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We study cross-graph charging schemes for graphs drawn in the plane. These are charging

schemes where charge is moved across vertices of different graphs. Such methods have

recently been used to obtain various properties of triangulations that are embedded in a

fixed set of points in the plane. We generalize this method to obtain results for various other

types of graphs that are embedded in the plane. Specifically, we obtain a new bound of

O∗(187.53N ) (where the O∗(·) notation hides polynomial factors) for the maximum number

of crossing-free straight-edge graphs that can be embedded in any specific set of N points

in the plane (improving upon the previous best upper bound 207.85N in Hoffmann, Schulz,

Sharir, Sheffer, Tóth and Welzl [14]). We also derive upper bounds for numbers of several

other types of plane graphs (such as connected and bi-connected plane graphs), and obtain

various bounds on the expected vertex-degrees in graphs that are uniformly chosen from

the set of all crossing-free straight-edge graphs that can be embedded in a specific point

set.

We then apply the cross-graph charging-scheme method to graphs that allow certain

types of crossings. Specifically, we consider graphs with no set of k pairwise crossing edges

(more commonly known as k-quasi-planar graphs). For k = 3 and k = 4, we prove that,

for any set S of N points in the plane, the number of graphs that have a straight-edge

k-quasi-planar embedding over S is only exponential in N.
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1. Introduction

Background. Consider the following problem. Given a set S of labelled points in the

plane, no three collinear, what is the number of graphs that have a straight-edge crossing-

free embedding over S? That is, we consider graphs whose vertex set is S and whose

edges are drawn as straight segments connecting the corresponding pairs of points, so

that these segments do not cross each other (at a point in their relative interiors). Since

S is labelled, two distinct but isomorphic graphs are not counted as the same graph.

For example, if S is a set of N points in convex position, the answer is known to

be Θ
(
(6 + 4

√
2)N

)
≈ Θ(11.66N) [11]. The more general problem asks for the maximum

number of crossing-free straight-edge graphs that can be embedded in any specific set

of N points in the plane. The first exponential bound, 1013N , on the number of such

graphs was proved by Ajtai, Chvátal, Newborn and Szemerédi [4] back in 1982. Since

then, progressively (and significantly) smaller upper bounds have been derived (see,

e.g., [14, 19, 23]). Upper bounds on numbers of more specific types of crossing-free

straight-edge graphs, such as Hamiltonian cycles, spanning trees, perfect matchings, and

triangulations, were also studied (see, e.g., [7, 6, 20, 21, 24]). Worst-case lower bounds for

these numbers have also been obtained (see, e.g., [3, 9, 12]).1

Research on the above problems has led to the development of several useful combin-

atorial techniques, many of which are interesting in their own right. One such distant

achievement was the introduction of the Catalan numbers by Euler and Lamé [10, 15].

A more recent development was the derivation of the crossing lemma, obtained by Ajtai,

Chvátal, Newborn and Szemerédi [4]. In this paper we discuss another novel combinatorial

technique that has recently emerged from research on the above counting problems.

Namely, this is the concept of cross-graph charging schemes.

The idea of using charging schemes to obtain graph properties probably originated

from the attempts of Heesch to prove the four colour theorem [13]. Later, his ideas were

used in Appel and Haken’s famous proof of the theorem [5], and their extensions have

become a common technique in graph theory (see, e.g., [2, 17]). This technique involves

giving charges to vertices (or edges, or faces, for graphs drawn in the plane) of a graph

G, and then moving these charges between various vertices (or edges, or faces) of G. The

novel approach of moving such charges between vertices and edges of different graphs

over the same point set was introduced by Sharir and Welzl in 2006 [24], in studying the

maximum number of triangulations that can be embedded in a specific set of N points in

the plane. Since then, this technique has been extended in [19, 18, 23, 25] to study various

combinatorial and algorithmic properties of triangulations.

In this paper, we extend the idea of cross-graph charging schemes beyond the realm of

triangulations. We first use this technique to bound the maximum number of crossing-free

straight-edge graphs that can be embedded in a specific set of points in the plane. Then

we extend this idea to several other types of graphs, including families of non-planar

graphs (this seems to be the first derivation of reasonable bounds for such graph types).

1 We try to keep a comprehensive list of the various up-to-date bounds in a dedicated webpage:

http://www.cs.tau.ac.il/∼sheffera/counting/PlaneGraphs.html (version of April 2013).
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It seems likely that these techniques can be further extended to other types of problems

(that is, problems not involving bounding or counting the number of embedded graphs),

and we hope that the present study will motivate such applications.

Notation and results. Before discussing our results any further, we require some formal

definitions of the concepts related to these problems. A planar graph is a graph that can

be embedded in the plane in such a way that its vertices are embedded as points and its

edges are embedded as Jordan arcs that connect the respective pairs of points and can

meet only at a common endpoint. A crossing-free straight-edge graph is a plane embedding

of a planar graph such that its edges are embedded as pairwise non-crossing straight line

segments; we sometimes refer to such graphs simply as plane graphs. In Section 2 we only

consider plane graphs. In Section 3 we allow certain types of crossings by considering

quasi-planar graphs; here too we assume that the edges are embedded as (possibly crossing)

straight line segments. In both sections we only consider embeddings where the points

are in general position, that is, where no three points are collinear. For upper bounds on

the number of graphs, this involves no loss of generality, because the number of graphs

can only grow when a degenerate point set is slightly perturbed into general position.

A triangulation of a finite point set S in the plane is a maximal plane graph on S

(that is, no additional straight edges can be inserted without crossing any of the existing

edges), so all bounded faces of the planar map that it defines are triangles. For a set

S of points in the plane, we denote by T (S) the set of all triangulations of S , and put

tr(S) = |T (S)|. Similarly, we denote by P(S) the set of all plane graphs on S , and put

pg(S) = |P(S)|. Finally, let tr(N) = max|S |=N tr(S) and pg(N) = max|S |=N pg(S) (where N

is a positive integer). So another way of formulating our problem is as follows. Find a

small constant b (ideally, find the smallest) such that pg(N) = O∗(bN). (In the notation

O∗(·), Θ∗(·), and Ω∗(·), we neglect polynomial factors. By the results mentioned above, we

know that pg(N) can be bounded from above by such an expression.)

