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Acoustic/steady streaming from a motionless
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As originally realized by Nyborg (J. Acoust. Soc. Am., vol. 30, 1958, p. 329), the
problem of the inner acoustic/steady streaming can be analysed in quite general
terms. The inner streaming is the one that develops in the high-frequency limit in a
thin Stokes (shear-wave) layer at a boundary, in contrast to the outer streaming in the
main bulk of the fluid. The analysis provides relevant inner-streaming characteristics
through a given distribution of the acoustic amplitude along the boundary. Here
such a generalized treatment is revisited for a motionless boundary. By working in
terms of surface vectors, though in elementary notations, new compact and easy-to-
use expressions are obtained. The most important ones are those for the effective
(apparent) slip velocity at the boundary as seen from a perspective of the main
bulk of the fluid, which is often the sole driving factor behind the outer streaming,
and for the induced (acoustic) steady tangential stress on the boundary. As another
novel development, non-adiabatic effects in the Stokes layer are taken into account,
which become apparent through the fluctuating density and viscosity perturbations,
and whose contribution into the streaming is often ignored in the literature. Some
important particular cases, such as the axisymmetric case and the incompressible
case, are emphasized. As far as the application of the derived general inner-streaming
expressions is concerned, a few examples provided here involve a plane acoustic
standing wave, which either grazes a wall parallel to its direction (convenient for
the estimation of the non-adiabatic effects), or into which a small (compared to the
acoustic wavelength) rigid sphere is placed. If there are simultaneously two such waves,
out-of-phase and, say, in mutually orthogonal directions, a disk placed coplanarly
with them will undergo a steady torque, which is calculated here as another example.
Two further examples deal with translational high-frequency harmonic vibrations of
particles relative to an incompressible fluid medium, viz. of a rigid oblate spheroid
(along its axis) and of a sphere (arbitrary three dimensional). The latter can be a
fixed rigid sphere, one free to rotate or even a (viscous) spherical drop, for which the
outer streaming and the internal circulation are also considered.
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Acoustic/steady streaming from a boundary 427

1. Introduction
A mean flow appearing on the background of a small-amplitude oscillatory flow is

often referred to as ‘acoustic streaming’. The term is coined under the premise that
the oscillatory flow in question is attributable to an acoustic wave. Nonetheless, the
phenomenon can occur and is of interest in intrinsically incompressible situations
(when the acoustic wavelength is much greater than the length scale of the problem).
In such a case, the term ‘steady streaming’ seems to be more appropriate (Riley 2001).
In any event, of interest is mainly the high-frequency limit, when the typical viscous
time is much greater than the oscillation period. It is in this limit that significant
streaming flows arise, which may be characterized by large Reynolds numbers in spite
of a small amplitude of the primary oscillatory flow. On the contrary, if the frequency
is not high, the streaming flows are typically weak, and the Reynolds number is small
(Riley 1966). It is the high-frequency limit that is meant hereafter in the present paper.

For an extensive review of the phenomenon of acoustic streaming, we refer the
reader to Nyborg (1965, 1998) and Riley (1967, 1997, 2001). Two types of acoustic
streaming are usually distinguished (Riley 1997, 2001): type I (‘quartz wind’) and
type II (the Rayleigh streaming). The distinction basically owes itself to the high-
frequency limit, and would not make sense otherwise. In this limit, the primary
oscillatory flow is irrotational (to leading order) in the main bulk of the fluid, while
the oscillatory vorticity is confined to the oscillatory boundary layer (the Stokes layer)
at walls and interfaces. Now the type I streaming is the one which is generated in
the main bulk, while the type II streaming is generated in the Stokes layer (although
it is not confined to it and rather spreads into the main bulk). Vorticity, along with
nonlinearity, is the primary factor behind the steady flow generation (in contrast to
merely generating an effective ‘hydrostatic’ pressure distribution, often referred to as
‘radiation pressure’, which is mainly responsible for steady forces acting on particles
in an acoustic field). Thus, the generation is much stronger (as per unit volume) in the
Stokes layer. But this by no means implies that the type II streaming is necessarily
stronger though: it gets slowed down by the boundary, and more importantly, the
overall effect may be greatly enhanced for the type I streaming due to a much larger
volume of the main bulk.

As an example of the situation when the type I streaming is predominant, let us
point out irradiation of an acoustic beam into a large volume of fluid. For high-
intensity ultrasound beams, the resulting ‘quartz wind’ is rather appreciable (Lighthill
1978). On the other hand, when the primary oscillatory flow is all in phase (to leading
order) as in an acoustic standing wave, the type II streaming tends to dominate, as
first studied by Rayleigh (1883). In the incompressible case, the type I streaming is
absent, and the streaming is entirely of type II.

Another type of streaming is what Lighthill (1978) refers to as ‘McIntyre streaming’.
This is essentially a ‘kinematic’ type of streaming, caused by oscillations of a boundary
normal to itself. For a non-trivial result, it is essential that phase differences exist in
the primary oscillatory flow. The streaming due to surface waves in liquid layers (see
Riley 2001) can be ascribed to this same type. In the present paper, the consideration
is limited to motionless boundaries.

The boundary-layer structure of the primary oscillatory flow, with the zones of the
Stokes layer and the main bulk distinguished, is carried over to the streaming flow.
Accordingly, one distinguishes between the ‘inner’ (near-boundary) streaming in the
Stokes layer, and the ‘outer’ streaming in the main bulk. As already mentioned, while
the type II streaming originates in the Stokes layer, it cannot be confined to that
region and engages the main bulk too. In terms of the inner and outer streaming, this
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428 A. Y. Rednikov and S. S. Sadhal

means that the inner streaming does not fade away at the outer edge of the Stokes
layer. Rather (here it is assumed that the boundary is motionless), it tends to a finite
velocity value, tangential (to leading order) to the boundary in view of the thinness
of the Stokes layer. Due to the latter reason, it is seen as an effective (apparent) slip
velocity distribution at the boundary itself from the viewpoint of the main bulk. It can
be said that it is the effective slip velocity that causes the type II outer streaming near
a motionless boundary. To leading order, the inner streaming is generally independent
of the outer streaming, irrespective of whether the latter is type I, type II, or both.
Apart from the already mentioned effective slip velocity, another important feature
of the inner streaming is the steady tangential stress exerted upon the boundary. As
the steady velocity profile varies sharply across the thin Stokes layer, the stress due
to the inner streaming is generally much greater than what could ever be exerted by
an outer streaming of the same intensity.

Nyborg (1958) realized that consideration of the inner streaming can be carried out
in quite general terms for an arbitrary smooth boundary. As the result, characteristics
of the inner streaming and the effective streaming velocity, in particular (even though
he does not work in such terms), are expressed through the distribution of the
amplitude of the primary oscillatory flow along the boundary and the geometric
properties of the latter. A simpler, one-dimensional result of this kind is mentioned in
Riley (2001) for the incompressible case. A quasi-two-dimensional result is provided
by Lighthill (1997). Lee & Wang (1989) revisit Nyborg’s generalized treatment,
correct certain points, and apply it to describing the streaming from a rigid sphere
fixed in two out-of-phase orthogonal acoustic standing waves. The treatment of
Lee & Wang (1989), just as the original one of Nyborg (1958), explicitly represents
it all in terms of an orthogonal curvilinear coordinate system introduced on the
boundary. The result looks rather cumbersome. It seems that a more compact, clear-
cut and easy-to-use representation can be achieved if the vector notation is kept
through. One of the goals of the present paper is to realize such a representation
for the inner streaming near a motionless boundary. After the generalized result
is obtained, certain particular cases as well as application to specific problems are
considered.

Compressibility and adiabaticity are two controversial issues related to the inner-
streaming treatment. Landau & Lifshitz (1988, see § 80 therein) proceed in an
essentially compressible situation as if the primary oscillatory flow were incompressible
in the Stokes layer, which is not correct. Nonetheless, the final result for the outer
streaming (and thus for the effective slip velocity, although they do not work in such
terms) happens to be correct in the sense that one comes up with the same result if the
primary oscillatory flow in the Stokes layer is treated as compressible and adiabatic.
In fact, it is considered compressible and adiabatic by Nyborg (1958) and Lee &
Wang (1990), as well as by Zhao, Sadhal & Trinh (1999b). However, there comes
another issue. Unlike the main bulk, the dissipative effects do matter in the Stokes
layer, and thus the entropy being constant therein may not be a solid assumption.
The non-adiabatic effect on the streaming is considered by Gopinath & Trinh (2000)
for a particular problem of a sphere in a standing wave. In the present paper, the
non-adiabatic effect is incorporated within the generalized treatment of the inner
streaming.

Another issue often ignored when calculating the inner streaming is that the
coefficient of viscosity is a function of state, and not merely a constant. The associated
effect of such viscosity variability on the inner streaming is comparable with that due
to compressibility. It is ignored in the above cited studies. Yarin et al. (1999) take it
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Acoustic/steady streaming from a boundary 429

into account, albeit in the adiabatic framework. In the present paper, it is incorporated
non-adiabatically.

The paper is organized into two parts as follows. The first part (§ 2) is dedicated
to a generalized treatment of the inner streaming along the lines described above,
and formulas for the effective slip velocity and the induced steady tangential stress
on the boundary are derived. At the end of § 2, these are specified for two important
particular situations, which are the incompressible case, on the one hand, and the plane
and axisymmetric geometry, on the other. A practical summary of the most important
results of § 2 is provided in § 2.12. The second part (§ 3) illustrates with examples the
application of the general results of § 2 to concrete problems. The problems chosen
as the examples for § 3 have already been considered in one form or another in the
literature, although for nearly all of them the present analysis also yields a number
of new results.

A few of the examples involve a plane acoustic standing wave. In particular, the
classical problem of a standing wave grazing a parallel wall is revisited, which is
mainly with the purpose of estimating the importance of the newly incorporated
non-adiabatic effects (§ 3.1).

Next, the streaming from a small (as compared to the acoustic wavelength) rigid
sphere placed at an arbitrary position within the standing wave is considered (§ 3.2).
The result is presented as an expansion in terms of a small parameter, the latter
being the acoustic wavenumber scaled with the sphere radius (the dimensionless
wavenumber) and the leading order corresponding to the incompressible limit. The
analysis here goes one step further than just deriving the effective slip velocity on
the sphere starting from the formulas of § 2: the associated outer streaming is also
calculated, albeit only in the Stokes approximation. What we eventually come up with
in § 3.2 generalizes certain results from the literature. In particular, as compared to
Lee & Wang (1990) and Zhao et al. (1999b), the non-adiabatic effects are taken into
account and besides a leading-order result for the streaming which is uniformly valid
for all positions of the sphere within the standing wave (including the velocity node)
is constructed. As compared to Gopinath & Trinh (2000), the viscosity variability
(non-adiabatic) is additionally taken into account, even though fewer terms of the
expansion are eventually retained.

A similar problem for an oblate spheroid (§ 3.3) is partly inspired by the fact that
acoustically levitated drops assume an oblate shape (Marston 1980; Lee, Anikumar &
Wang 1994; Yarin, Pfaffenlehner & Tropea 1998). Yet the analysis is limited here to
the leading order in the dimensionless acoustic wavenumber (scaled with the spheroid
size). In this way, the problem is equivalent to that of an incompressible fluid medium
oscillating relative to an oblate spheroid along its axis studied by Rednikov & Sadhal
(2004). In essence, the goal of § 3.3 is just to show how easily the expression for the
effective slip velocity derived by Rednikov & Sadhal (2004) in a direct way can be
recovered using the formulas of § 2. For the analysis of the outer streaming engendered
by this slip velocity, the reader is relegated to Rednikov & Sadhal (2004). Let us also
mention a recent experimental study of steady streaming from oscillating spheroids
(Kotas, Yoda & Rogers 2007).

As the example chosen for § 3.4, a sphere placed into an incompressible fluid medium
undergoing a three-dimensional (generally, non-uniaxial) translational oscillation is
considered. One possible interpretation is that the sphere is within two out-of-phase
orthogonal acoustic standing waves with the wavelength much greater than the
sphere radius (the incompressible limit). As compared to Lee & Wang (1989), where
this problem has been originally treated, one can fully appreciate the advantage of a
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430 A. Y. Rednikov and S. S. Sadhal

vector-form representation. Further, as far as the extension of the analysis to the outer
streaming is concerned, treated here is not only the problem of a ‘fixed’ rigid sphere
as in Lee & Wang (1989), but also a sphere free to rotate and its generalization to a
spherical drop (although its dynamic viscosity is required in the analysis to be much
greater than that of the medium, e.g. a drop in air) including the internal circulation.
The latter part is also a generalization of the earlier studies that have considered more
particular forms of a translational oscillation than that is here: uniaxial (Zhao, Sadhal
& Trinh 1999a) and of circular-polarization type (Rednikov, Riley & Sadhal 2003).
There is a recent experimental interest in studying steady streaming from oscillating
spheres (Otto, Riegler & Voth 2008), although the mentioned study corresponds to
different conditions from those implied here.

In § 3.5, as a final example, the results of § 2 are applied to calculating the steady
torque on a thin disk in two orthogonal standing waves with a phase difference. The
disk is oriented coplanarly with the directions of the waves. As compared to Busse &
Wang (1981), the non-adiabatic effects are also taken into account.

Finally, concluding remarks are provided in § 4.

2. Generalized treatment
2.1. Statement of the problem and assumptions

We consider a situation when an acoustic field of a given frequency ω∗ exists in the
vicinity of a motionless rigid surface (boundary). Let l∗ be the length scale of the
problem, which can be either the typical radius of curvature of the surface or
the acoustic wavelength, whichever is smaller. The general case corresponds to these
two being of the same order, i.e. to the dimensionless wavenumber

k = k∗l∗ (2.1)

being of order unity, where k∗ = ω∗/c∗ is the wavenumber while c∗ is the speed of
sound. The incompressible limit k � 1 can then be treated as a particular case.

