
J. Fluid Mech. (1999), vol. 379, pp. 333–350. Printed in the United Kingdom

c© 1999 Cambridge University Press

333
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Following the investigation of the long-time limit of the impulse response of an
incompressible swept boundary layer (Taylor & Peake 1998), we now consider the
corresponding behaviour of two representative sets of compressible swept-wing pro-
files, one set in subsonic flow and the other in supersonic flow. The key feature of the
incompressible analysis was the occurrence of modal pinch points in the cross-flow
wavenumber plane, and in this paper the existence of such pinches over a wide
portion of space in high-speed flow is confirmed. We also show that close to the at-
tachment line, no unstable pinches in the chordwise wavenumber plane can be found
for these realistic wing profiles, contrary to predictions made previously for incom-
pressible flow with simple Falker–Skan–Cooke profiles (Lingwood 1997). A method
for searching for absolute instabilities is described and applied to the compressible
boundary layers, and we are able to confirm that these profiles are not absolutely
unstable. The pinch point property of the compressible boundary layers is used here
to predict the maximum local growth rate achieved by waves in a wavepacket in
any given direction. By determining the direction of maximum amplification, we
are able to derive upper bounds on the amplification rate of the wavepacket over
the wing, and initial comparison with experimental data shows that the resulting
N-factors are more consistent than might be expected from existing conventional
methods.

1. Introduction
Following the study of the long-time limit of the causal response of incompressible

three-dimensional swept-wedge and swept-wing boundary layer flows to impulsive
forcing in Taylor & Peake (1998) (referred to herein as TP), we examine the impulse
response of compressible swept-wing boundary layers. Since simple models of swept-
wing boundary layers are not available in compressible flow, we will study instead
realistic, representative profiles: one (subsonic) set taken from a genuine swept-wing
and another (supersonic) set taken from a standard wind-tunnel model. Our aim is
to apply the method described in TP to these profiles, and in the subsonic case, to
present a new method for predicting the onset of transition.

The properties of pinch points occurring in the wavenumber plane corresponding
to the crossflow direction on incompressible swept wedges and wings are discussed
in TP. The Falkner–Skan–Cooke (FSC) boundary layer solution, which describes the
boundary layer flow over a swept wedge, contains two parameters which can be
used to vary the magnitude of the inflectional crossflow velocity component. These
are the Hartree pressure gradient parameter and the flow angle. It was found that
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334 M. J. Taylor and N. Peake

crossflow-induced pinch points occurred at a range of pressure gradients, with the
minimum flow angle at which a pinch point occurs decreasing as the positive pressure
gradient is reduced. The growth rate at a pinch point was destabilized by increasing
Reynolds number, and the case of negative pressure gradient was found to be very
destabilizing. It was shown that by locating the pinch points in the crossflow-direction,
at which the crossflow-direction group velocity component is zero, we can obtain the
maximum growth rate obtained by a single wave contained in a wavepacket travelling
in the streamwise direction. The boundary layer on a genuine swept airfoil, namely
the N416, was also examined and this boundary layer was also shown to support the
crossflow-induced pinch point mechanism. The analysis was then extended to search
for pinch points in directions other than the crossflow direction, and it was shown that
by doing so the maximum growth rate of the travelling wave system, which is found
to be purely temporal, can be obtained. In this paper we will examine the boundary
layer on a swept wing which is designed for use in the subsonic compressible regime,
and locate the local maximum amplification rates of the travelling wave system in
order to study the evolution of the wavepackets as we proceed down the wing chord.
Also in this paper an analysis of the pinch point properties of the boundary layers
on a supersonic airfoil at a range of Mach numbers is performed. In particular we
will be examining the possibility of pinch points occurring in the wavenumber plane
corresponding to the chordwise direction in the leading-edge region of a genuine
swept airfoil, since chordwise pinch points were found at high flow angles in FSC
boundary layers by Lingwood (1997). We note also that a recent analysis has been
completed by Ryzhov, Cole & Malmath (1998) and Ryzhov & Terent’ev (1998), using
rational triple-deck analysis to study viscous instability modes.

