
Probability in the Engineering and Informational Sciences, 24, 2010, 27–45.
doi:10.1017/S026996480999012X

APPROXIMATE DYNAMIC
PROGRAMMING TECHNIQUES FOR
THE CONTROL OF TIME-VARYING

QUEUING SYSTEMS APPLIED TO CALL
CENTERS WITH ABANDONMENTS

AND RETRIALS

DENNIS ROUBOS AND SANDJAI BHULAI

VU University Amsterdam
Faculty of Sciences

1081 HV Amsterdam,The Netherlands
E-mail: {droubos, sbhulai}@few.vu.nl

In this article we develop techniques for applying Approximate Dynamic
Programming (ADP) to the control of time-varying queuing systems. First, we show
that the classical state space representation in queuing systems leads to approxi-
mations that can be significantly improved by increasing the dimensionality of the
state space by state disaggregation. Second, we deal with time-varying parameters by
adding them to the state space with an ADP parameterization. We demonstrate these
techniques for the optimal admission control in a retrial queue with abandonments
and time-varying parameters. The numerical experiments show that our techniques
have near to optimal performance.

1. INTRODUCTION

Many operational systems in the service and production industry are described by
queuing models that are large and complex. The applicability of such models to derive
(near) optimal control strategies is therefore very limited, since (1) the model is of
high dimension so that standard algorithms (e.g., dynamic programming) are not
computationally tractable and (2) the parameters of the model change over time so
that steady-state solution techniques are inappropriate. Both difficulties prohibit the
use of queuing theory in practice and need to be resolved.

© Cambridge University Press, 2009 0269-9648/10 $25.00 27

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

28 D. Roubos and S. Bhulai

The first difficulty is very much related to the model description. In practice, the
control problem is usually described by a Markov decision model with the fewest
number of variables so that the model remains compact and is of smallest dimension.
Unfortunately, for many problems, the final description is still of very high dimension
and does not elevate the intractability (both analytically and numerically). Therefore,
one needs to take the refuge to approximate techniques that have proven to be success-
fully applied in specific application areas, such as state space aggregation [15,17], state
decomposition/factoring [12], approximation via Linear Programming [3–5], value
function approximation [2,16], neural networks [20], reinforcement learning [18,19],
and Approximate Dynamic Programming (ADP) [1,13].

When a suitable approximation technique has been chosen, one still needs to
deal with the second difficulty of the model (i.e., the time-varying nature of the
parameters). One method of accommodating time-varying parameters is to solve the
Chapman–Kolmogorov forward equations (see [11,21]). This is done by continu-
ously approximating the varying parameters with small, discrete intervals and use the
so-called randomization method (see [6]) to explicitly calculate the change in system
occupancy from one small interval to the next.Another natural means of accommodat-
ing changes in the arrival rate is to reduce the interval over which a stationary measure
is applied. This is the essence of the pointwise stationary approximation (PSA) of [7].
However, the PSA does not explicitly consider nonstationary behavior that might be
induced by abrupt changes in the arrival rate, and it appears to perform less well
in these cases. In [10] the accuracy and computational requirements of a number of
approaches, including the exact calculation of the Chapman–Kolmogorov forward
equations and the method of randomization have been evaluated. The results show
that the method of randomization generally produces results that are close to exact,
however the computation is quite burdensome. The PSA method is quicker but more
approximate. The computational complexity increases and accuracy diminishes when
the approximation methods to control the system are combined with methods to deal
with time-varying parameters, making the problem numerically intractable again.

In this article we develop techniques for applying ADP to the control of time-
varying queuing systems. First, we show that the classical state space representation
in queuing systems leads to an inaccurate approximation. Instead of reducing the state
space by aggregation, increasing the dimensionality of the state space by state dis-
aggregation is preferable. Second, we deal with time-varying parameters by adding
them to the state space with an ADP parameterization. By using a method to track
the time-varying parameters (e.g., stochastic approximation), one can generate con-
trol strategies on-line. We demonstrate these techniques for the optimal admission
control in a retrial queue with abandonments and time-varying parameters. The numer-
ical experiments show that our techniques have near to optimal performance with very
little computational effort.

The sequel of the article is organized as follows. In Section 2 we give a formal
description of the value iteration algorithm in combination with an approximation
structure of the relative value function, and we describe our approach to handle time-
varying systems. By means of an example we show in Section 3 that using a larger

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 29

representation of the system leads to a better approximation of the relative value
function. Section 4 is devoted to an example in which we illustrate our method to
handle time-varying systems and we show that the gain in performance is significant
compared to other ways to obtain policies. Finally, we conclude with Section 5.

2. FORMULATION

In this section we formulate the Markov decision problem (MDP) that will be used
for the control of queuing systems. To this end, let the tuple (X , Ax, p(x, a, y), c(x, a))

define the MDP, where X represents the state space, Ax represents the action space
if the system is in state x ∈ X , p(x, a, y) is the transition probability of going from
state x to state y by choosing action a ∈ Ax, and c(x, a) is the direct cost function
associated with state x and action a.