Now if U ∗ is a quantity of the order of the velocity amplitude in the acoustic wave
and ν∗ is the kinematic viscosity of the fluid (in the unperturbed state), we assume
that

ε =
U ∗

ω∗l∗ � 1, M2 =
ω∗l∗2

ν∗ � 1, (2.2)

which are the small-amplitude and the high-frequency assumptions, respectively. We
note that ε is actually an inverse Strouhal number, εk is the Mach number; M will be
referred to as the frequency parameter. In view of (2.2), to leading order, the acoustic
field is ideal, in the sense that it is described by linear acoustics, and is irrotational
and isentropic in the main bulk of the fluid, outside the oscillatory boundary layer
(the Stokes layer). The thickness of the latter is O(l∗/M), which is much smaller than
l∗. In the Stokes layer, the dissipative effects are important, and the oscillatory flow
is rotational with the oscillatory vorticity decaying exponentially at the outer edge.
Now if nonlinear effects are taken into consideration, it makes for a relatively intense
localized generation of a steady flow component (acoustic or steady streaming) in the
Stokes layer, though the steady flow itself is ultimately not localized therein. In this
section, assuming that the ideal acoustic field is known at the surface, we provide a
generalized treatment of steady streaming in the Stokes layer (the inner streaming).
The flow field in the two regions (main bulk and the Stokes layer) is treated by means
of matched asymptotic expansions.
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The nonlinear effects that lead to acoustic streaming are usually associated with
the action of the Reynolds stresses. However, there is another nonlinear contribution,
which is due to viscosity fluctuation in the acoustic wave. In the Stokes layer, where
the viscous effect is of the leading order, it may be comparable to the one due to
the Reynolds stresses. In the present paper, this effect is taken into consideration.
Thus, one of the variables we have to follow is the viscosity perturbation upon the
background value.

Another condition to be taken into account here is that temperature is among the
fluctuating quantities in the acoustic wave. To the extent that the Stokes layer is a
viscous oscillatory boundary layer, it is a thermal one as well (assuming here that
the Prandtl number is of order unity). Then the oscillatory temperature profile in the
Stokes layer may significantly depart from the isentropic one, unless the boundary
is insulating. This may bring about a contribution towards the streaming by means
of the temperature dependence of the fluid density and viscosity. We refer to this
contribution as the non-adiabatic effect.

2.2. Non-dimensionalization and some basic notations

The following convention is used throughout the paper: dimensional quantities are
marked with an asterisk (not the dimensionless ones). If f ∗ is a dimensional quantity
whose dimensionless counterpart f is defined (and vice versa), then the notation [f ]
refers to the scale of f , i.e.

f ∗ = [f ] f. (2.3)

For example, [k] = 1/l∗, cf. (2.1). For many dimensional quantities, no dimensionless
counterpart is ever defined, as e.g. for those on the right-hand side of (2.2). Nonetheless,
to avoid confusion, they still carry an asterisk. Other quantities may be defined as
genuinely dimensionless, as e.g. the numbers ε and M in (2.2). For these, the paradigm
(2.3) is not applicable.

The following notations are introduced: t (time), r (position vector), y (for any
given point in space, the normal distance to the boundary), ∇ (gradient operator), v

(velocity field in the main bulk), V (velocity field in the Stokes layer), p (pressure
perturbation, upon the background value, in the main bulk), P (pressure perturbation
in the Stokes layer), σ τs (tangential stress on the boundary). In addition, R, N and
T are the density, the dynamic-viscosity and the temperature perturbations (upon
the corresponding background values). These latter quantities are considered only in
the Stokes layer. In certain examples treated in the present paper, the net viscous
torque Γ acting on a body and the angular velocity of rotation Ω are considered,
and the velocity potential ϕ and the axisymmetric stream function ψ are introduced.
The scales used are

[t] = 1/ω∗, [r] = [y] = l∗, [∇] = 1/l∗, [v] = [V ] = U ∗, (2.4)

[p] = [P] = ρ∗ω∗l∗U ∗, [R] = ρ∗ω∗l∗U ∗/c∗2, [N] = η∗ω∗l∗U ∗/c∗2, (2.5)

[T] =

(
∂T ∗

∂P ∗

)
S∗
[P] =

T ∗β∗

c∗
p ρ∗ [P] =

T ∗β∗ω∗l∗U ∗

c∗
p

, (2.6)

[σ τs] = [p]/M = ρ∗ω∗l∗U ∗/M, [Γ ] = [σ τs] l∗3 = ρ∗ω∗l∗4U ∗/M, (2.7)

[Ω] = U ∗/l∗, [ϕ] = U ∗l∗, [ψ] = U ∗l∗2, (2.8)

where the quantities not yet defined are the following: ρ∗ (density of the fluid), P ∗

(pressure), η∗ = ρ∗ν∗ (dynamic viscosity), T ∗ (absolute temperature), c∗
p (specific heat
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at constant pressure), S∗ (entropy) and β∗ (thermal expansion coefficient),

β∗ = − 1

ρ∗

(
∂ρ∗

∂T ∗

)
P ∗

. (2.9)

Here the thermodynamic properties and the viscosity are taken for the unperturbed
(background) state of the fluid.

2.3. Unsteady/steady parts and other basic conventions

Any relevant flow characteristic f (e.g. the velocity field) is represented as a sum of
the unsteady and the steady parts

f = f (u)(t) + 〈f 〉. (2.10)

Here f (u) is the unsteady (fluctuating, oscillatory) part of f , with the superscript ‘(u)’
referring to ‘unsteady’. Further, 〈· · ·〉 denotes the time average (at a given spatial point
for the field quantities), and 〈f 〉 is the steady part. Furthermore, the steady part is
rescaled with the small parameter ε as

〈f 〉 = ε f (s). (2.11)

For most steady quantities studied in the present paper, one has 〈f 〉 = O(ε) indeed,
so that f (s) = O(1), which justifies the rescaling (2.11). In any event, the steady part is
always assumed to be small enough here, so that the problem governing the unsteady
part can be linearized just around the unperturbed state of the fluid (to leading order).
Whenever a quantity with the superscript ‘(s)’ is encountered, it is understood in the
sense of (2.11). The superscript ‘(s)’ refers to ‘steady’. It is the steady part that is the
primary focus of the present paper.

For the unsteady part, we have

f (u) = Re
{
f (u1)eit

}
(2.12)

to leading order, where Re{· · ·} denotes the real part of the expression (Im{· · ·}
will correspond to the imaginary part). Whenever the superscript ‘(u1)’ is used, it
refers to the corresponding complex amplitude, just as f (u1) in (2.12). Higher-order
harmonics (double, triple frequency, etc., with the complex amplitudes f (u2), f (u3), . . .)
are generated due to nonlinearity. However, they are asymptotically small, and they
will not be considered in the framework of the present paper. Hereafter, the complex
conjugate is denoted by an overbar, e.g.

f (u1). (2.13)

In the notations introduced, equations satisfied by the primary oscillatory flow (due
to the acoustic wave) in the main bulk can be written as

k2 i p(u1) + ∇ · v(u1) = 0, i v(u1) = −∇p(u1), (2.14)

v(u1) · n = 0 at the surface. (2.15)

Here n is the unit vector normal to the boundary (and pointing towards the fluid).
For any spatial point, if y is the normal distance to the surface and Qs is the

surface point at the base of the normal emitted from this spatial point to the surface,
the position vector can be represented as

r = r s(Qs) + y n(Qs), (2.16)
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where r s is the position vector for the surface points. Now if a coordinate system {ξ, η}
is introduced on the surface, so that Qs = {ξ, η}, then (2.16) defines a curvilinear
coordinate system {ξ, η, y} in space.

For the purpose of using the boundary-layer approximation in the Stokes layer, it
is convenient to decompose the gradient operator and a typical vector field a into the
tangential and the normal components. We write

∇τ = ∇ − n n · ∇,
∂

∂y
= n · ∇, (2.17)

aτ = a − n n · a, an = n · a, (2.18)

with the subscripts ‘τ ’ and ‘n’ referring to the tangential and the normal components,
respectively. At each spatial point, the vector n is the same as at the base of the
normal from this point to the surface

∂n
∂y

= 0. (2.19)

Hereinafter, the subscript ‘s’ will be used to indicate that a given quantity is
evaluated at or belongs to the surface (boundary). For instance,

∇τs ≡ ∇τ |surface, v(u1)
τs ≡ v(u1)

τ

∣∣
surface

, p(u1)
s ≡ p(u1)

∣∣
surface

. (2.20)

In the Stokes layer, the normal coordinate y is of the order O(M−1). Therefore, it
is convenient to rescale it as

Y = y M, (2.21)

so that Y = O(1).
At the same time, for the velocity field V in the Stokes layer we expect Vn = O(M−1),

whereas Vτ = O(1). Thus, the normal velocity component is similarly rescaled as

VY = Vn M, (2.22)

so that VY = O(1).

2.4. Leading-order boundary-layer equations in the Stokes layer

When considering the flow field in the Stokes layer, the boundary-layer approximation
is applicable. For the continuity, tangential and normal momentum equations, we have
(see Rosenhead 1963, pp. 411–415)

k2 ∂R
∂t

+ ∇τs · Vτ +
∂VY

∂Y
+ ε k2

(
∇τs · RVτ +

∂RVY

∂Y

)
= 0, (2.23)

(1 + ε k2R)

(
∂Vτ

∂t
+ ε[Vτ · ∇τs Vτ ]τ + ε VY

∂Vτ

∂Y

)
= −∇τsP +

∂2Vτ

∂Y 2
+ ε k2 ∂

∂Y

(
N∂Vτ

∂Y

)
,

(2.24)

0 =
∂P
∂Y

. (2.25)

Here [· · ·]τ denotes the tangential component of the corresponding term. The
difference between ∇τ and ∇τs is negligible to leading order.
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2.5. Primary oscillatory flow in the Stokes layer – part 1

The unsteady part satisfies linearized versions of (2.23)–(2.25). In terms of the complex
amplitudes (2.12), we have

i k2R(u1) + ∇τs · V (u1)
τ +

∂V
(u1)
Y

∂Y
= 0, (2.26)

i V (u1)
τ = −∇τsP(u1) +

∂2V (u1)
τ

∂Y 2
, (2.27)

0 =
∂P(u1)

∂Y
. (2.28)

The no-slip and the non-penetration conditions at the surface are

V (u1)
τ = 0, V

(u1)
Y = 0 at Y = 0, (2.29)

and the conditions of matching with the flow field in the main bulk (presumed to be
known here) are

V (u1)
τ → v(u1)

τs , P(u1) → p(u1)
s as Y → ∞, (2.30)

where the use of the subscript ‘s’ (see § 2.3) should be noted. Here

i v(u1)
τs = −∇τsp

(u1)
s (2.31)

in view of (2.14).
The solution of (2.27)–(2.30) for the pressure and the tangential velocity is

P(u1) = p(u1)
s , (2.32)

V (u1)
τ = v(u1)

τs {1 − e−
√

iY }, (2.33)

where
√

i = (1 + i)/
√

2. The solution for the density and viscosity perturbations and
the normal velocity will be provided later, after considering the constitutive relations
for the fluid. A noteworthy feature of the tangential velocity field (2.33) here is that
it is surface-potential (representable as ∇τs applied to a scalar function), as evident
from (2.31).

2.6. Steady formulation in the Stokes layer

In accordance with the scaling (2.11), we write

〈Vτ 〉 = ε V (s)
τ , 〈P〉 = ε P(s). (2.34)

The leading-order result of applying 〈· · ·〉 to (2.24) is

k2

〈
R(u) ∂V (u)

τ

∂t

〉
+

1

2
∇τs

〈
V (u)

τ · V (u)
τ

〉
+

〈
V

(u)
Y

∂V (u)
τ

∂Y

〉

= −∇τsP(s) +
∂2V (s)

τ

∂Y 2
+ k2 ∂

∂Y

〈
N(u) ∂V (u)

τ

∂Y

〉
. (2.35)

The second term on the right-hand side has been rewritten using the property

[aτ · ∇τ aτ ]τ = 1
2
∇τ (aτ · aτ ) (2.36)

of a surface-potential vector field aτ (see the Appendix), which is applicable here in
view of (2.33) and (2.31).
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The first term in (2.35) can be rearranged in a different way. We write

k2

〈
R(u) ∂V (u)

τ

∂t

〉
= −k2

〈
V (u)

τ

∂R(u)

∂t

〉
=

〈
V (u)

τ ∇τs · V (u)
τ

〉
+

〈
V (u)

τ

∂V
(u)
Y

∂Y

〉
, (2.37)

where the second equality follows from the linearized version of the continuity
equation (2.23). Thus, (2.35) can be rewritten as

1

2
∇τs

〈
V (u)

τ · V (u)
τ

〉
+

〈
V (u)

τ ∇τs · V (u)
τ

〉
+

∂

∂Y

〈
V

(u)
Y V (u)

τ

〉
= −∇τsP(s) +

∂2V (s)
τ

∂Y 2
+ k2 ∂

∂Y

〈
N(u) ∂V (u)

τ

∂Y

〉
. (2.38)

In terms of the complex amplitudes (2.12), (2.38) becomes

1

4
∇τs

(
V (u1)

τ · V (u1)
τ

)
+

1

2
Re

{
V (u1)

τ ∇τs · V (u1)
τ

}
+

1

2

∂

∂Y
Re

{
V

(u1)
Y V (u1)

τ

}

= −∇τsP(s) +
∂2V (s)

τ

∂Y 2
+

1

2
k2 ∂

∂Y
Re

{
N(u1) ∂V (u1)

τ

∂Y

}
, (2.39)

where the overbar denotes the complex conjugate, as mentioned earlier.
From (2.25), one has

∂P(s)

∂Y
= 0. (2.40)

For a motionless boundary, a no-slip condition is imposed

V (s)
τ = 0 at Y = 0, (2.41)

whereas at Y → ∞, the minimal possible singularity in the solution for V (s)
τ is required,

which in particular will prove sufficient for determining the steady pressure P(s).
In principle, for certain applications it may be useful to allow for a non-zero steady

velocity at the boundary, even though still assuming it to be motionless with regard
to the primary oscillatory flow as specified in (2.29). Then, instead of (2.41), we have

V (s)
τ = u(s)

τ at Y = 0, (2.42)

where u(s)
τ is regarded as being given within the problem (2.39), (2.40) and (2.42).