In § 2 the subsonic swept-wing boundary layer velocity profiles are described and
the theory of the pinch point mechanism is discussed. We analyse one particular
subsonic profile in § 3. In § 4 we describe the variation of search direction method
and apply it to look for chordwise pinch points in compressible swept-wing boundary
layers. In § 5 we discuss the various eN integration strategies, and carry out an analysis
of the evolution of wavepackets on the subsonic swept wing. Results are compared
with those found using an envelope eN method and experimental results. Conclusions
are given in § 6.

2. Problem formulation
We use the displacement thickness δ∗ as our length scale, and define the Reynolds

number as

Rδ∗ =
U∗∞δ∗

ν∗
,

where U∗∞ is the local inviscid outer flow. The boundary layer profiles are generated
from the pressure distribution using the method of Kaups & Cebeci (1977) who, by
limiting their attention to wings of a trapezoidal planform (and ignoring wing twist)
and deducing that the absence of pressure gradient along generators is equivalent to
the conical flow assumption, wrote the three-dimensional flow equations in a form
similar to the two-dimensional flow equations using similarity transforms. They then
solved these equations using a finite difference method. In this paper we examine
four sets of boundary layer flows with the pressure coefficient curves shown in figure
1. A typical boundary layer profile in case 1, for which the cruise Mach number is
0.743 with a leading edge sweep of 22◦, is shown in figure 2, where U and W are
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Figure 1. Pressure coefficients for four cases on the subsonic swept wing. Cases 1 and 3 are on the
upper surface (U.S.), and cases 2 and 4 on the lower surface (L.S.).
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Figure 2. Boundary layer profile at point of maximum crossflow level (13%) on the upper surface
of the subsonic wing.

the velocity components in the streamwise and crossflow directions respectively and
T is the temperature profile. The velocity components are non-dimensionalized with
respect to the local inviscid free-stream velocity, while the temperature component
is non-dimensionalized with respect to the free-stream temperature. This particular
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profile is on the upper surface of the wing and gives the maximum level of crossflow
(13%) with a flow angle of 45◦, and is located very close to the leading edge.

We derive linear stability equations by assuming that the mean flow is locally
parallel, leading to an associated eigenvalue problem of the form

D(α, β, ω, Rδ∗) = 0,

where α and β are the wavenumbers in the streamwise and crossflow directions
respectively, and ω is the complex frequency. These equations are given in Mack (1984)
and Malik (1990). The temporal and spatial eigenvalue spectra of the compressible
stability problem are found using a global fourth-order finite difference method
described in Taylor (1997). We make use of Sutherland’s viscosity law

µ∗ = const.
T ∗1.5

T ∗ + T ∗s
,

where T ∗s = 110.4 K, and the thermal conductivity, κ∗, is calculated using the Prandtl
number σ∗ = 0.72 and constant specific heat C∗p = 0.24 as

κ∗ =
σ∗

C∗p
µ∗.

The theory used to obtain the causal solution to the impulse problem in the
long-time limit t → ∞ is discussed in detail in TP, so only a brief summary will be
given here. We apply Briggs’ method to solve the governing equations subject to an
impulsive forcing δ(x− x0)δ(z− z0)δ(t), and the space–time evolution of the response
is then described by a Green’s function of the form

G(x, z, t) =
1

8π3

∫
L

dω

∫
E

∫
F

dαdβ
exp[ψ(α, β)t]

D(α, β, ω, Rδ∗)
, (2.1)

where

ψ(α, β) ≡ ψr + iψi = i

[
α

(x− x0)

t
+ β

(z − z0)

t
− ω(α, β)

]
. (2.2)

The inversion contour L in the complex frequency plane is a horizontal line located
above all the singularities of the integrand, while the E and F contours are initially
taken along the real α- and β-axes respectively. We perform the ω inversion integral
and consider the discrete response only, which is sufficient to determine the long-time
limit of the causal solution. This is found using the method of steepest descents to
study the asymptotic behaviour of the integral for large t, where (x− x0) and (z− z0)
are also large parameters and u ≡ (x− x0)/t and v ≡ (z − z0)/t are O(1). Dominant
contributions are given by the saddle points of ψ(α, β), i.e. points where

∂ωr

∂αr
= u,

∂ωr

∂βr
= v,

∂ωi

∂αr
= 0,

∂ωi

∂βr
= 0.