A deterministic Markov policy π : X → Ax is a function that maps states to
actions (i.e., π(x) = a for an action a ∈ Ax). The policy π describes which actions to
take in each state of the state space. The objective is to find a policy π in the class of
deterministic Markovian policies such that the long-term average cost g is minimized.
For a fixed policy π , the average cost g can be determined by solving the Poisson
equations given by

g + V(x) = c(x, π(x)) +
∑
y∈X

p(x, π(x), y)V(y),

for all x ∈ X , where V(x) is the relative value function, which has the interpretation
of the asymptotic difference in total cost that results from starting the process in state
x instead of some reference state.

Note that the MDP that we have introduced in this section is for discrete-time
processes. However, continuous-time queuing models can be cast as a discrete-time
MDP through uniformizing the system (see [14, Sect. 11.5]). Moreover, results on
existence and uniqueness of the average cost g and the relative value function V
heavily depend on the state and action spaces X and Ax. For notational clarity we
assume that the state space is denumerable and that the action space is finite with the
usual ergodicity assumptions (see [8,9]).

2.1. Approximate Value Iteration

The Poisson equations are hard to solve analytically in practice. Alternatively, the
equations can also be solved by a recursive procedure known as value iteration. The
value iteration algorithm starts with an initial value for all states (e.g., V0(x) = 0 for
all x ∈ X). The method then iterates by calculating Vn+1 for n = 0, 1, . . . through

Vn+1(x) = c(x, π(x)) +
∑
y∈X

p(x, π(x), y)Vn(y), (1)

for all x ∈ X . It is known that this method converges and an ε-optimal approximation
can be obtained when span (Vn+1(x) − Vn(x)) ≤ ε.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

30 D. Roubos and S. Bhulai

The value iteration algorithm has a memory complexity that is of the order |X |.
For many practical problems, the size of the state space can be too large, making
the value iteration algorithm intractable. Therefore, the relative value function V(x)
can be approximated by taking an approximation architecture Ṽ(x, r) = ∑R

i=1 riφi(x),
with r a parameter vector and φi(x) a known set of basis functions that is used for the
approximation (see [1,13]). In doing so, we only have to determine values for r rather
than V for each state.

The approximation structure can also be used in the value iteration algorithm. In
this case, each iteration step updates the parameter vector r. To this end, let Ṽn(x, r)
be the nth approximation of the relative value function. Based on the approximation
structure Ṽn(x, r), the next value for each state, denoted by V̂n+1(x), is similarly com-
puted as in (1). After the calculation of the next values, a (weighted) least squares
problem is solved to tune r such that it minimizes the distances between Ṽn+1(x, r)
and V̂n+1(x). Since we use a functional architecture (e.g., a polynomial), we can take
a smaller set of states Y ⊂ X that represents the set of representative states (see [16]).
The steps of this approach are thus given as follows:

1. Calculate V̂n+1(x) by

V̂n+1(x) = c(x, π(x)) +
∑
y∈X

p(x, π(x), y)Ṽn(y, r), (2)

for all x ∈ Y .

2. Solve for r in the problem

min
r

∑
x∈Y

wx(Ṽn+1(x, r) − V̂n+1(x))
2.

Let n = |Y|; then the solution for this weighted least squares problem is
given by

r = (AT WA)−1AT WV̂ ,

with the matrix A and the weight matrix W given by

A =

⎛
⎜⎜⎜⎝

φ1(x1) φ2(x1) . . . φR(x1)

φ1(x2) φ2(x2) . . . φR(x2)
...

...
. . .

...
φ1(xn) φ2(xn) . . . φR(xn)

⎞
⎟⎟⎟⎠ ,

and

W =

⎛
⎜⎜⎜⎝

w1 0 . . . 0
0 w2 0
...

. . .
...

0 0 . . . wn

⎞
⎟⎟⎟⎠ ,

respectively.

3. Repeat step 1 with the new vector r until convergence is achieved.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 31

The value iteration algorithm with the approximation architecture is called
approximate value iteration. Normally, the average cost g is obtained by calculating
Vn+1(x) − Vn(x) after convergence. In our case, we have g ≈ Ṽn+1(x, r) − Ṽn(x, r).
Therefore, there is no need to estimate g beforehand, in contrast to solving the Poisson
equations directly.

Recall that we started out by fixing a policy π . However, for MDPs we
are interested in finding the optimal policy. We therefore modify the approximate
value iteration method such that it generates a sequence of policies, based on the rela-
tive value function, that converges to an optimal policy. This gives rise to the sequence
(Ṽπ0

, π1, Ṽπ1
, π2, . . .) in which π i is calculated using Ṽπ i−1

:

π i(x) = arg min
a∈Ax

⎡
⎣c(x, a) +

∑
y∈X

p(x, a, y)Ṽπ i−1
(y, r)

⎤
⎦ ,

for all x ∈ X . For the calculation of Ṽπ i
we use approximate value iteration as follows:

Ṽπ i

n+1(x, r) = c(x, π i(x)) +
∑
y∈X

p(x, π i(x), y)Ṽπ i−1

n (y, r).

The previous two steps can be combined into a single step that replaces (2) in the
approximate value iteration algorithm. By doing so, the algorithm also increases
significantly in speed. The resulting step is then given by

V̂n+1(x) = min
a∈Ax

⎡
⎣c(x, a) +

∑
y∈X

p(x, a, y)Ṽn(y, r)

⎤
⎦ .

2.2. State Disaggregation

The quality of the policy that one obtains by using the approximate value iteration
algorithm is largely dependent on the approximation of the relative value function.
This function plays a crucial role in the decision-making process. In its turn, the quality
of the approximation to V depends on the parameter vector r and the choice of the basis
functions φi(x). Hence, given a set of basis functions, the fit can only be improved by
adjusting r such that every region of the state space is well approximated.

