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abstract

Among the systems in place in different countries for the protection of the population against
the long-term contingencies of old-age (or retirement), disability and death (or survivorship),
defined-benefit social security pension schemes, i.e. social insurance pension schemes, by far
predominate, despite the recent trend towards defined-contribution arrangements in social
security reforms. Actuarial valuations of these schemes, unlike other branches of insurance,
continue to be carried out almost exclusively on traditional, deterministic lines. Stochastic
applications in this area, which have been restricted mainly to occasional special studies, have
relied on the simulation technique. This paper develops an analytical model for the stochastic
actuarial valuation of a social insurance pension scheme. Formulae are developed for the
expected values, variances and covariances of and among the benefit expenditure and salary bill
projections and their discounted values, allowing for stochastic variation in three key input
factors, i.e., mortality, new entrant intake, and interest (net of salary escalation). Each
deterministic output of the valuation is thus supplemented with a confidence interval, that is, a
range with an attached probability. The treatment covers the premiums under the different
possible financial systems for these schemes, which differ from the funding methods of private
pensions, as well as the testing of the level of the Fund ratio when the future contributions
schedule is pre-determined. Although it is based on a relatively simplified approach and refers
only to retirement pensions, with full adjustment in line with salary escalation, the paper brings
out the stochastic features of pension scheme projections and illustrates a comprehensive
stochastic valuation. It is hoped that the paper will stimulate interest in further research, both of
a theoretical and a practical nature, and lead to progressively increasing recourse to stochastic
methods in social insurance pension scheme valuations.
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". Introduction

1.1 Target Area of the Paper
This paper is concerned with national social security systems, which exist
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in one form or another in almost all countries of the world. These are
institutionalised arrangements set up through legislation, with mandatory
coverage of specified categories of the population and administered directly
by the government or under government control. The stochastic characteristics
of private insurance arrangements that supplement or complement the basic
protection under the social security system have been discussed extensively in
actuarial literature (see, for example, Daykin et al., 1994; Booth et al.,
1999) and are not considered in this paper.

An important component of each national social security system is that
which covers the long-term contingencies of old-age (or retirement), disability
and death (or survivorship). The different approaches to the provision of the
corresponding benefits include: (a) social insurance (SI); (b) universal or
means-tested schemes (UN/MT); (c) provident funds (PF); and (d) individual
retirement accounts (IRA), which include the Notional (or Non-financial)
Defined Contribution schemes (NDC) innovated in Sweden and introduced
or planned in certain European countries (Holzmann and Palmer, 2003).
Occasionally, two or more types may exist simultaneously, particularly
during the transitory stage from one approach to another. Categories (a) and
(b) are typically defined-benefit (DB) schemes, while (c) and (d) are defined-
contribution (DC) arrangements. Table 1, based on information drawn from
publications on recent international surveys (Social Security Administration,
2005, 2006a, 2006b, 2007) shows that, despite the trend in recent years from
DB to DC in the course of social security reforms (see Daykin and Lewis,
1999; Holzmann and Hinz, 2005), the DB-type social insurance system still
predominates in the responding countries.

The same surveys also show that the responding countries span a huge
range: in terms of population, extending from as low as 20,000 to as high as
1.3 billion; in terms of per capita GDP, from as low as US$ 520 to as high as
US$ 40,000. This provides, however, only a very rough indication of the
effective population and earnings coverage under social security. While a
large proportion of the total or economically active population is covered in
the advanced countries, the statutory coverage may relate only to a smaller
proportion of the active population in some developing countries. Moreover,

Table 1. Number of countries, by type of long-term social security benefit
scheme

Area SI PF IRA UN/MT SIþPF SIþ IRA Total

Africa 37 3 1 2 1 ÿ 44
America 25 ÿ 1 ÿ ÿ 9 35
Asia 30 11 ÿ 4 1 2 48
Europe 34 ÿ ÿ ÿ ÿ 10 44

Total 126 14 2 6 2 21 171

Source: Author’s analysis of data drawn from issues of “Social Security Programs throughout
the World’’ (US Social Security Administration)
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the effective coverage might fall short of the potential coverage, due to
various administrative or other shortcomings (see Gillion et al., 2000).

This paper focuses on social insurance schemes covering the long-term
contingencies. These, in principle, are financially autonomous and sustained
mainly by member (and, where applicable, employer) contributions,
generally related to the individual’s insured earnings, which is possibly
subject to a threshold and ceiling. They provide pensions for life or until the
contingency lasts, typically based on the contributory earnings of the insured
person and on the period of contribution. There is usually provision for
some, price- or earnings-, indexation of pensions after award. Naturally there
are several variations on this basic design, which have been well-documented
elsewhere (see, for example, Gillion et al., 2000).

1.2 Actuarial Valuations of Social Insurance Pension Schemes
The conduct of actuarial valuations of these schemes, at specified

intervals (usually, 3 to 5 years), is often a statutory requirement. In addition,
ad hoc valuations may be required, for example, when considering important
scheme modifications (Daykin, 2000, 2001). International standards have
recently been adopted for such valuations (International Actuarial Association,
2003). The International Labour Office has played a leading role over the
years in the development of the mathematical theory and the practice of these
valuations (Iyer, 1999; Plamondon et al., 2002).
Being based on the open-fund approach, these schemes may apply one of

many possible, partially-funded, financial systems, in the range extending
upwards from the unfunded pay-as-you-go system (Iyer, 1999, Chapter 1).
The main purpose of the actuarial valuation is to test the long-term solvency
of the scheme, that is, to assess if under the existing financing arrangements
benefits can be paid and reserve funds maintained at the required levels. On
certain occasions, for example when setting up a new scheme or considering
important modifications, computations for alternative financial systems will
be required (see McGillivray, 1996; Picard, 1996; Daykin, 2000).

The existing actuarial model of the social insurance pension scheme is
essentially deterministic (Iyer, 1999). This is in line with the almost universal
practice in regard to the actuarial valuation of such schemes (Plamondon et
al., 2002). Thus, the typical social insurance pension valuation is based on a
deterministic scenario, using the “best estimates’’ of the future values of the
determining factors (i.e. rate of population growth, rate of interest, mortality
rates etc.). This is often accompanied by two other deterministic valuations,
termed “conservative’’ and “optimistic’’, purporting to give a range for the
valuation results. Additional deterministic variants might be included, to
assess the sensitivity of the results to individual key factors. This practice is
followed, for example, in the quinquennial valuations of theNational Insurance
Fund in the United Kingdom (Government Actuary’s Department, 2003,
2005). In the case of the Quebec Pension Plan (Regie des Rentes du Quebec,
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2007), the valuation is carried out on a single set of assumptions, subject to
sensitivity analysis, taking one factor at a time.

Another example is the annual actuarial valuation of the United States’
Old-age and Survivors’ andDisability Insurance schemes, where the customary
deterministic valuation comprises three scenarios: intermediate, low cost,
high cost. However, since 2003, the valuation report has included, in addition,
the results from a stochastic model (Social Security Administration, 2004;
American Academy of Actuaries, 2005; Board of Trustees of the OASDI,
2007; Buffin, 2007). There are also independent stochastic valuations of the
scheme based on other models, i.e. the COBOLT model (Congressional
Budget Office, 2001), the TL model (Lee, Anderson and Tuljapurkar, 2003)
and the SSASIM model (Burdick and Manchester, 2003).

On the basis of available information, it would appear that the US
OASDI is probably the only social insurance pension scheme which carries
out a regular, full-fledged stochastic actuarial valuation. However, in the
latest valuation of the Canada Pension Plan (Office of the Superintendent of
Financial Institutions, Canada, 2007), stochastic methods have been applied
for the sensitivity analysis of individual factors. Stochastic methods have
also been discussed in the framework of pension reform considerations
(Holzmann and Palmer, 2006, Chapter 6). Stochastic applications elsewhere
in social security have been generally limited to occasional ad hoc studies,
without forming part of an actuarial valuation per se. In this context, it is
instructive to refer to the considerable work which has been done by
demographers in stochastic human population projections (e.g. Bongaarts
and Bulatao (eds), 2000; Keilman et al., 2002; Alho and Spencer, 2005;
Booth, 2006) and by ecologists in stochastic animal population dynamics
(e.g. Renshaw, 1991; Engen and Saether, 2003).

1.3 The Case for Stochastic Valuations
Already more than fifty-five years ago, Frank Redington (Redington,

1952) recognised the probabilistic nature of the factors affecting the future
course of an insurance arrangement, and envisioned an “expanding funnel of
doubt’’ in regard to the associated uncertainty. A stochastic valuation,
which directly takes this phenomenon into account, is able to provide limits
within which an output variable may lie, with attached probabilities, whereas
in a deterministic valuation, no probability can be attached to the range
between the conservative and optimistic results. Moreover, as different
factors act in different directions, the qualification of a specific combination
of factors as “conservative’’ or “optimistic’’ could be misleading (Lee, 2004).
For example, if one such scenario combines high fertility and low mortality
and vice versa for the other scenario, these combinations may be unrealistic;
while being extreme for one output, e.g. population over normal retirement
age, they may not be extreme for another output, say the old-age dependency
ratio (Keilman et al., 2002). For this reason, sensitivity analyses in
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deterministic valuations are obliged to be carried out by varying one factor
at a time, maintaining the others unchanged, but this does not throw light on
the effect of changing factors in combination. This provides another argument
for stochastic valuations.

A justification for deterministic valuations could have been the tacit
assumption that social security being national in scope, the coverage will
generally be large enough to reduce the relative stochastic effect, measured
by the coefficient of variation of an output, to insignificance. However it
turns out that, unless the covered population is extremely small, the
population size has hardly any impact on this coefficient. Thus, the US
OASDI, with a coverage amounting to 168 million workers (Board of
Trustees, 2007, Table IV.B2., p48), considered it worthwhile to add a
stochastic valuation as an adjunct to the deterministic valuation, and the
stochastic effects were quite considerable (ibid., Figures VLE1, p162 and
VLE2, p163).
Other reasons might be the perception of social insurance pension

schemes as unresponsive publicly administered schemes, which do not
operate in accordance with generally accepted actuarial principles for the
advance funding of future actuarial liabilities under private insurance, and
the impression created by the recent emphasis on the macroeconomic effects
of social security. However, these factors have not detracted in any way from
the justification of (deterministic) valuations of social insurance pension
schemes (Daykin, 2000). It is not unreasonable to extend this view to
stochastic valuations as well. It should also be appreciated that the financing
of social insurance pension schemes is also governed by sound actuarial
principles, although somewhat different from those which apply to private
pension arrangements (Iyer, 1999).

Some authors have referred to the difficulty of communicating the results
of a stochastic valuation to policy makers (Plamondon et al., 2002, p59), who
are reputed to be insistent on being provided with a single “best estimate’’.
A parallel view is that a simple methodology ö presumably deterministic ö
is to be preferred for these valuations. A diametrically opposite view is that
a deterministic projection can be misleading and provides inadequate
information for informed policy decisions (Keilman et al., 2002). Clearly
there is considerable difference of opinion between experts on the complexity,
utility and necessity of stochastic social insurance pension valuations.

1.4 Application of the Simulation Technique
As far as is known, all stochastic applications have been based on the

simulation methodology. The first step is the projection of the key input
variables and their statistical distributions. Thus, in the OASDI valuation,
where experience over a long past period is available, this projection used
techniques based on auto-regressive (AR) or autoregressive moving average
(ARMA) processes (Buffin, 2007). The second step is the drawing of a
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random value for each variable and then simulating the deterministic
valuation exercise for this particular choice of inputs. This procedure is
repeated several times (5,000 times in the case of the OASDI ö see Board of
Trustees of the OASDI, 2007, Appendix E) and the various results
combined to produce a discrete approximation to the (unknown) theoretical
distribution of each output variable.

The volume of work involved can be considerable, in view of the number
of iterations required. The projection of the input variables and their
distributions could be problematical where past experience is limited or
unreliable. Moreover, the methodology does not yield the actual distributions
of the output variables, but only discrete approximations thereof. This is
not meant to detract from the value of the simulation methodology, which
remains a practicable approach when dealing with complex stochastic
processes. However, it would be instructive, from a theoretical point of view,
to have an analytical model, derived from first principles, which would lead
to the actual probability distributions of the outputs. As far as is known,
such a model has not yet been developed, in view of the inherent
mathematical complexities (Plamondon et al., p59).

1.5 Purpose and Content of this Paper
The purpose of this paper is to make a first attempt towards the

development of such a model. The paper consolidates prior research (Iyer,
2003 and 2006) and revises and extends an earlier model. The model covers
retirement pensions only. The principal demographic and financial outputs,
both primary and secondary, which are relevant to a valuation, are defined,
and formulae are developed for the theoretical means, variances and
covariances, of and among these outputs, based on a relatively simplified
approach concerning the inputs and the scheme specifications. The
theoretical distributions of the outputs are also inferred. A stochastic
actuarial valuation of a social insurance pension scheme is demonstrated, as
also the effect on the results of alternative assumptions concerning the values
of the key inputs or their trends over time.