Note that every plane graph is contained in at least one triangulation. Also, by Euler’s

formula, every triangulation has fewer than 3|S | edges, and thus, every triangulation

contains fewer than 23|S | = 8|S | plane graphs. Hence pg(S) < 8|S | · tr(S), which implies

pg(N) < 8N · tr(N). In the past three decades, there has been steady progress in improving

the upper bound for tr(N) (see, e.g., [8, 22, 24]), and currently the best known bound is

tr(N) < 30N [23]. Combining this bound with the above inequality implies pg(N) < 240N .

Currently, the best known lower bound is pg(N) = Ω(41.18N) [3].

The inequality pg(N) < 8N · tr(N) seems rather weak, since it potentially counts some

plane graphs many times (once for every triangulation containing the graph). Razen,

Snoeyink and Welzl [19] were the first to address this inefficiency, deriving the slightly im-

proved inequality pg(N) = O(7.9792N) · tr(N). A more significant improvement of pg(N) <

6.9283N · tr(N) was recently obtained by Hoffmann, Schulz, Sharir, Sheffer, Tóth and Welzl

[14]. This implies the bound pg(N) < 207.85N .

As far as we know, our cross-graph charging-scheme method is currently the only

method that does not rely on the ratio between pg(N) and tr(N) and yields a bound with

a reasonably small base. More precisely, an initial, more direct application of this method

implies only a bound of 3207.42N . On the other hand, by combining this method with
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the current bound on the number of triangulations (indirectly, by using an upper bound

on the maximum number of plane graphs with at least cN edges, which is derived in [14]

and relies on tr(N)), we obtain pg(N) = O∗(187.53N).

Our method relies on charging schemes between objects from different plane graphs

over the same point set (hence the name cross-graph charging schemes). Given a set S of N

points in the plane, we consider the set S × P(S) and call each of its elements a ving (vertex

in graph, similar to the definition of a vint – vertex in triangulation – from [23, 25, 24]).

Intuitively, a ving is an instance of a vertex (a point of S) in a specific plane graph. Our

charging schemes are between vings from different graphs (sharing a common vertex).

Given a set S of N points in the plane, we let pg>
c (S) (resp. pg�

c (S)) denote the number

of plane graphs with more than cN edges (resp. at most cN edges) that can be embedded

in S , for some parameter 0 < c < 3 (by Euler’s formula, c = 3 is the largest meaningful

parameter). To obtain our improved bound for pg(N), we rely on the following theorem,

established by Hoffmann, Schulz, Sharir, Sheffer, Tóth and Welzl [14].

Theorem 1.1. For any set S of N points in the plane and 19/12 � c � 3,

pg>
c (S) = O∗

((
55/2

8
(
c + t − 1

2

)c+t− 1
2 (3 − c − t)3−c−t(2t)t

(
1
2

− t
) 1

2 −t

)N

tr(S)

)
,

where t = 1
2

(√
(7/2)2 + 3c + c2 − 5/2 − c

)
.

A k-quasi-plane graph is a straight-edge graph over a set of points in the plane that

may contain crossings, but does not contain any set of k pairwise crossing edges (some

other works, such as [2], refer to such graphs as k-quasi-planar geometric graphs). Note

that a 2-quasi-plane graph is simply a plane graph.

For a set S of points in the plane, we denote by Qk(S) the set of all k-quasi-plane graphs

on S , and put qpk(S) = |Qk(S)|. Moreover, we let qpk(N) = max|S |=N qpk(S). As far as we

know, there are no previously known singly exponential upper bounds on qpk(N), for any

k � 3. We show that an appropriate extension of our technique easily implies the bounds

qp3(N) � 226N and qp4(N) � 2144N . These bounds might be very far from tight, but our

purpose here is to show that the number of 3-quasi-plane graphs, say, that can be embed-

ded in a specific point set is only exponential in the number of points. As a side remark,

we note that the first bound, on qp3(N), is significantly smaller than the first exponential

bound (1013N) that was obtained for the number of plane graphs [4]. A main conjecture

about k-quasi-planar graphs is that the number of their edges is linear in the number of ver-

tices, for any fixed k (see, e.g., [1, 2, 16]). If this conjecture turns out to be true, our methods

would imply that qpk(N) is (only) exponential in N for any fixed k. In fact, our exponential

bounds for qp3(N) and qp4(N) derive from the fact that the number of edges of 3-quasi-

plane and 4-quasi-plane graphs is known to be linear in the number of vertices [1, 2].

2. An upper bound for the number of plane graphs

In this section we derive upper bounds on the number of plane graphs. In Section 2.1, we

derive the initial bound pg(N) � 4096N . In Section 2.2, we exploit some geometric aspects
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of the problem, to improve the bound to pg(N) � 3207.42N . Even though this is far worse

than the recent bound pg(N) < 207.85N [14], it constitutes significant progress in deriving

bounds that do not depend on tr(N). In Section 2.3, we extend our technique to obtain

the bound pg(N) = O∗(187.53N), which is currently the best known upper bound for this

quantity. This extension is a combination of our technique with some recently obtained

bounds on the number of certain types of plane graphs [14]. These latter bounds do

depend on the number of triangulations, but the way we exploit these bounds makes our

new bound O∗(187.53N) depend non-linearly on tr(N); see below for details. In Section 2.4,

we use the technique to bound from above the numbers of some other types of plane

graphs, such as connected and bi-connected plane graphs. These bounds are only slightly

better than our bound for the number of plane graphs, but it is the first time where these

subfamilies admit better upper bounds than for the overall number of plane graphs. We

also derive various degree-related bounds for vertices in a random plane graph over a

fixed set of points, using the same technique.

2.1. The infrastructure and an initial bound

Given two vertices, p and q, of a plane graph G, we say that p sees q in G if the (straight)

edge pq does not cross any edge of G (and pq is not present in G). The degree of a ving

(p, G) is the degree (number of neighbours) of p in G; a ving of degree i is called an

i-ving. We say that a ving v = (p, G) is an x-ving if we cannot increase the degree of p by

inserting additional (straight) edges to G (that is, p cannot see any vertex in G). We say

that a ving u = (p, G′) corresponds to the x-ving v = (p, G) if G is obtained by inserting

into G′ all the edges that connect p to the points that it sees in G′ (by definition, p is not

connected to these vertices in G′). Note that every ving corresponds to a unique x-ving.