From the form of (2.39), it is evident that the modification from (2.41) to (2.42) will
merely result in a trivial addition of a constant (across the layer) term u(s)

τ into the
solution for V (s)

τ , and otherwise does not change the analysis.
The dimensionless velocity u(s)

τ is represented in (2.42) in the same scale as V (s)
τ (or

v(s)
τ for that matter). However, as an extraneous factor, it need not be O(1) in this

scaling in the same way as the intrinsic inner streaming is. One just needs to assume
that u(s)

τ is not too large, namely u(s)
τ = o(ε−2), so that the present treatment of the

primary oscillatory flow is still valid for leading order. An example when u(s)
τ = O(ε−2)

is considered by Rednikov et al. (2003).
As an example of u(s)

τ �= 0, let us mention a rigid sphere steadily rotating under
the action of the acoustic field (Rednikov et al. 2003). Alternatively, if the boundary
in question is a gas–liquid interface (with the present consideration pertaining to the
gas phase), there may develop a significant acoustically-induced steady circulation in
the liquid phase (Zhao et al. 1999a; Rednikov et al. 2003). We note that, due to the
extreme gas-to-liquid property ratios, a gas–liquid interface may still behave as a rigid
body with respect to primary oscillations (the acoustic wave) originating in the gas,
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with (2.29) holding. But with respect to a steady motion, its ‘liquidity’ may become
apparent.

2.7. Linearized constitutive relations

We write

dρ∗ =

(
∂ρ∗

∂P ∗

)
S∗

dP ∗ +

(
∂ρ∗

∂S∗

)
P ∗

dS∗, (2.43)

(
∂ρ∗

∂P ∗

)
S∗

=
1

c∗2
,

(
∂ρ∗

∂S∗

)
P ∗

=

(
∂ρ∗

∂T ∗

)
P ∗

(
∂T ∗

∂S∗

)
P ∗

= −ρ∗β∗T ∗

c∗
p

, (2.44)

dS∗ = −β∗

ρ∗ dP ∗ +
c∗
p

T ∗ dT ∗. (2.45)

Thus,

dρ∗ =
1

c∗2
dP ∗ − β∗2T ∗

c∗
p

(
c∗
pρ∗

β∗T ∗ dT ∗ − dP ∗
)

. (2.46)

Similarly, for the dynamic viscosity, we have

dη∗ =

(
∂η∗

∂P ∗

)
S∗

dP ∗ +

(
∂η∗

∂T ∗

)
P ∗

β∗T ∗

c∗
p ρ∗

(
c∗
pρ∗

β∗T ∗ dT ∗ − dP ∗
)

, (2.47)

where (
∂η∗

∂P ∗

)
S∗

=

(
∂η∗

∂P ∗

)
T ∗

+

(
∂η∗

∂T ∗

)
P ∗

T ∗β∗

c∗
p ρ∗ . (2.48)

Now using the scales and definitions introduced in § 2.2, (2.46) and (2.47) give rise
to the following linearized dimensionless constitutive relations:

R = P − RT (T − P), N = NSP − NT (T − P), (2.49)

with the dimensionless numbers defined as

RT =
T ∗β∗2c∗2

c∗
p

= γ − 1, NT = −
(

∂η∗

∂T ∗

)
P ∗

T ∗β∗c∗2

c∗
pη∗ = −

(
∂η∗

∂T ∗

)
P ∗

γ − 1

η∗β∗ ,

NS =

(
∂η∗

∂P ∗

)
S∗

ρ∗ c∗2

η∗ =

(
∂η∗

∂P ∗

)
T ∗

ρ∗ c∗2

η∗ − NT ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.50)

where γ = c∗
p/c∗

v , while c∗
p and c∗

v are the specific heats at constant pressure and
at constant volume, respectively. All the quantities in (2.50) are evaluated in the
unperturbed (background) state of the fluid.

The first and the second terms on the right-hand side of each expression (2.49)
correspond to the isentropic and the non-isentropic contributions, respectively. For
liquids, (γ − 1) is typically small and so the contribution due to RT must most
definitely be negligible. Yet the one due to NT may still be noticeable (cf. § 3.1) in
spite of (γ − 1) � 1.

2.8. Temperature, density and viscosity fluctuations in the Stokes layer

In dimensionless form, a linearized boundary-layer version of the heat equation
governing the unsteady part of the temperature field in the Stokes layer can be
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written as
∂T(u)

∂t
− ∂P(u)

∂t
=

1

Pr

∂2T(u)

∂Y 2
, (2.51)

where

Pr =
ν∗

χ∗ (2.52)

is the Prandtl number, ν∗ is the kinematic viscosity and χ∗ is the thermal diffusivity.
In terms of the complex amplitudes (2.12), the equation becomes

i(T(u1) − P(u1)) =
1

Pr

∂2T(u1)

∂Y 2
. (2.53)

When the fluid under consideration is a gas (low heat capacity and conductivity),
it is reasonable to assume that the temperature fluctuation vanishes at the boundary,
i.e.

T(u1) = 0 at Y = 0. (2.54)

For liquids, this may not be the case. Nonetheless, here we just go through with
(2.54), and on a later occasion (§ 3.1) indicate the change in the result in the case of
comparable thermal properties of the fluid and the material on the other side of the
boundary.

At the outer edge of the Stokes layer, the temperature amplitude approaches its
value in the ideal acoustic wave

T(u1) → p(u1)
s as Y → ∞. (2.55)

With (2.32) taken into account, the solution of (2.53)–(2.55) is

T(u1) = p(u1)
s

{
1 − e−

√
iPr1/2Y

}
. (2.56)

Now, from (2.32), (2.49) and (2.56), we obtain

R(u1) = p(u1)
s

{
1 + RT e−

√
iPr1/2Y

}
, (2.57)

N(u1) = p(u1)
s

{
NS + NT e−

√
iPr1/2Y

}
. (2.58)

2.9. Primary oscillatory flow in the Stokes layer – part 2

Finally, we are in a position to complete the solution for the normal velocity. Solving
(2.26) with (2.29), (2.33) and (2.57) taken into account, we obtain

V
(u1)
Y = −∇τs · v(u1)

τs [Y + i
√

i{1 − e−
√

i Y }]

− ik2p(u1)
s

[
Y − i

√
i

RT

Pr1/2

{
1 − e−

√
iPr1/2 Y

}]
. (2.59)

2.10. Steady (radiation) pressure and inner streaming

Now we are set for the calculation of the steady flow component. First, from (2.40), it
follows that P(s) �= P(s)(Y ). From the matching requirement, it is clear that p(s)

s = P(s).
We proceed from the time-averaged tangential momentum equation in one of the
equivalent forms (2.35), (2.38) or (2.39). A result for P(s) can formally be obtained by
requiring the minimal possible singularity in V (s)

τ as Y → ∞. Thus, requiring no terms
O(Y 2) be present in the expression for V (s)

τ leads to

k2

〈
p(u)

s

∂v(u)
τs

∂t

〉
+

1

2
∇τs

〈
v(u)

τs · v(u)
τs

〉
= −∇τsP(s), (2.60)
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which follows from (2.35), as well as from the fact that V (u)
τ → v(u)

τs and R(u) → p(u)
s as

Y → ∞ (cf. (2.33) and (2.57)). As ∂v(u)
τs /∂t = −∇τsp

(u)
s (cf. (2.31)), we obtain

P(s) = p(s)
s = − 1

2

〈
v(u)

τs · v(u)
τs

〉
+ 1

2
k2

〈
p(u)2

s

〉
= − 1

4
v(u1)

τs · v(u1)
τs + 1

4
k2p(u1)

s p
(u1)
s (2.61)

up to a constant, which is a result for the steady pressure (or, as it is often called,
‘radiation pressure’) distribution at the boundary.

With (2.33), (2.57)–(2.59) and (2.61), the solution of (2.39), (2.42) is

V (s)
τ =

[
1

4
∇τs

(
v(u1)

τs · v(u1)
τs

)
+

1

2
v

(u1)
τs ∇τs · v(u1)

τs

] [
ie−

√
iY − ie−

√
−iY +

1

2
e−

√
2 Y − 1

2

]

− 1

2
v

(u1)
τs ∇τs · v(u1)

τs

[
ie−

√
iY +

1 + i√
2

Y e−
√

−iY +(i − 1) e−
√

−iY +
1 − i

2
e−

√
2Y +

1 − 3i

2

]

− 1

2
ik2 p(u1)

s v
(u1)
τs

[
−i

RT

Pr
e−

√
i Pr1/2 Y +

1 + i√
2

Y e−
√

−iY

+

(
i +

RT

Pr1/2
+ iNS

)
e−

√
−i Y +

(
i

RT

Pr1/2
+ NT

)
Pr1/2 + i

1 + Pr
e−(

√
iPr1/2+

√
−i)Y

− i − i NS − (RT + NT )
Pr1/2

1 + Pr
+ i

(
RT

Pr
− NT

)
1

1 + Pr

]
+ d(s)

τ Y + u(s)
τ . (2.62)

Here
√

±i = (1 ± i)/
√

2. On the right-hand side of (2.62), only the real part is meant.
The quantity d(s)

τ is an arbitrary steady tangential surface vector field (independent of

Y ). But for the last two terms (d(s)
τ Y + u(s)

τ ), (2.62) describes what can be referred to

as the intrinsic inner streaming. As for d(s)
τ and u(s)

τ , if non-zero, they owe themselves
to extrinsic influences, which in principle may be either eventually related to outer
streaming (cf. § 2.11) or rather imposed by unrelated factors (external flows, motion
of the boundary).

2.11. Effective slip velocity and time-averaged tangential stress

In accordance with (2.11), we have

〈v〉 = ε v(s), (2.63)

for the steady velocity field in the main bulk of the fluid (the outer steaming). The
condition of matching with the steady tangential velocity field (2.62) in the Stokes
layer yields

v(s)
τs = u(s)

τ + �v(s)
τs , (2.64)

and (recall (2.21))

d(s)
τ =

1

M

∂v(s)
τ

∂y

∣∣∣∣
s

, (2.65)

where, as usual, the subscript ‘s’ refers to the evaluation at the boundary itself. The
quantity �v(s)

τs is the difference between the values of the intrinsic part of (2.62) at
Y → ∞ and Y = 0. Namely,

�v(s)
τs = −1

8
∇τs

(
v(u1)

τs · v(u1)
τs

)
− 1

4
Re

{
(2 − 3i)v(u1)

τs ∇τs · v(u1)
τs

}
+

1

2
k2Re

{
ip(u1)

s v
(u1)
τs

×
[
i + iNS + (RT + NT )

Pr1/2

1 + Pr
+ i

(
NT − RT

Pr

)
1

1 + Pr

]}
. (2.66)
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It is referred to as the effective slip velocity in accordance with its appearance in
(2.64), which should be regarded as a boundary condition for the outer steady flow.
For a motionless rigid boundary, when u(s)

τ = 0, �v(s)
τs may just be the only factor to

cause a steady flow in the main bulk (by means of the boundary condition (2.64)).
When it is so, we have a pure form of the type II streaming (cf. § 1).

The appearance of an asymptotically large parameter M in (2.65) can mean one
of the following. In the case when the outer steady streaming is of the same order
of magnitude as the intrinsic inner streaming (that is, if v(s) = O(1), and incidentally
such is the case when the outer streaming is caused exclusively by the effective slip
velocity), it should be d(s)

τ � 1 and the term with d(s)
τ should be neglected in (2.62).

On the other hand, should it happen that d(s)
τ = O(1), this would necessarily imply

v(s) � 1 (〈v〉 � ε). In other words, the outer steady flow is asymptotically much more
intense than the intrinsic inner streaming. Such an outer flow cannot be caused by
just the effective slip velocity. An example where d(s)

τ = O(1) is actually considered by
Rednikov et al. (2003). In that example, a steady flow with v(s) = O(M) � 1 occurs due
to the acoustically-induced rotation of a sphere, yielding formally u(s)

τ = O(M) � 1
in the present terms. See also the case of a sphere free to rotate in § 3.4.