In many problem definitions, the model is chosen as small as possible; that is, it
is described with the fewest number of state variables. For example, in many queuing
systems, the state is chosen to be the number of customers in the queue plus in service
instead of having two variables that denote the number of customers in the queue and
in service, respectively. Given the above interpretation, using the same information
with more state variables can result in a better approximation of the value function,
since there is more freedom to fit a functional form to specific parts of the state
space. This helps to improve the quality of the resulting policy. This is illustrated in
Section 3.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

32 D. Roubos and S. Bhulai

2.3. Time-Varying Parameters

The approximate value iteration algorithm results in an approximation for the relative
value function for fixed exogenous input parameters. However, in practice many of
these input parameters change over time (e.g., think of arrival patterns of customers
that vary over the day). To deal with such situations, the approximation architecture
can be extended to include the time-varying parameters as well. The approximate
value iteration algorithm can then be used to approximate the relative value function,
such that for each different configuration of the time-varying input parameters, one
gets a different value of r. Consequently, when the values of the input parameters can
be tracked (e.g., by a stochastic approximation method), then the decision making for
time-varying systems can be done on-line with little computational effort.

To formalize the idea, let γ be a configuration for the set of input parameters.
Based on the γ , one can obtain an approximation Ṽγ (x, r). Now, the vector r can be
extended by parameterizing the input parameters γ as well so that we get r(γ). By
choosing an appropriate model for this and calculating Ṽγ (x, r) for different values of
γ , we can fit the approximated relative value function for the relevant range of values
of the input parameters.

The model that one has to take for r(γ) is problem-specific. However, in Section 4
we will show that a rather simple regression model is quite sufficient, since the param-
eter vector r is continuous for small changes in γ . Therefore, we can take a polynomial
function of low degree to describe the relationship between the input parameters γ

and the vector r.

3. EXAMPLE:THE M/M/C QUEUE

In this section we illustrate the idea of state disaggregation to obtain better approxima-
tions to the relative value function and thus better control policies. For this purpose,
we will study the M/M/c queue. In Section 4 we will extend this problem with time-
varying parameters, retrials, and abandonments so that it can serve as a realistic model
for call centers.

The M/M/c queuing system is described as follows. Consider a service facility
with c servers at which customers arrive according to a Poisson process with rate λ.
Upon arrival of a customer, the customer is taken into service when a server is available,
otherwise the customer waits in a buffer of infinite size. When a server becomes idle,
the longest-waiting customer is being served if present. Serving a customer takes an
exponentially distributed amount of time with parameter μ. The system is subject to
holding costs for each customer per time unit.

The state space of the system can be chosen in many ways. The most common
way to describe this system is to take as state space X1 = N0, where a state x ∈
X1 represents the total number of customers in the system (i.e., in queue and in
service). However, another way to model the system is by choosing as state space
X2 = {0, . . . , c} × N0, where a state (s, q) ∈ X2 represents the system with s customers
being served and q customers waiting in the buffer.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 33

Since there are holding costs for each customer in the system per time unit, we have
c1(x) = x and c2(s, q) = s + q. For simplicity and without loss of generality, we
assume that λ + cμ < 1; we can always get this by scaling. After uniformization,
we obtain the following update rule for the value iteration algorithm:

V̂ 1
n+1(x) = x + λṼ 1

n (x + 1) + min{x, c}μṼ 1
n ([x − 1]+)

+ (1 − λ − min{x, c}μ)Ṽ 1
n (x),

V̂ 2
n+1(s, q) = s + q + λHn(s + q + 1) + sμHn(s + q − 1) + (1 − λ − sμ)Ṽ 2

n (s, q),

with Hn(y) defined by

Hn(y) = V̂ 2
n (min{[y]+, c}, [y − c]+).

We take a second-order polynomial function as the approximation structure.
For the first representation, we take it equal to Ṽ 1(x, r) = r0 + r1x + r2x2, and for
the second representation, we have Ṽ 2(s, q, r) = r0 + r1s + r2s2 + r3q + r4q2 + r5sq.
Note that the last term sq is redundant, since sq = cq. To see this, note that q = 0 if
s ≤ c, and s = c when q > 0. To compare our approximation to the real-value function
of the M/M/c queue, we define two distance measures. These are given by

d1(V) = max |V − Ṽ |,
d2(V) = ||V − Ṽ ||.

Table 1 shows the the real average cost g, the average costs g(V 1) and g(V 2)

obtained by using the first and second representation, respectively, and the distance
measures for different values of λ, μ, and c. We used ρx and ρ(s+q) as weight factors in
the weighted least squares minimization for the first and second approach, respectively,
where ρ = λ/(cμ). The results show that by using the disaggregated description of
the state space, the quality of the approximation improves by a large factor, without
significantly much additional computational effort.

