 1 with the above Planck mean absorption coefficient and the specific value
Ck = 0.0121. Here, we contrast the results with those of Channel 1, obtained with the
SNB-cK model. The comparison is, as before, based on equal friction Reynolds,
friction Mach numbers and optical thicknesses. The bulk Reynolds and Mach
numbers are, however, quite close for the two radiation models (see table 3).

We find very good agreement between the previous velocity statistics and the
new ones, but with some difference in the statistics of the temperature and density
fields which are partly due to a 3 % higher optical thickness in the grey gas
case. It leads to mean temperatures which are below the result for the spectrally
resolved absorption coefficient and to mean densities which are above. The r.m.s.
temperature/density fluctuations reflect a behaviour which is consistent with that
of the mean temperature/density, namely slightly lower/higher values than those
obtained with the SNB-cK model (not shown). The three normal Reynolds stresses,
the mean velocity and the pressure–strain correlations in the streamwise and spanwise
Reynolds stress balances, in figures 18–20, do not noticeably reflect the 3 % difference
in the optical thickness. This can be explained by the fact that a radiation source
term appears in the energy balance, but not in the momentum balance. Hence, only
the temperature and density fields are directly affected by radiation transport. The
velocity components depend on radiation only through the density and viscosity
variations with temperature (Viskanta 1998). Now, since the flow in the channel
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Figure 18. Streamwise (a) and spanwise (b) Reynolds stresses. Lines as in figure 17.
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Figure 19. Wall-normal Reynolds stress (a) and Van Driest transformed velocity (b). Lines
as in figure 17.

–0.045

–0.040

–0.035

–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

 0

 0.005

 0.010

 0.015

 0.020

 0.025

 0.030

 0.035

 0.040

0 50 100 150 200

P
S z

z

P
S x

x

y*

0 50 100 150 200

y*

(a) (b)

Figure 20. Pressure–strain correlations PSxx (a) and PSzz (b) normalized with τ̄ 2
w/µ̄. Lines

as in figure 17.

core is fully turbulent and independent of viscosity for the present friction Reynolds
numbers, effects of radiation should be more pronounced in the wall layer, where
viscosity still plays a role. This is clearly seen in figures 18 and 20. The pressure–
strain correlation profiles (figure 20) lie on top of each other for the two radiation
models. The above results hence document the fact that a simple grey gas model
and the spectrally resolved narrow-band model practically lead to the same velocity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.92


438 S. Ghosh, R. Friedrich, M. Pfitzner, Chr. Stemmer, B. Cuenot and M. El Hafi

Flow Reτ Mτ Rem Mm τH

Radiation turned off 982 0.07 16700 1.29 –

Grey gas 977 0.071 16620 1.28 0.04

Table 4. Flow parameters for Channel 1 without radiation and with the artificially increased
absorption coefficient according to the grey gas model (4.11) (coefficient Ck = 0.1).
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Figure 21. Space–time averaged Planck mean absorption coefficient (a) and its r.m.s.
fluctuations (b) according to the SNB-ck model (dashed line) and the grey gas model
(dash-dotted lines).

and pressure statistics in the present case of an optically very thin gas layer. We
complement this comparison with plots of the space–time averaged Planck mean
absorption coefficient (figure 21a) and its r.m.s. value (figure 21b) for both models
across the channel, as obtained from the resolved fluctuating temperature fields. The
figures also contain the profiles for the case of a grey gas with an artificially increased
absorption coefficient (Ck = 0.1). This case reveals a slight increase of κ̄P from the
channel centreline towards the wall and a steep increase close to the wall, where
the temperature rapidly falls to its wall value of 1000 K. The steep increase in κ̄P

produces peak values in its r.m.s. fluctuations close to the wall.
We now discuss the case of an increased optical thickness under the assumption of

a grey gas and its comparison with the case where radiation is turned off. In contrast
to the previous computations in this section and the discussion in § 4.2, we adjust the
mass flux when radiation is turned off, so that it matches with that under the effect
of radiation. The flow parameters in both cases are specified in table 4. Although
the optical thickness is still fairly low (4 %), the effect of radiation on the state
variables can now be specified as very noticeable. From figure 22 we conclude that
the temperature increase in the channel core (and in turn the density decrease) due to
energy dissipation at supersonic speeds is to a good deal removed through radiative
energy transfer towards the wall (y = 0). The modified shape of the mean temperature
and density profiles has to be seen in the light of the changes observed in the heat
balance (4.7), the terms of which are displayed in figure 23. We note that the radiative
heat flux is now comparable to the conductive heat flux close to the wall. For y∗ � 21,
both fluxes are directed towards the wall. At y∗ =21, the conductive heat flux changes
sign and now counteracts the radiative flux which always points towards the wall.
A similar behaviour is also characteristic of the turbulent heat flux which transports
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Figure 22. Mean temperature (a) and mean density distribution (b): Dash-dotted line: grey
gas, τH = 0.04, solid line: without radiation.
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Figure 23. Heat flux scaled by the modulus of the total heat flux at the wall. Lines as in
figure 22.
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Figure 24. RMS temperature (a) and density (b) fluctuations. Lines as in figure 22.