We note that the normal velocity associated with the intrinsic inner streaming is
asymptotically much smaller than the tangential one (cf. (2.22)). Thus, with the same
precision as the result (2.64) is written, any jump in the normal velocity across the
Stokes layer is negligible, and the counterpart of (2.64) for the normal velocity is
merely

v(s)
ns = u(s)

n , (2.67)

where u(s)
n is the steady normal velocity of the boundary in the same scaling as u(s)

τ .
An important characteristic is the steady tangential stress exerted upon the

boundary due to the intrinsic inner streaming. Here it is referred to as the induced
tangential stress. It is given by

�σ (s)
τs =

∂V (s)
τ

∂Y

∣∣∣∣∣
Y=0, d (s)

τ ≡0

+

〈
N(u) ∂V (u)

τ

∂Y

〉 ∣∣∣∣∣
Y=0

, (2.68)

where 〈
N(u) ∂V (u)

τ

∂Y

〉
=

1

2
Re

{
N(u1) ∂V (u1)

τ

∂Y

}
. (2.69)

Taking (2.33), (2.58) and (2.62) into account, (2.68) becomes

�σ (s)
τs =

1

8

√
2 ∇τs

(
v(u1)

τs · v(u1)
τs

)
+

1

4

√
2 Re

{
iv(u1)

τs ∇τs · v(u1)
τs

}
+

1

4

√
2 k2 RT

Pr1/2
Re

{
(1 + i) p(u1)

s v
(u1)
τs

}
. (2.70)

Let us also mention that (2.70) can be obtained directly from (2.39) by integrating the
latter from Y = 0 to Y = ∞, using (2.61) and assuming that ∂V (s)

τ /∂Y → 0 as Y → ∞.

2.12. Discussion, practical summary and the incompressible case

The effective slip velocity �v(s)
τs and the induced tangential stress �σ (s)

τs constitute
the most important information needed about the inner streaming at a motionless
boundary. Correspondingly, (2.66) and (2.70) with dimensionless numbers defined in
(2.1) and (2.50) are the principal results of the present section, where the steady
characteristics (superscript ‘(s)’, understood in the sense (2.11)) are expressed via the
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complex amplitudes (superscript ‘(u1)’, understood in the sense (2.12), and with the
overbar denoting the complex conjugate) of the ideal time-harmonic acoustic field
(here in terms of the velocity v and pressure p) evaluated at the boundary in question
(subscript ‘s’). In fact, in view of (2.31), the results (2.66) and (2.70) can be expressed
by means of the distribution of a single scalar complex-valued quantity (e.g. p(u1)

s )
along the boundary. For the sake of a practical summary, let us also recall that the
double subscript ‘τs’ refers to tangential vectors on the boundary (e.g. �v(s)

τs and �σ (s)
τs

are not defined beyond the boundary), or else to tangential projections of three-
dimensional vectors (including the gradient operator ∇) evaluated at the boundary
(e.g. v(u1) and ∇ yielding v(u1)

τs and ∇τs , respectively). The symbol ‘�’ is used within
the notations here to convey the idea of an effective jump, due to the Stokes-layer
sheet, in the corresponding quantities as observed on the scale of the main bulk of
the fluid. This is clearly seen, e.g. in (2.64), where �v(s)

τs is the difference between the
tangential component of the outer-streaming velocity field at the boundary and the
steady tangential velocity of the boundary itself. Let us remember though that, within
the same order of approximation, there is no such a jump for the normal velocity
(cf. (2.67)), which can symbolically be expressed as �v(s)

ns = 0. We also note that the
dimensional values of the effective slip velocity and the induced tangential stress are
(see conventions in § § 2.2 and 2.3)

〈�v∗
τs〉 = εU ∗�v(s)

τs , 〈�σ ∗
τs〉 =

ρ∗U ∗2

M
�σ (s)

τs , (2.71)

where we recall that all length and velocity variables are made dimensionless using
the scales l∗ and U ∗, respectively, that are left free/unspecified in the developments,
whereas the pressure is non-dimensionalized with the scale ρ∗ω∗U ∗l∗. The key
dimensionless parameters ε and M are defined in (2.2).

The terms O(k2) in (2.66) and (2.70) are genuinely related to compressibility and
viscosity variability. They come from density and viscosity fluctuations in the Stokes
layer. The incompressible limit corresponds to k → 0, and the effect of viscosity
variability also vanishes in this limit. Therefore, in the incompressible case, we have

�v(s)
τs = − 1

8
∇τs

(
v(u1)

τs · v(u1)
τs

)
− 1

4
Re

{
(2 − 3i)v(u1)

τs ∇τs · v(u1)
τs

}
, (2.72)

�σ (s)
τs = 1

8

√
2∇τs

(
v(u1)

τs · v(u1)
τs

)
+ 1

4

√
2Re

{
iv(u1)

τs ∇τs · v(u1)
τs

}
. (2.73)

Thus, within the general results (2.66) and (2.70), one can distinguish an
incompressible contribution, as well as contributions due to compressibility and
viscosity variability. Furthermore, each of the latter two consists of the adiabatic and
the non-adiabatic parts. Thus, five contributions in total can be seen in the result for
the effective slip velocity (2.66). Apart from the incompressible contribution, there
are the ones associated with the adiabatic effects of compressibility (the term
containing no dimensionless number within the square brackets) and viscosity
variability (the term with NS), as well as with the non-adiabatic effects of
compressibility (the terms with RT ) and viscosity variability (the terms with NT ).
Within the result for the induced tangential stress (2.70), the only non-vanishing
contribution, apart from the incompressible one, is the one due to the non-adiabatic
effect of compressibility.

2.13. Component-wise presentation and planar/axisymmetric cases

To write (2.66) and (2.70) in a component form, an orthogonal curvilinear coordinate
system {ξ, η} is introduced on the boundary. Let eξ and eη be the corresponding unit
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vectors (eξ · eη = 0), while Hξ and Hη are the corresponding metric coefficients. Then

v(u1)
τs = v

(u1)
ξs eξ + v(u1)

ηs eη, �v(s)
τs = �v

(s)
ξs eξ + �v(s)

ηs eη, �σ (s)
τs = �σ

(s)
ξs eξ + �σ (s)

ηs eη,

∇τs =
eξ

Hξ

∂

∂ξ
+

eη

Hη

∂

∂η
, ∇τs · v(u1)

τs =
1

HξHη

∂

∂ξ

(
Hηv

(u1)
ξs

)
+

1

HξHη

∂

∂η

(
Hξv

(u1)
ηs

)
.

⎫⎪⎬
⎪⎭

(2.74)

Now if (2.74) is used in (2.66) and (2.70), and the results are projected in turn on eξ

and eη, we obtain expressions for the components �v
(s)
ξs , �v(s)

ηs , �σ
(s)
ξs and �σ (s)

ηs in terms

of the complex amplitudes v
(u1)
ξs , v(u1)

ηs and p(u1)
s . This is the sought component-wise

presentation.
Important particular cases are the planar and the axisymmetric ones, and we next

accommodate the results (2.66) and (2.70) to these two cases. Let ξ be the significant
coordinate. Then no scalar property depends on η and the corresponding vector
components are equal to zero. We have Hη = 1 in the planar case, and Hη = � in the
axisymmetric one, where � is the dimensionless distance to the symmetry axis (the
cylindrical radius). Using all this in (2.74) and then in (2.66) and (2.70), we obtain

�v
(s)
ξs = − 3

8Hξ

∂

∂ξ

∣∣v(u1)
ξs

∣∣2 +
3

4Hξ

Re

{
iv(u1)

ξs

∂v
(u1)
ξs

∂ξ

}
− n

2Hξ�

∂�

∂ξ

∣∣v(u1)
ξs

∣∣2

+
1

2
k2Re

{
ip(u1)

s v
(u1)
ξs

[
i + iNS + (RT + NT )

Pr1/2

1 + Pr
+ i

(
NT − RT

Pr

)
1

1 + Pr

]}
(2.75)

with

n =

{
0, planar case,
1, axisymmetric case,

(2.76)

and

�σ
(s)
ξs =

1

4
√

2Hξ

∂

∂ξ

∣∣v(u1)
ξs

∣∣2 +
1

2
√

2Hξ

Re

{
iv(u1)

ξs

∂

∂ξ
v

(u1)
ξs

}

+
1

4

√
2k2 RT

Pr1/2
Re

{
(1 + i)p(u1)

s v
(u1)
ξs

}
(2.77)

for both cases.

3. Examples
3.1. Standing wave grazing a parallel wall: estimation of the non-adiabatic effects

This is a classical problem of acoustic streaming. We have a one-dimensional acoustic
standing wave along the z-axis, and a flat rigid wall parallel to it. The primary
oscillatory flow is given by

ϕ(u1) =
1

k
sin kz, (3.1)

in terms of the complex amplitude of the velocity potential, v(u1) = ∇ϕ(u1).
Here the velocity amplitude of the wave is chosen as the velocity scale U ∗ (cf. § 2.2).

Without loss of generality, the length scale l∗ can be specified such that e.g. k ≡ 1,
or k ≡ 2π. However, we prefer to keep ‘k’ in the expressions, and accordingly we let
l∗ be a free parameter. In order to calculate the effective slip velocity at the wall,
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(2.75) is used. With (3.1), the quantities to be substituted into (2.75) are obviously the
following:

n = 0, ξ ≡ z, Hz = 1, v(u1)
zs = cos kz, p(u1)

s = −iϕu1
s = −ik−1 sin kz. (3.2)

One finally obtains

�v(s)
zs =

(
3
8

+ 1
4
BT

)
k sin 2kz (3.3)

with

BT ≡ (RT + NT )
Pr1/2

1 + Pr
. (3.4)

Apart from the classical factor 3/8, we find an additional contribution due to the
non-adiabatic effects of compressibility and variable viscosity. Such a contribution is
often ignored in the literature. Interestingly enough, in the case when the leading-order
primary oscillatory flow is all in phase (as in the standing wave here), both effects
enter the result for the effective slip velocity by means of one single combination
(3.4). As seen from (2.66), this is a general feature, which is not limited to the present
geometry of the standing wave. On the other hand, it is also a general feature in such
circumstances that the adiabatic effects of compressibility and variable viscosity do
not contribute at all. This explains why the correct factor 3/8 (in terms of (3.3)) can
be obtained by formally treating the Stokes layer as incompressible (e.g. as done in
the book of Landau & Lifshitz 1988).

For gases, the coefficient of viscosity typically grows with temperature. Therefore,
as seen from (2.50) and (3.4), the effect of variable viscosity acts in the opposite
way to the one of compressibility, thus reducing the overall non-adiabatic effect
in the effective slip velocity (3.3) rather than reinforcing it. For estimation, we take
Pr1/2/(1+Pr) ≈ 1/2 for gases. For monatomic ideal gases, we have RT = γ −1 = 2/3.
For diatomic gases, RT = 2/5. Besides, if the dynamic viscosity as a function of the
absolute temperature is η∗ ∼

√
T ∗, and β∗ = 1/T ∗ as for ideal gases, then (see (2.50))

NT = −(1/2)RT . Finally, it turns out that BT ≈ 1/6 for monatomic ideal gases, and
BT ≈ 1/10 for diatomic ideal gases. Within (3.3), this amounts to +11 % and +7 %
alterations upon the factor 3/8, respectively, where the positive sign indicates that the
value is increased. Thus, the overall effect is not large, but still noticeable.

In the case of liquids, the value of RT = γ − 1 is generally small. Thus, the
compressibility effect in (3.3) is typically negligible for liquids. However, it is not that
simple with the viscosity variability. Indeed, the dynamic viscosity of liquids may be
rather sensitive to temperature, much more so than the density is, so that the factor(

∂η∗

∂T ∗

)
P ∗

1

η∗β∗ (3.5)

may be quite large to offset a small factor (γ − 1) within NT (see (2.50)). Let
us estimate NT according to (2.50). For water at 20 ◦C, we have (see e.g. Lide
2003) η∗ = 10−3 kg m−1 s−1, (∂η∗/∂T ∗)P ∗ = − 0.25 × 10−4 kg m−1 s−1 K−1, β∗ =0.21 ×
10−3 K−1, Pr = 7.0, T ∗ =293 K. For water at 30 ◦C, one has η∗ =0.8×10−3 kg m−1 s−1,
(∂η∗/∂T ∗)P ∗ = −0.17×10−4 kg m−1 s−1 K−1, β∗ = 0.30×10−3 K−1, Pr =5.4, T ∗ = 303 K.
Further, we just take c∗ = 1500 m s−1 and c∗

p = 4200 J kg−1, neglecting their difference
at the two temperatures considered. For 20 ◦C, one obtains NT = 0.82, BT = 0.27
(assuming that RT ≈ 0), and this amounts to a +18 % effect within (3.3). For
30 ◦C, the numbers are NT = 1.03, BT = 0.38 and +25 %. These turn out to be
rather significant contributions, and the result is somewhat surprising. Apparently,
for liquids, the values of NT and BT can substantially vary depending on the liquid
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and the conditions (such as the temperature). Even larger values can in principle
be expected for some other liquids, especially taking into account that the thermal
expansion coefficient β∗ for water happens to be lower than the typical value for
liquids. Note though that, concerning the derivation of § 2, it has been assumed that
the wall is much more heat-conducting than the fluid. This can be considered to be
a valid assumption for gases, but may not be so for liquids. Then, the expression for
BT (3.4) should be modified as

BT ≡ (RT + NT )
Pr1/2

1 + Pr

1

1 + δκδ
−1/2
χ

, (3.6)

where δκ and δχ are the fluid-to-wall ratios of heat conductivities and thermal
diffusivities, respectively. At δκ = 0, (3.4) is recovered. A finite value of δκδ

−1/2
χ leads to

a reduction of the overall effect. At δκ = ∞, the wall is insulating, and the non-adiabatic
contribution vanishes. In any case, we conclude that, for liquids, the non-adiabatic
effect of variable viscosity can potentially lead to a significant contribution into the
effective slip velocity (and consequently, the outer streaming induced by the latter).
This effect is always worth estimating when dealing with a particular situation at
hand.