TABLE 1. Results for the M/M/c Queue with Y = {0, . . . , 20}
λ μ c g g(V1) d1(V1) d2(V1) g(V2) d1(V2) d2(V2)

4 2 8 2.00 2.00 5.810 1.297 2.00 0.043 0.024
10 8 5 1.25 1.28 3.379 1.253 1.28 0.011 0.006

8 2 16 4.00 4.01 0.329 0.038 4.01 0.038 0.013
5 1 10 5.04 5.08 9.734 1.893 5.05 0.249 0.124
3 2 3 1.74 1.70 12.426 3.318 1.74 0.023 0.009

10 4 5 2.63 2.68 6.442 1.617 2.66 0.037 0.017
15 5 4 4.53 4.37 2.240 0.553 4.56 0.095 0.033

3 2 2 3.43 3.33 1.021 0.518 3.43 0.053 0.016
9 3 4 4.53 4.36 3.702 0.917 4.55 0.124 0.045

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

34 D. Roubos and S. Bhulai

4. EXAMPLE:THE M/M/C RETRIAL QUEUE WITH ABANDONMENTS

In this section we illustrate the approximate value iteration method for time-varying
parameters. Therefore, we extend the model from the previous section to a multiserver
queue with abandonments and retrials. Furthermore, the arrival rate of customers to
the system is time dependent and serves as our time-varying parameter. The model
can be seen as a call center to which customers call for service.

The formal description of the model is as follows. Consider a single multiserver
queue at which calls arrive. The calls arrive according to a nonhomogeneous Poisson
process with rate λt , as depicted in Figure 1. There is a controller that, upon arrival of
a call, can decide to block the call. In that case, a cost of B is incurred and the call is
dropped. When the call is allowed into the system, it is assigned to an agent if one is
idle. The call is then served and has a service duration that is exponentially distributed
with parameter μ. If all agents are busy, the call is placed in the queue and starts its
service when an agent becomes available.

We assume that the operating hours of the call center are divided into K intervals;
in our examples, we will take K = 4 intervals of 6 h. In each interval k, the number of
agents ck is constant but may differ from the number of agents in other intervals. This
is current practice due to schedules and rosters of call center agents. In our examples,
we choose the number of agents ck such that at least 80% of the calls has a waiting
time in the queue of less than 20 s (i.e., P(WQ > 20s) < 0.2). This number can be

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4

6

8

10

12

14

16

Time (hour)

V
al

ue
 o

f l
am

bd
a

Arrival rate of calls

FIGURE 1. Call rate per hour.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 35

found by using the Erlang-C formula (3), in which λ is equal to the average arrival
rate in the corresponding interval, a equals the offered load (i.e., a = λ/μ), and WQ

represents the stochastic variable for the waiting time in the queue.

P(WQ > t) = C(s, a)e−(sμ−λ)t ,

with

C(s, a) = as

(s − 1)!(s − a)

⎡
⎣ s−1∑

j=0

aj

j! + as

(s − 1)!(s − a)

⎤
⎦

−1

. (3)

In case the number of agents decreases from one interval to the next, the agents
that have to leave and are busy finish their service first. However, when the number
of agents increases, the additional agents are available immediately at the beginning
of the interval.

The customers have a finite patience that is exponentially distributed with param-
eter β. Hence, after their patience time has expired and the customer is still in the
buffer, he abandons the queue. Once he has abandoned, there is a probability p that he
will call back after an exponentially distributed time with parameter γ . We then say
that the customer is in the retrial orbit. Otherwise, he will leave the system without
having received service. This happens with probability 1 − p and comes at cost R.
The system is depicted in Figure 2.

We cast the admission control problem into the framework of MDPs. To this end,
we denote by (q, s, y) ∈ X = N × {0, . . . , c} × N that q calls are in the waiting buffer,
s agents are occupied, and y calls are present in the retrial orbit. The system is subject
to holding costs for the calls waiting, the calls in service, and the calls in the retrial
orbit. Now, we can formulate the optimality equations for this system. For simplicity
of the expression, we assume a fixed value for λ and a fixed number of agents c for
the moment, but we study the more general case in the sequel.

FIGURE 2. Representation of the M/M/c queue with abandonments and retrials.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

36 D. Roubos and S. Bhulai

We uniformize the system similar to the M/M/c queue in Section 3. However, in
this case the total rate of change in the system is not bounded due to parallel retrials
in the orbit and parallel abandonments in the queue. In our experiments we bound the
size of the buffer and the size of the orbit so that the uniformization constant is finite.
The bound is taken such that the steady-state probabilities of reaching the bound are
very low. Then, just as in Section 3, we can (without loss of generality) assume that
the uniformization constant is smaller than one. Therefore, the optimality equations
are given by

g + V(q, s, y) = (q + s + y) + λ min
{
V(q + 1{s=c}, s + 1{s<c}, y);

V(q, s, y) + B
}

+ γ y min
{
V(q + 1{s=c}, s + 1{s<c}, [y − 1]+);

V(q, s, [y − 1]+) + B
}

+ min {s, c}μV(q − 1{q>0}, [s − 1{q=0}]+, y)

+ pβqV([q − 1]+, s, y + 1{q>0}) + (1 − p)βq[V([q − 1]+, s, y) + R]
+ (1 − λ − γ y − min {s, c}μ − βq)V(q, s, y). (4)

The first step is to choose an approximation structure for the relative value func-
tion. We take a second-order polynomial approximation function with cross-terms
among the queue length, the number of agents that are busy, and the number of
calls in the retrial orbit. Let the vector k = (1, q, s, y) be the vector corresponding
to the state (q, s, y). We use this vector to describe our approximation architecture
defined by

Ṽ(q, s, y, r) =
4∑

i=1

4∑
j=i

ri,jkikj.