The maximum value of the growth rate

ψr = (ωi − αiu− βiv),
denoted ψmaxr , occurs when αi = βi = 0 (figure 3). Pinch points in the β-plane are
points where v = 0, and in order to find these pinch points we will use the techniques
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Figure 3. Sketch of contours of ψr > 0 in the (u, v)-plane.

devised by Briggs (1964), Bers (1975) and Kupfer, Bers & Ram (1987), as described
in TP.

3. Crossflow-direction analysis of a single profile
3.1. Pinch points

Figure 4 shows the complex ω and β, the crossflow wavenumber, planes at a crossflow-
induced pinch point for the boundary layer profile shown in figure 2 at Rδ∗ = 328.9.
The value of α, the wavenumber in the streamwise direction, is purely real (α =
0.11086), and was chosen to correspond to the point marked umax on figure 3, where
umax is located at the point of maximum temporal growth rate at a crossflow-induced
pinch point for this particular profile. At the pinch point the crossflow group velocity
component is zero, and the streamwise group velocity component is purely real
(umax = 0.574) as ∂ωi/∂αr = 0. The mapping of the dashed line L in figure 4(a) into
the β-plane in (b) shows the occurrence of this pinch between the two spatial branches
1 and 2. The dotted lines emerging from the pinch point in the β-plane describe how
the two pinching modes follow the direction of the arrows into distinct halves of
the β-plane as we increase the value of ωi from its value at the pinch, which is an
essential characteristic of a genuine pinch point. Also in figure 4(a) we can observe
the mapping of the contour F in the β-plane onto the unstable temporal branch in
the ω-plane, which is characterized by a cusp, and the position of the apex of the cusp
corresponds to the value of ω at the pinch point. In figure 5 the magnitude of the
growth rate at unstable crossflow pinch points is plotted for a range of real values of
the streamwise wavenumber α. The point umax is marked on the graph corresponding
to the point where ∂ωi/∂αr = 0. It is only this maximum point which corresponds
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Figure 4. Pinch point at umax for the boundary layer profile in figure 2 at Rδ∗ = 328.9. In (a)
we show the cusp in the unstable temporal branch in the ω-plane and in (b) the pinch occurring
between two spatial branches labelled 1 and 2.
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Figure 5. Curve of the growth rates at pinch points for the profile given in figure 2 at Rδ∗ = 328.9
for a range of real streamwise wavenumbers α.

to forcing by the impulse δ(x − x0)δ(z − z0)δ(t); other points in fact corrrespond to
forcing by δ(x− x0) exp(iαrt)δ(t).

3.2. Search for absolute instabilities

A flow that is absolutely unstable supports disturbances that grow in time at a fixed
point in space, eventually leading to nonlinearities and thereby causing transition
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Figure 6. Graphs of the growth rate ψr for v = 0 for (a) varying u and (b) varying αi for the
profile in figure 2 with Rδ∗ = 328.9.

to turbulence. Brevdo (1991) has shown that it is a requirement for an absolute
instability to occur in three dimensions that simultaneous pinch points occur in both
wavenumber planes at a positive value of the growth rate ψr . At such a simultaneous
pinching the group velocity is zero, i.e.

∂ω

∂αr
= u = 0,

∂ω

∂βr
= v = 0.

Therefore, in order for an absolute instability to occur, the region enclosed by the
zero contour (ψr = 0) in figure 3 must contain the origin (u = v = 0), where ψr = ωi.
This is only a necessary condition for the occurrence of an absolute instability, and
one would also have to confirm that there was a genuine simultaneous double pinch
at the point u = v = 0. In order to investigate whether the profile shown in figure
2 at Rδ∗ = 328.9 can support absolute instabilities, we evaluate the growth rate ψr
along the u-axis of figure 3. In figure 6(a) u is plotted against ψr with v = 0. The
unstable region (ψr > 0) lies between u = 0.486 and u = 0.674 with the maximum
value of ψr = 0.003 34 occurring at umax = 0.574, which shows that this particular
profile does not support an absolute instability at this Reynolds number. In figure
6(b) ψr is plotted against αi at v = 0 and, as discussed previously, we see that the
maximum value of ψr (corresponding to the value umax) occurs when αi = 0. Note
that reducing the value of αi decreases the value of u at the saddle point with v = 0.
We found no absolute instabilities for any subsonic (or supersonic) boundary layer
profiles discussed in this paper.