Given a plane graph G ∈ P(S), we denote by ni(G) the number of i-vings in G, for i � 0,

and by nx(G) the number of x-vings in G. Finally, the expected value of nx(G), for a graph

chosen uniformly at random from P(S), is denoted as n̂x(S). More formally,

n̂x = n̂x(S) = E{nx(G)} =

∑
G∈P(S ) nx(G)

pg(S)
.

A similar notation, n̂i(S), applies to the expected value of ni(G).

The following lemma, inspired by similar lemmas in [23, 25, 24], presents a connection

between n̂x and upper bounds for pg(N).

Lemma 2.1. For N � 2, let δN > 0 be a real number, such that n̂x(S) � δNN holds for

every set S of N points in the plane in general position. Then

pg(N) � 1

δN
pg(N − 1).

Proof. Let S be a set that maximizes pg(S) among all sets of N points in the plane. Note

that we can get some plane graphs of S by choosing a point q ∈ S and a plane graph G

of S \ {q}, inserting q into G, and then connecting q to all of the vertices that it can see

in G. In fact, a plane graph G of S can be obtained in exactly nx(G) ways in this manner

(in particular, if nx(G) = 0, G cannot be obtained at all in this fashion). This is easily seen
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to imply that

n̂x · pg(S) =
∑

G∈P(S )nx(G) =
∑

q∈Spg(S \ {q}).

The leftmost expression equals n̂x · pg(N); the rightmost expression is at most

N · pg(N − 1). Hence, with n̂x � δN N, we have

pg(N) = pg(S) � N

n̂x
· pg(N − 1) � 1

δN
· pg(N − 1).

We thus seek a lower bound for n̂x, of the kind assumed in Lemma 2.1. Given such

a lower bound, an inductive argument would immediately yield an upper bound for

pg(N). For this purpose, we use a charging scheme similar in spirit to the one presented

in [23, 25, 24]. The following lemma establishes such a bound, which is rather weak.

Nevertheless, it has the advantage of being a ‘stand-alone’ bound, independent of (bounds

on) the number of triangulations on S . In the following subsections, we will derive a

considerably improved bound, which does depend on (the best known bound on) the

number of triangulations of S (albeit in a nonlinear manner).

Lemma 2.2. For every set S of N points in the plane in general position, n̂x(S) � N/4096.

Proof. We use a charging scheme where every i-ving v = (p, G) is given 7 − i units of

charge. The sum of the charges of the vings in any fixed plane graph G ∈ P(S) is∑
i

(7 − i)ni(G) = 7
∑
i

ni(G) −
∑
i

ini(G) = 7N −
∑
i

ini(G).

Since G can have at most 3N − 6 edges, we have∑
i

ini(G) � 6N − 12.

This implies that the total charge in any fixed graph is at least

7N −
∑
i

ini(G) � N + 12.

Therefore, on average, every ving has a charge larger than 1.

Next, every i-ving moves its entire charge to its corresponding x-ving. (In general, the

x-ving lies in a different graph from the one containing the i-ving.) This results in all of

the charge being placed only on x-vings. If we can show that every x-ving gets charged

at most t units in this manner, we will get the lower bound n̂x � N/t.

To bound the charge that an x-ving v = (p, G) can get, we need to consider the degree

d of v. Note that the number of i-vings that charge v is exactly
(
d
i

)
(that is, the number of

ways to remove d − i edges that are adjacent to p in G). Therefore, the total charge to v is

∑
0�i�d

(
d

i

)
(7 − i) = 7

∑
0�i�d

(
d

i

)
−

∑
0�i�d

(
d

i

)
i = 7 · 2d − d · 2d−1 = 2d−1(14 − d).

This expression is maximized when d is either 12 or 13, and is then 4096. Thus, on average,

a plane graph of S has more than N/4096 x-vings.
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v

(a)

ppp

(b)

Figure 1. (a) The ving involving v is an x2-ving. (b) An x6-ving v = (p, G) and an x3-ving it reduces to.

The enclosing polygon Pv (whose new edges are drawn dashed), and a triangulation of Pv , with the triangle

containing p highlighted; only the solid edges belong to the new graph G′. A corresponding x4-ving to which

we can reduce v is also depicted.

Combining Lemmas 2.1 and 2.2 and using an obvious induction on N (starting with

pg(1) = 1), we obtain the following result.

Theorem 2.3. pg(N) � 4096N .

Remark. The above analysis remains valid if we charge 0-vings instead of x-vings. That

is, each i-ving (p, G) passes its charge to the 0-ving (p, G′) obtained by removing all the

edges incident to p in G. This is also the case for several of the other proofs in this paper,

but not for all of them (several proofs in Section 2.4 do not seem to be amenable to this

modification).

2.2. First improvement

Interestingly, the bound in Section 2.1 hardly relies on the geometric properties of the

problem. Specifically, it only uses Euler’s formula for plane graphs,2 and the trivial

property, already noted, that in a plane graph, connecting a ving to any subset of the

vertices that it sees results in a (larger) plane graph. In this subsection we obtain an

improved bound by observing and exploiting some additional geometric properties of

x-vings.

We say that an x-ving v = (p, G) is an xi-ving if v is also an i-ving. In the charging

scheme described in the proof of Lemma 2.2, only x12-vings and x13-vings are charged

4096; the next highest charge (for x11-vings) is 3072. At the other end, an x3-ving is

charged only 44, and an x2-ving is charged only 24. Note that an x-ving (p, G) can be an

x2-ving only if p is part of the boundary of the convex hull of S and the two neighbours

of p along this boundary are connected in G (see, e.g., Figure 1(a)). Note also that x1-vings

and x0-vings do not exist (assuming N > 2).

Lemma 2.4. For every set S of N points in the plane in general position, n̂x(S) � N/3207.42.