Note that also in this case (as in Section 3), the term xy is redundant.
In the second step, we use this approximation structure in combination with the

approximate value iteration algorithm. To this end, we need to define a weight function,
whose entries are stored in the matrix W used in the algorithm. As in Section 3, we
will use a geometric function with the load as decay factor. Without retrials and
abandonments, the system would be a standard M/M/c queuing system for which
the load is equal to λ/(cμ) per server. However, in our system there are retrials, but
that is only from calls that abandon from the queue and thus did not visit the server.
Hence, if p is close to one, then the load per server is approximately equal to λ/(cμ).
The load of the retrial orbit is harder to determine. Therefore, we use the following
weight function:

W(q, s, y) = ρ y

(
min

{
λ

cμ
, α

})(q+s)

,

where ρ and α are fixed numbers; we take them equal to 0.8 and 0.6, respectively. In
our numerical experiments, we have chosen the arrival rates such that the system is

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 37

TABLE 2. Results of the System with Y = {0, . . . , 15} × {0, . . . , c} × {0, . . . , 15}
λ μ c β γ P R B g0 g∗(Ṽ) g∗

5 2 2 4 1 0.5 10 7 20.406 17.909 17.513 2.3%
4 2 3 3 2 0.5 6 3 4.365 4.185 4.001 4.6%
4 2 3 3 2 0.5 10 4.5 5.737 5.448 5.155 5.7%
6 4 3 1 1 0.7 5 1 2.302 2.143 2.077 3.2%

10 4 3 1 1 0.7 5 2.5 7.716 6.995 6.990 0.1%

in an overload situation during peak hours but is stable on average. This resembles a
realistic setting for most call centers.

Table 2 shows the numerical results for the system with fixed values for λ and
c; that is, there is no time-varying parameter involved and the number of agents is
fixed over time as well. In Table 2, g0 is the average cost for the policy where all
calls are accepted to the system, g∗(V) is the optimal average cost obtained by using
the approximation structure, and g∗ is the cost obtained by using the optimal policy.
The relative difference (
) between the optimal cost and the optimal cost obtained
by the approximation is given by (g∗(V) − g∗)/g∗(V).

The results show that there is a significant decrease in costs when using the
approximation structure and the approximate value iteration algorithm. The difference
between the optimal cost and the cost obtained by the approximation is below 10% for
the extensive set of parameters we studied. Based on these good results, we conclude
that the second-order polynomial architecture, which we described earlier, works
very well.

We continue with the third step, and that is to describe the relation between
the values of the time-varying parameter and the coefficients r of the approximation
structure. To illustrate this step, we consider one particular example and give the
results based on different parameter settings in a table. Let λt be as in Figure 1. The
maximum call rate equals 15, the minimum call rate equals 5, and the average call
rate is approximately equal to 10. There are three servers, and each of them handles a
call at rate 4. The values for β and γ are chosen to be 1, and the probability of retrial is
equal to 0.7. Rejection and blocking costs are 5 and 2.5, respectively. This resembles
a situation in which sometimes there is more work than can be handled in peak hours,
whereas in off-peak hours, the length of the queue can be decreased significantly.

For different values of λ between λmin = 5 and λmax = 15, we determine the
coefficients (i.e., the value of the parameter vector r) in the approximation structure.
This is done by using the approximate value iteration algorithm and the optimality
equations (4). The relation between each coefficient and the values of λ is described
by a polynomial function of degree three. In Figure 3 the optimal coefficients are
plotted and the least squares fit of the third-order polynomial function.

Let Ṽ (·)
c denote the approximate relative value function when the system has c

agents and the system is controlled in a specific way (i.e., based on λt , λ̄, λmin, or λmax).
We compare the control of the system based on our approach with other approaches

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

38 D. Roubos and S. Bhulai

5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3

Lambda

V
al

ue
 o

f c
oe

ffi
ci

en
t

Coefficients of the variables

q

fit(q)

x

fit(x)

y

fit(y)

5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Lambda

V
al

ue
 o

f c
oe

ffi
ci

en
t

Coefficients of the variables

q2

fit(q2)

qy

fit(qy)

x2

fit(x2)

xy

fit(xy)

y2

fit(y2)

(a)

(b)

FIGURE 3. Relation between the value of λ and the coefficients in the approximation
structure. (a) Relation for q, x and y; (b) Relation for q2, qx, x2, xy and y2.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 39

by means of simulation, since we have time-varying arrival rates of the calls. At each
arrival of a call, the system admits or blocks the call based on

min
{
Ṽ (·)

c (q + 1{s=c}, s + 1{s<c}, y);

Ṽ (·)
c (q, s, y) + B

}
or

min
{
Ṽ (·)

c (q + 1{s=c}, s + 1{s<c}, [y − 1]+);

Ṽ (·)
c (q, s, [y − 1]+) + B

}
if an arriving call originates from outside the system or originates from the retrial
orbit, respectively. In the decision, the approximation of Ṽ (·)

c plays an important role.
Moreover, the relative value function and, therefore, the approximation, is different for
different values of λ. Therefore, to make good decisions, we should have knowledge
about the relation between values of λ and the approximation of the relative value
function. To quantify the impact of our approach, we compare it to the performance
by using the average value of the arrival rate (Ṽ (λ̄)

c , with λ̄ = 10.0354), the maximum
value of the arrival rate (Ṽ (λmax)

c , with λmax = 15), and the minimum value of the arrival
rate (Ṽ (λmin)

c , with λmin = 5). Table 3 shows the numerical results of these experiments,
together with other problem instances. For these problem instances, the same shape
of the arrival rate is taken, but the actual values are changed so that they fit between
λmin and λmax. Recall that we have four different periods in which the number of
agents can vary.