To preclude undue expectations, it is emphasised that the aim of the
paper, principally, is to introduce the concept of a comprehensive stochastic
valuation ö that is, a valuation which addresses various financial systems ö
and to illustrate the characteristics of such a valuation. This is, in effect, an
extension of the existing deterministic model of a social insurance pension
scheme (Iyer, 1999). The paper provides theoretical insight into the working
out of the stochastic processes underlying the evolution of a pension scheme
over time. The paper is not intended to provide a ready-made tool for
projecting the inputs and carrying out an actual stochastic valuation.
However, the approach developed in the paper could be a starting point for
providing an indication of the stochastic variability associated with the
retirement pension component of a scheme.
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It is hoped that the paper will contribute to increased awareness,
understanding and appreciation of stochastic methods in the social security
area, particularly in the context of actuarial valuations and engender further
research, both of a theoretical and a practical nature, leading progressively to
ever-widening acceptance and application of stochastic methods in social
insurance pension valuations.

The paper consists of six sections and four Appendices. The following
Section 2 introduces the projection exercise and the stochastic modelling of
the inputs. Section 3 presents the primary valuation outputs, i.e. the
demographic and financial projections and discounted financial projections.
Section 4 discusses the secondary valuation outputs, essentially ratios of
primary outputs, such as the demographic ratio or the premium under any of
the financial systems discussed in the paper. Section 5 facilitates the
numerical illustrations and summarises the results. Section 6 concludes the
paper.

Appendix A outlines the pure birth and pure death processes, which
provide the theoretical basis for the modelling of the stochastic projections.
Appendix B summarises the mathematics of the lognormal distribution, on
which the statistical analyses developed in the paper are based. Appendix C
provides the background for the statistical treatment of products of
variables, and of ratios, such as the secondary outputs. The final Appendix D
presents the numerical results of the illustration of the model.

Æ. The Projection Exercise: Inputs

2.1 Deterministic and Stochastic Projections
The evolution of a pension scheme is characterised by certain key

aggregates, notably the Active Population and the Pensioners and the
Insured Salary Bill and the Benefit Expenditure in future years, as well as the
latter financial aggregates discounted to the valuation date. These are
complex functions of the determining factors, each of which comprises a
series of inputs; each input is stochastic, and may be correlated with other
inputs of the same factor, or even with the inputs of another factor. The
combination of specific values of the inputs is termed a scenario. Evidently,
several scenarios are possible, each with an attached probability, constituting
the universe of scenarios.

The aim of a projection exercise is to produce values of these primary
outputs, based on a particular scenario of factor inputs. A deterministic
valuation is essentially the analysis of a limited purposive sample out of the
universe of scenarios. A simulation-based stochastic valuation analyses a
sizeable random sample of scenarios, and is therefore more scientific and
informative. In this paper, it is proposed to derive analytical expressions for
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the expected values, variances and covariances of the key aggregates, based
on the probability distribution of all the possible scenarios.

The derivation of analytical formulae for these variances and covariances
is extremely complicated and at first sight, seems practically impossible,
because of the number of variables involved and the possible correlations
between them. However, the problem can be approached by proceeding
systematically, in stages, with some approximations and simplification along
the way.

The formulae are developed for a simple defined benefit pension scheme
with the following characteristics:

. The scheme provides pensions on retirement at a fixed age, denoted
by r. (Other benefits, such as disability or survivors’ pensions, are not
considered.)

. All members enter the scheme at a fixed age, denoted by b.

. The pension is a function of the service period and the final salary of
the member, and is fully indexed to salary escalation after retirement.

2.2 Methodologies for Deterministic Projections
Before proceeding to consider stochastic projections, it would be useful to

review briefly the practical methodologies for deterministic projections. The
following summary excludes several details and refinements; for a
comprehensive treatment, see Iyer, 1999, Chapter 5 and Plamondon et al.,
2002, Chapters 9 and 10.
One possible approach, when the scheme covers a large proportion of the

population, is to project the national population first and to derive the
scheme related projections by applying appropriate proportions to the
national population projections.

The other, more general, approach is to establish independent projections
for the social insurance pension scheme. This approach is described below, in
broad outline.

The starting point is the sub-division of the initial active population and
each category of pensioner, and the assumed future entrants, by sex, and by
age within each sex. This allows the application of the cohort component
method, where each age-related cohort is projected forward, using a single or
multiple decrement table, as appropriate, and the results for different
cohorts combined to produce time-related aggregates.

For the active population projections, a multiple decrement table is likely
to be used, allowing for at least a disability decrement, in addition to the
mortality decrement. The national life tables provide a starting point for the
mortality basis. The mortality level of the active population is presumed to
be lower than that of the general population, implying a correspondingly
higher mortality level for the disabled population, the gap between the two
reducing with increasing age. In practice, starting from an assumed mortality
level for the disabled population, the active service mortality may be
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determined consequentially. Disability incidence rates are differentiated by
sex and are understood to increase with age.

The financial projections are obtained by applying appropriate factors to
each component of the demographic projections, i.e. for active persons, the
corresponding projected average insured earnings and, for pensioners, the
projected average pension, including any indexation adjustments after award.

The development in this paper is on the lines of the scheme-specific
projection approach. Although only retirement pensions are considered, the
disability decrement is taken into account in the formulae for the active
population projections.

2.3 The Underlying Stochastic Processes
Given the initial (active and retired) population and the salaries and

pensions in force at valuation date, the primary outputs can be regarded as
the outcome of one or more of several individual processes. A pension
scheme with pension adjustment in line with salary escalation can be valued
by allowing for salary escalation indirectly, through a net interest factor.
Thus, the key processes relevant to the evolution of the scheme are:

. The new entrant growth process

. The survival process (for active and retired lives)

. The discount process, at interest net of salary escalation.

The demographic projections and financial projections (ignoring salary
escalation) are the outcome of the first two processes, and the discounted
financial projections the outcome of the three processes.

The new entrant growth process affecting the evolution of a national
pension scheme is, by nature, both demographic and economic. On the one
hand, the supply depends on past and future births while the demand is
conditioned by current and projected economic growth and employment.
Where a large proportion of the population is covered under social insurance,
the future entrants would be closely linked to national demographics.
Where the proportion of the population covered is small, the link with the
economic factors affecting the covered sectors would be predominant. In
this paper, however, the new entrant growth process is treated as an
autonomous process. This is a simplification.

Over the age range ðb; rÞ, the survival process for active persons includes,
in addition to mortality, other causes of exit from the active insured status,
i.e. disability in particular.

The classical approach has been to regard these processes as deterministic,
leading to deterministic aggregates and on to deterministic valuations.
However, in fact, these various processes are stochastic and possibly inter-
correlated.

Strictly speaking, the new entrant and the survival processes are “integral’’
processes ö see Appendix Aö since the outcome at each stage has to be whole
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numbers of persons, whereas this restriction need not apply to the discount
process, as fractions of the monetary unit are admissible. Thus, the variances
and covariances of the primary outputs have two components: a
“demographic’’ component which arises because of differences between
individuals in the outcome at each stage of the integral processes, and an
“environmental’’ component, which is the true stochasticity effect (see Engen et
al., 1998). However, at the level of the populations covered under social
insurance pension schemes, the “demographic’’ component is relatively minor,
and can be ignored. This amounts to regarding the new entrant and survival
processes also as “fractional’’ processes. This simplifies the expressions and
facilitates the statistical analysis. However, the full expressions, including the
demographic component, are derived below.

The formulae developed below allow for stochasticity of the disability
element of the survival process to be taken into account, but subsequently
(including the numerical illustrations) this element is treated as deterministic.

2.4 Definitions and Notation
For the purposes of this paper, the stochastic processes are characterised

by the following instantaneous rates of change:
. The force of growth of the number of new entrants, rðtÞ at time t.
. The force of population decrement, mðx; tÞ at age x and time t.

mðx; tÞ ¼ mð1Þðx; tÞ þ mð2Þðx; tÞ, where mð1Þðx; tÞ refers to mortality and
mð2Þðx; tÞ to disability ðmð2Þðx; tÞ ¼ 0 for x � rÞ.

. The force of interest (net of salary escalation), dðtÞ at time t.

Each stochastic force is assumed to be normally distributed, with attendant
expected values, variances and intra-factor covariances. The force of mortality
is assumed to be correlated both age-wise and time-wise. The stochastic factors
are assumed to be mutually independent. It follows that all integrals of the
forces are normally distributed, by analogy with the distribution of a sum of
normal variables.

Expected values, variances and covariances of stochastic functions such
as f ð�Þ; gð�Þ, are denoted, respectively, by Eð f Þ, V ð f Þ, and Covð f ; gÞ. A special
notation ö see 2.4.1 ö indicates the exponential function of the integrals
of the forces, as well as of the expected values, variances and covariances of
the integrals. All integrals are taken over the time variable.

A pre-superscript ðr; m; dÞ will identify the factor of reference (growth,
population decrement, or interest). In the case of population decrement, an
additional pre-superscript in brackets will identify the cohort, i.e. indicate
when the cohort attained age b. The post-, sub- and superscripts will indicate
the time range(s) of the integral.

Equation numbers in the body of the paper are indicated as ð�Þ, in the
Appendices as ½��. The key equations for the valuation are identified by the
sign (*).
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2.4.1 The new entrant growth factor and the interest factor
The exponential function of the integral of the force of growth is

indicated as follows and defined as shown:

rIk
h ¼ exp

ðk

h

rðzÞdz

� �
: ð1Þ

The relevant functions of the expected value, variance and covariance are
indicated and defined as follows:

rek
h ¼ exp E rIk

h

ÿ �ÿ �
¼ exp

ðk

h

EðrðzÞÞdz

� �
rnk;k

h;h ¼ exp V rIk
h

ÿ �ÿ �
¼ exp

ðk

h

ðk

h

CovðrðzÞ; rðwÞÞdw dz

� �
ð2Þ

rnk;k�

h;h� ¼ exp Cov rIk
h;

rIk�

h�

ÿ �ÿ �
¼ exp

ðk

h

ðk�

h�
CovðrðzÞ; rðwÞÞdw dz

 !
:

9>>>>>>>>>>=>>>>>>>>>>;
The expression for CovðrIk

h;
rIk�

h� Þ; and by extension for V ð
r
Ik

hÞ is the
continuous-time analogue of the formula for the covariance between two
linear functions of correlated variables ö see, for example, Parker, 1994,
p170 (19). A useful relationship is:

rnk;k�

h;h� ¼
ÿr
nk;k�

0;0

�ÿr
nh;k�

0;0

�ÿ1ÿr
nk;h�

0;0

�ÿ1ÿr
nh;h�

0;0

�
: ð3Þ

The case of the interest factor is similar, except that d will replace r.

2.4.2 The population decrement factor
The survival process is slightly more complex because age and time need

to be taken unto account. It should be noted that when the cohort is identified
by ð j Þ the age of the cohort at time z is bÿ jþ z.
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mð jÞek
h ¼ exp E mð jÞIk

h

ÿ �ÿ �
¼ exp

ðk

h

Eðmðbÿ jþ z; zÞÞdz

� �
mð jÞnk;k

h;h ¼ exp V ð
mð jÞ

Ik
hÞ

ÿ �
¼ exp

ðk

h

ðk

h

Covðmðbÿ jþ z; zÞ; mðbÿ jþ w;wÞÞdw dz

� �
mð jÞnk;k�

h;h� ¼ exp Cov mð jÞIk
h;

mð jÞ Ik�

h�

ÿ �ÿ �

¼ exp

ðk

h

ðk�

h�
Covðmðbÿ jþ z; zÞ; mðbÿ jþ w;wÞÞdw dz

 ! ð4Þ

mð j;j�Þnk;k�

h;h� ¼ exp Cov mð jÞIk
h;

mð j�Þ Ik�

h�
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¼ exp

ðk

h

ðk�

h�
Covðmðbÿ jþ z; zÞ; mðbÿ j� þ w;wÞÞdw dz

 !
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;
Each covariance term in (4) can be further developed. For example,

Covðmðbÿ jþ z; zÞ; mðbÿ j� þ w;wÞÞ

¼ Cov
ÿ
mð1Þ
ÿ
bÿ jþ z; z

�
; mð1Þ

ÿ
bÿ j� þ w;w

��
þ Cov

ÿ
mð1Þ
ÿ
bÿ jþ z; z

�
; mð2Þ

ÿ
bÿ j� þ w;w

��
þ Cov

ÿ
mð2Þ
ÿ
bÿ jþ z; z

�
; mð1Þ

ÿ
bÿ j� þ w;w

��
þ Cov

ÿ
mð2Þ
ÿ
bÿ jþ z; z

�
; mð2Þ

ÿ
bÿ j� þ w;w

��
:

If mð2Þðx; tÞ is deterministic, the RHS in the above will reduce to the first
term.

â. The Valuation: Primary Outputs

3.1 Cohort-component Projection Formulae
The population is assumed to be a continuous function of age x and time

t, and is denoted by Pðx; tÞ, b � x < o; b being the entry age and o the limit
of life. The population in the age interval ðx; xþ dxÞ at time t is therefore
Pðx; tÞdx. The symbol P

ðtÞ

ðxÞ is also used for Pðx; tÞ. Moreover, the symbols iP
ðtÞ

ðxÞ

and nP
ðtÞ

ðxÞ are used to distinguish between those surviving out of the
population on valuation date (initial population) and out of subsequent
entrants (new entrants). The starting population, Pðx; 0Þ is assumed to be
given. The number of new entrants in the time interval ðt; tþ dtÞ is Pðb; tÞdt.