4. Varying search direction
4.1. Subsonic boundary layers

The analysis in the previous section was concerned with finding pinch points in the
crossflow wavenumber plane. However, we can develop this technique to determine
the maximum growth contained in a wavepacket in any given direction, and thereby
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Figure 7. (a) ε against ψr and (b) ε against βi for the FSC boundary layer with βH = 1.0 and
θ = 79◦.

locate the maximum local growth rate of the travelling wave system. Recalling figure
3, we see that in order to find the maximum value of ψr in the (u, v)-plane we should
rotate the u- and v-axes until the u-axis goes through the point ψmaxr . In order to do
this we resolve the streamwise and crossflow steady velocity components as

Ũ = U cos ε−W sin ε, W̃ = U sin ε+W cos ε,

and then search for pinch points in the new wavenumber plane corresponding to the
W̃ component of the resolved velocity profiles.

In order to demonstrate the application of this method we will examine a single
incompressible FSC boundary layer. The derivation of the FSC family of swept
boundary layer flows, which is described by the flow angle θ and the Hartree pressure
gradient βH , is discussed in TP. We choose the parameters

βH = 1.0, θ = 79◦, Rδ∗ = 1000,

so that both chordwise- and crossflow-induced pinch points are present in a region
very close to the attachment line. (θ = 90◦ with βH = 1.0 is used to represent the
flow at the attachment line of a wing.) Figure 7 presents the results of a variation of
search direction analysis on this FSC boundary layer profile. The crossflow-induced
pinches are discussed in more detail in TP, while the chordwise wavenumber pinches
are discussed in detail by Lingwood (1997). The maximum value of the growth rate,
ψmaxr = 0.004 971, occurs at ε = −4.18◦ (where βi = 0, see figure 7b). The growth
rate ψr = 0.002 977 at the chordwise pinch (ε = −11◦) and ψr = 0.004 596 at the
crossflow pinch (ε = 0◦). Our result for the chordwise pinch is in agreement with
that of Lingwood (1997). The crossflow-induced pinches imply that disturbances
are constrained to convect in the streamwise direction, while the chordwise pinch
points entertain spanwise convection. However, as can be seen from figure 7(a), there
are also unstable pinch points present if we continue to search at lower values of
ε than −11◦, implying that disturbances are allowed to convect back towards the
leading edge. This could be a very dangerous possibility, with disturbances excited
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Figure 8. (a) ε against ωi (= ψr as v = 0 and αi = 0) at the points ũmax and (b) ε against βi at the
points ũmax.

(by an impulse) downstream of the leading edge, propagating toward the leading
edge and contaminating the attachment line. Lingwood (1997) suggested that modes
propagating along the span may be able to reach nonlinear amplitudes and trigger
transition before being convected beyond the wing tip. Gaster (1967), Pfenninger
(1965) and Gregory (1960) discuss how if the boundary layer at or near the attachment
line is turbulent then the rest of the flow is also expected to be turbulent.

Having shown how our method is applied to the FSC boundary layer, figure 8 now
presents the results of a variation of search direction analysis for the compressible
subsonic boundary layer shown in figure 2, where the flow angle θ = 45◦ and
Rδ∗ = 328.9. The maximum value of ψr (ψr = ωi here as v = 0 and αi = 0) in the
W̃ -direction (i.e. the point ũmax) occurs at ε = 4◦. There is no chordwise pinch point
present in this case, and there are no chordwise pinches present in any of the subsonic
boundary layer profiles discussed in this paper. A possible reason for there being no
chordwise pinches present in the subsonic case is that the Reynolds numbers are too
low to support them. Therefore, in § 4.2 we will examine a swept-wing operating in
a supersonic regime in which larger Reynolds numbers are present. In § 5 we will be
concerned with determining ψmaxr at each chordwise station as we proceed down the
chord of the wing and integrating these values to calculate the amplification of the
impulse response in the boundary layer.