Using (3.2) in (2.77), one obtains the following result for the induced tangential
stress:

�σ (s)
zs = −1

8

√
2

(
1 − RT

Pr1/2

)
k sin 2kz. (3.7)

The only non-adiabatic contribution here is due to compressibility, but not viscosity
variability. For liquids, the RT term is most certainly insignificant. For gases, however,
it can amount to a considerable contribution, much more so than within the effective
slip velocity. Indeed, taking for estimation Pr = 1, the effect is −67 % for monatomic
ideal gases, and −40 % for diatomic ideal gases. In view of a minus sign, the result
(3.7) is altered even more dramatically than it would be with the same values for a
plus sign.

3.2. Small rigid sphere at an arbitrary position within the standing wave

Now consider the same standing wave (3.1) and suppose that a small rigid sphere
is placed in its way. We will be concerned with the acoustic streaming owing to the
presence of the sphere. This can be, for instance, a model for the streaming around
a sphere levitated in an acoustic levitator. Here we assume that the sphere is at rest
and not engaged in oscillatory motion due to the acoustic wave. This means that
either the sphere is fixed or, if freely levitated, its inertia is high as compared with the
surrounding fluid (e.g. a solid particle in air). The length scale l∗ is now chosen to be
the sphere’s radius. We assume that the sphere is small as compared with the acoustic
wavelength, that is k � 1, and construct the solution as an expansion in terms of k

retaining a few first terms.
Let z = z0 be the location of the centre of the sphere. The velocity antinode

(pressure node) corresponds to sin kz0 = 0, while the velocity node (pressure antinode)
to cos kz0 = 0. The problem is axisymmetric. The consideration is carried out in the
spherical coordinates {r, θ} such that

z − z0 = r cos θ, (3.8)

while r = 1 corresponds to the surface of the sphere.
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The complex amplitude of the potential, ϕ(u1), satisfies the Helmholtz equation

(∇2 + k2)ϕ(u1) = 0 (3.9)

and the zero-normal-velocity condition at the surface of the sphere

∂ϕ(u1)

∂r
= 0 at r = 1. (3.10)

If we are interested in the first few terms of the solution in the region r = O(1), the
following boundary condition is applicable:

ϕ(u1) → k−1 sin kz0 + cos kz0r cos θ − 1
2
k sin kz0r

2 cos2 θ + O(k2) as r → ∞, (3.11)

with the right-hand side being (up to the order considered) merely an expansion of
(3.1) with k, where (3.8) is taken into account.

The solution of (3.9)–(3.11) is

ϕ(u1) = sin kz0

(
k−1 − 1

6
kr2 − k

3r

)
+ cos kz0

(
r +

1

2r2

)
cos θ

− 1

6
k sin kz0

(
r2 +

2

3r3

)
(3 cos2 θ − 1) + O(k2). (3.12)

Now the complex amplitudes of the tangential velocity and pressure at the surface
of the sphere are

v
(u1)
θs =

∂ϕ(u1)

∂θ

∣∣∣∣∣
r=1

= −3

2
cos kz0 sin θ +

5

3
k sin kz0 sin θ cos θ + O(k2),

p(u1)
s = −iϕ(u1)

∣∣
r=1

= −ik−1 sin kz0 + O(k0),

⎫⎪⎪⎬
⎪⎪⎭ (3.13)

and these are to be used in (2.75) together with

n = 1, ξ ≡ θ, Hθ = 1, � = sin θ, (3.14)

in order to calculate the effective slip velocity

�v
(s)
θs = − 45

16
cos2 kz0 sin θ cos θ + 5

8
k sin kz0 cos kz0 sin θ

(
13 cos2 θ − 3 − 6

5
BT

)
− 25

36
k2 sin2 kz0 sin θ cos θ

(
8 cos2 θ − 3 − 6

5
BT

)
+ O(k2 cos2 kz0; k3), (3.15)

where the definition (3.4) has been used.
In view of the axial symmetry, it is convenient to consider the outer steady streaming

in terms of the stream function

v(s)
r =

1

r2 sin θ

∂ψ (s)

∂θ
, v

(s)
θ = − 1

r sin θ

∂ψ (s)

∂r
. (3.16)

The surface boundary conditions are

ψ (s) = 0,
∂ψ (s)

∂r
= − sin θ�v

(s)
θs at r = 1. (3.17)

Since the streaming is expected to fade away far off the sphere,

ψ (s)/r2 → 0 as r → ∞. (3.18)

Here we limit ourselves to the case of small streaming Reynolds numbers,

εU ∗l∗/ν∗ = ε2M2 � 1. (3.19)
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We note that a similar large-Reynolds-number problem with the same kind of
distribution of the effective slip velocity is treated in Amin & Riley (1990). Then ψ (s)

satisfies the Stokes equation

E2E2ψ (s) = 0, E2 =
∂2

∂r2
+

sin2 θ

r2

∂2

∂θ2
, (3.20)

(see Happel & Brenner 1965, for the general solution of (3.20)). The solution of the
problem (3.17), (3.18), (3.20) with (3.15) taken into account is

ψ (s) =
45

32
cos2 kz0

(
1 − 1

r2

)
cos θ sin2 θ + k sin kz0 cos kz0

{
1

8
(1 + 3BT )

(
r − 1

r

)

− 13

16

(
1

r
− 1

r3

)
(5 cos2 θ − 1)

}
sin2 θ + k2 sin2 kz0

{(
25

168
− 5

12
BT

)(
1 − 1

r2

)

+
25

63

(
1

r2
− 1

r4

)
(7 cos2 θ − 3)

}
cos θ sin2 θ + O(k2 cos2 kz0; k3). (3.21)

There is a rationale for keeping the O(k2 sin2 kz0) term in (3.15) and (3.21) even
though the O(k2 cos2 kz0) term is neglected. Here we are not interested in corrections
as such, but rather in obtaining a solution uniformly valid for all positions of the
sphere in the standing wave. The term O(k2 sin2 kz0) is essential to this goal as the
leading-order one at the velocity node (at which cos kz0 = 0 and sin2 kz0 = 1), whereas
O(k2 cos2 kz0) is always just a correction. Thus, as written, (3.15) and (3.21) yield such
a uniformly valid result. (Note though that an acoustically levitated rigid sphere is
normally located below the velocity antinode, but above the halfway between the
antinode and the next lowest node. To bring it closer to the node, and in particular
at the node itself, the sphere needs to be forcefully positioned there.)

A few words concerning the decay of the outer streaming (3.21) far away from the
sphere (r → ∞). One can see that, in terms of the velocity field, it decays as O(r−2)
when the sphere is either at the velocity antinode or at the velocity node. On the other
hand, the decay is slower, O(r−1), for the intermediate positions of the sphere. The
latter is due to the so-called stokeslet term (cf. Happel & Brenner 1965), which signals
to a non-zero net force exerted by the streaming upon the sphere when displaced
from the antinode or the node. Note though that this is nothing more than just a
correction to the force, the leading-order term being actually due to the radiation
pressure (2.61).

With the substitutions

ψ (s)′ ≡ ψ (s)/(cos2 kz0 + k2 sin2 kz0), (3.22)

K ≡ −k tan kz0, (3.23)

(3.21) can be rewritten as

ψ (s)′ =
45

32

1

1 + K2

(
1 − 1

r2

)
cos θ sin2 θ +

K

1 + K2

{
−1

8
(1 + 3BT )

(
r − 1

r

)

+
13

16

(
1

r
− 1

r3

)
(5 cos2 θ − 1)

}
sin2 θ +

K2

1 + K2

{(
25

168
− 5

12
BT

)(
1 − 1

r2

)

+
25

63

(
1

r2
− 1

r4

)
(7 cos2 θ − 3)

}
cos θ sin2 θ, (3.24)
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(a) (b) (c)

Figure 1. Steady streaming from a small rigid sphere placed at various positions within a
plane acoustic standing wave (in the Stokes approximation and for BT = 0, see (3.24)). The
flow direction is indicated by arrows. (a) K = 0 (velocity antinode), (b) K = 0.3 (below the
antinode), (c) K = ∞ (velocity node).

uniformly to leading order. It is remarkable that the flow pattern (3.21) depends on
k and z0 by means of a single combination, K , introduced in (3.23). With the flow
intensity factored out with the help of (3.22), this is put into evidence by (3.24). The
flow pattern is shown in figure 1 for a number of K values: K = 0 (the sphere at the
velocity antinode), K = 0.3 (the sphere displaced below the antinode, but still above
the node; that is supposing that the z-axis points vertically upwards), and K = ∞
(the sphere at the velocity node). It has been plotted for BT = 0, although for the
cases shown it remains more or less the same for the values of BT typical for gases
(see § 3.1). The first diagram is just the classical result for the steady streaming around
a rigid sphere in a uniformly and uniaxially oscillating incompressible fluid medium
(Riley 1966). The flow pattern is not only axisymmetric, but also symmetric with
respect to the equatorial plane. The second diagram is similar to one of those of Lee
& Wang (1990), except that they had the sphere displaced above the antinode (K < 0
in our terms), so that their flow pattern appears vertically inverted as compared with
ours. At K = ∞, when the sphere is at the velocity node, the results of Zhao et al.
(1999b) are recovered. As seen from figure 1(c), the velocity field once again becomes
symmetric with respect to the equatorial plane when at the velocity node. Similar
diagrams have been obtained by Gopinath & Trinh (2000). Note though that, in
real acoustic levitators, such a localized streaming from a particle as considered here
(‘microstreaming’) may get distorted by the streaming on a scale of the levitator as
a whole, existing even in the absence of the particle, as shown experimentally by
Trinh & Robey (1994). For a simple model accounting for this effect, see Rednikov &
Riley (2002).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

45
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004532


Acoustic/steady streaming from a boundary 447

There are a few more comments on the mathematical nature of the result (3.24).
First of all, we underscore once again that (3.24) can be viewed as a leading-order
(for k � 1) result uniformly valid for all possible positions of the sphere. Even though
(3.24) is valid only for k � 1, any value of K is admissible there. As seen from (3.23),
however small k might be, one can always position the sphere so close to the velocity
node that K is finite, or even large. Conversely, K being of order unity or large
inevitably (as long as (3.24), as well as (3.21), remains a valid approximation) implies
that the sphere is close enough to the velocity node. On the other hand, when the
sphere is not close to the velocity node (which is admittedly the main case of interest
for acoustically levitated rigid particles), K needs to be small for (3.24) to be a valid
approximation. For a small K , (3.24) provides both a valid leading-order result, and
a valid O(K) correction. The O(K2) correction is not a valid one, however, (even
though the O(K2) contribution is perfectly valid for K = O(1)), since part of the
O(k2) terms has been ignored in the analysis leading to (3.21) and (3.24). The O(k2)
terms have been calculated in detail in Gopinath & Trinh (2000). Note though that
they disregard the effect of variable viscosity. In our analysis, their result corresponds
to NT ≡ 0 in (3.4).

Finally, let us mention that a generalization of the result (3.21) up to and including
O(k) to the case of a spherical drop whose dynamic viscosity is much greater than
that of the external fluid (e.g. a drop in air) was carried out in a recent work
by Rednikov et al. (2006), albeit in the absence of non-adiabatic effects (BT = 0).
Consideration of the internal circulation in the drop was an integral part of the
study. In the present paper, an example involving such a liquid sphere is treated
in § 3.4.

3.3. Oblate spheroid vibrating along its axis in an incompressible fluid medium

Consider now a rigid oblate spheroid performing harmonic high-frequency
translational vibrations along its axis relative to an incompressible fluid medium
of infinite extent. We work in the reference frame, where the spheroid is at rest and
it is the medium far away of it that oscillates. Note that, in the incompressible case,
the inner streaming does not depend on whether this frame of reference is inertial
or not as long as no rotations are involved, and thus the incompressible results of
§ 2 are still applicable. Within the set-up of § 3.2 (a particle in an acoustic standing
wave), the present consideration corresponds just to the leading order in the small
acoustic wavenumber for a spheroid aligned with the direction of the wave and
located sufficiently far from the velocity node. The velocity scale U ∗ is here chosen to
coincide with the velocity amplitude of the vibrations, whereas l∗ is a linear size of
the spheroid (whichever is deemed convenient).

We work in the (modified) oblate spheroidal coordinates {µ, λ}. If {z, �} are the
cylindrical coordinates with z being along the symmetry axis and � the radial distance
to the axis, then {µ, λ} are defined as z−z0 = cλµ, � = c (1+λ2)1/2(1−µ2)1/2, where c

is the dimensionless focal radius and z = z0 corresponds to the centre of the spheroid.
The coordinate surfaces defined by constant λ form a family of confocal oblate
spheroids. Let λ = λ0 correspond to the physical oblate spheroid we are considering.
Its major (equatorial) and minor (polar) radii are a = c(1 + λ2

0)
1/2 and b = cλ0, and

the aspect ratio depends on λ0 only: a/b = (1+λ2
0)

1/2/λ0. The value of c is determined
by the choice of the length scale l∗. Two reasonable choices for l∗ are the major radius
(in this case a ≡ 1 and c = (1 + λ2

0)
−1/2), or the equivalent spherical radius (a2b ≡ 1

and c = λ
−1/3
0 (1 + λ2

0)
−1/3). The problem for the primary oscillatory flow (in terms of
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the complex amplitude of the velocity potential) is

∇2ϕ(u1) = 0, ∇2 =
1

c2(λ2 + µ2)

{
∂

∂λ
(1 + λ2)

∂

∂λ
+

∂

∂µ
(1 − µ2)

∂

∂µ

}
,

ϕ(u1) ∼ cλµ as λ → ∞,
∂ϕ(u1)

∂λ
= 0 at λ = λ0.