2 In fact, it only uses the fact that the number of edges in a plane graph is at most three times the number of

vertices.

https://doi.org/10.1017/S096354831300031X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831300031X


942 M. Sharir and A. Sheffer

Proof. We start by applying the same charging scheme as in the proof of Lemma 2.2,

but then perform another step of moving charges across x-vings. Before describing this

further, we first deal with the simple case of xi-vings v = (p, G), where p is a vertex of the

convex hull of S and i � 3. We remove from G all the edges that are incident to p and

are not part of the convex hull. We then insert the edge connecting the two neighbours

of p on the convex hull of S , to obtain a new graph G′, where v′ = (p, G′) is an x2-ving.

We say that v is reduced to v′. We let every x12-ving and x13-ving of the present type

charge 2036 to the x2-ving it reduces to. Since every x2-ving gets charged by at most

one x12-ving or x13-ving, every such x2-ving, x12-ving, and x13-ving is charged at most

2060 = 4096 − 2036 = 24 + 2036.

Consider an xi-ving v = (p, G), where p is not a vertex of the convex hull of S and i > 3,

and let Sv be the set of i vertices that are connected to p in G. Let Pv be the star-shaped

polygon (with p in its centre) that is obtained by removing from G all the edges that

are incident to p, ordering the vertices of Sv in their angular (cyclic) order around p,

and connecting every pair of consecutive vertices by an edge (some of these connecting

edges may already exist in G, and adding the others cannot create a crossing, because

v is an x-ving). Triangulate Pv arbitrarily and let Δ denote the triangle that contains p.

We remove from G all the edges incident to p, add the edges of Δ, connect p to the

three vertices of Δ to obtain a new graph G′, and notice that v′ = (p, G′) is an x3-ving

(once again, some of the edges of Δ, but not all of them, may already exist in G). Note

that we did not add the missing edges of Pv to G′. We say that v is reduced to v′. An

example of such a reduction is depicted in Figure 1(b).

Given an x3-ving v = (p, G), we now consider how many x12-vings and x13-vings can

be reduced to it. Let Δ denote the triangle spanned by the three vertices u, v, w that p is

connected to. (By construction, only x3-vings where all the edges of Δ belong to G should

be considered.) Denote by a, b, c the number of additional vertices that p would be able

to see after the removal of each of the three respective edges (say, uu′, u′u′′, u′′u) of Δ in

G. For example, if we remove the edge uu′ of Δ then p would see a vertices, if we remove

all three edges of Δ then p would be able to see a + b + c vertices, and so on. After such

an edge removal, we can connect p to all of the new vertices that it sees, and obtain an

x-ving that reduces to v. (Every x-ving that reduces to v is obtained in this manner.) Note

also that the three edges pu, pu′, pu′′ are part of G, so, when looking for an x12-ving or an

x13-ving that charges v, we need to add these three edges to the degree of v. For every

set of values of a, b, c, out of the seven possible edge removal combinations, at most four

could yield an x12-ving or an x13-ving. That is, out of the seven numbers 3 + a, 3 + b,

3 + c, 3 + a + b, 3 + a + c, 3 + b + c, 3 + a + b + c, at most four can be equal to 12 or 13.

For example, four combinations are obtained when a = 9, b = 1, and c = 0. This can be

verified by a simple case analysis, depending on how many of a, b, c are equal to 9 or 10

(so that the corresponding quantity 3 + a, 3 + b, or 3 + c is 12 or 13). Thus, at most four

x12-vings and x13-vings can reduce to any specific x3-ving. From every x12-ving and every

x13-ving, we move a charge of 810.4 to some x3-ving that it reduces to. Now, every x-ving

is charged at most 3285.6 = 44 + 4 · 810.4 = 4096 − 810.4 (xi-vings are charged at most 0

when i > 13, at most 3072 when 3 < i < 12, and 24 when i = 2). This already gives us the

bound n̂x(S) � N/3285.6.
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We can further improve this bound by also considering x4-vings. Consider an xi-ving

w = (p, G) where i = 12 or 13 (and p is not a vertex of the convex hull), the triangulated

polygon Pw , and the respective x3-ving u = (p,H) that lies inside a triangle Δ of Pw .

Consider some triangle Δ′ that is adjacent to Δ in Pw (there always exists at least one

such triangle since i > 3). Insert the edges of Δ′ into H (those that do not already lie in

H), remove the edge that is incident to both triangles, and connect p to the fourth vertex

of the resulting quadrilateral (recall that Pw is star-shaped with p in its centre), to obtain

a new graph H ′. Note that the x-ving u′ = (p,H ′) is connected to four vertices in H ′, and

is thus charged 80 (by the scheme in the proof of Lemma 2.2); an example is depicted in

Figure 1(b).

Consider how many x3-vings may lead to an x4-ving u′ = (p,H ′) in the manner just

described. Given u′, there are at most two ways to choose a diagonal d of the quadrilateral

containing p in H ′. Inserting d into H ′ (and removing the edge that crosses d) divides this

quadrilateral into two triangles. Let Δ′ be the triangle that does not contain p, and let

e and e′ be the two edges of Δ′ that are contained in H ′ (i.e., different from d). Both e

and e′ may or may not belong to the graph of the x3-ving, and combining this with the

choice of d implies that there are at most eight x3-vings that lead to u in the manner just

described. Each of these eight x3-vings is charged by at most four x12- and/or x13-vings,

as described earlier. We move a charge of 78.18 from each of these at most forty x-vings

(eight x3-vings and 32 x12- and/or x13-vings) to u′. Then, no x-ving is charged more than

3285.6 − 78.18 = 3207.42 > 80 + 40 · 78.18.

Remark. One could obtain a better bound by also considering x5-vings, x6-vings, etc.

Since this seems to imply only a slight improvement and requires a somewhat tedious

analysis, we do not go into further details in this paper, especially since we are after a

much more drastic improvement, given in the next subsection. The technique of moving

charge to x3-vings and x4-vings will be used in the following section to gain an additional

improvement in the bound derived there.

By combining Lemmas 2.1 and 2.4, we obtain our second upper bound.

Theorem 2.5. pg(N) � 3207.42N.

2.3. Second improvement

Let n̂x,m(S) denote the expected (i.e., average) value of nx(G) over all plane graphs G ∈ P(S)

with at most m edges. We begin by stating variants of Lemmas 2.1 and 2.2 for pg�
c (S).