4.2. The impulse response near the leading edge of a swept supersonic airfoil

The supersonic swept-wing boundary layer analysis is performed using an airfoil
designed for wind tunnel experiments at NASA Ames by Radkey, Welge & Felix
(1977). The planform is 73.6 cm long and has 30.986 cm maximum span. For the
purposes of our work, we chose a spanwise station located at 22.7% of the maximum
span, where the leading-edge sweep was 71◦, which is close to that envisaged for
the next-generation of Supersonic Transport aircraft. The pressure coefficient (Cp)
curves, along this spanwise station, are shown for both upper and lower surfaces at
two free-stream Mach numbers, M = 2.003 and M = 2.403, in figure 9. In this paper
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Figure 9. Upper (U.S.) and lower (L.S.) surface pressure coefficients for the NASA planform at
M = 2.003 and M = 2.403.

θ2.003 θ2.403

Station x/c (deg.) R2.003
δ∗ (deg.) R2.403

δ∗

1 0 90.00 1787.6 90.00 2175.7
2 0.625× 10−3 78.54 2625.8 79.08 3231.8
3 0.125× 10−2 76.55 3690.0 77.44 4660.2
4 0.1875× 10−2 74.82 4209.1 75.98 5340.4

Table 1. Table of parameter values for the first four upper surface stations of the Supersonic
Transport planform at M = 2.003 and M = 2.403.

an analysis, at both Mach numbers, of only the upper surface cases is performed.
The boundary layer profiles, supplied by BAe Airbus, were generated using these
pressure distributions. The chord length at this spanwise station is 51.35 cm. The
ambient atmospheric conditions at 55 000 ft (to model the cruise altitude for a
supersonic transport) were applied to calculate the free-stream temperature, viscosity
and speed of sound, giving Reynolds numbers based on chord Rec = 208.7 × 106

and Rec = 250.4 × 106 for the M = 2.003 and M = 2.403 cases respectively. Table 1
gives the parameter values for the first four chordwise stations, the boundary layer
profiles of which will be used to search for pinch points in the wavenumber plane
corresponding to the chordwise direction. For each chordwise station its location (in
percentage chord) is given, as well as the flow angle θ and Reynolds number based on
displacement thickness Rδ∗ , with superscripts being used to indicate the Mach number
being considered. The values of the flow angles and the Reynolds numbers are both
larger in the M = 2.403 case. We will also analyse the boundary layer profiles for
the M = 2.003 case in the incompressible limit, which involves putting M = 10−6,
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setting the non-dimensional temperature T = 1.0 throughout the boundary layer (and
putting the derivatives of T equal to zero) and using the same parameter values (flow
angle θ and Reynolds number Rδ∗) as in the M = 2.003 case. As well as looking for
chordwise pinch points, a search for genuine absolute instabilities (involving double
pinch points) was undertaken at both Mach numbers, but the boundary layers were
found to be absolutely stable everywhere. Of course, very near the leading edge our
assumption of local parallel flow will not be valid, but the analysis presented here
seems appropriate, given that it is seeking to make a comparison with previous work
(e.g. Lingwood 1997) based on the same assumption.

Hall, Malik & Poll (1984) demonstrated that the attachment-line boundary layer
is susceptible to travelling wave disturbances that propagate along the attachment
line, i.e. in the spanwise direction (see also Lin & Malik 1996). It is also shown
that these instabilities can be stabilized by the use of suction. In this section we
will not be concerned with the behaviour of the attachment-line boundary layer (i.e.
station 1), where the existence of spanwise propagating disturbances is well known.
Instead the boundary layer in the region close to the attachment line, where the
crossflow component of the boundary layer has been established, will be examined
for the presence of unstable disturbances being amplified along the span caused by
a chordwise pinch. Figures 10(a), 10(b) and 10(c) give the results of the variation
of search direction method for stations 2, 3 and 4 respectively. On each graph both
Mach numbers (2.003 and 2.403) are shown as well as the incompressible limit of
the M = 2.003 case (denoted M = 10−6), which supports the most unstable growth
rates. The two compressible curves (M = 2.003 and M = 2.403) have very similar
shape, but do not support any unstable chordwise pinches as the minimum value of
ε at which ψr is positive is insufficient to reach the chordwise/spanwise orientation.
For example, the boundary layer at station 4 at M = 2.003, where the flow angle
θ = 75◦, gives a stable response at ε = −15◦ and hence no chordwise pinch instability
is present. The shape of the left-hand side of the curve for M = 10−6 behaves
somewhat differently to the compressible curves, extending much further toward the
chordwise/spanwise orientation. Although the incompressible curve does not have
positive ψr at sufficiently low values of ε to support unstable chordwise pinch points,
it appears from the results that compressibility does have a suppressive effect on
chordwise pinch points. Given that the incompressible FSC results at Rδ∗ = 1000
gave unstable chordwise instabilities, the fact that there are no chordwise pinches
in the supersonic airfoil case suggests that the FSC boundary layer may not be
an accurate model of the real boundary layer occurring near the leading edge of
a swept wing. There are large variations in pressure gradient in this region of the
wing, which are not accounted for in the FSC formulation, and these variations must
have a significant effect on the characteristics of the long-time impulse response near
the leading edge of a genuine swept-wing boundary layer. We therefore reiterate
that the realistic boundary layers studied here do not support unstable chordwise
pinch points near the attachment line, and that the potential transition mechanism
suggested by Lingwood’s (1997) FSC analysis, of spanwise convecting disturbances
reaching nonlinear amplitudes, does not appear to be present here.