Using the properties of the lognormal distribution, and with reference to
Appendix A, the following formulae are derived.
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3.1.1 Initial population cohorts
iP
ðtÞ

ðxÞ is generated from iP
ð0Þ
ðxÿtÞ by a survival process, assumed to be a

stochastic integral process. With reference to formulae [8] and [15] of
Appendix A, the expected value and variance of iP

ðtÞ

ðxÞ are given by the
formulae ð j ¼ tÿ xþ bÞ,

E
ÿi
P
ðtÞ

ðxÞ

�
¼ iP

ð0Þ
ðxÿtÞ

ÿmð jÞ
et
0

�ÿ1ÿmð jÞ
nt;t
0;0

�1=2
V
ÿi
P
ðtÞ

ðxÞ

�
¼
ÿ
E
ÿi
P
ðtÞ

ðxÞ

��ÿ��1ÿ ÿmð jÞet
0

�ÿ1ÿmð jÞ
nt;t
0;0

�3=2���þ ÿEÿiPðtÞðxÞ��2ÿÿmð jÞnt;t
0;0

�
ÿ 1

�
:
ð5Þ

9=;
With reference to formulae [15] and [21] of Appendix A, the covariance

between iP
ðtÞ

ðxÞ and iP
ðuÞ

ðyÞ, (a) when they are from the same cohort
ðx > y; t > uÞ or (b) from different cohorts, is respectively ð j ¼ tÿ xþ b;
j � ¼ uÿ yþ bÞ,

ðaÞCov
�i

P
ðtÞ

ðxÞ;
iP
ðuÞ

ðyÞ

	
¼
ÿ
E
ÿi
P
ðtÞ

ðxÞ

��ÿ��1ÿ ÿmð jÞeu
0

�ÿ1ÿmð jÞ
nu;u
0;0

�1=2ÿmð jÞ
nt;u
0;0

����
þ
ÿ
E
ÿi
P
ðtÞ

ðxÞ

��ÿ
E
ÿi
P
ðuÞ

ðyÞ

��ÿÿmð jÞ
nt;u
0;0

�
ÿ 1

� ð6Þ

ðbÞCov
�i

P
ðtÞ

ðxÞ;
i P
ðuÞ

ðyÞ

	
¼
ÿ
E
ÿi
P
ðtÞ

ðxÞ

��ÿ
E
ÿi
P
ðuÞ

ðyÞ

��ÿÿmð j; j�Þ
nt;u
0;0

�
ÿ 1

�
:

9>>>>=>>>>;
3.1.2 New entrant cohorts

nP
ðtÞ

ðxÞ is generated by two successive independent stochastic integral
processes, the new entrant growth process over ð0; jÞ and the survival process
over ð j; tÞ, starting from Pðb; 0Þ where j ¼ tÿ xþ b. This gives, with
reference to formulae [17] and [18] of Appendix A,

E
ÿn
P
ðtÞ

ðxÞ

�
¼ P

ð0Þ
ðbÞ

ÿr
e

j

0

�ÿmð jÞ
et

j

�ÿ1ÿr
nj; j
0;0

�1=2ÿmð jÞ
nt;t

j;j

�1=2
V
ÿn
P
ðtÞ

ðxÞ

�
¼
ÿ
E
ÿn
P
ðtÞ

ðxÞ

�� ��1ÿ ÿmð jÞet
j

�ÿ1ÿmð jÞ
nt;t

j; j

�3=2��
þ
ÿmð jÞ

et
j

�ÿ1ÿmð jÞ
nt;t

j; j

�3=2��ÿrej

0

�ÿr
nj; j
0;0

�3=2
ÿ 1

��
 !

ð7Þ

þ
ÿ
E
ÿn
P
ðtÞ

ðxÞ

��2ÿÿr
nj; j
0;0

�ÿmð jÞ
nt;t

j; j

�
ÿ 1

�
:

9>>>>>>=>>>>>>;
If nP

ðtÞ

ðxÞ and
nP
ðuÞ

ðyÞ are from the same cohort ðx > y; t > uÞ, with reference to
formula [19] of Appendix A, their covariance is given by,

Cov
ÿn
P
ðtÞ

ðxÞ;
n
P
ðuÞ

ðyÞ

�
¼
ÿ
E
ÿn
P
ðtÞ

ðxÞ

�� ��1ÿ ÿmð jÞeu
j

�ÿ1ÿmð jÞ
nu;u

j; j

�1=2ÿmð jÞ
nt;u

j; j

���
þ
ÿmð jÞ

eu
j

�ÿ1ÿmð jÞ
nu;u

j; j

�1=2ÿmð jÞ
nt;u

j; j

���ÿrej

0

�ÿr
nj; j
0;0

�3=2
ÿ 1

��
 !

ð8Þ

þ
ÿ
E
ÿn
P
ðtÞ

ðxÞ

��ÿ
E
ÿn
P
ðuÞ

ðyÞ

��ÿÿr
nj; j
0;0

�ÿmð jÞ
nt;u

j; j

�
ÿ 1

�
:

9>>>>=>>>>;
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If nP
ðtÞ

ðxÞ and nP
ðuÞ

ðyÞ are from different cohorts ð j ¼ tÿ xþ b; j� ¼ uÿ yþ b;
j�< jÞ, with reference to formulae [21] of Appendix A,

Cov
ÿn
P
ðtÞ

ðxÞ;
nP
ðuÞ

ðyÞ

�
¼
ÿ
E
ÿn
P
ðtÞ

ðxÞ

��ÿÿmð j�Þ
eu

j �

�ÿ1ÿmð j �Þ
nu;u

j �; j �

�1=2ÿmð j; j �Þ
nt;u

j; j �

���ÿrej �

0

�ÿr
n j �; j �

0;0

�1=2ÿr
n j; j �

0;0

�
ÿ 1

��� ð9Þ

þ
ÿ
E
ÿn
P
ðtÞ

ðxÞ

��ÿ
E
ÿn
P
ðuÞ

ðyÞ

��ÿÿr
n j; j �

0;0

�ÿmð j; j �Þ
nt;u

j; j �

�
ÿ 1

�
:

9>>>>=>>>>;
Finally, if nP

ðtÞ

ðxÞ is from a new entrant cohort and iP
ðuÞ

ðyÞ is from an initial
population cohort, with reference to formulae [21] of Appendix A,

Cov
ÿn
P
ðtÞ

ðxÞ;
nP
ðuÞ

ðyÞ

�
¼
ÿ
E
ÿn
P
ðtÞ

ðxÞ

��ÿ
E
ÿn
P
ðuÞ

ðyÞ

��ÿÿmð j; j �Þ
nt;u

j;0

�
ÿ 1

�
: ð10Þ

3.2 Demographic Projection Aggregates
Denoting by AðtÞ the total Active Population at time t and by RðtÞ the

total Retired Population, the expected values and covariances of these
functions can be expressed as,

EðAðtÞÞ ¼

ðr

b

EðPðx; tÞÞdx

EðRðtÞÞ ¼

ð$
r

EðPðx; tÞÞdx

CovfAðtÞ;AðuÞg ¼
ðr

b

ðr

b

CovfPðx; tÞ;Pðy; uÞgdy dx ð11Þ

CovfRðtÞ;RðuÞg ¼
ð$

r

ð$
r

CovfPðx; tÞ;Pðy; uÞgdy dx

CovfRðtÞ;AðuÞg ¼
ð$

r

ðr

b

CovfPðx; tÞ;Pðy; uÞgdy dx:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð�Þ

In particular, by putting u ¼ t in the last three expressions, expressions for
V ðAðtÞÞ; V ðRðtÞÞ;CovfRðtÞ;AðtÞg can be obtained. The expressions can be
further developed by distinguishing between initial population and new entrant
cohorts. Let bðtÞ denote the upper age limit of the active new entrant
population and rðtÞ the upper age limit of the retired new entrant population.
Then, bðtÞ is defined for t < rÿ b as bðtÞ ¼ bþ t with bðtÞ ¼ r for t > rÿ b.
rðtÞ is defined for t > rÿ b as rðtÞ ¼ bþ t with rðtÞ ¼ r for t < rÿ b and
rðtÞ ¼ o for t > oÿ b. With the understanding that an integral has zero value
when the upper and lower limits are equal, the first two and the last of the
expressions in (11) can be expanded, in terms of the results developed in
Section 3.1 above, as,
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EðAðtÞÞ ¼

ðbðtÞ

b

E
ÿn
P
ðtÞ

ðxÞ

�
dxþ

ðr

bðtÞ

E
ÿi
P
ðtÞ

ðxÞ

�
dx

EðRðtÞÞ ¼

ðrðtÞ

r

E
ÿn
P
ðtÞ

ðxÞ

�
dxþ

ð$
rðtÞ

E
ÿi
P
ðtÞ

ðxÞ

�
dx

CovfRðtÞ;AðuÞg ¼
ðrðtÞ

r

ðbðuÞ

b

Cov
�n

P
ðtÞ

ðxÞ;
nP
ðuÞ

ðyÞ

	
dy dx

þ

ðrðtÞ

r

ðr

bðuÞ

Cov
�n

P
ðtÞ

ðxÞ;
iP
ðuÞ

ðyÞ

	
dy dx

þ

ðo
rðtÞ

ðbðuÞ

b

Cov
�i
P
ðtÞ

ðxÞ;
nP
ðuÞ

ðyÞ

	
dy dx

þ

ðo
rðtÞ

ðr

bðuÞ

Cov
�i
P
ðtÞ

ðxÞ;
iP
ðuÞ

ðyÞ

	
dy dx:

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

ð�Þ

ð12Þ

The other expressions can be developed on similar lines.

3.3 Financial Projection Aggregates, Ignoring Salary Escalation
It is assumed that the growth of an active member’s salary is governed ö

apart from salary escalation due to the increase in the general level of
earnings ö by the progression due to age/seniority along a salary scale sðxÞ,
b � x � r, assumed deterministically. Moreover, pensions are assumed to be
fully indexed to salary escalation after award.

Average annual salaries and average annual pensions at the outset are
assumed to be given and are denoted by saðx; 0Þ; peðx; 0Þ. The pension rate
for the initial active population aged x is denoted by prðxÞ, prðbÞ being the
pension rate for new entrants. The population element Pðx; tÞ will have an
associated financial factor ö ignoring salary escalation ö as follows (the
pre-superscript indicates whether the population element is currently active
(a) or retired (r), and when necessary to make a distinction, if it belongs to an
initial population cohort (i) or to a new entrant cohort (n)):

For an active element deriving from an initial population cohort,

iaf
ðtÞ

ðxÞ ¼ saðxÿ t; 0Þ
sðxÞ

sðxÿ tÞ
:

For a retired element deriving from an initial active population cohort,

irf
ðtÞ

ðxÞ ¼ saðxÿ t; 0Þ
sðrÞ

sðxÿ tÞ
prðxÿ tÞ:
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For a retired element deriving from an initial retired population cohort,

irf
ðtÞ

ðxÞ ¼ peðxÿ t; 0Þ:

For an active element deriving from a new entrant cohort,

naf
ðtÞ

ðxÞ ¼ saðb; 0Þ
sðxÞ

sðbÞ
:

For a retired element deriving from a new entrant cohort,

nrf
ðtÞ

ðxÞ ¼ saðb; 0Þ
sðrÞ

sðbÞ
prðbÞ:

Denoting the total salary bill function by SðtÞ and the total benefit
function by BðtÞ ö both, ignoring salary escalation ö the formulae for their
expected values, variances and covariances can be derived from the
formulae for the demographic projections by applying the relevant financial
factors. For example, the financial projection formulae corresponding to (12)
are,

EðSðtÞÞ ¼

ðbðtÞ

b

naf
ðtÞ

ðxÞE
ÿn
P
ðtÞ

ðxÞ

�
dxþ

ðr

bðtÞ

iaf
ðtÞ

ðxÞE
ÿi
P
ðtÞ

ðxÞ

�
dx

EðBðtÞÞ ¼

ðrðtÞ

r

nrf
ðtÞ

ðxÞE
ÿn
P
ðtÞ

ðxÞ

�
dxþ

ðo
rðtÞ

irf
ðtÞ

ðxÞE
ÿi
P
ðtÞ

ðxÞ

�
dx

CovfBðtÞ; SðuÞg ¼
ðrðtÞ

r

nrf
ðtÞ

ðxÞ

ðbðuÞ

b

naf
ðuÞ

ðyÞ Cov
�n

P
ðtÞ

ðxÞ;
nP
ðuÞ

ðyÞ

	
dy dx

þ

ðrðtÞ

r

nrf
ðtÞ

ðxÞ

ðr

bðuÞ

iaf
ðuÞ

ðyÞ Cov
�n

P
ðtÞ

ðxÞ;
iP
ðuÞ

ðyÞ

	
dy dx

þ

ðo
rðtÞ

irf
ðtÞ

ðxÞ

ðbðuÞ

b

naf
ðuÞ

ðyÞ Cov
�i
P
ðtÞ

ðxÞ;
nP
ðuÞ

ðyÞ
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þ

ðo
rðtÞ

irf
ðtÞ

ðxÞ

ðr

bðuÞ

iaf
ðuÞ

ðyÞ Cov
�i
P
ðtÞ

ðxÞ;
iP
ðuÞ

ðyÞ

	
dy dx:

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

ð�Þ

ð13Þ

3.4 Discounted Financial Projections
Let DSðtÞ and DBðtÞ denote the values of SðtÞ, BðtÞ discounted to valuation

date and TDSðtÞ and TDBðtÞ denote the integrals of the discounted values
over ð0; tÞ. Then,
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DSðtÞ ¼ SðtÞ
ÿd
It
0

�ÿ1
DBðtÞ ¼ BðtÞ

ÿd
It
0

�ÿ1
:

)
ð14Þ

SðtÞ depends on the mortality and new entrant factors, which are assumed
to be independent of the interest factor. It follows, from the lognormal
distribution properties (Appendix B) and [31] of Appendix C, that

EðDSðtÞÞ ¼ EðSðtÞÞ
ÿd
et
0

�ÿ1ÿd
nt;t
0;0

�1=2
V ðDSðtÞÞ ¼

V ðSðtÞÞ
ÿd
nt;t
0;0

�
þðEðSðtÞÞÞ

2ÿÿdnt;t
0;0

�
ÿ 1Þ

 !ÿd
et
0

�ÿ2ÿd
nt;t
0;0

�
:

9>>>>=>>>>;

ð�Þ

ð15Þ

The covariance between DSðtÞ;DSðtÞ, using [35] of Appendix C, is,

CovðDSðtÞ;DSðuÞÞ

¼ CovðSðtÞ; SðuÞÞ
ÿd
nt;u
0;0

�ÿd
et
0

�ÿ1ÿd
eu
0

�ÿ1ÿd
nt;t
0;0

�1=2ÿd
nu;u
0;0

�1=2
þ EðSðtÞÞEðSðuÞÞ

ÿÿd
nt;u
0;0

�
ÿ 1

�ÿd
et
0

�ÿ1ÿd
eu
0

�ÿ1ÿd
nt;t
0;0

�1=2ÿd
nu;u
0;0

�1=2
:

9>>>>=>>>>;

ð�Þ

ð16Þ

Similar expressions can be derived for CovðDBðtÞ;DBðuÞÞ;CovðDBðtÞ;DSðuÞÞ.
Next, consider the total discounts over ð0; tÞ, i.e. TDSðtÞ,

TDSðtÞ ¼

ðt

0
DSðzÞdz

EðTDSðtÞÞ ¼

ðt

0
EðDSðzÞÞdz

CovðDSðtÞ; TDSðtÞÞ ¼

ðt

0
CovðDSðzÞ;DSðtÞÞdz

V ðTDSðtÞÞ ¼

ðt

0

ðt

0
CovðDSðzÞ;DSðwÞÞdw dz

CovðTDSðT Þ; TDSðuÞÞ ¼

ðt

0

ðu

0
CovðDSðzÞ;DSðwÞÞdw dz:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð�Þ

ð17Þ

Expressions for similar variances and covariances concerning DBðzÞ; TDBðzÞ
and for covariances involving both DSðzÞ and DBðzÞ can be derived on similar
lines.

3.5 The Capitalised Value of Pension Awards
Let BcðtÞ denote the value of the pensions awarded at time t, discounted
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to the valuation date. The number of awardees are P
ðtÞ

ðrÞ and the number who
will continue to be on this pension roll at time t+z would be P

ðtþzÞ

ðrþzÞ. Let the
corresponding unit pension amount, ignoring salary escalation, be denoted
by rf

ðtþzÞ

ðrþzÞ . Note that rf
ðtþzÞ

ðrþzÞ ¼
r f
ðtÞ

ðrÞ . For initial population cohorts ðt < rÿ bÞ,

irf
ðtÞ

ðrÞ ¼ saðrÿ t; 0Þ
sðrÞ

sðrÿ tÞ
prðrÿ tÞ:

For new entrant cohorts ðt > rÿ bÞ

nrf
ðtÞ

ðrÞ ¼ saðb; 0Þ
sðrÞ

sðbÞ
prðbÞ:

The capitalised value of the award, and its expectation and variance, are
given by the following expressions:

BcðtÞ ¼ r f
ðtÞ

ðrÞ

ðoÿr

0
P
ðtþzÞ
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9>>>>>>>>=>>>>>>>>;

ð�Þ

ð18Þ

Noting that P
ðtþzÞ

ðrþzÞ;
dItþz

0 are independent, the integrand in EðBcðtÞÞ could be
expressed as,

E
ÿ
P
ðtþzÞ

ðrþzÞ

�ÿd
etþz
0

�ÿ1ÿd
ntþz;tþz
0;0

�1=2
: ð19Þ

Using [35] of Appendix C, the integrand in V ðBcðtÞÞ could be expressed as,
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)
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ð20Þ

The covariance between the capitalised value of the awards at time t and
the corresponding discounted salary bill will be given by,
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The integrand in (21) can be developed as follows:ÿ
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��ÿd
et
0

�ÿ1ÿd
etþz
0

�ÿ1ÿd
nt;t
0;0

�1=2ÿd
ntþz;tþz
0;0

�1=2
þE

ÿ
P
ðtÞ

ðxÞ

�
E
ÿ
P
ðtþzÞ

ðrþzÞ

�ÿÿd
nt;tþz
0;0

�
ÿ 1

�ÿd
et
0

�ÿ1ÿd
etþz
0

�ÿ1ÿd
nt;t
0;0

�1=2ÿd
ntþz;tþz
0;0

�1=2
:

)
ð22Þ

3.6 Statistical Distributions
From the discussion in Appendix B, it will be seen that Pðx; tÞ is

lognormally distributed if the new entrant growth and the survival processes
are regarded as fractional stochastic processes, which is a reasonable
approximation when dealing with populations of the size normally encountered
in social insurance pension schemes. As regards the Total Population
functions AðtÞ;RðtÞ, they are integrals ö which are comparable to sums ö of
lognormal variates. As explained in Appendix B, although the distribution of
the sum of lognormal variates is not known, it has been the practice in various
applications to regard the sum of lognormal variates as a lognormal variate.
This practice is adopted for the present purposes. A similar consideration
applies to the distribution of the functions SðtÞ;BðtÞ.

From (14), in view of the normality assumption of the force of interest,
DSðtÞ;DBðtÞ can be regarded as products of lognormal variables, and
therefore as lognormal. TDSðtÞ; TDBðtÞ are integrals of lognormal variables,
and are approximately lognormal, by analogy with the result for the sum of
lognormal variables. On similar grounds, BcðtÞ ö see (18) ö can also be
regarded as being lognormally distributed. Confidence limits can be set for
any of these outputs, using Appendix B: [27], [28] or Appendix C: [33], [34].

ª. The Secondary Valuation Outputs

4.1 The Demographic Ratio
The Demographic Ratio expresses the number of pensioners as a

proportion of the corresponding number of active persons, that is,

DRðtÞ ¼
RðtÞ

AðtÞ
: ð23Þ

A classic deterministic valuation will provide only the ratio of the expected
values, i.e.
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DRDðtÞ ¼
EðRðtÞÞ

EðAðtÞÞ
: ð24Þ

On the other hand, a stochastic valuation can provide a confidence interval
for this ratio, at any chosen level of significance.

The statistical analysis of ratios is discussed in Appendix C where it is
shown that the analysis is straightforward under the lognormal assumption.
It will be seen from Appendix B that the ratio of two lognormal variates is
itself a lognormal variate. Let,

EðRðtÞÞ ¼ m;EðAðtÞÞ ¼ n
V ðRðtÞÞ ¼ s2; V ðAðtÞÞ ¼ y2;CovðRðtÞ;AðtÞÞ ¼ f:

�
ð25Þ

Since RðtÞ;AðtÞ are approximately lognormal, it follows from Appendix C,
[39] and [40], that the ð100ÿ eÞ% confidence limits for DRðtÞ are given by,

expðaþ bFÿ1ð1ÿ e=200ÞÞ

a ¼ ln
m
n

1þ
y2

n2

� �1=2
1þ

s2

m2

� �ÿ1=2 !

b2 ¼ ln 1þ
y2

n2

� �
1þ

s2

m2

� �
1þ

f
mn

� �ÿ2 !
:

9>>>>>>=>>>>>>;

ð�Þ

ð26Þ

where Fÿ1 is the inverse function of the distribution function of the standard
normal variable.

4.2 Computation of Premiums under Various Financial Systems
4.2.1 General principles

There is a variety of financial systems applicable to a social insurance
pension scheme (Iyer, 1999, chapter 1). The classical method of determining
premiums for any given financial system is on the basis of deterministic
projections, which is effectively in terms of expected values.

Any financial system essentially partitions the future course of the pension
scheme into non-intersecting zones of equilibrium, within each of which a
premium is computed as a ratio between a function of the benefit projections
(the Numerator, N) and another function of the salary projections (the
Denominator, D). Strictly speaking, the reference here should be to the
discounted benefit and salary projections.

The classical method determines the premium as the ratio of the respective
expected values, i.e. by the formula,

PRD ¼
EðNÞ

EðDÞ
: ð27Þ
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In the stochastic approach, the premium PRS
¼ N=D is treated as the ratio

of two variables. It turns out that, in view of the theory developed in this
paper, the numerator N and denominator D can be regarded as
approximately lognormally distributed, for all the financial systems discussed
below. Therefore their ratio can be treated as a lognormal variate. The
expected value and variance of PRS can then be computed and confidence
limits set for the premium, at any desired level of significance, using the
method outlined in Appendix C, [39] and [40] ö as in the case of the
Demographic Ratio, discussed earlier. Thus the same methodology applies
throughout, with the appropriate definitions of the functions N and D.
Below, for the principal financial systems, the entities required for computing
PRD as well as the confidence limits for PRS are indicated, in terms of
functions whose expressions have been derived in this paper.

4.2.2 The Pay-As-You-Go system (PAYG)
In the framework of the continuous formulation of the theory in this

paper, the PAYG system balances the discounted income and outgo at each
point in time. Therefore,

EðDÞ ¼ EðDSðtÞÞ

EðNÞ ¼ EðDBðtÞÞ

V ðDÞ ¼ V ðDSðtÞÞ

V ðNÞ ¼ V ðDBðtÞÞ

CovðD;NÞ ¼ CovðDBðtÞ;DSðtÞÞ:

9>>>>>>=>>>>>>;

ð�Þ

ð28Þ

4.2.3 The Terminal Funding system (TF)
In the framework of the continuous formulation, adopted in this paper,

the TF system fully capitalises the pensions awarded at time t by the
corresponding premium income. The relevant functions are:

EðDÞ ¼ EðDSðtÞÞ

EðNÞ ¼ EðBcðtÞÞ

V ðDÞ ¼ V ðDSðtÞÞ

V ðNÞ ¼ V ðBcðtÞÞ

CovðD;NÞ ¼ CovðBcðtÞ;DSðtÞÞ:

9>>>>>>=>>>>>>;

ð�Þ

ð29Þ

4.2.4 The Reserve Ratio system (RR)
The RR system applies a level premium over an interval of years such

that a Fund is accumulated bearing a specified ratio ðOÞ to the level of the
expenditure at the end of the period. If a series of successive intervals are
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considered, the relevant functions for the interval ða; b; a > 0Þ are the
following:

EðDÞ ¼ EðTDSðbÞÞ ÿ EðTDSðaÞÞ

EðNÞ ¼ EðTDBðbÞÞ ÿ EðTDBðaÞÞ þ OðEðDBðbÞÞ ÿ EðDBðaÞÞÞ

V ðDÞ ¼ V ðTDSðbÞÞ þ V ðTDSðaÞÞ ÿ 2CovðTDSðbÞ; TDSðaÞÞ

V ðNÞ ¼ V ðTDBðbÞÞ þ V ðTDBðaÞÞ ÿ 2CovðTDBðbÞ; TDBðaÞÞ

þ O2
ðV ðDBðbÞÞ þ V ðDBðaÞÞ ÿ 2CovðDBðbÞ;DBðaÞÞÞ

þ 2OðCovðDBðbÞ; TDBðbÞÞ ÿ CovðDBðbÞ; TDBðaÞÞÞ

ÿ 2OðCovðDBðaÞ; TDBðbÞÞ ÿ CovðDBðaÞ; TDBðaÞÞÞ

CovðD;NÞ ¼ CovðTDBðbÞ; TDSðbÞÞ þ CovðTDBðaÞ; TDSðaÞÞ

ÿ CovðTDBðaÞ; TDSðbÞÞ ÿ CovðTDBðbÞ; TDSðaÞÞ

þ O
CovðDBðbÞ; TDSðbÞÞ ÿ CovðDBðbÞ; TDSðaÞÞ

ÿCovðDBðaÞ; TDSðbÞÞ þ CovðDBðaÞ; TBSðaÞÞ

� �
:

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

ð�Þ

ð30Þ

More generally, O could be varied over time, reducing as the scheme matures.
For the first period ð0; bÞ, terms involving ðaÞ in (30) would be zero and if
there is an initial fund Fð0Þ, it would appear with a negative sign in the
expression for EðNÞ.