The performance is determined by means of simulation. We simulate the system
for a sufficiently large amount of time and divide the simulation into subruns, so that
confidence intervals can be derived for the average costs of the system. In Table 3 the
average costs are shown. For readability of the results, we have not included the con-
fidence intervals but reside by mentioning that the standard deviations of the average
costs are mostly of order 10−2. To generate arrivals according to the inhomogeneous
Poisson process with rate λt , we consider a Poisson process with rate λmax, where we
select each point with probability λt/λmax. The selected points are then the call arrivals.

The initial policy that allows every arriving call to the system has the highest
cost g0. As expected, the admission control policy based on the approximation of the
relative value function performs better in all cases. The control of the system based on
the average arrival rate performs almost equally well compared to the control based on
the minimum value of the arrival rate. Both perform worse than the control based on the
maximum value of the arrival rate in most of the cases. Our approach (Ṽλt) outperforms
all others, since this method uses the actual arrival rate into account. In combination
with a parameter-tracking method, such as stochastic approximation, the controls can
be taken on-line without the knowledge of the arrival rate function. However, this
exercise of call arrival rate forecasting falls outside the scope of this article, since
our aim is to show how to deal with time-varying parameters in a computationally
feasible manner.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

4
0

D
.R

o
u

b
o

s
an

d
S

.B
h

u
lai

TABLE 3. Results of the System with Y = {0, . . . , 15} × {0, . . . , c} × {0, . . . , 15}
No. λmin λmax μ c β γ P R B g0 g(Ṽλt) g(Ṽ λ̄) g(Ṽλmin) g(Ṽλmax)

1 2 9 2 {3,4,6,4} 3 2 0.5 8 4 5.959 5.417 5.782 5.765 5.564
2 6 16 4 {3,4,5,4} 1 2 0.3 7 2 6.988 5.721 6.141 6.147 5.894
3 10 20 4 {4,5,6,5} 2 2 0.1 6 4 11.747 11.478 11.704 11.693 11.529
4 8 22 4 {3,5,7,5} 2 2 0.1 6 4 11.095 10.753 11.004 10.994 11.419
5 6 16 4 {3,4,5,4} 1 1 0.7 7 2 6.192 5.232 5.556 5.559 5.298
6 6 16 4 {3,4,5,4} 1 2 0.7 7 2 6.013 5.134 5.521 5.493 5.229
7 5 15 4 {3,4,5,4} 1 1 0.7 5 2.5 4.302 4.174 4.264 4.239 4.185
8 8 22 4 {3,5,7,5} 2 2 0.9 6 4 8.887 7.820 8.420 8.424 7.994
9 10 20 3 {5,7,8,7} 2 0.2 0.7 6 3 13.715 10.917 11.966 11.908 11.131

10 6 16 4 {3,4,5,4} 1 0.2 0.7 7 2 8.354 5.879 6.306 6.298 6.004
11 10 20 3 {5,7,8,7} 0.3 0.2 0.7 6 3 9.484 8.545 8.993 8.969 8.704
12 6 18 1 {9,15,20,15} 0.5 0.1 0.9 6 4 33.177 15.882 17.548 17.494 16.079
13 10 20 3 {5,7,8,7} 2 0.2 0.7 6 5 13.699 12.965 13.591 13.508 13.197
14 6 16 4 {3,4,5,4} 1 0.2 0.7 7 5 8.314 7.793 8.190 8.157 7.908
15 10 20 3 {5,7,8,7} 0.3 0.2 0.7 6 5 9.405 9.153 9.393 9.438 9.258
16 6 18 1 {9,15,20,15} 0.5 0.1 0.9 6 5 33.713 16.971 19.202 19.067 17.352
17 8 22 4 {3,5,7,5} 2 2 0.9 6 5 8.811 8.107 8.621 8.650 8.195

https://doi.org/10.1017/S026996480999012X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 41

4.1. Unobservable Retrial Orbit

The optimal policy relies on the knowledge of the number of calls in the queue, the
number of calls in service, as well as the number of calls in the retrial orbit. However,
in practice, the latter is quite difficult, if not impossible, to obtain; when a customer
abandons, it is not known beforehand if the customer will retry and thus it is not
observed if the customer resides in the orbit.

The fact that the orbit cannot be observed in practice prohibits the direct appli-
cation of our method. One straightforward way to deal with this is to ignore the
information about the orbit. Thus, one can use the approximation architecture Ṽc con-
sisting only of the variables q and s, thus Ṽc(q, s). A second approach would be to use
Ṽc(q, s, y) by providing a value for y. Numerical experiments show that the former
method (i.e., ignoring the orbit) does not yield very good results. It is better to pro-
vide a reasonable value for y. Table 4 shows the results of these two approximation
approaches, labeled App1 and App2, respectively. App2(a) uses y = 0 and App2(b)
uses y = 2. Note that also here the standard deviations are not shown, but they are of
order 10−2 as well.