5. Evolution of wavepackets on a swept wing
The eN method, devised by Smith & Gamberoni (1956) and Van Ingen (1956),

assumes that transition starts in the boundary layer of the wing when a small
disturbance introduced at the critical Reynolds number has been amplified by a
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Figure 10. Plots of ε against ψr for stations 2, 3 and 4 in (a), (b) and (c) respectively.

factor eN , where the value of N is chosen to correlate with experimental results.
Although the method uses the parallel flow assumption, Cebeci & Stewartson (1979)
point out that the method can still form the basis of a rational attack on the transition
prediction problem and is of considerable practical use. It is, however, quite complex
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to perform the eN method on the three-dimensional boundary layer on a swept
wing, and numerous strategies for calculating the N-factors have been devised. A
conventional eN analysis involves tracing the evolution of modes of a single frequency
along the wing chord using either temporal or spatial temporal linear stability theory.
An N-factor may be calculated for temporal stability theory as follows:

N =

∫ l

l0

ωi

|Re(Vg)|dl,

where the Gaster (1962) transformation is used to give a growth rate with spatial
dimension, l is an appropriate curve along the wing and Re(Vg) is the real part of
the group velocity vector. The dispersion relation provides two real relations among
the three complex quantities α, β and ω and in temporal stability theory the spatial
wavenumbers α and β are real leaving two arbitrary parameters among αr , βr , ωr
and ωi. This arbitrariness in the choice of the parameters used in computing the N-
factors can be removed by numerous approaches. In the envelope method (Malik &
Orszag 1980) using temporal theory, the amplification ωi is maximized at fixed ωr with
respect to the real wavenumbers and the curve l is defined to be everywhere tangent to
Re(Vg). The envelope method can also use spatial amplification theory. Alternatively
the constant-β∗ method considers waves of fixed ωr at a range of prescribed real fixed
dimensional spanwise wavenumbers, but this approach is only strictly applicable on
infinitely long swept wings and so the envelope method is in more general use. Nayfeh
(1979) made use of wavepacket theory to remove the arbitrariness in the parameters
by prescribing a purely real group velocity vector and examining waves with fixed
ωr and βr and allowing both spatial wavenumbers to be complex. Malik & Orszag
(1980) suggested a variation on this scheme, putting ωi = 0 and permitting βr to vary
so that the N-factors now depend only on ωr rather than on both ωr and βr as in the
case of Nayfeh’s formulation, and they demonstrated that the envelope method gave
results consistent with the wavepacket approach at considerably less computational
expense. All of these methods involve examining the growth of waves of fixed real
frequency as they propagate downstream and correlating the resulting N-factor with
the location of the onset of transition to turbulence. In this paper, however, we use
the pinch point property to evaluate the maximum amplification for any frequency
at each station on the wing and integrate these values to calculate an N-factor, which
may then be correlated with transition location. This process also offers an insight
into the behaviour of wavepackets on a genuine swept wing. In TP we demonstrated
that the maximum growth rate of a wavepacket on the swept-wing boundary layer
may be calculated using the pinch point property without arbitrarily fixing any of the
parameters, and found that the maximum growth rate of the travelling wave system
is purely temporal, i.e. αi = βi = 0. We will integrate these growth rates along the
wing for each boundary layer profile and calculate N factors for comparison with
results from an envelope method and with experimental data.