energy towards the wall in a thin near-wall layer, 0 � y∗ � 23, but beyond y∗ ≈ 23 it
points towards the channel core and stays negative until close to the symmetry plane
as a result of the slope of the mean temperature profile. Effects, similar in strength
to those of the mean temperature and density, are also observed in the temperature
and density fluctuations, see figure 24. We observe reductions by factors of nearly 2
in the wall layer and enhancements of comparable order of magnitude away from
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Figure 25. Streamwise (a) and spanwise (b) Reynolds stresses. Lines as in figure 22.
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Figure 26. Wall-normal Reynolds stress (a) and Reynolds shear stress (b). Lines as in
figure 22.

the wall. It remains to discuss the effect of radiation on the Reynolds stresses and
the pressure–strain correlations. Figures 25 and 26 show all four components of the
Reynolds stresses. When we compare the present effect of radiation with that at the
lower Planck mean absorption coefficient and lower optical thickness (figures 6 and
7), we note that the previous trends are confirmed, i.e. we observe a decrease in the
streamwise stress and an increase in all remaining stresses in the wall layer. The effect
that radiation counteracts compressibility is even slightly enhanced in this range.
Similar trends hold for the r.m.s. velocity fluctuations, normalized with the friction
velocity (not shown here). We also present the streamwise and wall-normal Reynolds
stresses for the complete wall-normal half-domain in figure 27 to show that the
behaviour seen around y∗ = 200 persists in the channel core. A similar behaviour is
found for the remaining components. Radiation clearly counteracts the Mach-number
(compressibility) effect in the channel core via changes of the mean temperature and
density fields. The pressure–strain correlations in figure 28, normalized by the ratio
of wall-shear stress squared and the local mean viscosity, show larger deviations,
in the near-wall region, from those where radiation is turned-off, than in the case
of very low absorption coefficient (figure 8). Thus, an increase in the absorption
coefficient enhances the effect of radiation on the pressure–strain correlations and
confirms the previously found tendencies. Last not least, the shift of the mean Van
Driest transformed velocity towards the logarithmic law in the log region, which is
presented in figure 3(b), is confirmed in figure 29.
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Figure 27. Streamwise (a) and wall-normal (b) Reynolds stresses. Lines as in figure 22.

–0.045

–0.040

–0.035

–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

 0

0 50 100 150 200

 0.005

 0.010

 0.015

 0.020

 0.025

 0.030

 0.035

 0.040

0 50 100 150 200

P
S x

x

y*y*

(a)
P

S z
z

(b)

Figure 28. Pressure–strain correlations PSxx (a) and PSzz (b) normalized with τ̄ 2
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as in figure 22.
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Figure 29. Van Driest transformed mean streamwise velocity. Lines as in figure 22.

5. Concluding remarks
Radiative heat transfer plays an important role in combustion processes, but it

also produces noticeable effects in non-reacting flows, provided the optical thickness
through which the photons travel has some non-zero value. The present work
clearly shows, through fully coupled simulations, in which way radiation modifies
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the structure of supersonic turbulent channel flow, when there are no reactions and
the friction Reynolds numbers are of the order of 1000. We have chosen water
vapour as working fluid since it is one of the important combustion gases and have
accounted for its radiative properties using the expensive SNB-cK model. LESs have
been performed with high-order numerical methods in a minimal channel at two bulk
Mach numbers of 1.26 and 2.88. The corresponding optical thicknesses based on the
mean Planck absorption coefficient are 0.006 and 0.003, i.e. very low, indicating weak
interaction between turbulence and radiation.

Both flow cases, nevertheless, demonstrate that effects of radiation counteract
effects of compressibility. While non-radiating fully developed supersonic channel
flow shows an increase in the normalized streamwise Reynolds stress and reductions
in the other stress components compared to incompressible flow, thermal radiation
dampens the streamwise stress and enhances the other stresses in the wall layer
(0 � y∗ � 50). This behaviour is a result of the decrease (Mach-number effect) or
increase (radiation effect) of the corresponding pressure–strain correlations in the
wall layer. The mean heat flux balance reflects a decrease in the mean heat flux
by conduction, in the turbulent heat flux and in the work done by the viscous and
Reynolds stresses due to radiation. The radiative heat flux, which grows linearly from
a zero value in the symmetry plane, reaches a value of only 4 % of the total heat flux
at the wall (Channel 1). This means that the radiative heat flux at the wall might
have been computed from the flow data without performing expensive simulations
where the turbulent and radiative fields are fully coupled at every convective time
interval.

Computation of the instantaneous emission and absorption integrals reveals that
although both integrals increase with the Mach number, leading to higher radiative
heat fluxes, TRI becomes weaker. This is partly due to the fact that the absorption
coefficient decreases at higher temperature levels and partly because the channel
width (and with it the mean optical thickness) has to be reduced when the mass flux
goes up (from Channels 1 to 2), in order to keep the Reynolds numbers roughly
fixed.

To reach a higher optical thickness, we have assumed the grey gas model (4.11)
and have increased the coefficient Ck . That way the optical thickness goes up to 4 %
keeping the channel half-width unchanged and the Reynolds number remains in a
range accessible to wall-resolved LES. An LES without radiation at the same bulk
Reynolds and Mach numbers has also been performed for comparison.

It turns out that an optical thickness of 4 % reduces the mean temperature increase
due to dissipation by a factor of roughly 6. The heat flux by radiation is now
comparable to that by conduction in the wall layer. The effect of radiation on the
second-order turbulence statistics, which was found at very low optical thickness of
0.006, is now confirmed in its tendencies and quantitatively enhanced.

These findings allow for the conclusion that radiation affects the turbulence structure
in supersonic shear layers in a non-negligible way, when the shear layer has a high
enough optical thickness.
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