4.2.5 The General Average Premium system (GAP): average premiums
The General Average Premium system is based on the concept of a constant

premium that will ensure the financial equilibrium throughout the infinite
lifetime of the scheme following an actuarial valuation at t= 0, taking credit for
the accumulated fund on valuation date. The GAP can be regarded as the
limit, as n!1, of the Average Premium over the interval (0, n), provided this
limit exists. The functions for computing this Average Premium are:

EðDÞ ¼ EðTDSðnÞÞ

EðNÞ ¼ EðTDBðnÞÞ ÿ Fð0Þ

V ðDÞ ¼ V ðTDSðnÞÞ

V ðNÞ ¼ V ðTDBðnÞÞ

CovðD;NÞ ¼ CovðTDBðnÞ; TDSðnÞÞ:

9>>>>>>=>>>>>>;

ð�Þ

ð31Þ

4.3 The Fund and the Fund Ratio when the Future Contribution Rate Schedule
is Given

In certain cases, the future contribution rates would have been already
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fixed, and the actuarial valuation is required to assess the amount of the
Fund and/or the Fund Ratio, that is, the ratio of the fund to the benefit
expenditure, in future years. Let FðtÞ denote the Fund, ignoring salary
escalation, and OðtÞ the Fund Ratio. Then,

OðtÞ ¼
FðtÞ

BðtÞ
: ð32Þ

FðtÞ can be regarded as a lognormal variate and OðtÞ as the ratio of
lognormal variates and the procedures in Appendices B and C applied to
estimate the expected value and the confidence limits for either of them. Let
cðtÞ denote the pre-determined contribution rate at time t and Fð0Þ the initial
Fund. Let KðzÞ ¼ cðzÞSðzÞ ÿ BðzÞ. Then, noting that KðzÞ is independent of
dIt

0 and
dIt

z,

FðtÞ ¼ Fð0Þ
ÿd
It
0

�
þ

ðt

0
KðzÞ

ÿd
It

z

�
dz

EðFðtÞÞ ¼ Fð0ÞE
ÿd
It
0

�
þ

ðt

0
EðKðzÞÞE

ÿd
It

z

�
dz:

9>>=>>;
ð�Þ

ð33Þ

Further, using [35] of Appendix C,

V ðFðtÞÞ ¼ F2ð0ÞV
ÿd
It
0

�
þ 2Fð0Þ

ðt

0
EðKðzÞÞCov

ÿÿd
It
0

�
;
ÿd
It

z

��
dz

þ

ðt

0

ðt

0
CovðKðzÞ;KðwÞÞCov

ÿÿd
It

z

�
;
ÿd
It

w

��
dw dz

þ

ðt

0

ðt

0
CovðKðzÞ;KðwÞÞE

ÿd
It

z

�
E
ÿd
It

w

�
dw dz

þ

ðt

0

ðt

0
EðKðzÞÞEðKðwÞÞCov

ÿÿd
It

z

�
;
ÿd
It

w

��
dw dz:

9>>>>>>>>>>>>=>>>>>>>>>>>>;

ð�Þ

ð34Þ

Furthermore, the covariance between FðtÞ and BðtÞ will be given by,

CovðFðtÞ;BðtÞÞ ¼
ðt

0
E
ÿd
It

z

�
CovðBðtÞ;KðzÞÞdzð

�Þ: ð35Þ

Each of the integrands in (34) and (35) can be simplified, by noting that,
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EðKðzÞÞ ¼ cðzÞEðSðzÞÞ ÿ EðBðzÞÞ

CovðKðzÞ;KðwÞÞ ¼ cðzÞcðwÞCovðSðzÞ; SðwÞÞ þ CovðBðzÞ;BðwÞÞ

ÿ cðzÞCovðBðwÞ; SðzÞÞ ÿ cðwÞCovðBðzÞ; SðwÞÞ

CovðBðtÞ;KðzÞÞ ¼ cðzÞCovðBðtÞ; SðzÞÞ ÿ CovðBðtÞ;BðzÞÞ:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
ð36Þ

ä. Numerical Illustrations

In order to provide numerical illustrations, it is necessary to give more
specific forms to the input functions introduced in the earlier sections.

The following models have been designed so as to meet certain basic
conditions. The expected values, variances and covariances of the stochastic
factor inputs should take finite values. The variance (for t > 0) should be
non-zero and the variance, and preferably the coefficient of variation as well,
should increase over time, but at a progressively decreasing rate. This
reflects Redington’s (Redington, 1952) vision of an “expanding funnel of
doubt’’, with the qualification that, eventually “the process of widening slows
down’’. The covariance should decrease in line with the absolute difference
between the reference times or ages. These models, however, are for
illustrative purposes only, and are not necessarily intended as a prescription
for practical application.

5.1 New Entrant Growth Factor Inputs
The force of growth of new entrants, its variance and the associated

covariances are modelled as follows (T , to be selected, could be the
projection period or even1):

EðrðtÞÞ ¼ r0 þ r1 f ðtÞ

V ðrðtÞÞ ¼ ðr3ð1ÿ f ðtÞÞÞ
2

f ðtÞ ¼
expðÿr2tÞ ÿ expðÿr2T Þ

1ÿ expðÿr2T Þ

CovðrðtÞ; rðuÞÞ ¼ ðV ðrðtÞÞV ðrðuÞÞÞ1=2 expðÿkrjtÿ ujÞ:

9>>>>>>=>>>>>>;
ð37Þ

The condition r2 > 0 is imposed, in order to yield finite values. EðrðtÞÞ
varies smoothly from r0 þ r1 at the outset to the value of r0 at time T . The
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sign of EðrðtÞÞ determines whether the number of new entrants is, on
average, growing or declining over time, An increasing rðtÞ is modelled by
the condition r1 < 0, and vice versa.
The condition r3 > 0 ensures a positive standard deviation. The variance

increases smoothly from zero at the outset to the value ðr3Þ
2 at time T , while

the coefficient of variation of rðtÞ increases smoothly from zero at the
outset to the value r3=r0 at time T , provided r0 6¼ 0. If r0 ¼ 0, implying an
eventually stabilising population, the coefficient of variation is ultimately
infinite; if r1 ¼ r0 ¼ 0, this implies a population tending to stabilise from the
outset, and the coefficient of variation is infinite from the outset. However,
in either case, the variance is finite and has an increasing trend over time.
The constant krð> 0Þ implies that the correlation coefficient between rðtÞ; rðuÞ
reduces in line with the absolute difference jtÿ uj. The higher the value of
kr, the lower the intra-factor correlation.

5.2 The Interest (Net of Salary Escalation) Factor Inputs
Although there are sophisticated models for the interest factor (see, for

example, Wilkie, 1986; Parker, 1994), the force of interest is modelled more
simply, as below.

EðdðtÞÞ ¼ d0 þ d1gðtÞ

V ðdðtÞÞ ¼ ðd3ð1ÿ gðtÞÞÞ
2

gðtÞ ¼
expðÿd2tÞ ÿ expðÿd2T Þ

1ÿ expðÿd2T Þ

CovðdðtÞ; dðuÞÞ ¼ ðV ðdðtÞÞV ðdðuÞÞÞ1=2 expðÿkdjtÿ ujÞ:

9>>>>>>=>>>>>>;
ð38Þ

The characteristics are similar to the case in 5.1 above. If a negative
expected force of interest is to be excluded, the conditions d0 > 0; d0 þ d1 > 0
could be imposed. However, as the normal distribution is assumed for dðtÞ,
the probability of a negative force of interest cannot be eliminated. A higher
value of kd implies lower intra-factor correlation, and vice versa.

5.3 The Mortality Factor Inputs
Much research has been devoted over the years to the modelling of the

projection of mortality rates and their variances and covariances (see e.g.
Tuljapurkar and Boe, 1999; Pitacco, 2004; Booth, 2006; Alho, 2007). A
prominent model is the Lee-Carter model (see Lee, 2004), which is being
further developed by several authors (e.g. Li et al., 2006; Renshaw and
Haberman, 2006). For the purposes of the present paper however, which
is only demonstrative, a simpler approach is taken below for the
projection of mortality and for the computation of variances and
covariances.
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5.3.1 Projection of the expected force of mortality
As all the variants considered ö see Table 4 ö assume mortality decline

over time, a projection of the expected mortality has been undertaken. Any
mortality function might be chosen for the dynamic modelling of mortality
(Pitacco, 2004, p281). Accordingly, it is proposed to select the force of
mortality for this purpose and to model it as follows (T , to be selected, could
be the projection period or even1):

E
ÿ
mð1Þðx; tÞ

�
¼ m̂ð1Þðx; T Þ þ

ÿ
m̂ð1Þðx; 0Þ ÿ m̂ð1Þðx; T Þ

�
wðtÞ: ð39Þ

In (39), the force of mortality experienced at age x and time t is denoted by
mð1Þðx; tÞ; b � x < o. m̂ð1Þðx; 0Þ on the valuation date is known and the expected
force of mortality in year T , m̂ð1Þðx; T Þ is assumed. wðtÞ is a function such
that wð0Þ ¼ 1 and wðT Þ ¼ 0. This formulation is comparable to the original,
additive, Lee-Carter model (Lee, 2004) and is similar to the exponential
interpolation approach, between the current and the optimal life table ö see
Pitacco, 2004, p284. (T , to be selected, could be the projection period or
even1).

wðtÞ ¼ expðÿl0tÞ
expðÿl0tÞ ÿ expðÿl0T Þ

1ÿ expðÿl0T Þ
: ð40Þ

5.3.2 Modelling the variance and covariance of the force of mortality
They are modelled as (T , to be selected, could be the projection period or

even1):

V ðmð1Þðx; tÞÞ ¼
ÿ
l2E

ÿ
mð1Þðx; tÞ

�
ð1ÿ hðtÞÞ

�2
hðtÞ ¼ expðÿl1tÞ

expðÿl1tÞ ÿ expðÿl1T Þ
1ÿ expðÿl1T Þ

Cov
ÿ
mð1Þðx; tÞ; mð1Þðy; uÞ

�
¼
ÿ
V
ÿ
mð1Þðx; tÞ

�
V
ÿ
mð1Þðy; uÞ

��1=2
� exp

ÿ
ÿ k0

mjxÿ yj ÿ k1
mjtÿ uj

�
:

9>>>>>>=>>>>>>;
ð41Þ

The expression for the variance implies that the coefficient of variation
increases from zero at the outset to the value l2 at time T . Since a negative
force of mortality is to be excluded, this constant should be subject to a limit.
For example, under the assumption of the normal distribution for the force
of mortality, the condition l2 < 1

2 will ensure that the probability of a
negative force of mortality is always less than 2.5%.

The expression for the covariance implies that the correlation between
forces of mortality reduces in line with the absolute differences in the age and
in the time of reference. Higher values of k0

m; k
1
m (both> 0) imply lower intra-

factor correlation, and vice versa.
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5.4 Discrete Approximations for Integrals
For practical application, the integrals at the various stages of the

theoretical development have to be numerically approximated. For simple
integrals, one of the following formulae has been used, as convenient (m and
n are integers). ðn

m

f ðxÞdx ¼
Xnÿ1
x¼m

f
ÿ
xþ 1

2

�
ðn

m

f ðxÞdx ¼ 1
2 f ðmÞ þ

Xnÿ1
x¼mþ1

f ðxÞ þ 1
2 f ðnÞ:

9>>>>=>>>>; ð42Þ

For double integrals, in the present context, it was considered adequate to
use one of the following simple formulae, although it is noted that there are
more refined methods, such as that based on a Fibonacci lattice ö see Sloan
and Joe, 1994 (m, m*, n, n* are integers).

ðn

m

ðn�

m�
f ðx; yÞdy dx ¼

Xnÿ1
x¼m

Xn�ÿ1
y¼m�

f
ÿ
xþ 1

2 ; yþ
1
2

�
ðn

m

ðn�

m�
f ðx; yÞdy dx ¼

Xnÿ1
x¼mþ1

Xn�ÿ1
y¼m�þ1

f ðx; yÞ

þ 1
2

Xnÿ1
x¼mþ1

ð f ðx; n�Þ þ f ðx;m�ÞÞ

 !

þ 1
2

Xn�ÿ1
y¼m�þ1

ð f ðn; yÞ þ f ðm; yÞÞ

 !
þ 1

4ð f ðm;m
�Þ þ f ðm; n�Þ þ f ðn;m�Þ þ f ðn; n�ÞÞ:

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

ð43Þ

5.5 Outline of Model Scheme and Input Data for the Illustrations
A retirement pension scheme, with the pension formula of 1 per cent of

the final salary per year of service, is illustrated. For simplicity, only one sex
(males) is considered. Members enter at age 20 and retire at age 65. The
pension, after award, is fully adjusted to the level of insured salaries. The
scheme is projected from its outset, and pre-scheme service is excluded. Thus
there are no initial pensioners and no initial Fund. The starting active
population, initial salaries and the assumed salary scale are shown in
Table 2.

The methodology follows the lines described in Section 2.2. The basic
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mortality tables, initial and eventual, have been selected from an international
model (United Nations, 1982: Far Eastern (male) pattern), corresponding to
life expectancies at birth of 70 and 82 years. The active survival table allows
for a disability decrement, but the disability incidence rates are assumed
deterministic and time-invariant. These rates have an increasing trend with
age, and amount to an average incidence rate of 4 per 1000 over the whole
active age range. The mortality rate of disabled persons is assumed at five
times the general population mortality rate at age 20, this multiple
reducing to unity at age 70; the active service mortality is determined
consequentially. Table 3 summarises the initial service table and life table for
retirees, as well as the corresponding (expected) eventual tables.

5.6 The Variants Selected for Illustration
Starting from a deterministic variant A, the illustrations cover nine other

variants, B to J, each of which is at least partly stochastic.