In order to perform the integration along the wing, the crossflow-induced pinch
point umax must be located at each station and then the (u, v)-plane is rotated through
an angle ε in order to locate the maximum amplification rate in any given direction
ψmaxr . These values of ψmaxr are integrated along the wing chord in the group velocity
direction in order to calculate an N-factor as

N =

∫
γ

ψmaxr

Vg(s)
ds, (5.3)
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Figure 11. The N-factor amplification, calculated using our wavepacket method, for cases 1 to 4
where the arrows mark the location of transition, showing the consistent N-factor achieved by the
two TS-dominant cases (1 and 3) and the two CF-dominant cases (2 and 4).

where the path γ is the integral curve in the direction of the group velocity vector Vg
of the maximum growth rate. Note that at the points ψmaxr at each station the group
velocity has only one real non-zero component because, as discussed in the previous
section, the component in the direction of the W̃ velocity component is zero. Upon
commencing our analysis of the case 1 upper surface profile (see figure 1) we found that
the first station along the wing chord, starting at the leading edge, with a positive ψmaxr

(i.e. an unstable response) was station number 3 at 0.045% chord, where the flow angle
θ = 71◦ and Rδ∗ = 382. The first two stations (with a higher flow angle and lower Rδ∗)
were found to give a stable response; station 1 is at 0% chord and station 2 is at 0.02%
chord. (A similar result was found for the other cases.) Lingwood (1997) demonstrated
the occurrence of unstable pinch points in the chordwise direction near the leading-
edge region of a swept wing, with critical Reynolds number 561 at a flow angle of 82◦.
It is, therefore, not surprising that no unstable pinch points were found at the first two
stations from the leading edge of the wing, as the Reynolds number at these stations
is well below the critical Reynolds number for such an instability to occur, and so
the integration in equation (5.3) is carried out from 0.045% chord down the wing.

In figure 11 the amplification factor N for the case 1 upper surface boundary layer
profiles (as well as for three other cases) against percentage chord length found using
our wavepacket approach is given. There is strong initial amplification in the first
10% of chord in the region of strong pressure gradient and large levels of crossflow.
The rate of increase in the amplification factor N, however, is much reduced in the
flat pressure region, eventually reaching a value of 40 at 28% of chord. In figure
12 we plot the values of ε through which it was necessary to rotate the (u, v)-plane
away from the streamwise/crossflow direction (i.e. the potential flow direction) in
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Figure 12. The rotation angle ε required to locate the maximum amplification factor using our
wavepacket approach against percentage chord for the case 1 boundary layer.

order to locate the maximum amplification rate ψmaxr at each chordwise station. In the
region of strong favourable pressure gradient and relatively high crossflow levels large
values of ε were required, while in the flat pressure region the direction of maximum
growth is very close to the streamwise direction. This indicates that the amplification
in the flat pressure region is caused by the Tollmien–Schlichting (TS) instability of
the streamwise profile.

In figure 11 the amplification factor N curve for the case 2 lower surface boundary
layer is also shown. There is again strong initial amplification in the very strong
favourable pressure gradient region near the leading edge of the wing, but in this
case the rate of increase in the factor N remains constant in the region beyond
5% of chord. This is a consequence of the favourable pressure gradient leading
to significant crossflow over this region. In experiments performed on this wing,
transition to turbulence was found to occur in case 1 (the upper surface boundary
layer) at approximately 26% of chord, which corresponds in our wavepacket method
to the value N = 39.5 from figure 11. The N-factor result for case 1 found using
the transition prediction method COSAL Malik & Orszag (1981), which follows the
evolution of single temporally unstable modes and calculates the N-factors using the
envelope method, gave the value N = 20.5 corresponding to the location of the onset
of transition. The N-factors generated by our wavepacket method are, of course,
significantly larger than those found using COSAL, as at each and every chordwise
station we are always integrating over the most amplified frequency. In case 2 (the
lower surface boundary layer), transition to turbulence was found to occur in flight
tests at approximately 19% of chord, corresponding to a value from our method
of N = 32 from figure 11. The equivalent COSAL generated N-factor is N = 17.
The N-factors at the onset of transition given by both methods here are inconsistent
between the upper and lower surfaces. It is desirable in a transition prediction method
that consistent N-factors are found at the onset of transition, but both methods give
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Figure 13. Plot of the dimensional frequency at the point of maximum amplification ψmaxr against
chord for the case 3 boundary layer.