Lemma 2.6. Let S be a set of N points in the plane and let 0 < c < 3 be a parameter, such

that n̂x,cN(S) � δN for some constant δ > 0. Then

pg�
c (S) � 1

δ
· pg(N − 1).
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Proof. By applying the same proof as in Lemma 2.1, we obtain the relation

pg�
c (S) � (1/δ) · pg�

cN/(N−1)(N − 1).

The lemma follows by noting that

pg�
cN/(N−1)(N − 1) � pg(N − 1).

The reason for replacing c by cN/(N − 1) is that the graphs obtained by removing x-vings

have only N − 1 vertices (and fewer than cN edges).

We let c = 1.968549; see remark (2) on page 946, which explains this choice.3 Substi-

tuting this value of c into Theorem 1.1, and using tr(N) < 30N from [23], we get

pg>
c (N) = O∗(187.53N).

Lemma 2.7. Let c = 1.968549. For every point set S of N points in the plane in general

position, pg(S) = O∗(187.53N) or n̂x,cN(S) > N/187.53 (or both).

Proof. We first assume that N is at least some sufficiently large constant N0, whose

choice is dictated by the forthcoming analysis. For N < N0 the first bound in the lemma

holds trivially, for an appropriate choice of the constant of proportionality.

We use a charging scheme in which an i-ving v = (p, G) is given a + 2m/N − i units of

charge, where c = 1.968549 as above, a = (9 − 4c)/2, and m is the number of edges in G.

The sum of the charges of the vings in any fixed plane graph G ∈ P(S) with m edges is∑
i

(a + 2m/N − i)ni = (a + 2m/N)
∑
i

ni −
∑
i

ini = aN + 2m −
∑
i

ini.

Since G has m edges, we have
∑

i ini = 2m. This implies that the charge in any fixed graph

of this kind is aN, and that, on average, every ving has a charge of a. Moreover, the total

charge over all of the vings is

C = aN · pg(S) = aN ·
(
pg>

c (S) + pg�
c (S)

)
. (2.1)

Next, we move the charge to x-vings in exactly the same manner as in Lemma 2.2. That

is, every ving moves its entire charge to its corresponding x-ving. Consider an xd-ving

v = (p, G). The number of i-vings that charge v is exactly
(
d
i

)
. Each of these i-vings holds

a charge of a + 2(m − d + i)/N − i (because it belongs to a graph with m − d + i edges).

Therefore, the total charge made to v is

∑
0�i�d

(
d

i

)(
a +

2(m − d + i)

N
− i

)
<

(
a +

2m

N

)
·

∑
0�i�d

(
d

i

)
−

∑
0�i�d

(
d

i

)
i

=

(
a +

2m

N

)
· 2d − d · 2d−1 = 2d−1

(
2a +

4m

N
− d

)
.

3 With some effort, one could write a generic version of Lemma 2.7 in which the value of c is not fixed.

Unfortunately, this is not so simple, because the analysis does not depend on c in a fully continuous manner

(this will become clearer from the proof of the lemma).
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Since m � 3N − 6, this expression is maximized when m = 3N − 6, and is then smaller

than 2d−1(2a + 12 − d). Regarding d as a real variable, this expression is maximized when

d = 2a + 12 − 1
ln 2

, so its value (for a = (9 − 4c)/2 = 0.562902) is at most

ν =
1

ln 2
22a+11− 1

ln 2 < 2372.

To further reduce this bound, we only consider in what follows the case where m � cN,

because the number of graphs with m > cN is at most pg>
c (N) = O∗(187.53N). For m � cN

the expression is smaller than 2d−1(9 − d), which is maximized when d is either 7 or 8,

and is then 128.

This will already result in a significant improvement of the overall bound, but we

want to squeeze it further. To this end, we again move the charge, this time in the

manner described in Section 2.2. Before moving charges, x7-vings and/or x8-vings are

charged fewer than 128 units, x6-vings are charged fewer than 96, x5-vings are charged

fewer than 64, x4-vings fewer than 40, x3-vings fewer than 24, and x2-vings are charged

fewer than 14. It is easily checked that, as before, at most four x7-vings and x8-vings

can reduce to a single x3-ving. After moving a charge of 20.8 from each x7- and x8-

ving to the x3-ving that it reduces to, all of these x-vings have a charge smaller than

107.2 = 128 − 20.8 = 24 + 4 · 20.8. Continuing as in Section 2.2, we now move to every

x4-ving a charge of 1.639 from at most forty x-vings (specifically, from x7-vings, x8-vings,

and x3-vings that took part in the previous exchange). After this step, every x-ving has

a charge smaller than 105.561 = 107.2 − 1.639 > 40 + 40 · 1.639 (as noted, every xi-ving,

for i 	= 3, 4, 7, 8, is charged at most 96, and this does not change in the last two exchange

stages). Denoting by μ < 105.561 the maximum modified charge of any x-ving, we have

C � μ
∑

|E(G)|�cN

nx(G) + ν
∑

|E(G)|�cN

nx(G) � μ
∑

|E(G)|�cN

nx(G) + ν · N · pg>
c (S). (2.2)

By combining (2.1) and (2.2), we get

aN · (pg>
c (S) + pg�

c (S)) � μ
∑

|E(G)|�cN

nx(G) + ν · N · pg>
c (S).

Isolating the term μ
∑

|E(G)|�cN nx(G) and dividing by pg�
c (S) yields

μ · n̂x,cN(S) =
μ

∑
|E(G)|�cN nx(G)

pg�
c (S)

� aN − pg>
c (S)

pg�
c (S)

N · (ν − a). (2.3)

Consider some sufficiently fast increasing polynomial φ(N) (say, φ(N) = N10). If pg�
c (S) �

φ(N) · pg>
c (S), then by Theorem 1.1 we have

pg(S) = pg�
c (S) + pg>

c (S) = O∗(pg>
c (S)) = O∗(187.53N),

and the lemma follows. On the other hand, if pg�
c (S) > φ(N) · pg>

c (S) then the absolute

value of the rightmost term in (2.3) can be bounded from above by ε = (ν − a)/N9, and

(2.3) then implies, for N � N0,
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n̂x,cN(S) � aN − ε

μ
�

aN − ν−a
N9

0

μ
>

(9 − 4c)N − ν−a
N9

0

211.122
> N/187.53,

where the last inequality holds when N0 is sufficiently large.