Table 2. Starting population data and salary scale assumption

Age-groups Active
members

Average
salary ($)

Annual salary
bill ($million)

Age Salary scale

20-25 144,079 4,901 706 20 100
25-30 136,392 7,145 974 25 165
30-35 128,853 9,037 1,164 30 221
35-40 121,319 10,540 1,279 35 267
40-45 113,579 11,672 1,326 40 302
45-50 105,316 12,452 1,311 45 328
50-55 96,064 12,863 1,236 50 344
55-60 84,827 12,976 1,101 55 350
60-65 69,571 12,976 903 60

65
350
350

Total 1,000,000 10,000 10,000

Table 3. Service table and life table for retirees

Service table (active lives) Life table (retired lives)

Age Initial Eventual Age Initial Eventual

20 1,000 1,000 65 1,000 1,000
25 996 999 70 842 947
30 990 996 75 626 861
35 981 992 80 387 733
40 969 987 85 179 555
45 950 978 90 53 344
50 920 961 95 8 138
55 871 935 100 0 0
60 788 881
65 609 731

154 Stochastic Actuarial Modelling of a Defined-benefit

https://doi.org/10.1017/S174849950000049X Published online by Cambridge University Press

https://doi.org/10.1017/S174849950000049X


A first set of variants, A to D, is intended to demonstrate how the
uncertainty of the outputs grows as stochasticity is introduced stage by stage,
one factor at a time: Variant B involves stochastic growth, C stochastic
growth and stochastic mortality, D stochastic growth, mortality and interest.
Thus D constitutes the basic stochastic variant, for which a comprehensive
stochastic valuation is demonstrated.

A second set of variants is meant to illustrate, in comparison with variant
D, the effect of changes in the stochastic characteristics of each factor input.
Variants E and F relate to the growth factor and illustrate respectively, the
effect of a higher factor variance or a higher intra-factor covariance.
Variants G and H provide a similar illustration for the mortality factor and I
and J for the interest factor.

The standard assumptions are that over the projection period, the
expected force of new entrant growth reduces from 1% to 0% and the
expected mortality falls as shown in Table 3 while the expected force of
interest remains constant at 3%. The details concerning the parameters for
each variant are shown in Table 4. These assumptions have been selected for
illustrative purposes only, and are not meant to represent the current or
projected characteristics of the factors in any particular country or region.

Table 4. The variants selected for illustration

A B C D E F G H I J

Growth factor

r0 0 0 0 0 0 0 0 0 0 0
r1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
r2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
r3 0 0.005 0.005 0.005 0.01 0.005 0.005 0.005 0.005 0.005
kr 0 0.5 0.5 0.5 0.5 0.05 0.5 0.5 0.5 0.5

Mortality factor

l0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
l1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
l2 0 0 0.5 0.5 0.5 0.5 0.75 0.5 0.5 0.5
k0
m 0 0 0.25 0.25 0.25 0.25 0.25 0.125 0.25 0.25

k1
m 0 0 0.25 0.25 0.25 0.25 0.25 0.125 0.25 0.25

Interest factor

d0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
d1 0 0 0 0 0 0 0 0 0 0
d2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
d3 0 0 0 0.015 0.015 0.015 0.015 0.015 0.03 0.015
kd 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.05

Note: In equations (37) to (41), T has been set at 100
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5.7 Summary Review of the Results
Projections were carried out for a period of 100 years for each of the

variants in Table 4, and the numerical results are given in Appendix D.
A summary of the results is provided in this section, together with
graphical representations in Figures 1 to 18. In each graph, the
Deterministic Valuation result (Variant A) is included to serve as a basis of
reference.

Figures 1 to 6, based on Tables D1 to D3 of Appendix D, illustrate the
comprehensive stochastic valuation of variant D. Figure 1 shows the upper
and lower confidence limits (DU, DL) of the projected Active population
(AC) and Retired population (RT). Figure 2 indicates the time trend of the
confidence limits for the Demographic Ratio. Figures 3 to 5 depict the
comparable trends for the PAYG, Reserve Ratio and Terminal Funding
System premiums. Figure 6 illustrates the trend of convergence, to the
General Average Premium, of the Average Premium over successively
lengthened intervals, starting from valuation date. All the confidence limits
relate to the 95 per cent level of significance. These figures clearly illustrate
how, with the progress of time, the primary and secondary valuation outputs
can diverge more and more from the deterministic projection values, and
thus highlight the importance of providing a scientific measure of this
divergence through a stochastic valuation.

Figures 7 to 18, based on Tables D4 to D7 of Appendix D, demonstrate
how the uncertainty of inputs is transmitted to the outputs and how a
stochastic valuation result is affected as the stochasticity of the inputs is
modified, in stages. This analysis concentrates on two specific secondary
outputs: the Demographic Ratio and the Reserve Ratio System Premiums.
The former is the ideal indicator of the effect of changes in the demographic
assumptions (i.e. the new entrant growth and mortality factors), while the
latter includes the effect of changes in the financial assumptions (i.e. the
interest factor).

Figures 7 and 8 illustrate the occurrence and widening of the uncertainty
of the outputs as stochastic factors are progressively introduced, in the order,
new entrant growth, mortality and interest. They show the results for
variants B, C and D, in relation to the deterministic variant A.

Figures 9 to 12 relate to the new entrant growth factor. The effect of
increasing the factor variance is shown in Figures 9 and 10, which compare
variant E against variant D. The effect of increasing the intra-factor
covariance is demonstrated in Figures 11 and 12, by comparing variant F
with variant D. Similar results are shown for the mortality factor in Figures
13 to 16, which compare variants G and H against D. The corresponding
comparisons for the interest factor (variants I, J and D) are provided in
Figures 17 and 18. In all cases, the deterministic valuation result (Variant A)
serves as the reference base.
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Figure 1. Active persons and retirees (Variant D)

Figure 2. Demographic ratio (Variant D)
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Figure 3. PAYG system (Variant D)

Figure 4. Reserve ratio system (Variant D)
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Figure 5. Terminal funding system (Variant D)

Figure 6. Average premiums (Variant D)
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Figure 7. Demographic ratio (Variants B, C and D)

Figure 8. Reserve ratio system (Variants B, C and D)
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Figure 9. Demographic ratio (Variants D and E)

Figure 10. Reserve ratio system (Variants D and E)
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Figure 11. Demographic ratio (Variants D and F)

Figure 12. Reserve ratio system (Variants D and F)
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Figure 13. Demographic ratio (Variants D and G)

Figure 14. Reserve ratio system (Variants D and G)
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Figure 15. Demographic ratio (Variants D and H)

Figure 16. Reserve ratio system (Variants D and H)
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Figure 17. Reserve ratio system (Variants D and I)

Figure 18. Reserve ratio system (Variants D and J)
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å. Conclusion

Despite the progress in the application of stochastic methods in other
branches of insurance, as well as in related scientific fields such as
demography and ecology, recourse to the stochastic approach in social
security pension valuations has been very slow to catch on. In fact, to date,
there appear to be only two instances, i.e. the United States’ OASDI and the
Canada Pension Plan, where stochastic methods have been incorporated in
the valuation, the former since 2003 and the latter from 2007.
Experts seem to differ widely in their opinion on the complexity, utility

and necessity of stochastic valuations in this area. Specific issues are:
. The complexity associated with the difficulty of developing analytical

stochastic formulae, due to the number of variables involved and their
possible inter-correlations.

. The volume of iteration work involved in applying a fully simulation-
based stochastic method.

. The complexity involved in the making of suitable assumptions for
the future, in respect of the variances and covariances of the relevant
factors, on top of assumptions on their expected values.

. The practicability of determining these assumptions based on the
analysis of time series, because of the paucity or unreliability of past
data.

. The perception that, unlike other branches of insurance, publicly
administered social insurance pension schemes do not operate strictly
on generally accepted actuarial principles.

. The impression that the results of stochastic valuations are difficult
to communicate to pubic policy makers, who are reputed to prefer,
and insist on, a unique “best estimate’’.

This paper has attempted to address some of the above issues. In
particular, it has developed an analytical actuarial model for a social
insurance pension scheme. This model demonstrates theoretically the
working out of the stochastic processes underlying the evolution of
retirement pensions. It treats a range of financial systems applicable to social
insurance pension schemes.

Admittedly, the model refers to a simple, retirement pension scheme and
considers only three factors as stochastic, which are also assumed to be
mutually independent. However, the methodology is quite general, and
capable of extension to additional factors and of allowing for inter-factor
correlations, although the resulting expressions, inevitably, would be longer
and more complex.

The paper has striven to convey the message that a purely deterministic
valuation can provide only a very incomplete picture of the evolution of a
pension scheme, and could even be misleading. A stochastic valuation is able
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to provide, in addition to the expected values of key outputs ö which alone
a deterministic valuation can produce ö upper and lower limits within which
each output could be said to lie, with a specified probability.

The numerical illustrations have demonstrated a comprehensive stochastic
valuation and shown how the uncertainty of the valuation results widens as
additional input factors are successively taken into account or greater
stochasticity is assumed in their regard.

In the author’s view, the administering authority of every social insurance
pension scheme should consider the possibility of introducing and gradually
extending stochastic applications within the framework of actuarial
valuations, with the eventual aim of attaining a full-fledged stochastic
valuation. In this regard, the model developed in this paper could be a
starting point for providing an indication of the stochasticity of retirement
pensions, generally the predominant item in a composite pension scheme.
Further research is required to extend the model to the other components of
the scheme, i.e. disability and survivors’ pensions, and to promote and
facilitate practical application, with due regard to the proper interpretation
and the effective communication of the results of stochastic valuations.

It is fervently hoped that the paper will succeed in drawing attention to
this potential, but apparently neglected, area of application of stochastic
methods, stimulate interest in further research and eventually, lead to ever-
widening adoption of stochastic methods in social insurance pension scheme
valuations.
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APPENDIX A

BIRTH AND DEATH PROCESSES

A.1 The Pure Birth Process
Let NðtÞ denote a population growing exponentially at the instantaneous

rate lðzÞ (assumed > 0) at time z, starting from N(0). Let this process be
identified as a “l process’’. Such a population can be modelled in alternative
ways.

A.1.1 NðtÞ can take fractional values
Let this process be identified as a “fractional process’’.

A.1.1.1 Deterministic variant
NðtÞ is the solution of the differential equation,

1
NðtÞ

dNðtÞ

dt
¼ lðtÞ: ½1�

The solution is given by,

NðtÞ ¼ Nð0Þ exp

ðt

0
lðzÞdz

� �
: ½2�

This is a purely deterministic result.

A.1.1.2 Stochastic variant
Suppose lðtÞ is stochastic and for brevity, let

aðtÞ ¼ exp

ðt

0
lðzÞdz

� �
: ½3�

Note that since lðtÞ > 0; aðtÞ > 1.
From [2], it follows that the expected value and variance of NðtÞ are given

by

EðNðtÞÞ ¼ Nð0ÞEðaðtÞÞ
V ðNðtÞÞ ¼ N2

ð0ÞV ðaðtÞÞ

�
: ½4�

It can be shown, on similar lines that,

CovfNðtÞ;NðuÞg ¼ N2ð0ÞCovfaðtÞ; aðuÞg: ½5�
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A.1.2 NðtÞ takes integral values only
Let this process be identified as an “integral process’’.

A.1.2.1 Deterministic variant
In this case, NðtÞ has a Negative Binomial distribution (see, e.g. Renshaw,

1991), with expected value and variance given by

EðNðtÞÞ ¼ Nð0ÞaðtÞ
V ðNðtÞÞ ¼ Nð0ÞaðtÞfaðtÞ ÿ 1g

�
: ½6�

Thus, even though this variant is deterministic, NðtÞ is subject to a variance,
which arises because of the restriction to integral values. It may be termed
the “demographic variance’’. It can also be shown that,

CovfNðtÞ;NðuÞ; u < tg ¼ Nð0ÞaðtÞfaðuÞ ÿ 1g: ½7�

A.1.2.2 Stochastic variant
Suppose lðtÞ is stochastic. The results in [6] should now be regarded as

the conditional expectation and variance of NðtÞ, given aðtÞ. With reference to
[2],

EðNðtÞÞ ¼ Nð0ÞEðaðtÞÞ: ½8�

The variance of NðtÞ is derived as follows:

V ðNðtÞÞ ¼ EðV ðNðtÞ=aðtÞÞÞ þ V ðEðNðtÞ=aðtÞÞÞ

EðV ðNðtÞ=aðtÞÞÞ ¼ Nð0ÞfEða2ðtÞÞ ÿ EðaðtÞÞg

V ðEðNðtÞ=aðtÞÞÞ ¼ N2ð0ÞV ðaðtÞÞ

;V ðNðtÞÞ ¼ Nð0ÞfEða2ðtÞÞ ÿ EðaðtÞÞg þN2ð0ÞV ðaðtÞÞ: ½9�

It can be shown, on similar lines that,

CovfNðtÞ;NðuÞ; u < tg ¼ Nð0ÞfEðaðtÞaðuÞÞ ÿ EðaðtÞÞg þN2ð0ÞCovfaðtÞ; aðuÞg:
½10�

It should be noted that in [9] and [10], the coefficient of N(0) is positive.

A.2 The Pure Death Integral Process
The pure death process arises when NðtÞ steadily decreases from the

initial value N(0). In this case, lðzÞ < 0 so that 0 < aðtÞ < 1. The mathematics
is similar to that of the birth process, except that the distribution governing
[6] and [7] would be Binomial, and generally lead to identical expressions
except in the following cases.
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The expressions in [6] and [7] should now read,

V ðNðtÞÞ ¼ Nð0ÞaðtÞf1ÿ aðtÞg
CovfNðtÞ;NðuÞ; u < tg ¼ Nð0ÞaðtÞf1ÿ aðuÞg

�
: ½11�

The expressions in [9] and [10] should read,

V ðNðtÞÞ ¼ Nð0ÞfEðaðtÞÞ ÿ Eða2ðtÞÞg þN2
ð0ÞV ðaðtÞÞ

CovfNðtÞ;NðuÞ; u < tg ¼ Nð0ÞfEðaðtÞÞ ÿ EðaðtÞaðuÞÞg þN2
ð0ÞCovfaðtÞ; aðuÞg

�
:

½12�

It should be noted that the coefficient of Nð0Þ in [11] and [12] is positive.