significantly lower N-factors in the lower surface case than in the upper surface case.
However, this is not unexpected as transition is triggered by TS-dominant waves in
case 1 (due to the flat pressure region in this case) and by crossflow (CF)-dominant
waves in case 2, and indeed the limiting N-factors (i.e. at the onset of transition) are
generally different according to whether CF-modes or TS-modes are dominating the
instability process (see Schrauf 1994). Schrauf (1994) also found in his analysis of
flight experiments with the VFW 614/ATTAS aircraft, that there was a large scatter
of limiting N-factors in the TS-dominant cases and consistent limiting N-factors in
the CF-dominant cases using the envelope method. This suggests that the envelope
method would be of little use in predicting transition triggered by TS waves resulting
from a region of flat pressure gradient.

In order to determine whether our wavepacket method can potentially give consis-
tent results for TS-dominant transition as well as CF-dominant transition, we now
proceed to examine the cases 3 and 4 sets of boundary layer data. In figure 11 the
N-factor curves calculated using our wavepacket method are shown. Experimental
data show transition to turbulence occurring at approximately 33% of chord for case
3. Thus the wavepacket method gives a limiting N-factor of 40, which agrees closely
with that found using the same method for case 1. Using the COSAL method it was
found that the onset of transition occurs at an N-factor of 16 for case 3, which is
more than 20% less than the value at transition onset calculated for case 1. In case 4
the transition onset occurs at approximately 25% of chord, giving a limiting N-factor
of 32 using the wavepacket method agreeing with the result for case 2. The limiting
N-factor for case 4 found using COSAL was 17.5 which is very close to the value
found for case 2.

The results from this analysis suggest that our wavepacket approach may be
able to provide more consistent N-factors for use in the prediction of TS-dominant
transition than the widely utilized envelope method (see figure 11). A much larger
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sample of data must be analysed before drawing such a conclusion, but the results
here seem promising. In order for a transition prediction scheme to be useful to
industry it must provide reliable and consistent limiting N-factors. We suggest that
our wavepacket approach, which uses a particular physical property (the pinching
mechanism) to calculate the growth rates and does not rely on any arbitrary or
intuitive fixing of parameters, may be able to provide a consistent measure of the
amount of amplification contained in the swept-wing boundary layer for correlation
with the position of the onset of transition. Figure 13 plots the dimensional frequency
at the point of maximum amplification found using our wavepacket method against
chord for case 3. In the region close to the nose very high frequencies are most
unstable, and these could easily be missed in a conventional analysis.

6. Conclusions
In this paper we have applied pinch point theory to swept-wing boundary lay-

ers operating in the compressible regime. A method for establishing whether the
compressible swept-wing boundary layer supports absolute instabilities is discussed,
and no such absolute instabilities were located on the subsonic or the supersonic
swept-wing boundary layer. The variation of search direction method is discussed,
and it is shown that contrary to predictions made using model FSC profiles, these
profiles do not support chordwise pinches, and therefore certainly do not predict that
the wavepacket amplifies in the upstream direction. The pinch point property is then
used to locate the maximum growth rate obtained by a single wave contained in
a wavepacket propagating in the boundary layer. These maximum growth rates are
integrated along the wing to calculate N-factors for correlation with transition data.
No arbitrary fixing of dispersion relation parameters is required in order to calculate
these growth rates, which are found to be purely temporal. Two TS-dominant cases
and two CF-dominant cases are examined and the effects of the shape of the pressure
coefficient curves on the amplification curve are explored. As expected the limiting
N-factors for the TS-dominant cases and the CF-dominant cases differ. However in
contrast to the envelope method, which gave a large discrepancy between the limiting
N-factors in the two TS-dominant cases, consistent limiting N-factors are found for
both the TS- and CF-dominant cases using our wavepacket approach. It is therefore
suggested that our wavepacket method may be a more useful design tool. Practical
implementation of our scheme would certainly involve a number of computational
techniques different to those used in the present study; for instance, one could find
the centre of the wavepacket, and hence the maximum growth rate, by maximizing ωi
with α, β real. Validation of our method using further test cases from other aircraft
would be invaluable.
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