By combining Lemmas 2.6 and 2.7, we get the following improved bound.

Theorem 2.8. pg(N) = O∗(187.53N).

Proof. Let S be a set of N points in the plane that maximizes pg(S) (that is, pg(S) =

pg(N)). As mentioned above, pg>
c (S) � pg>

c (N) = O∗(187.53N). Hence,

pg(N) = pg(S) = pg�
c (S) + pg>

c (S) � pg�
c (S) + O∗(187.53N). (2.4)

By Lemma 2.7 we have either pg�
c (S) = O∗(187.53N) or n̂x,cN(S) > N/187.53. The former

case immediately implies the asserted bound, and in the latter case we have, by Lemma 2.6,

pg(N) � 187.53 · pg(N − 1) + O∗(187.53N).

Since this inequality holds in both cases, the asserted bound follows by induction on N.

Remark. (1) The bound in Theorem 2.8 can be slightly improved by passing some of

the charge to x5-vings and x6-vings.

(2) Here is an explanation for our choice of c. It seems to yield the best bound on pg(N),

although we have no formal proof of this. Informally, we aim at a situation where the

choice of c and a has the property that there exists k such that xk-vings and xk+1-vings

have the same bound on their maximum charge. We then pass some of the charge to

x3-vings and later to x4-vings, so that the new charges of x3-vings, x4-vings, xk-vings, and

xk+1-vings are all bounded by the same quantity, which is still larger than the bounds

on the charges of all the other xi-vings, charges that have not been touched by this

charge-moving process.

The k that we have chosen is k = 7. The bound on the original charge of x7-vings is

26(2a + 4c − 7), and that of x8-vings is 27(2a + 4c − 8). To make them equal, we have to

choose 2a + 4c = 9, as we did. We now proceed as described above, moving 20.8 units of

charge in the first step, from every x7-ving and every x8-ving to the x3-vings they reduce

to, and then moving 1.639 units to x4-vings from x3-vings, x7-vings, and x8-vings. Note

that these numbers do not depend on the choice of c and a, only on the property that

2a + 4c = 9. We thus get the maximum modified charge μ < 105.561, and, as the analysis

shows, the base of the exponential bound is the maximum of μ/a = 2μ/(9 − 4c) and τβ(c),

where β(c) is the base of the exponential bound given in Theorem 1.1, and τ = 30 is the

base in the best known bound on the number of triangulations.

In other words, we need to find c that balances between 2μ/(9 − 4c) and τβ(c), which

we have done using Mathematica,4 which has produced the optimal value c ≈ 1.968549.

4 Version 7.0.1, Wolfram Research, Inc.
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(Here ‘optimal’ refers to the specific set-up that we follow. We remind the reader that we

do not know whether our c really yields the best possible bound.)

We note that, as opposed to previous bounds for pg(N), the dependence of the new

bound on tr(N) is non-linear (since the solution of the equation 2μ/(9 − 4c) = τβ(c)

depends non-linearly on τ).

2.4. Additional types of plane graphs and degree-related bounds

In this subsection we present various additional bounds that can be obtained by using the

above technique. Specifically, we extend the technique to some other types of plane graphs,

and derive degree-related properties of random plane graphs (embedded in a fixed set S).

Given a set S of N points in the plane, we let pg(S, i) denote the number of plane

graphs that can be embedded in S and that contain no vertex of degree smaller

than i. We let pg>
c (S, i) (resp. pg�

c (S, i)) denote the number of plane graphs with

more than cN edges (resp. at most cN edges) and with no vertex of degree smaller

than i, that can be embedded in S . We also set pg�
c (N, i) = max|S |=N pg�

c (S, i) and

pg>
c (N, i) = max|S |=N pg>

c (S, i). Additionally, let n̂x,m(S, i) denote the expected number of

x-vings in a graph uniformly chosen from the set of graphs that are in P(S), have at most

m edges, and contain no vertex of degree smaller than i.

Lemma 2.9. Let N be a fixed integer, and let S be a set of N points in the plane such that

n̂x,cN(S, i) � δN for an integer i � 0 and some parameters 0 < c < 3 and δ > 0. Then

pg�
c (S, i) � 1

δ
· pg(N − 1).

Proof. Denote by Pm(S, i) the set of plane graphs with at most m edges and with no

vertex of degree smaller than i, that can be embedded in S . The proof goes along the

same lines as the proofs of Lemmas 2.1 and 2.6, starting with the inequality∑
G∈PcN (S,i)

nx(G) �
∑
q∈S

pg(S \ {q}).

Here we may have a strict inequality because in certain cases, inserting a point q into

some graph in P(S \ {q}) and connecting q to all the points that it sees, might produce

an xk-ving with k < i. Fortunately, this does not affect the conclusion of the lemma.

We let c1 = 1.978993 and c2 = 2.035802. Substituting these specific values of c into

Theorem 1.1, and using the bound tr(N) < 30N of [23], we get pg>
c1

(N, 1) = O∗(186.46N)

and pg>
c2

(N, 2) = O∗(180.20N).

Lemma 2.10. For every point set S of N points in the plane, we have:

(i) pg(S, 1) = O∗(186.46N) or n̂x,cN(S, 1) > N/186.46 (or both),

(ii) pg(S, 2) = O∗(180.20N) or n̂x,cN(S, 2) > N/180.20 (or both).

Proof. (i) The proof of part (i) goes along the same lines as the proof of Lemma 2.7. That

is, we use a charging scheme in which an i-ving v = (p, G) is charged a + 2m/N − i, where
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a = (9 − 4c1)/2 and m is the number of edges in G. As before, on average, every ving is

charged at least a. Each ving then moves its entire charge to its corresponding x-ving.

Since there are no 0-vings in this case, an x-ving is charged at most 2k−1(2a + 4m/N −
k) − (a + 2m/N) (the first term is the charge of an x-ving according to the analysis of

Lemma 2.7, and the second term is the missing charge of the corresponding single 0-ving).

When m/N = c1, the maximum charge is obtained when k is either 7 or 8, and is then

123.5; this also bounds the maximum change when m/N � c1.