A.3 Generalised Expressions for Integral Processes
The expressions in [11] and [12] can be expressed more generally to cover

both the birth and death processes, using absolute values, as follows.

A.3.1 Deterministic variant

V ðNðtÞÞ ¼ Nð0ÞaðtÞfj1ÿ aðtÞjg
CovfNðtÞ;NðuÞ; u < tg ¼ Nð0ÞaðtÞfj1ÿ aðuÞjg

�
: ½13�

A.3.2 Stochastic variant

V ðNðtÞÞ ¼ Nð0ÞfjEðaðtÞÞ ÿ Eða2ðtÞÞjg þN2
ð0ÞV ðaðtÞÞ

CovfNðtÞ;NðuÞ; u < tg ¼ Nð0ÞfjEðaðtÞÞ ÿ EðaðtÞaðuÞÞjg þN2
ð0ÞCovfaðtÞ; aðuÞg

�
:

½14�

The expressions in [14] can alternatively be written as,

V ðNðtÞÞ ¼ ðEðNðtÞÞÞ 1ÿ
Eða2
ðtÞÞ

EðaðtÞÞ

���� ����� �
þ ðEðNðtÞÞÞ

2 V ðaðtÞÞ

ðEaðtÞÞ2

CovfNðtÞ;NðuÞ; u < tg ¼ ðEðNðtÞÞÞ 1ÿ
EðaðtÞaðuÞÞ

EðaðtÞÞ

���� ����� �
þ ðEðNðtÞÞÞðEðNðuÞÞÞ

CovðaðtÞ; aðuÞÞ
EðaðtÞÞEðaðuÞÞ

:

9>>>>>>>>=>>>>>>>>;
½15�

A.4 Successive Independent Stochastic Integral Processes
Suppose starting from N(0), a cohort is subject to a first l process (birth

or death) for t years and then to a second, independent m process (birth or

172 Stochastic Actuarial Modelling of a Defined-benefit

https://doi.org/10.1017/S174849950000049X Published online by Cambridge University Press

https://doi.org/10.1017/S174849950000049X


death) for u years. Both processes are assumed to be stochastic integral
processes. Let lðzÞ; mðzÞ denote the respective forces of growth and let,

aðtÞ ¼ exp

ðt

0
lðzÞdz

� �
; bðuÞ ¼ exp

ðu

0
mðzÞdz

� �
: ½16�

Noting that bðuÞ is independent of aðtÞ, the conditional expectation and
variance of the result of the second process are,

EðNðtþ uÞ=NðtÞÞ ¼ NðtÞEðbðuÞÞ
V ðNðtþ uÞ=NðtÞÞ ¼ NðtÞfjEðbðuÞÞ ÿ Eðb2

ðuÞÞjg þN2
ðtÞV ðbðuÞÞ:

The unconditional expectation will be given by,

EðNðtþ uÞÞ ¼ EðEðNðtþ uÞ=NðtÞÞÞ ¼ Nð0ÞEðaðtÞÞEðbðuÞÞ: ½17�

Furthermore,

V ðNðtþ uÞÞ ¼ EðV ðNðtþ uÞ=NðtÞÞÞ þ V ðEðNðtþ uÞ=NðtÞÞÞ:

Expanding the above relationship and simplifying, the unconditional variance
is obtained as,

V ðNðtþ uÞÞ ¼ Nð0ÞfEðaðtÞÞjEðbðuÞÞ ÿ Eðb2
ðuÞÞj þ jEðaðtÞÞ ÿ Eða2ðtÞÞjEðb2

ðuÞÞg

þN2ð0ÞfEða2ðtÞÞEðb2
ðuÞÞ ÿ ðEðaðtÞÞEðbðuÞÞÞ2g

¼ EðNðtþ uÞÞ 1ÿ
Eðb2
ðuÞÞ

EðbðuÞÞ

���� ����þ 1ÿ
Eða2
ðtÞÞ

EðaðtÞÞ

���� ����Eðb2
ðuÞÞ

EðbðuÞÞ

� �
þ ðEðNðtþ uÞÞÞ

2 Eða2
ðtÞÞ

ðEaðtÞÞ2
Eðb2
ðuÞÞ

ðEbðuÞÞ2
ÿ 1

� �
:

9>>>>>>>>>>=>>>>>>>>>>;
[18]

It can be shown, on similar lines, that the unconditional covariance is given
by,
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CovfNðtþ uÞ;Nðtþ nÞ; n < ug

¼ Nð0ÞfEðaðtÞÞjEðbðuÞÞ ÿ EðbðuÞbðnÞÞj

þ jEðaðtÞÞ ÿ Eða2ðtÞÞjEðbðuÞbðnÞÞg

þN2ð0ÞfEða2ðtÞÞEðbðuÞbðnÞÞ ÿ ðEðaðtÞÞÞ2EðbðuÞÞEðbðnÞÞg

¼ EðNðtþ uÞÞ 1ÿ
EðbðuÞbðnÞÞ

EðbðuÞÞ

���� ����þ 1ÿ
Eða2
ðtÞÞ

EðaðtÞÞ

���� ����EðbðuÞbðnÞÞEðbðuÞÞ

� �
þ ðEðNðtþ uÞÞÞðEðNðtþ nÞÞÞ

Eða2
ðtÞÞ

ðEaðtÞÞ2
EðbðuÞbðnÞÞ

EðbðuÞÞEðbðnÞÞ
ÿ 1

� �
:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
[19]

A.5 Parallel Processes
By “parallel’’ processes, it is meant that NðtÞ is generated by a l process

starting from Nð0Þ and MðuÞ is generated by a m process starting from Mð0Þ,
where lðzÞ and mðz0Þ are correlated. Another case is that of Nðtþ nÞ generated
by successive independent l and m processes and Nðuþ wÞ generated by
successive independent l and g processes, both starting from Nð0Þ, where mðzÞ
and gðz0Þ are correlated. Expressions for the respective expected values and
variances follow from results derived above. In addition, defining ZðwÞ as:

ZðwÞ ¼ exp

ðw

0
gðzÞdz

� �
½20�

the following expressions can be derived using [35] of Appendix C:

CovfNðtÞ;MðuÞg ¼ Nð0ÞMð0ÞCovfaðtÞ; bðuÞg

¼ ðEðNðtÞÞÞðEðMðuÞÞÞ
CovðaðtÞ; bðuÞÞ
EðaðtÞÞEðbðuÞÞ

CovfNðtþ nÞ;Nðuþ wÞ; u < tg ¼ Nð0Þ½jEðaðtÞÞ ÿ EðaðtÞaðuÞÞjEðbðnÞZðwÞÞ�

þN2ð0Þ½CovfaðtÞ; aðuÞgEðbðnÞZðwÞÞ

þ EðaðtÞÞEðaðuÞÞCovfbðnÞ; ZðwÞg�

¼ EðNðtþ nÞÞ 1ÿ
EðaðtÞaðuÞÞ

EðaðtÞÞ

���� ����EðbðnÞZðwÞÞEðbðnÞÞ

� �
þ ðEðNðtþ nÞÞÞðEðNðuþ wÞÞÞ

�
EðaðtÞaðuÞÞ

EðaðtÞÞEðaðuÞÞ
EðbðnÞZðwÞÞ

EðbðnÞÞEðZðwÞÞ
ÿ 1

� �
:

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;
[21]
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A.6 Remark
It is seen that the variances and covariances for the stochastic integral

processes generally consist of two terms. The term containing Nð0Þ is termed
the “demographic’’ variance or covariance, which arises because of the
difference between individuals in the outcome at each stage of the process.
The term containing N2

ð0Þ is termed the “environmental’’ variance or
covariance (see Engen et al., 1998). The latter will generally be the
predominant term, and for sufficiently high values of Nð0Þ the first term
could be neglected, which facilitates the statistical analysis ö see B3 of
Appendix B.
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APPENDIX B

THE LOGNORMAL DISTRIBUTION

B.1 Introduction
Like the normal distribution, the lognormal distribution also arises in a

surprising variety of branches of science (Limpert et al., 2001) and it has
several interesting characteristics.

A random variable x is said to have a lognormal distribution if z ¼ lnðxÞ
is normally distributed. If the mean and variance of the distribution of z are
mz and s2

z , then the distribution of x is said to have parameters mz and sz, and
this is indicated as,

x! L N½mz; sz�: ½22�

The mean and variance of the above lognormal distribution are given by,

mx ¼ exp mz þ
1
2 s

2
z

ÿ �
s2

x ¼ expð2mz þ s2
zÞðexpðs2

zÞ ÿ 1Þ:

�
½23�

If these relationships are reversed, the following results are obtained:

mz ¼ ln
m2

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ s2
x

p" #

s2
z ¼ ln 1þ

s2
x

m2
x

� �
:

9>>>>=>>>>; ½24�

B.2 Properties of a Pair of Lognormal Variates
A pair of random variables x and y are said to have a bivariate

lognormal distribution if z ¼ lnðxÞ and w ¼ lnðyÞ have a bivariate normal
distribution. Relations similar to [23] and [24] will apply between the means
and variances of y and w. In addition, the covariances are connected by the
relationships,

sxy ¼ ðexpðszwÞ ÿ 1Þ exp mz þ
1
2 s

2
z

ÿ �
exp mw þ

1
2 s

2
w

ÿ �
szw ¼ ln 1þ

sxy

jmxmyj

� �
:

9>>=>>; ½25�
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The product and ratio of x and y are also lognormal variates:

u ¼ xy! L N
�
mz þ mw;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

z þ s2
w þ 2szw

q �
n ¼

x

y
! L N

�
mz ÿ mw;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

z þ s2
w ÿ 2szw

q �
:

9>>=>>; ½26�

On the other hand, the distribution of t ð¼ xþ yÞ is extremely complex to
be treated analytically. However, in several applications, it has been the
practice to approximate the distribution of t also by a lognormal
distribution, although a variety of approaches have been developed for
estimating the corresponding parameters m; s (see, for example, Fenton,
1960; Vanduffel et al., 2005). If the expectation and variance of t are known,
the standard approach is to derive these parameters by equating the first
two moments. In any case, it can be concluded that the sum of two
lognormal variates can be regarded as being approximately lognormal.

The above results concerning the product and sum of two lognormal
variates can be generalised to the product or sum of several lognormal
variates.

B.3 Statistical Distributions of the Outputs of Stochastic Processes
In the case of fractional stochastic processes discussed in Appendix A, if

it is assumed that the forces of change such as lðzÞ are normally distributed,
it turns out that the results (outputs) of the processes are lognormally
distributed. This is because these outputs then assume the exponential form,
the exponent being linear combinations (i.e. integrals and their sums) of
normal variates. The expected values, variances and covariances of the
outputs can then be expressed in terms of the expected values, variances and
covariances of the various forces of change, using the properties of the
lognormal distribution.

In the case of integral processes, the statistical distribution of the outputs
is not so obvious. However, it turns out that, when the size of the population
is sufficiently large, such as in the case of social insurance pension schemes,
the integral process can be approximated by the corresponding fractional
process, and therefore the outputs considered as lognormally distributed.

B.4 Confidence Limits for Lognormal Variates
If x! L Nða; bÞ, since x is a single valued function of the corresponding

normal variate, the ð100ÿ eÞ% confidence limits for x would be given by,

expða� bFÿ1ð1ÿ e=200ÞÞ: ½27�
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Fÿ1 is the inverse function of the distribution function of the standard
normal variate and a and b would be given, as in [24], by,

a ¼ ln
m2

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ s2
x

p" #

b2 ¼ ln 1þ
s2

x

m2
x

� �
:

9>>>>=>>>>; ½28�

Confidence limits for the product or ratio of lognormal variates are
discussed in Appendix C.
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APPENDIX C

STATISTICAL ANALYSIS OF PRODUCTS AND RATIOS

Let x and y denote stochastic variables with the following main parameters:

EðxÞ ¼ m; EðyÞ ¼ n

V ðxÞ ¼ s2; V ðyÞ ¼ y2;Covðx; yÞ ¼ f:

�
½29�

C.1 Products of Variables
Consider the variable w ¼ xy. The expected value and variance of w can

be expressed as follows:

EðwÞ ¼ mnþ f

V ðwÞ ¼ s2n2 þ y2m2 þ 2mm12 þ 2nm21 þ m22 þ 2mnfÿ f2:

�
½30�

In the above, mrs denotes Eððxÿ mÞrðyÿ nÞsÞ. Thus, the variance involves
moments of higher order than two, except if x and y are independent, in
which case the expressions in [30] would reduce to,

EðwÞ ¼ mn

V ðwÞ ¼ s2n2 þ y2m2 þ s2y2:

�
½31�

In the particular case where x and y are lognormally distributed, even if
they are correlated, in view of the properties of this distribution (see
Appendix B) it can be shown that w, which is also lognormal, will have the
following expression for the variance, which does not involve the higher
order moments:

ðmnþ fÞ2 1þ
s2

m2

� �
1þ

y2

n2

� �
1þ

f
mn

� �2

ÿ1

 !
: ½32�

Suppose w! L Nða; bÞ. Then, with reference to [26] of Appendix B, the
ð100ÿ eÞ% confidence limits for w will be given by,

expða� bFÿ1ð1ÿ e=200ÞÞ ½33�

where Fÿ1 is the inverse function of the distribution function of the standard
normal variate, and a and b are given by,
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a ¼ ln mn 1þ
y2

n2

� �ÿ1=2
1þ

s2

m2

� �ÿ1=2 !

b2 ¼ ln 1þ
y2

n2

� �
1þ

s2

m2

� �
1þ

f
mn

� �2
 !