It might be difficult to come up with a well-chosen value for y beforehand, since
the best value can depend on all of the system parameters. It would be better to use
Ṽc(q, s, y) and try to estimate the number of calls in the retrial orbit at any point
in time dynamically. To this purpose, we use a Bayesian estimation procedure. Let
u = (u0, . . . , uN) be the vector of components ui denoting the probability that there
are i calls in the retrial orbit. We restrict the sample space for the orbit to {0, . . . , N}.

When additional information becomes available through an event, we update
the probability vector u. More specifically, an abandonment results with probability

TABLE 4. Results of the Unobservable Retrial Orbit System with
Y = {0, . . . , 15} × {0, . . . , c} × {0, . . . , 15}
No. g(Ṽλt) App1 App2(a) App2(b) App3(a) App3(b)

1 5.417 5.683 5.431 5.452 5.436 5.421
2 5.721 5.819 5.723 5.738 5.724 5.717
3 11.478 11.419 11.508 11.427 11.464 11.456
4 10.753 10.743 10.746 10.732 10.747 10.743
5 5.232 5.508 5.258 5.223 5.225 5.220
6 5.134 5.216 5.132 5.120 5.138 5.112
7 4.174 4.277 4.171 4.166 4.154 4.149
8 7.820 8.826 8.049 7.927 7.800 7.830
9 10.917 13.764 10.910 10.920 10.935 10.904

10 5.879 7.426 5.874 5.870 5.899 5.884
11 8.545 8.819 8.572 8.545 8.565 8.536
12 15.882 31.225 15.889 15.910 15.881 15.896
13 12.965 13.706 13.110 13.025 12.904 12.916
14 7.793 8.316 7.824 7.812 7.778 7.749
15 9.153 9.180 9.137 9.180 9.153 9.140
16 16.971 33.377 16.947 17.019 16.973 16.947
17 8.107 8.809 8.190 8.205 8.080 8.091

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

42 D. Roubos and S. Bhulai

p in a retrial, increasing the number of calls in the retrial orbit by one, whereas
with probability 1 − p, nothing happens with the retrial orbit. As a consequence,
after an abandonment occurs, the new probability vector u′ has components u′

i =
pui−1 + (1 − p)ui, for 0 < i < N , while setting u′

0 = (1 − p)u0 and u′
N = p(uN−1 +

uN) + (1 − p)uN . The term uN in uN−1 + uN in the last expression is due to the fact
that we have a finite sample space. Apart from updating the probability vector u at
moments of abandonments, we also update the probability vector at moments a retrial
occurs. This results in u′

i = (1/a)ui+1, for i < N , and we let u′
N = 0, with a = ∑N

i=1 ui.
Furthermore, based on the distribution u, we expect to have E(u) = ∑N

i=0 iui calls in
the retrial orbit, each having an exponentially distributed amount of time that they
remain in the retrial orbit. Therefore, one expects to observe a retrial with probability,
say .95, within τ time units, where τ = arg minx FX(x) ≥ .95, with X ∼ exp(γ E(u)).
If that amount of time elapses without the occurrence of a retrial, then we also update
the probability vector u by u′

i = (0.95/a)ui+1 + .05ui, for i < N , and we let u′
N =

0.05uN . The value of τ is calculated each time an update of u occurs.
We use the probability vector u in two different ways. The first is to calculate the

expectation E(u) and to use that as an estimation for the amount of calls in the retrial
orbit each time a decision is made to control the system; that is, we let y = E(u).
The second way is to calculate a weighted average of the value function with the
probabilities as weights; that is, we let

V a =
N∑

i=0

uiṼ
(·)
c (q + 1{s=c}, s + 1{s<c}, i),

V r =
N∑

i=0

uiṼ
(·)
c (q, s, i) + B

for an arriving call originating from outside the system, where V a and V r denote
the weighted value function for admission and rejection of the call, respectively. The
optimal action is taken by comparing both weighted value functions. The optimal
action to be taken at the arrival of a retrial is determined in a similar way. This first
and second approach in using the probability vector u is denoted by App3(a) and
App3(b), respectively, in Table 4.

Table 4 shows us that ignoring the number of calls in the retrial orbit completely
(App1) does not yield very good results. A simple approach such as to fix the value for
y (App2) gives good results. However, a good value for one problem instance could
be bad for other problem instances. Estimating the number of calls in the retrial orbit
(App3) outperforms the other methods. This is not only because these methods try
to estimate the number of retrial calls, but they also circumvent the problem on how
to choose a good value for y as required in App2. Note that the retrial orbit play an
important role in cases in which blocking a call is relative expensive. However, this
yields little improvement in the policies compared to the initial policy. On the other
hand, to obtain large improvements, the blocking costs should be relatively small, but

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 43

that means that the number of calls in the retrial orbit is bounded by a small number
in the optimal policy.

4.2. Structure of the Optimal Policy

In this subsection we study the structure of the optimal policy. To this end, we combine
the number of waiting customers and the number of customers being served into one
variable, and we use the number of calls in the retrial orbit as the second variable. This
allows us to make a plot of the optimal actions. We consider the same problem instance
as earlier: a system with three servers, each working at rate 4, and the other system
parameters given by β = γ = 1, p = .7, R = 5, and B = 2.5. For three different values
of a constant arrival rate (λ = 5, 10, and 15), the optimal actions are shown in Figure 4.
The colored squares indicate the decision to allow an arriving call into the system
that originates from outside the system. The dark, average, and light colored squares
indicate that we allow the call in the particular states for all three values of λ, the
values 5 and 10, and the value 5 for λ, respectively. The structure of the policy is
such that for higher values of λ we block in more states. Note that the decision for an
arriving call originating from the retrial orbit can be derived directly from that plot as
well as by looking up the decision that corresponds to the state (s + q, y − 1) instead
of (s + q, y).