Next, we move charge from x7-vings and x8-vings to x3-vings and x4-vings, in two steps,

as in the proof of Lemma 2.7. In the first step we move 20.8 units of charge from every

x7-ving and x8-ving to the x3-ving it reduces to, and in the second step we move 1.639 units

from every x7-ving, x8-ving, and the x3-vings they reduce to, to the corresponding x4-ving,

just as in the preceding analysis. Initially, an x3-ving gets a charge of 19.5, and after at

most four x7-vings and x8-vings charge it additional 20.8 units in the first step, every

x-ving has a charge of at most 102.7 = 123.5 − 20.8 = 19.5 + 4 · 20.8. An x4-ving starts

with a charge of 35.5, and after at most forty x-vings charge it additional 1.639 units, every

x-ving has a charge of at most 101.061 = 102.7 − 1.639 > 35.5 + 40 · 1.639. Repeating the

remaining part of the original analysis, we obtain that either pg(S, 1) = O∗(186.46N) or

n̂x,cN(S, 1) >
aN

101.061
=

(9 − 4c)N

202.122
> N/186.46.

(ii) The case where there are neither isolated vertices nor vertices of degree 1 is proved

in the same manner. Since there are no 0-vings and no 1-vings in this case, an x-ving is

charged at most

2k−1(2a + 4m/N − k) − (a + 2m/N) − k(a + 2m/N − 1)

(we subtract the contributions of one 0-ving and k 1-vings). We set a = 0.455955, which,

unlike the previous cases, does not satisfy a = (9 − 4c2)/2. Nevertheless, the maximum

charge is still obtained when k is either 7 or 8, and is then 102.307. As before, we then

move part of the charge to x3-vings and x4-vings, in two steps, where the charge moved in

the first step is 18.639 and the charge moved in the second step is 1.508. An x3-ving gets

an initial charge smaller than 9.111, and then at most four x7-vings and x8-vings charge it

an additional 18.639, so every x-ving has a charge of at most 83.668 = 102.307 − 18.639 >

9.111 + 4 · 18.639. An x4-ving gets an initial charge smaller than 21.804, and after at most

forty x-vings charge it an additional 1.508 in the second step, every x-ving has a charge

of at most 82.16 = 83.668 − 1.508 > 21.804 + 40 · 1.508. Repeating the remaining part of

the original analysis, we obtain that either pg(S, 2) = O∗(180.20N) or

n̂x,cN(S, 2) =
aN

82.16
> N/180.20.

By combining Lemma 2.9 and Lemma 2.10, we obtain the following bounds (the proof

is essentially identical to the proof of Theorem 2.8).

Theorem 2.11. pg(N, 1) = O∗(186.46N) and pg(N, 2) = O∗(180.20N).
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Remark. The above method can also be used to bound pg(N, i) for i = 3, 4, 5. For i � 6

we have pg(N, i) = 0, since every plane graph contains at least one vertex of degree smaller

than six.

Since no connected graph has any isolated vertices, we obtain the following corollary.

Corollary 2.12. For every point set S of N points in the plane, the number of connected

plane graphs that can be embedded in S is O∗(186.46N).

Although this is only a slight improvement over our bound of O∗(187.53N) on the total

number of plane graphs, this is nevertheless, as far as we know, the first time that a bound

on the number of connected plane graphs is asymptotically smaller than the bound on the

total number of plane graphs. In a similar manner, since every edge bi-connected graph

has no vertices of degree 0 or 1, we obtain the following further improved bound.

Corollary 2.13. For every point set S of N points in the plane, the number of edge bi-

connected plane graphs that can be embedded in S is O∗(180.20N).

The above method of cross-graph charging can also be used to obtain other properties

of random plane graphs (embedded in a fixed set of points). For example, the following

observation, which is a variant of Lemma 2.2, uses our method to bound from below the

expected number of 0-vings, of 1-vings, and of 2-vings in a graph uniformly chosen from

P(S). As already introduced in Section 2.1, we let the expected value of ni(G), for a graph

G chosen uniformly at random from P(S), be denoted as n̂i(S)

Lemma 2.14. For every set S of N points in the plane in general position,

n̂0(S) >
N

4096
, n̂1(S) >

3N

1024
, and n̂2(S) >

33N

2048
.

Proof. First, we notice the following bijection between x-vings and 0-vings. An x-ving

v = (p, G) can be uniquely mapped to a 0-ving by removing from G all the edges that are

incident to p. Similarly, a 0-ving can be uniquely mapped to an x-ving by connecting it

to all the vertices that it can see. This implies that, for every point set S , n̂0(S) = n̂x(S),

and thus the first part of the lemma is immediately implied by Lemma 2.4.

We next establish the second bound in the lemma. We apply the same charging scheme

as in Lemma 2.2, and then move the charge from x-vings to 1-vings in the following

manner. Consider an xd-ving v = (p, G), and notice that exactly d 1-vings correspond to

v. We split the charge of v evenly among these d 1-vings. In the proof of Lemma 2.2, it

was shown that every xd-ving gets charged by exactly 2d−1(14 − d) units. Therefore, each

1-ving that corresponds to v is charged 2d−1(14 − d)/d, and no 1-ving can be charged

more than once in this manner. This expression is maximized at d = 12, and its value is

then 1024/3. Thus, we can move the entire charge to 1-vings in a manner that guarantees

that no 1-ving gets charged more than 1024/3. Since, as shown in Lemma 2.2, on average
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every ving is initially charged more than 1, we get that

n̂1(S) >
3N

1024
,

as asserted.

The bound for n̂2(S) is obtained in exactly the same manner, except that in this case

there are d(d − 1)/2 2-vings that correspond to v, so the charge that each of them obtains

is 2d(14 − d)/(d(d − 1)). The maximum value of 2048/33 is attained at d = 12, implying

the third claim of the lemma.

The proof of the lemma is based on the easy fact that every x-ving has degree i � 2.

The proof does not extend to i � 3, since there might be x-vings with no corresponding

i-vings, that is, of degree 2, as depicted in Figure 1(a). Therefore, using the above charging

scheme will not necessarily move the entire charge of the x-vings to the i-vings. When i is

relatively small, we can partly overcome the above difficulty in the following manner.

Lemma 2.15. For every set S of N points in the plane in general position, n̂2(S) + n̂3(S) �
N/24.