:

9>>>>>=>>>>>;
½34�

The above results can be generalised for more than two variables, by
including all the possible combinations within each bracket. Two useful
results for the mutually independent pairs ðX;ZÞ; ðY ;W Þ, the variables within
each pair being dependent, are

CovðX; Y ZÞ ¼ ðEðY ÞÞCovðX;ZÞ

CovðXY ;ZW Þ ¼ CovðX;ZÞfCovðY ;W Þ þ ðEðY ÞÞðEðW ÞÞg

þ ðEðXÞÞðEðZÞÞCovðY ;W Þ:

9=; ½35�

C.2 The Ratio of Two Variables
Let z denote the ratio of two variables, with parameters as in [29], i.e.

z ¼
x

y
:

It can be easily shown that, approximately,

EðzÞ ¼
m
n

1þ
y2

n2
ÿ

f
mn

� �
V ðzÞ ¼

m2

n2
s2

m2 þ
y2

n2
ÿ 2

f
mn

� �
:

9>>>>=>>>>; ½36�

[36] is approximate, since it contains only the first three terms of an
infinite expansion, involving higher order terms and moments.

If x and y are normally distributed, the distribution of this quotient z is
complex. However, the variable u defined below is approximately distributed
as a N(0, 1) variable (Fieller, 1932; Hinkley, 1969, 1970):

u ¼
nzÿ m

ðs2z2 ÿ 2fzþ y2
Þ
: ½37�

This is subject to the condition that the coefficient of variation of y, that is,
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y=n, is small (preferably, less than 3), so that the probability of y taking a
negative value is negligible. In practice, the above condition may not be
satisfied, and confidence limits established for z using the above result might
display odd features such as negative values or even open or non-
continuous intervals (see von Luxburg and Franz, 2004).
In case x and y can be assumed to have a Bivariate lognormal distribution,

using the properties mentioned in Appendix B, the following exact
expressions can be derived:

EðzÞ ¼
m
n

1þ
y2

n2

� �
1þ

f
mn

� �ÿ1
V ðzÞ ¼ ðEðzÞÞ

2 1þ
s2

m2

� �
1þ

y2

n2

� �
1þ

f
mn

� �ÿ2
ÿ1

 !
:

9>>>>=>>>>; ½38�

Also in this case, z is a lognormal variate. Suppose z! L Nða; bÞ. Then,
with reference to [26] of Appendix B, the ð100ÿ eÞ% confidence limits for z
will be given by,

expða� bFÿ1ð1ÿ e=200ÞÞ ½39�

where Fÿ1 is the inverse function of the distribution function of the
standard normal variate, and a and b are given by,

a ¼ ln
m
n

1þ
y2

n2

� �1=2

1þ
s2

m2

� �ÿ1=2 !

b2 ¼ ln 1þ
y2

n2

� �
1þ

s2

m2

� �
1þ

f
mn

� �ÿ2 !
:

9>>>>=>>>>; ½40�
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APPENDIX D

This Appendix presents the numerical results of the illustrations. For the
specifications of the variants, reference should be made to Table 4 in the
body of the paper. In all tables, DET denotes the Deterministic valuation
result and UL and LL denote the upper and lower confidence limits at the
95% level of significance.

D.1 Stochastic Valuation for Variant D
The stochastic valuation for variant D is illustrated in detail in Tables D1

to D3. Table D.1 shows the Demographic projections at 10 year intervals and

Table D.1. Demographic projections and the demographic ratio
(Variant D)

(equations (11), (12), (24), (25), (26), [27], [28] refer)

Year Active population (1000) Retirees (1000) Demographic ratio (%)

DET UL LL DET UL LL DET UL LL

0 1,000 1,000 1,000 0 0 0 0 0 0
10 1,114 1,116 1,112 113 115 111 10.14 10.32 9.96
20 1,233 1,238 1,227 209 219 199 16.96 17.79 16.18
30 1,347 1,361 1,333 280 302 261 20.78 22.44 19.34
40 1,452 1,479 1,426 333 365 307 22.95 25.19 21.09
50 1,542 1,587 1,499 385 425 352 24.96 27.67 22.75
60 1,616 1,684 1,550 436 484 397 26.95 30.14 24.37
70 1,674 1,770 1,584 481 537 437 28.74 32.43 25.80
80 1,718 1,843 1,602 520 583 470 30.25 34.40 26.96
90 1,750 1,906 1,608 551 622 495 31.48 36.04 27.89

100 1,772 1,958 1,604 575 654 514 32.47 37.39 28.62

Table D.2. Financial projections (ignoring escalation) and PAYG
premiums (Variant D)

(equations (13), (28), [27], [28], [39], [40] refer)

Year Salary bill ($ million) Expenditure ($ million) PAYG premium (%)

DET UL LL DET UL LL DET UL LL

0 10,000 10,000 10,000 0 0 0 0 0 0
10 11,161 11,184 11,138 81 82 79 0.72 0.73 0.71
20 12,402 12,457 12,348 326 338 314 2.62 2.72 2.53
30 13,633 13,744 13,523 731 772 693 5.35 5.65 5.08
40 14,783 15,003 14,569 1,278 1,370 1,197 8.64 9.27 8.09
50 15,785 16,177 15,404 1,925 2,088 1,787 12.19 13.26 11.28
60 16,607 17,234 16,007 2,447 2,693 2,245 14.73 16.30 13.43
70 17,261 18,167 16,406 2,801 3,120 2,544 16.22 18.23 14.60
80 17,764 18,975 16,637 3,035 3,405 2,744 17.08 19.38 15.26
90 18,135 19,665 16,732 3,217 3,631 2,893 17.74 20.24 15.75

100 18,391 20,244 16,717 3,360 3,819 3,001 18.26 20.95 16.14

182 Stochastic Actuarial Modelling of a Defined-benefit

https://doi.org/10.1017/S174849950000049X Published online by Cambridge University Press

https://doi.org/10.1017/S174849950000049X


the corresponding demographic ratios. Table D.2 presents the Financial
projections and PAYG premiums.

Table D.3 shows the premiums under the Terminal Funding and the

Table D.3. Funded financial systems (Variant D)
(equations (29), (30), (31), [39], [40] refer)

Terminal funding premiums
(%)

Average premiums
(%)

Reserve ratio premiums
(%)

Year DET UL LL Interval DET UL LL Interval DET UL LL

0 0 0 0
10 2.10 2.29 1.94 0- 10 0.25 0.26 0.25 0- 20 1.39 1.44 1.33
20 4.53 5.06 4.09 0- 20 0.85 0.87 0.82
30 7.20 8.18 6.39 0- 30 1.66 1.74 1.59 20- 40 6.15 6.58 5.76
40 10.11 11.65 8.88 0- 40 2.60 2.76 2.46
50 12.00 13.96 10.43 0- 50 3.57 3.84 3.33 40- 60 11.85 13.03 10.85
60 12.52 14.70 10.78 0- 60 4.45 4.85 4.12
70 12.92 15.30 11.04 0- 70 5.17 5.68 4.74 60- 80 14.48 16.36 12.97
80 13.23 15.77 11.24 0- 80 5.71 6.32 5.21
90 13.47 16.14 11.38 0- 90 6.12 6.81 5.55 80-100 15.46 17.72 13.68

100 13.65 16.42 11.50 0-100 6.42 7.18 5.81

Table D.4. Progressive effect of stochasticity

Variant A B1 C2 D3

DET UL LL UL LL UL LL

Year Demographic ratio (%)

0 0 0 0 0 0 0 0
10 10.14 10.22 10.06 10.32 9.96 10.32 9.96
20 16.96 17.09 16.83 17.79 16.18 17.79 16.18
30 20.78 21.01 20.55 22.44 19.34 22.44 19.34
40 22.95 23.37 22.53 25.19 21.09 25.19 21.09
50 24.96 25.68 24.25 27.67 22.75 27.67 22.75
60 26.95 28.05 25.88 30.14 24.37 30.14 24.37
70 28.74 30.26 27.29 32.43 25.80 32.43 25.80
80 30.25 32.16 28.45 34.40 26.96 34.40 26.96
90 31.48 33.74 29.36 36.04 27.89 36.04 27.89

100 32.47 35.05 30.07 37.39 28.62 37.39 28.62

Interval Reserve ratio system premium (%)

0- 20 1.39 1.39 1.37 1.42 1.35 1.44 1.33
20- 40 6.15 6.19 6.09 6.48 5.84 6.58 5.76
40- 60 11.85 12.11 11.59 12.82 11.04 13.03 10.85
60- 80 14.48 15.06 13.90 16.07 13.21 16.36 12.97
80-100 15.46 16.31 14.65 17.36 13.97 17.72 13.68

1 Involves stochastic new entrant growth
2 Involves stochastic growth and mortality
3 Involves stochastic growth, mortality and interest
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Reserve Ratio System (for a ratio of 5 and 20 year intervals). It also
presents the Average Premiums for intervals starting from valuation date,
to illustrate the convergence towards the GAP.

D.2 Sensitivity of a Stochastic Valuation to Changes in Input Characteristics
Table D.4 indicates the effect of introducing stochasticity in stages, one

factor at a time. Table D.5 illustrates the effect of changes in the stochastic
characteristics of the growth factor. Tables D.6 and D.7 provide similar
information in respect of the mortality and interest factors. In each case,
values are shown for two specific outputs, the Demographic Ratio and the
Reserve Ratio premium (for a Reserve ratio of 5 and successive intervals of
20 years). DET denotes the Deterministic valuation result (variant A), and
UL and LL denote the upper and lower confidence limits at the 95% level of
significance.

Table D.5. Changes in stochastic characteristic of new entrant growth

Variant A D1 E2 F3

DET UL LL UL LL UL LL

Year Demographic ratio (%)

0 0 0 0 0 0 0 0
10 10.14 10.32 9.96 10.32 9.96 10.32 9.96
20 16.96 17.79 16.18 17.79 16.17 17.79 16.17
30 20.78 22.44 19.34 22.47 19.31 22.48 19.30
40 22.95 25.19 21.09 25.31 20.99 25.36 20.94
50 24.96 27.67 22.75 27.98 22.48 28.17 22.33
60 26.95 30.14 24.37 30.76 23.87 31.19 23.53
70 28.74 32.43 25.80 33.41 25.01 34.14 24.48
80 30.25 34.40 26.96 35.78 25.90 36.80 25.18
90 31.48 36.04 27.89 37.78 26.57 39.08 25.69

100 32.47 37.39 28.62 39.46 27.09 40.99 26.07

Interval Reserve ratio system premium (%)

0- 20 1.39 1.44 1.33 1.44 1.33 1.44 1.33
20- 40 6.15 6.58 5.76 6.58 5.75 6.58 5.75
40- 60 11.85 13.03 10.85 13.12 10.77 13.18 10.73
60- 80 14.48 16.36 12.97 16.67 12.72 16.88 12.55
80-100 15.46 17.72 13.68 18.25 13.27 18.63 13.00

1 Basic stochastic variant
2 Involves a higher factor variance
3 Involves a higher intra-factor covariance
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Table D.6. Changes in stochastic characteristics of mortality

Variant A D1 G2 H3

DET UL LL UL LL UL LL

Year Demographic ratio (%)

0 0 0 0 0 0 0 0
10 10.14 10.32 9.96 10.40 9.88 10.37 9.91
20 16.96 17.79 16.18 18.22 15.82 18.18 15.84
30 20.78 22.44 19.34 23.35 18.70 23.38 18.61
40 22.95 25.19 21.09 26.48 20.31 26.52 20.12
50 24.96 27.67 22.75 29.23 21.86 29.26 21.62
60 26.95 30.14 24.37 31.93 23.40 31.94 23.13
70 28.74 32.43 25.80 34.42 24.77 34.40 24.48
80 30.25 34.40 26.96 36.57 25.88 36.52 25.58
90 31.48 36.04 27.89 38.35 26.78 38.27 26.46

100 32.47 37.39 28.62 39.80 27.49 39.70 27.17

Interval Reserve ratio system premium (%)

0- 20 1.39 1.44 1.33 1.45 1.32 1.45 1.32
20- 40 6.15 6.58 5.76 6.74 5.65 6.77 5.60
40- 60 11.85 13.03 10.85 13.52 10.58 13.61 10.44
60- 80 14.48 16.36 12.97 17.18 12.59 17.27 12.37
80-100 15.46 17.72 13.68 18.67 13.29 18.73 13.05

1 Basic stochastic variant
2 Involves a higher factor variance
3 Involves a higher intra-factor covariance

Table D.7. Changes in the stochastic characteristics of interest

Variant A D1 I2 J3

DET UL LL UL LL UL LL

Interval Reserve ratio system premium (%)

0- 20 1.39 1.44 1.33 1.47 1.30 1.46 1.31
20- 40 6.15 6.58 5.76 6.78 5.58 6.77 5.59
40- 60 11.85 13.03 10.85 13.52 10.45 13.50 10.46
60- 80 14.48 16.36 12.97 17.03 12.44 17.01 12.46
80-100 15.46 17.72 13.68 18.54 13.05 18.50 13.09

Note: The Demographic ratio is not affected in this case
1 Basic stochastic variant
2 Involves a higher factor variance
3 Involves a higher intra-factor covariance
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