0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

18

20

Optimal policy

y

q+
x

FIGURE 4. Optimal policy for λ = 5, 10, and 15.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

44 D. Roubos and S. Bhulai

5. CONCLUSIONS AND DISCUSSION

In this article we have studied the quality of approximations used inADP by comparing
the classical state space representation with a state space with increased dimensionality
through state disaggregation. We observed that for queuing models, it is preferable
to distinguish between entities in the waiting buffer and entities that are in service.
This approach increases the quality of the approximation against little additional
complexity.

Furthermore, we developed a technique to control time-varying queuing systems.
The optimal admission control for queuing systems greatly depends on the arrival rate
to the system.We have shown this by means of an example (cf. Fig. 4). To make optimal
decisions over time with time-varying arrival rates, we expressed the parameters of the
approximation structure as a function of the time-varying arrival rate. This allows us
to take optimal decisions at any point in time using (an estimate of) the current arrival
rate. Moreover, we have developed a Bayesian procedure to estimate the number of
calls in the orbit, since this value cannot be observed in practice. We showed in our
numerical example of a queuing system with abandonments and retrials that these
techniques works well, although we used a simple approximation architecture and a
simple function to describe the relation between the parameters of the approximation
architecture and the time-varying arrival rate.

References

1. Bertsekas, D.P. & Tsitsiklis, J.N. (1996). Neuro-dynamic programming. Belmont, MA: Athena
Scientific.

2. Bhulai, S. & Koole, G.M. (2003). On the structure of value functions for threshold policies in queueing
models. Journal of Applied Probability 40: 613–622.

3. de Farias, D.P. & Van Roy, B. (2003). Approximate linear programming for average-cost dynamic
programming. In Thrun, S., Becker, S., & Obermayer, K. (eds.), Advances in neural information
processing systems 15, Cambridge, MA: MIT Press, pp. 1587–1594.

4. de Farias, D.P. & Van Roy, B. (2003). The linear programming approach to approximate dynamic
programming. Operations Research 51(6): 850–865.

5. de Farias, D.P. & Van Roy, B. (2004). On constraint sampling in the linear programming approach to
approximate dynamic programming. Mathematics of Operations Research 29(3): 462–478.

6. Grassmann, W.K. (1977). Transient solutions in Markovian queueing systems. Computers and
Operations Research 4: 47–53.

7. Green, L. & Kolesar, P. (1991). The pointwise stationary approximation for queues with nonstationary
arrivals. Management Science 37: 84–97.

8. Hernández-Lerma, O. & Lasserre, J.B. (1996). Discrete-time markov control processes: Basic
optimality criteria. New York: Springer-Verlag.

9. Hernández-Lerma, O. & Lasserre, J.B. (1999). Further topics on discrete-time markov control
processes. New York: Springer-Verlag.

10. Ingolfsson,A.,Akhmetshina, E., Budge, S., Li,Y., & Wu, X. (2007).A survey and experimental compar-
ison of service level approximation methods for non-stationary M/M/s queueing systems. INFORMS
Journal of Computing 19: 201–214.

11. Ingolfsson, A., Haque, M.A., & Umnikov, A. (2002). Accounting for time-varying queueing effects in
workforce scheduling. European Journal of Operational Research 139: 585–597.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

ADP TECHNIQUES 45

12. Parr, R. (1990). Hierarchical control and learning for markov decision processes. Ph.D. dessertation,
Berkeley, CA: University of California.

13. Powell, W.B. (2007). Approximate dynamic programming: Solving the curses of dimensionality.
New York: Wiley.

14. Puterman, M.L. (1994). Markov decision processes: Discrete stochastic dynamic programming.
New York: Wiley.

15. Ren, Z. & Krogh, B.H. (2002). State aggregation in Markov decision processes. In Proceedings of the
41st IEEE Conference on Decision and Control, vol 4, pp. 3819–3824.

16. Roubos, D. & Bhulai, S. (2007). Average-cost approximate dynamic programming for the control of
birth-death processes. Technical report, VU University Amsterdam.

17. Singh, S., Jaakkola, T., & Jordan, M. (1995). Reinforcement learning with soft state aggregation.
Advances in Neural Information Processing Systems 7: 361–368.

18. Singh, S.P. & Bertsekas, D.P. (1997). Reinforcement learning for dynamic channel allocation in cellular
telephone systems. Advances in Neural Information Processing Systems 9: 974–980.

19. Sutton, R.S. & Barto, A.G. (2000). Reinforcement Learning: An introduction. Cambridge, MA: MIT
Press.

20. Tsitsiklis, J.N. & Van Roy, B. (1996). Feature-based methods for large scale dynamic programming.
Machine Learning 22: 59–94.

21. Yoo, J. (1996). Queueing models for staffing service operations. Ph.D. dessertation, College Park:
University of Maryland.

https://doi.org/10.1017/S026996480999012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480999012X