Proof. As in the proof of Lemma 2.14, we move the entire charge to x-vings and then,

for each x-ving v, we evenly split the charge of v between the 3-vings that correspond to

it (if there are any).

Let us first consider an xd-ving v = (p, G), such that d � 3. In this case, there are(
d

3

)
=

d(d − 1)(d − 2)

6

3-vings that correspond to v, and thus, each of these 3-vings obtains a charge of

3 · 2d(14 − d)

d(d − 1)(d − 2)
.

This expression is maximized when d is either 11 or 12, implying that such a 3-ving is

charged at most 1024/55 < 18.62.

As already noted, an x-ving cannot have degree smaller than two. Therefore, we are

left only with the case where d = 2. In this case, v gets a charge of 24, and we let it keep

that charge. Combining this with the case where k � 3, we notice that the entire charge

was moved to 2-vings and 3-vings, such that no ving gets charged more than 24, which

implies the claim.

Various other lower bounds can be obtained in a similar manner. The above bounds

can be slightly improved by using the method presented in Section 2.2.

3. Quasi-plane graphs

In this section we extend our techniques to obtain singly exponential bounds for the

number k-quasi-plane graphs, for k = 3, 4.
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The number of 3-quasi-plane graphs. We use the notation given in the introduction. A

3-quasi-plane graph does not contain three pairwise crossing edges. Ackerman and Tardos

[2] proved that such graphs have at most 6.5N − 20 edges, and that this is tight up to

some additive constant. Using this result, we can apply our method in a straightforward

manner. As before, we denote by Qk(S) the set of all k-quasi-plane graphs embedded (with

straight edges) in a fixed labelled set S of N points in the plane, and put qpk(S) = |Qk(S)|.
Moreover, we let qpk(N) = max|S |=N qpk(S).

Given a k-quasi-plane graph G ∈ Qk(S), we say that a ving v = (p, G) is an x-ving if we

cannot add to G any additional (straight) edges that are adjacent to p without violating

the k-quasi-planarity property of G. We denote by ni(G) the number of i-vings in G, and

by nx(G) the number of x-vings in G (as in the previous scenarios). The expected value of

nx(G), for a graph chosen uniformly from Qk(S), is denoted as n̂kx(S). More formally,

n̂kx = n̂kx(S) = E{nkx(G)} =

∑
G∈Qk(S ) nx(G)

qpk(S)
.

Lemma 3.1. For N � 2 and k � 2, let δkN > 0 be a real number, such that n̂kx(S) � δkNN

holds for every set S of N points in the plane in general position. Then

qpk(N) � 1
δkN

qpk(N − 1).

Proof. We follow the proof of Lemma 2.1. In doing so, we observe that, when inserting

a new vertex p into a k-quasi-plane graph G, the set of vertices that p can connect to (via

straight edges) without violating k-quasi-planarity, is unique, and the connecting edges

are ‘independent’, in the sense that adding any of them does not affect the eligibility of the

other edges to be added. This is because k-quasi-planarity is only violated by k pairwise

crossing edges, and the newly added edges do not cross one another. The rest of the proof

is identical to the earlier proof.

Next, we use the upper bound on the number of edges in a 3-quasi-plane graph to

obtain a lower bound for δ3
N .

Lemma 3.2. For every set S of N points in the plane, n̂3
x(S) � N/226.

Proof. We use a charging scheme where every i-ving v = (p, G) will be charged 14 − i

units. The sum of the charges of the vings in any fixed 3-quasi-plane graph G ∈ P(S) is∑
i

(14 − i)ni = 14
∑
i

ni −
∑
i

ini = 14N −
∑
i

ini.

Since G can have at most 6.5N − 20 edges, we have∑
i

ini � 13N − 40.
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This implies that the total charge in any fixed graph is at least

14N −
∑
i

ini � N + 40.

Therefore, on average, every ving has a charge larger than 1.

Next, we move all of the charge to x-vings in the same manner as in Lemma 2.2.

As already observed, connecting a new edge to p (while not violating the 3-quasi-plane

property) does not affect the set of additional edges that can be connected to p. Consider

the charge that an xd-ving (a notation analogous to that used for plane graphs) v = (p, G)

can have. By the observation just made, the number of i-vings that charge v is exactly(
d
i

)
, as before. Therefore, v is charged exactly

d∑
i=0

(
d

i

)
(14 − i) = 14

d∑
i=0

(
d

i

)
−

d∑
i=0

(
d

i

)
i = 14 · 2d − d · 2d−1 = 2d−1(28 − d).

This expression is maximized when d is either 26 or 27, and is then 226. Therefore, on

average, a 3-quasi-plane graph on S has more than N/226 x-vings.

By combining Lemmas 3.1 and 3.2, we obtain an upper bound on the number of

3-quasi-plane graphs. As far as we know, this is the first exponential upper bound for

qp3(N).

Theorem 3.3. qp3(N) � 226N.

Quasi-plane graphs with k � 4. Ackerman [1] proved that every 4-quasi-plane graph that

is embedded in a set of N points in the plane has at most 36N − 72 edges, even when

the edges are not necessarily straight. This implies that qp4(S) is also exponential in N,

shown more specifically in the following theorem.

Theorem 3.4. qp4(N) � 2144N .

Proof. Since Lemma 3.1 applies for every k, we only need to replace Lemma 3.2. We can

derive the bound

n̂4
d(S) � N

2144

by using the same analysis as in the proof of Lemma 3.2, except that an i-ving will

be charged 73 − i units. In this case, the analysis implies that an xd-ving is charged

2d−1(146 − d). This expression is maximized for d = 144 and d = 145, and is then 2144.

A well-known conjecture (see, e.g., [1, 2, 16]) is that every k-quasi-plane graph with

N vertices has at most ckN edges, where ck is a constant depending on k (in fact, the

conjecture is also made for the more general case where the edges are not necessarily

straight). Proving the conjecture would immediately imply that qpk(N) is exponential in N

for every fixed k. This consequence is easily obtained by adapting the proof of Theorem 3.4,

and giving each i-ving a charge of 2ck + 1 − i. Valtr [26] proved that any k-quasi-plane
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graph with N vertices has O(N logN) edges. Combining this bound with the cross-graph

charging technique only yields the superexponential bound qpk(N) = (N/ logN)O(N).
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