⎫⎪⎪⎬
⎪⎪⎭ (3.25)

With solutions of the Laplace equation representable as Pn(iλ)Pn(µ) and Qn(iλ)Pn(µ)
(n = 0, 1, . . . with P and Q being the Legendre functions of the first and second kind,
respectively), the solution of our problem can be written as

ϕ(u1) = c

[
λ − 1 + λ2

0(
1 + λ2

0

)
arccot(λ0) − λ0

(λarccot(λ) − 1)

]
µ, (3.26)

of which in what follows we shall only need its value at the surface

ϕ(u1)
s ≡ ϕ(u1)

∣∣
λ=λ0

= c
1(

1 + λ2
0

)
arccot(λ0) − λ0

µ. (3.27)

In order to calculate the effective slip velocity at the spheroid surface, we use (2.75)
with the following values:

n = 1, k = 0, ξ ≡ µ, Hµ =
c
(
λ2

0 + µ2
)1/2

(1 − µ2)1/2
, � = c

(
1 + λ2

0

)1/2
(1 − µ2)1/2, (3.28)

together with

v(u1)
µs =

1

Hµ

∂ϕ(u1)
s

∂µ
, p(u1)

s = −iϕ(u1)
s (3.29)

and the earlier derived expression for ϕ(u1)
s . We finally obtain

�v(s)
µs =

1

4c
[(

1 + λ2
0

)
arccot(λ0) − λ0

]2

[
3µ(1 − µ2)3/2(
λ2

0 + µ2
)5/2

+
5µ(1 − µ2)1/2(
λ2

0 + µ2
)3/2

]
, (3.30)

which coincides with the result derived in Rednikov & Sadhal (2004) by means of
a direct calculation. Here the use of the developments of §2 has permitted to obtain
it with considerably less effort. For further analysis of the present oblate-spheroid
problem, including the outer streaming engendered by this distribution of the effective
slip velocity, see Rednikov & Sadhal (2004). The present result for the effective slip
velocity has also been applied to drops highly flattened by the acoustic field (Lee,
Sadhal & Rednikov 2008), where it is deemed to be a satisfactory approximation.

3.4. Translational three-dimensional oscillation of a sphere in an incompressible
fluid medium

As in § 3.3, here also we consider harmonic high-frequency translational vibrations of
a particle relative to an incompressible fluid medium of infinite extent. The particle is
simpler than in § 3.3: it is just a sphere. But the oscillation is more complex: it is now
a general (three-dimensional, non-uniaxial) translational vibration. In the reference
frame where the sphere is at rest, the fluid medium far away uniformly oscillates at
a velocity u∞(t) = Re{u(u1)

∞ eit}, where u(u1)
∞ is a constant complex-valued vector. The

velocity scale U ∗ used here is just a quantity of the order of |u(u1)∗
∞ | (we shall not

specify it more precisely), whereas l∗ is the radius of the sphere.
Any u(u1)

∞ can actually be represented in the form u(u1)
∞ = [u(u1)

∞1 e1 + u
(u1)
∞2 e−iπ/2e2] eiψ0 ,

where e1 and e2 are two orthogonal unit vectors (e1 · e1 = 1, e2 · e2 = 1, e1 · e2 = 0),
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u
(u1)
∞1 > 0 and u

(u1)
∞2 > 0 are positive real values, whereas ψ0 is a phase (immaterial from

the viewpoint of steady streaming). In other words, a general harmonic translational
oscillation is representable as a linear combination of two spatially-orthogonal
quadrature-phase (phase shift π/2) uniaxial oscillations. Thus, if imagined as a radius
vector, the vector u∞(t) just traces an elliptic orbit whose axes are oriented along e1

and e2 (and so do the actual fluid-element trajectories far away from the sphere), the
sense of circulation being from e1 towards e2. The following is a useful vector that
immediately yields the spatial orientation and the sense of the orbit (by means of the
corkscrew rule):

Imu(u1)
∞ × Reu(u1)

∞ =
i

2
u(u1)

∞ × u(u1)
∞ = u

(u1)
∞1 u

(u1)
∞2 e3 with e3 ≡ e1 × e2. (3.31)

In the particular case of a uniaxial oscillation, this vector is equal to zero (u(u1)
∞ × u(u1)

∞ =

0) and the ellipse degenerates into a line (either u
(u1)
∞1 = 0 or u

(u1)
∞2 = 0). This is the

case mostly considered (often by default) in the literature. In the opposite particular
case (‘circular polarization’), we have u

(u1)
∞1 = u

(u1)
∞2 ≡ u(u1)

∞ , while a simple criterion in
terms of u(u1)

∞ can be written as u(u1)
∞ · u(u1)

∞ = 0 (here note that u(u1)
∞ · u(u1)

∞ should not

be confused with |u(u1)
∞ |2 = u(u1)

∞ · u(u1)
∞ ). It is actually the circular-polarization case that

is treated by Rednikov et al. (2003) for steady streaming from cylinders and spheres.
The (complex amplitude of the) velocity potential of the primary oscillatory flow

in the main bulk is given by the problem

∇2ϕ(u1) = 0, (3.32)

ϕ(u1) ∼ r
(
u(u1)

∞ · er

)
as r → ∞, ∂ϕ(u1)/∂r = 0 at r = 1 (3.33)

with the solution

ϕ(u1) =

(
r +

1

2r2

)(
u(u1)

∞ · er

)
(3.34)

yielding the following values at the surface (r = 1):

ϕ(u1)
s = 3

2
u(u1)

∞ · er , v(u1)
τs = ∇τsϕ

(u1)
s = 3

2

[
u(u1)

∞ −
(
u(u1)

∞ · er

)
er

]
. (3.35)

Here r is the radial coordinate, er is the unit vector in the radial direction. Note an
important identity ∇τser = I − er er (in polyadic notations), used in (3.35) and useful
in what follows, where I is the identity tensor.

As far as the primary oscillatory flow in the Stokes layer is concerned, it is first
of all of the interest to note that no net oscillatory viscous torque (at least to
leading order) is exerted upon the sphere in spite of a three-dimensional character
of the oscillation: Γ (u) = 0 (cf. § § 2.2 and 2.3 for conventions). This follows from
the linearity of the problem for the primary oscillatory flow and the fact of having
just a superposition of two uniaxial vibrations, each one of which yields no torque.
Thus, Ω (u) = 0 (no torsional oscillations), should the sphere be even much lighter
than the surrounding fluid and free to rotate. Along with a sphere free to rotate, we
shall also consider the case of a ‘fixed’ sphere, for which Ω ≡ 0, no matter what the
value of Γ is. As Γ (u) = 0, there is no difference between these two cases for the
primary oscillatory flow. Yet the difference does appear for steady contributions, as
seen below.

With torsional vibrations ruled out, the general results of § 2 are applicable here.
Thus, we can spare ourselves the effort of considering the Stokes layer (first for the
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primary oscillatory flow and then for the inner steady streaming) as the inner-
streaming characteristics of interest, the effective slip velocity and the induced
tangential stress at the sphere surface, can be inferred from (2.72) and (2.73) by
substituting (3.35) therein. After some simple algebra, the results can be written as

�v(s)
τs = 45

32
∇τs

∣∣u(u1)
∞ · er

∣∣2 + 27
16

i
[
u(u1)

∞ × u(u1)
∞

]
× er , (3.36)

�σ (s)
τs = − 9

32

√
2∇τs

∣∣u(u1)
∞ · er

∣∣2 + 9
16

√
2i
[
u(u1)

∞ × u(u1)
∞

]
× er , (3.37)

where

∇τs

∣∣u(u1)
∞ · er

∣∣2 = u(u1)
∞

(
u(u1)

∞ · er

)
+ u(u1)

∞
(
u(u1)

∞ · er

)
− 2

∣∣u(u1)
∞ · er

∣∣2 er , (3.38)

although we prefer to keep the surface-gradient form in (3.36) and (3.37).
We observe that both the quantities (3.36) and (3.37) consist of a surface-

potential part (surface gradient of a scalar quantity) and a rotational (torsional)
part. Interestingly enough, the latter is exactly in the form of a rigid-body rotation
and it is the vector (3.31) that is involved therein without changing sign, so that the
sense of the rotation coincides with that of the elliptic orbit in the primary oscillation.
On account of |u(u1)

∞ · er |2 = (u(u1)
∞1 )2(e1 · er )

2 +(u(u1)
∞2 )2(e2 · er )

2, the surface-potential part
is just a linear combination of two axisymmetric contributions with the axes along
e1 and e2, each one for the corresponding constitutive uniaxial oscillation. In light of
this, the rotational part can be interpreted as the ‘cross-term’ between the primary
uniaxial oscillations. The distributions (3.36) and (3.37) are axisymmetric as a whole
not only in the genuinely uniaxial case, but also in the circular-polarization case, with
the symmetry axis given by e3 in the latter, for |u(u1)

∞ · er |2 = (u(u1)
∞ )2[1 − (e3 · er )

2], even
though the vector field directions of (3.36) and (3.37) are opposite in the meridional
plane between these two cases. Another noteworthy feature is that the second terms
in (3.36) and (3.37) are of the same sign, whereas the first terms are of different signs.
This is explained by the fact that the surface-potential part of the inner streaming
contains a recirculation zone, much in the same way such a zone exists in the uniaxial
case (Riley 1966). The effective slip velocity represents the inner streaming at the
outer edge of the Stokes layer, while the tangential stress acts on the boundary itself.
Thus, as a result of the recirculation, their signs are different. However, there is no
such recirculation for the rotational part of the inner streaming, which was pointed
out by Lee & Wang (1989) in different terms.

The rotational part of (3.37) gives rise to a net steady torque exerted upon the
sphere: Γ (s) =

∮
er × �σ (s)

τs dA, where the integration is carried out over the whole

surface area r = 1. Using here (3.37) and the identity
∮

er er dA = 4π
3
I, one finally

obtains

Γ (s) =
3π√

2
i
[
u(u1)

∞ × u(u1)
∞

]
, 〈Γ ∗〉 =

ρ∗U ∗2l∗3

M
Γ (s), (3.39)

where a dimensional expression is also provided invoking the conventions adopted
in § § 2.2 and 2.3 (and recall that l∗ is the sphere radius here). As Γ s �= 0 (with the
exception of the uniaxial case), emerging at this stage is a difference between the cases
of a fixed sphere and the one free to rotate (cf. earlier discussion).

Consider first a fixed sphere. In this case, a steady flow in the main bulk (the
outer streaming) is due exclusively to the effective slip velocity (3.36). The boundary
conditions for the tangential and normal velocity components of this flow at the
sphere surface are given by (2.64) and (2.67), where u(s) = 0 (the sphere is at rest) and
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�v(s)
τs is given by (3.36). The boundary condition at infinity is v(s) → 0. The equations

governing the outer streaming are actually not the ordinary steady Navier–Stokes
equations, but rather a slightly modified version thereof (Dore 1976; Riley 1992,
2001). Nevertheless, in the present paper we shall limit ourselves to the solution in
the Stokes approximation (Rs � 1), which is not subjected to such modifications.
Here Rs = (εU ∗)l∗/ν∗ = ε2M2 is the streaming Reynolds number (Riley 1966), which
can in principle take whatever value while ε � 1 and M � 1. We proceed from the
general solution of the Stokes equations in the spherical coordinates given by Lamb
(1932), of which the form given by Happel & Brenner (1965) better suits the present
vector-form representation. We finally obtain

v
(s)
fixed =

27

16r2
i
[
u(u1)

∞ × u(u1)
∞

]
× er +

45

32r4
∇τs

∣∣u(u1)
∞ · er

∣∣2
+

135

32

(
1

r2
− 1

r4

)[∣∣u(u1)
∞ · er

∣∣2 − 1

3

∣∣u(u1)
∞

∣∣2] er , (3.40)

where recall that the surface-gradient term can be developed with the help of (3.38). In
view of the linearity of the Stokes equations, the structure of (3.40) is clearly the same
as that of (3.36) and (3.37) discussed above: a rotation part and two axisymmetric
contributions corresponding to the uniaxial oscillations along e1 and e2. The other
comments concerning the structure made following (3.36) and (3.37) are also valid.
In particular, the flow field (3.40) is axisymmetric in the circular-polarization case
with the flow direction in the meridional plane being opposite to that in the uniaxial
case. The decay far away from the sphere is O(r−2) for this and for the other outer
streaming flows presented in this subsection (cf. the discussion following (3.21)).

The results (3.39) and (3.40) (as well as equivalents of (3.36) and (3.37)) have earlier
been obtained by Lee & Wang (1989). They proceeded in a componentwise form,
which generally made the developments more cumbersome. To recover their form
of the results, one must use the representation u(u1)

∞ = [(u(u1)
∞1 )′e′

1 + (u(u1)
∞2 )′eiψ e′

2] eiψ ′
0

and then the appropriate coordinate projections. Here the primes are added just
to distinguish from the representation provided in the beginning of the present
subsection, for which ψ ≡ −π/2 (which can always be achieved by turning the
orthonormal basis {e′

1, e′
2} by an appropriate angle around the e3 = e′

1 × e′
2 axis).

In contrast to a fixed sphere, a sphere free to rotate will rotate under the torque
(3.39). In the Stokes approximation, the part of the steady velocity field due to the
sphere rotation is v

(s)
rot = (1/r2)Ω (s) × er , and using (3.39) one can obtain

Ω (s) = 3
16

√
2Mi

[
u(u1)

∞ × u(u1)
∞

]
. (3.41)

First of all, one notices here the appearance of an asymptotically large parameter
M � 1. In other words, the rotation is O(M) times more intense than the intrinsic
inner streaming (Ω (s) � 1). This has been earlier established by Rednikov et al.
(2003), who have also pointed out that the appropriate Reynolds number is now
rather R̃s = ε2M3 (instead of Rs). They have also analysed the solution for Ω (s) at
R̃s � 1, which remains asymptotically large: Ω (s) = O(ε−2/3) � 1.

There is a particular case, however, when Ω (s) = O(1). It is the ‘quasi-uniaxial’

case, when |u(u1)
∞ × u(u1)

∞ | � 1 (in other words, u
(u1)
∞1 = O(1) while u

(u1)
∞2 � 1, or vice

versa). The outer streaming is then engendered by two contributions of the same
order of magnitude: from an axisymmetric (to leading order, on account of u

(u1)
∞2 � 1)

distribution of the effective slip velocity and a sphere rotation, the symmetry axis
for the former being orthogonal to the rotation axis. Thus, the quasi-uniaxial case is
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clearly a distinguished asymptotic limit for a sphere free to rotate (but not for a fixed
sphere).

On the other hand, in spite of generally |Ω (s)| � 1, the streaming contribution from
the effective slip velocity may still be of interest as it accounts for a topologically
different flow structure. This is first of all true for small streaming Reynolds numbers,
for the leading-order flow v

(s)
rot = (1/r2)Ω (s) × er consists of closed streamlines. As

such, it plays no role in, e.g. the streaming-induced convective mass/heat transfer
from the sphere (spherically symmetric when purely conductive). Thus, with the
attention limited to R̃s � 1, the steady flow field for a sphere free to rotate is given by

v
(s)
free = v

(s)
rot + v

(s)
fixed , (3.42)

where v
(s)
fixed is defined in (3.40), the first term of which can be neglected for consistency

versus v
(s)
rot . In fact, as noted by Rednikov et al. (2003), for v

(s)
rot , it is expedient to include

not only the already mentioned leading-order part v
(s)
rot = (1/r2)Ω (s) × er , but also a

first correction in the small Reynolds number. Indeed, in view of |Ω (s)| � 1, such a

correction may well be O(1) on the scale of v
(s)
fixed . It is physically clear that it must

be a kind of ‘centrifugal’ flow, directed from the rotation axis towards the equatorial
plane while skirting the sphere surface. Thus, from the viewpoint of the flow topology
discussed above, it contributes in a similar way to v

(s)
fixed . The correction in question can

easily be derived from the Navier–Stokes equations (cf. Rednikov et al. 2003) to yield

v
(s)
rot =

1

r2
Ω (s) × er +

1

8
Rs

(
1

r4
− 1

r3

)
∇τs

(
Ω (s) · er

)2

+
3

8
Rs

(
2

r3
− 1

r4
− 1

r2

)[(
Ω (s) · er

)2 − 1

3

∣∣Ω (s)
∣∣2]er . (3.43)

Thus, for the steady flow around a sphere free to rotate, we finally have (3.42) with
(3.40), (3.41) and (3.43). We note that the difference with the case of a fixed sphere
eventually reduces just to the value (or more correctly, the order of magnitude) of the
angular velocity involved, although this is an essential difference. For a fixed sphere,
the apparent angular velocity in the outer streaming (even though the sphere itself is
motionless) is imposed by the effective slip velocity (3.36) and is much smaller than
(3.41) for a sphere free to rotate, for which it is imposed by the induced tangential
stress (3.37) resulting in a net torque (3.39).

The result (3.42) can be generalized in a rather straightforward manner to the case
of a liquid sphere (spherical drop) whose density and dynamic viscosity are much
greater than those of the outside fluid (e.g. a drop in air). The latter requirements are
essential, for in this case the primary oscillatory flow does not ‘penetrate’ into the drop
to leading order, thus remaining the same as for a rigid sphere. Consequently, the
inner-streaming results such as (3.36) and (3.37) are still applicable. However, as far as
the steady flow is concerned, the ‘liquidity’ of the sphere may become apparent even
if the outside-to-inside viscosity ratio, δη, is small (δη � 1), as required here. Indeed,
the part of the induced tangential stress (3.37) that is not offset by the rigid-body
rotation must be assumed by an internal circulation in the drop. As we shall see
shortly, its intensity may well be of the same order of magnitude as the effective
slip velocity (O(1) in the scalings used here), which would modify the corresponding
part of (3.42). On the other hand, the internal circulation is of importance by itself,
irrespective of whether or not it brings about tangible consequences for the outside
flow.
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Let the hat notation distinguish the velocity field inside the drop from the one
outside, the scalings being the same, [v̂] = [v]. In the limit of small streaming
Reynolds numbers, the rotational part of the induced tangential stress (3.37) gets
balanced by the viscous stresses from the outside of the drop due to its rigid-body
rotation (this part cannot be balanced by viscous stresses from the inside of a spherical
drop, even though δη � 1), while the surface-potential part gets balanced by viscous
stresses due to the internal circulation (here the outside contribution is neglected in
view of δη � 1). Thus,

− 9

32

√
2∇τs

∣∣u(u1)
∞ · er

∣∣2 =
1

Mη

(
∂ v̂

(s)
τ

∂r
− v̂

(s)
τ

)
at r = 1, (3.44)

where the notation Mη = Mδη has been introduced following Rednikov et al. (2003).
While M � 1 and δη � 1, the parameter Mη can in principle take any value, large
or small. The solution of the Stokes equations inside the drop satisfying (3.44) and
v̂(s)

n = 0 at r = 1 is

v̂
(s) = Ω (s) × er r +

9

320

√
2Mη

(
3r − 5r3

)
∇τs

∣∣u(u1)
∞ · er

∣∣2
+

27

160

√
2Mη(r − r3)

[∣∣u(u1)
∞ · er

∣∣2 − 1

3

∣∣u(u1)
∞

∣∣2] er . (3.45)

The above two boundary conditions are satisfied for any Ω (s), but its value is given by
(3.41) as considered earlier. The first term on the right-hand side of (3.45) represents a
rigid-body rotation of the drop, whereas the rest of the terms account for the internal
circulation. The former is much (δ−1

η � 1 times) more intense than the latter in the
general case, even though the two may become of the same order in the quasi-uniaxial
case. In the uniaxial case, Ω (s) = 0, the internal circulation is axisymmetric, and the
result of Zhao et al. (1999a) is recovered. In the circular-polarization case, on the
other hand, when the corresponding result of Rednikov, Riley & Sadhal (2003) is
recovered, the flow (3.45) is once again axisymmetric, albeit with Ω (s) �= 0 and the
sense of the internal circulation just opposite to the uniaxial case. The latter is not
surprising given that we have already pointed out such a correlation between these
two limiting cases on a few occasions.

Let us note, however, that the boundary condition (3.44) is valid in this form only at
R̃s � 1. At finite R̃s , its left-hand side should actually be replaced by (σ (s)

τs |RBR +�σ (s)
τs ),

where the first term refers to the distribution of the viscous tangential stress exerted
on the surface of the sphere due to its steady rigid-body rotation. At R̃s = 0, σ (s)

τs |RBR

exactly offsets the rotational part of (3.37), and we arrive at (3.44).
We are now in a position to consider how the liquidity of the sphere (viz. the

internal circulation) modifies the steady flow outside of it. This comes through
the tangential-velocity condition (2.64), where u(s)

τ is now affected by the internal

circulation: u(s)
τ = v̂

(s)
τs . On account of (3.45), the small-Reynolds-number steady flow

outside a liquid sphere is shown as

v
(s)
liq = v

(s)
rot +

45

32

(
1 − 1

25

√
2Mη

)
1

r4
∇τs

∣∣u(u1)
∞ · er

∣∣2
+

135

32

(
1 − 1

25

√
2Mη

)(
1

r2
− 1

r4

)[∣∣u(u1)
∞ · er

∣∣2 − 1

3

∣∣u(u1)
∞

∣∣2]er , (3.46)
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where v
(s)
rot is still given by (3.43). We observe that Mη is the key parameter as far as the

effect of the sphere’s liquidity is concerned: for Mη = 0 the result (3.42) is recovered,

whereas for sufficiently large Mη (Mη > 25/
√

2) the internal circulation exceeds the
effective slip velocity in intensity so that the sense of the corresponding part of the
flow gets reversed. This ‘critical’ value of Mη is independent of the oscillation type and
was earlier established in the uniaxial (Zhao et al. 1999a) and circular-polarization
(Rednikov et al. 2003) cases. Note that the internal circulation being directed in the
opposite sense to the effective slip velocity is a consequence of the opposite signs of
the surface-potential parts of (3.36) and (3.37).

To wrap up this subsection, we carry out a small parametric study of
the axisymmetric small-Reynolds-number steady-flow patterns occurring in the
framework of the present analysis. Since they are axisymmetric just in the uniaxial
and circular-polarization cases, a first parameter is defined to discriminate between
these two cases in the expressions that follow: n ≡ 0 (uniaxial) and n ≡ 1 (circular
polarization). Another parameter is obviously Mη. At last, we have δR ≡ RsM

2 = ε2M4

characterizing the relative importance, within (3.46), of v
(s)
rot in the meridional plane

(a plane passing through the symmetry axis). Note that it is actually the correction
terms (here referred to as the centrifugal flow) in (3.43) that possess meridional-
plane components, the leading-order term accounting for a purely azimuthal flow
(orthogonal to this plane). It is in the meridional plane that the streamlines are shown
below, it being understood that in the circular-polarization case there is also an
azimuthal component of the flow. It is convenient to represent the results in terms of
the stream function (3.16), the spherical coordinates being based upon the symmetry
axis. At this stage, it is also convenient to concretize the velocity scale U ∗ earlier left
unspecified: we choose U ∗ = u(u1)∗

∞ such that u(u1)
∞ ≡ 1. As it can be deduced from

(3.45) and (3.46) with (3.41) and (3.43), the steady meridional-plane flow outside and
inside the sphere is given by

ψ (s) = [1 − (−1)n]
9

512
δR

(
2

r
− 1

r2
− 1

)
cos θ sin2 θ

+ (−1)n
(

45

32
− 9

160

√
2Mη

)(
1 − 1

r2

)
cos θ sin2 θ, (3.47)

ψ̂ (s) = (−1)n
9

160

√
2Mη(r

3 − r5) cos θ sin2 θ. (3.48)

The streamlines are shown (at the interval 0.016) in figure 2 for certain representative
values of the parameters. Each time, just one quadrant is displayed on account of an
additional symmetry, with respect to the equatorial plane (horizontal on the diagrams).
Note the opposite directions of the flow between the uniaxial and circular-polarization
cases. As the internal circulation is increased, the flow outside the sphere first drops
in intensity and then reverses its direction. The centrifugal flow (characterized by δR)
is directed in the same way as the effective slip velocity, and thus the overall flow
intensity grows with δR . Should the internal circulation be as intense as to reverse the
flow outside the sphere, the centrifugal contribution nonetheless dominates at larger
distances. This results in a recirculation zone observed in figure 2(i ). Let us finally
note that the case of a fixed sphere, (3.40), formally corresponds to δR ≡ 0 in this
framework, irrespective of the actual value taken by δR (cf. the discussion on the
angular velocity following (3.43)). Besides, a fixed sphere is considered just as being
rigid (Mη = 0). Thus, the fixed-sphere case is exhausted by the first two diagrams in
the first row of figure 2.
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δR irrelevant, Mη = 0 δR = 0, Mη = 0 δR = 43.7, Mη = 0

δR irrelevant, Mη = 6 δR = 0, Mη = 6 δR = 43.7, Mη = 6

δR irrelevant, Mη = 23 δR = 0, Mη = 23 δR = 43.7, Mη = 23

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 2. Axisymmetric low-Reynolds-number steady streaming patterns, (3.47) and (3.48),
arising on the background of a high-frequency translational oscillation between a rigid
sphere/viscous spherical drop and an incompressible fluid medium ((a, d, g) for the uniaxial
case, (b, e, h and c, f, i ) for the circular-polarization one). Mη characterizes the ‘liquidity’ of
the sphere, while δR the ‘centrifugal’ effect of the rigid-body rotation. Arrows indicate the flow
direction.

3.5. Torque on a circular disk in two orthogonal standing waves

Here we revisit the problem treated by Busse & Wang (1981). Consider two orthogonal
plane acoustic standing waves (of the same frequency) in the x and y directions,
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respectively. The complex amplitude of the potential can be written as

ϕ(u1) =
1

k
Ux sin kx +

1

k
Uy e−iψ sin ky, (3.49)

where Ux and Uy are the wave amplitudes, and ψ is the phase angle between the
waves. A thin circular disk is placed into the acoustic field, with its axis being in the
z-direction, such that {x, y, z} is a (right-handed) Cartesian system of coordinates.
The length scale l∗ is the radius of the disk. The velocity scale U ∗ is a quantity of
the order of the velocity amplitude of the waves. The coordinates of the centre of the
disk are x = x0, y = y0, which can be arbitrary. The goal of the present subsection is
to calculate the steady torque on the disk (with respect to the disk axis), which in the
present configuration is entirely due to the tangential stress rather than the steady
(radiation) pressure (Busse & Wang 1981). Similar to Busse & Wang (1981), the disk
is treated as infinitesimally thin, and possible edge effects are neglected.

To calculate the distribution of the tangential stress on the plane of the disk, the
general result (2.70) is used, where

v(u1)
τs = Ux cos kxex + Uy e−iψ cos kyey, (3.50)

p(u1)
s = − i

k
Ux sin kx − i

k
Uy e−iψ sin ky, (3.51)

∇τs = ex

∂

∂x
+ ey

∂

∂y
(3.52)

are substituted with ex and ey being the unit vectors in the x and y directions,
respectively. We obtain

�σ (s)
τs =

1

2
√

2
kUxUy sinψ

(
1 +

RT

Pr1/2

)
(− cos kx sin kyex + sin kx cos kyey)

+
1

2
√

2
kUxUy cosψ

RT

Pr1/2
(cos kx sin kyex + sin kx cos kyey) + O

(
U 2

x ; U 2
y

)
,

(3.53)

where only the ‘cross-term’, with UxUy , is retained, for it is clear from symmetry
considerations that the terms with U 2

x and U 2
y do not contribute into the torque.

If {z, �, φ} is the cylindrical coordinate system such that

x = x0 + � cos φ, y = y0 + � sinφ, (3.54)

the torque on the disk (whose only non-zero component is in the z-direction) is
calculated as

Γ (s)
z = 2

∫ π

−π

dφ

∫ 1

0

d��2ez ·
(
e� × �σ (s)

τs

)
. (3.55)

Here the factor ‘2’ accounts for the two sides of the disk; ez and e� are the unit vectors
along z and �, respectively. Next, (3.53) should be substituted into (3.55) taking into
account (3.54) and

ez · (e� × ex) = −sinφ, ez · (e� × ey) = cosφ. (3.56)

The integral with respect to φ can be significantly simplified on account of symmetries.
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The result is

Γ (s)
z =

√
2

(
1 +

RT

Pr1/2

)
kUxUy sinψ cos kx0 cos ky0

×
∫ π

−π

dφ cosφ

∫ 1

0

d��2 sin (k� cosφ) cos (k� sinφ). (3.57)

If the disk is small as compared to the acoustic wavelength, k � 1, then (3.57) can
be developed as

Γ (s)
z =

√
2π

4

(
1 +

RT

Pr1/2

)
UxUy sin ψ cos kx0 cos ky0k

2

(
1 − k2

6
+ O(k4)

)
. (3.58)

Interestingly enough, the expansion starts with the term O(k2), with no O(k0) term
present. Thus, for a thin disk and with the edge effects neglected, there is no torque
generated in the incompressible limit. This is what should have been expected. Indeed,
if (2.33) is considered in the incompressible case with a constant vector v(u1)

τs near a
plane surface, it corresponds to an exact solution (purely oscillatory) of the Navier–
Stokes equations, and thus no steady component is generated at all.

In the dimensional form, the torque is (cf. § § 2.2 and 2.3)

〈Γ ∗
z 〉 =

ρ∗U ∗2l∗3

M
Γ (s)

z . (3.59)

Without the non-adiabatic contribution (RT = 0), the result (3.58) coincides with
Busse & Wang (1981). Making estimations similar to § 3.1, we establish that, e.g. for
diatomic ideal gases with Pr = 1, the non-adiabatic effect of compressibility brings
about a +40 % effect on the torque value. Unfortunately, such an increase seems to
push the theoretical result even further from the corresponding experimental result
shown by Busse & Wang (1981, figure 1).

4. Concluding remarks
In the present paper, we have considered a generalized approach to the inner

streaming near a motionless boundary, as well as examples of its application to a
number of particular problems of interest. In each of these examples, any detailed
calculation of the inner streaming could be avoided, owing to the availability of the
generalized results. Within each particular problem, the analysis has been carried out
in the following way. First, the (irrotational) primary oscillatory flow in the main
bulk of the fluid (i.e. outside the infinitesimally thin Stokes layer at the boundary) is
considered. Its amplitude evaluated at the boundary is then used in the generalized
results to infer the relevant inner-streaming characteristics. After that, the outer
streaming and maybe some other steady effects could be studied.

The relevant inner-streaming characteristics are the effective slip velocity and the
induced tangential stress acting on the boundary. Within the generalized treatment,
and for an arbitrary smooth boundary, the distributions of both characteristics
along the boundary have been expressed through a similar distribution of the
amplitude of the main-bulk primary oscillatory flow evaluated at the boundary.
The vector form of the analysis has proved effective here. The final results are more
compact and easy to grasp than similar results in Lee & Wang (1989), which were
developed in a component form. Apparently, another reason for that is a certain
additional simplification achieved here by making use of the irrotationality of the
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primary oscillatory velocity field (viz. the identity proven in the Appendix). Note that
the results of Lee & Wang (1989) also contain terms associated with the normal
velocity of the boundary, the effect of which has not been included in the present
study.

Five contributions can be distinguished according to their physical interpretation
within the result for the effective slip velocity obtained here. First, it is the
‘incompressible’ contribution (part I). It is only this term that remains either in
the truly incompressible case (and with the coefficient of viscosity being constant), or
rather when the Stokes layer is formally treated as incompressible (e.g. done in the
book by Landau & Lifshitz (1988) for a genuinely compressible situation). Other terms
owe themselves either to compressibility, or to variability of the coefficient of viscosity
(which is a function of the temperature and pressure oscillating in the acoustic
wave). Furthermore, there are adiabatic and non-adiabatic contributions to these
effects. Thus, we have terms associated with the adiabatic effect of compressibility
(part IIa) and of variable viscosity (part IIb), as well as the non-adiabatic effect of
compressibility (part IIIa) and of variable viscosity (part IIIb). The authors are not
aware of any other studies in the literature where the effects associated with all the
five parts would be taken into consideration. Speaking in these terms, the results by
Nyborg (1958), Lee & Wang (1989); Lee & Wang (1990), Zhao et al. (1999b) contain
just parts I and IIa. Gopinath & Trinh’s (2000) results include I, IIa and IIIa. Parts I,
IIa and IIb can be traced within the analysis of Yarin et al. (1999).

It turns out though that only parts I and IIIa are present in the result for the
induced tangential stress, with the contributions due to the other parts identically
vanishing.

In the case when the primary oscillatory flow is all in phase to leading order (as in
an acoustic standing wave), parts IIa and IIb vanish within the result for the effective
slip velocity. Thus, apart from the incompressible term (part I), only the non-adiabatic
contributions remain (parts IIIa and IIIb). For gases, it turns out that parts IIIa and
IIIb tend to offset each other, thus reducing the overall non-adiabatic contribution.
For ideal gases, and with the coefficient of viscosity being proportional to the square
root of the absolute temperature, the sum of IIIa and IIIb turns out to be just one half
of IIIa. For liquids, part IIIa is practically negligible (just to the extent the relative
difference between heat capacities at constant pressure and at constant volume is
small). Nonetheless, part IIIb (associated with the non-adiabatic viscosity variability)
may be significant. The point is that, for liquids, the coefficient of viscosity is typically
much more sensitive to temperature than the density is. Accordingly, part IIIb is
expected to be much greater than part IIIa, the latter being regarded negligible. The
above concerned the effective slip velocity. For the induced tangential stress, where
only parts I and IIIa are present in any case (irrespective of whether the wave is
standing), the non-adiabatic contribution is negligible for liquids, in view of what has
just been said in regard to part IIIa for liquids. But for gases, this could now give
rise to a significant non-adiabatic contribution, which is partly because part IIIb is
not there to offset part IIIa.

As an example, the classical problem of a plane standing wave grazing a wall
parallel to its direction has been considered. The importance of the non-adiabatic
contribution has been estimated for this particular problem. For this purpose, the
sum of parts IIIa and IIIb is evaluated as a fraction of part I within the expression
for the effective slip velocity, and the sign is retained to indicate whether the overall
non-adiabatic effect amplifies (+) or reduces (−) the streaming characteristic in
question. The result is approximately +11 % for monoatomic ideal gases, and +7 %
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for diatomic ideal gases (with the Prandtl number equal to unity). This is not very
significant, but still noticeable. For water at 20 ◦C, the estimation yields approximately
+18 %, which becomes +25 % for water at 30 ◦C. This is rather appreciable, which
is quite a surprising result. This shows that, for liquids, the non-adiabatic effect of
variable viscosity is always worth estimating. A great diversity of the result is expected
for liquids. This is unlike gases, for which it lies more or less within the same bounds
irrespective of a particular gas considered. Note, however, that the above estimations
are strictly for the case when the wall is much more heat-conducting than the fluid.
While seemingly a solid assumption for gases, it may not always be so for liquids. If
it is not so, then the non-adiabatic contribution is lower than the above estimations.
For the induced tangential stress, similar estimations yield −67 % for monoatomic
ideal gases, and −40 % for diatomic ideal gases (with the Prandtl number equal to
unity). This is already significant, much more so than for the effective slip velocity in
the case of gases. For liquids, on the other hand, the non-adiabatic effect is negligible
within the induced tangential stress, as it has been discussed earlier.

As another example, steady streaming from a small sphere placed at a certain
position in a plane acoustic standing wave has been considered. A most notable new
result here is a leading-order expression for the steady streaming uniformly valid
for an arbitrary position of the sphere within the standing wave, from the velocity
antinode to the velocity node.

A similar problem for the oblate spheroid (with the axis aligned with the wave)
has also been treated, albeit just in the incompressible limit. This example has in
particular illustrated the accessibility of the general formulas to coordinate systems
more complex than just the Cartesian or spherical ones.

The example with three-dimensional translational oscillations of the sphere has
illustrated the possibility and efficiency of adhering to a vector representation in an
inherently three-dimensional situation up to later stages of the analysis. Beyond the
form of the representation, new results here pertain to the outer streaming for the
cases of a sphere free to rotate and a spherical drop more viscous than the medium
(including the internal circulation and its influence on the steady flow outside the
drop), which have not been considered for such a general form of oscillation before.

As a final example, the steady torque acting on a thin circular disk in two out-of-
phase orthogonal plane acoustic standing waves, with the disk axis being orthogonal
to the direction of the waves, has been calculated including a contribution due
to the non-adiabatic effect of compressibility. For diatomic ideal gases with the
Prandtl number equal to unity, its effect on the torque value is estimated at +40 %.
However, such an increase in the theoretical value only seems to worsen the agreement
with experiment, to judge by the experimental results plotted by Busse & Wang
(1981).

All in all, the examples have demonstrated a significant simplification and
systematization in the acoustic/steady streaming treatment achieved with the help
of the generalized approach developed here. In the present paper, attention has been
limited to the case of a motionless boundary, motionless just in the sense of primary
oscillations, even though its motion has been allowed as far as the steady flow
component is concerned. One direction for future work is to lift such a limitation,
which would permit the coverage of a wider class of acoustic/steady streaming
problems, including torsional oscillations and liquid–liquid interfaces.

The authors are grateful to NASA for financial support.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

45
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004532


460 A. Y. Rednikov and S. S. Sadhal

Appendix. Proof of the property (2.36)
The tangential vector aτ in (2.36) must be surface-potential

aτ = ∇τ ϕ, (A 1)

whereas the corresponding three-dimensional vector field a (if any is associated with
aτ ) need not be potential. In our way to (2.36), we consider a couple of commutation
properties for the ∇τ operator. With (2.17) and (2.19), one has ∇n = ∇τ n, which is
a symmetric surface tensor, with only tangential components. This is used in the
following manipulations.

First, a commutation rule for the operators ∇τ and ∂/∂y is derived. With (2.17) and
(2.19), we have

∂

∂y
∇τ = n · ∇(∇ − nn · ∇), (A 2)

where

n · ∇∇ = ∇ (n · ∇) − (∇τ n) · ∇τ , (A 3)

n · ∇ (nn · ∇) = nn · ∇(n · ∇), (A 4)

and thus
∂

∂y
∇τ = ∇τ

∂

∂y
− (∇τ n) · ∇τ , (A 5)

which is the sought commutation rule.
Second, we are interested in the commutation of ∇τ with itself. Let the subscripts

i, j = 1, 2, 3 denote the Cartesian components of vector/tensor entities. The tensor
operator ∇∇ is symmetric

∇i∇j = ∇j ∇i , (A 6)

since the operator ∇ is self-commutative. This not so for ∇τ ∇τ as the operator ∇τ is
generally not commutative with itself. The substitution of (2.17) into (A 6) brings to

∇τ i∇τj + ni

∂

∂y
nj

∂

∂y
+ ni

∂

∂y
∇τj + ∇τ i

(
nj

∂

∂y

)

= ∇τj ∇τ i + nj

∂

∂y
ni

∂

∂y
+ nj

∂

∂y
∇τ i + ∇τj

(
ni

∂

∂y

)
. (A 7)

With (2.19), the second terms on each side of the equality are equal to each other
and cancel out. Developing the last terms and taking into account that the tensor
∇τ n is symmetric, i.e. ∇τ inj = ∇τjni , an additional couple of terms cancels out, and the
equality becomes

∇τ i∇τj + ni

∂

∂y
∇τj + nj ∇τ i

∂

∂y
= ∇τj ∇τ i + nj

∂

∂y
∇τ i + ni∇τj

∂

∂y
. (A 8)

Using (A 5) here, one finally obtains

∇τ i∇τj − ni(∇τj n) · ∇τ = ∇τj ∇τ i − nj (∇τ in) · ∇τ , (A 9)

which is the sought commutation relation. To put it in different terms, it has been
found that the tensor

∇τ ∇τ − n(∇τ n) · ∇τ (A 10)

is symmetric (whereas ∇τ ∇τ is generally not).
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Now coming back to (2.36), and using (A 1) in that, one obtains

aτ · ∇τ aτ = (∇τ ϕ) · ∇τ ∇τ ϕ = (∇τ ϕ) · (∇τ ∇τ ϕ − n(∇τ n) · ∇τ ϕ), (A 11)

where an identically zero term (in view of (∇τ ϕ) · n = 0) has formally been added in.
As the tensor (A 10) is symmetric, the left scalar product can be replaced by the right
one, the above equality being continued in the following:

= (∇τ ∇τ ϕ) · ∇τϕ − n (∇τ ϕ) · (∇τ n) · ∇τϕ = 1
2
∇τ (aτ · aτ ) − naτ · (∇τ n) · aτ . (A 12)

Taking the tangential component here, the equality (2.36) is finally recovered.
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