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This article deals with the effect of information and uncertainty on profits in an
unobservable single-server queuing system. We consider scenarios in which the
service rate, the service quality, or the waiting conditions are random variables that
are known to the server but not to the customers. We ask whether the server is
motivated to reveal these parameters. We investigate the structure of the profit
function and its sensitivity to the variance of the random variable. We consider
and compare variations of the model according to whether the server can modify
the service price after observing the realization of the random variable.

1. INTRODUCTION

There is a growing interest in queuing models where servers and customers react to
each other’s action, such as prices and queue discipline set by the server, and an
arrival process generated in a noncooperative way by the customers (see [9] for a
survey). Much of the literature on this subject assumes that the system’s parameters
are fixed and known to the participating agents. In other cases, customers own
private information on the individual parameters, and one asks whether an adequate
pricing system can be used to motivate them to reveal this information to the queue
operator. In contrast, this article deals with the common situation in which some
parameters are random variables whose realization at a particular time is known to
the queue operator but not to the potential customers. For example, the rate of
service might vary due to various reasons, the quality of the service might be
subject to changes, and even the conditions of waiting in the queue, which might
be of importance to a customer when deciding on whether or not to join, might
vary. The subject of this article is the effect that this uncertainty has on the decisions
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made by the server and the customers, and, in particular, on the expected rate of profit.
We ask whether the server is motivated to reveal the information, what the effect of
increased uncertainty is, and what happens when the server is restricted to a fixed
price independent of the realization of the random variable.

Several articles have dealt with the value of information in congested systems.
Some have proved that information might reduce customers’ welfare. This phenom-
enon can be broadly interpreted as a result of the noncooperative way in which cus-
tomers behave.

Hassin [6] asked whether forcing a profit maximizing server to inform customers
about the length of the queue is necessarily beneficial, given that with (or without)
this information, customers’ behavior is not necessarily optimal. It turns out that,
depending on the input parameters, it might or might not be desired to reveal the
length of the queue in front of a profit maximizing server to customers who consider
whether to join it.

Guo and Zipkin [5] considered customers with time values uniformly distributed
on [0, 1] and three levels of delay information: no information, length of queue,
and exact waiting time. They showed how to compute the performance measures in
the three systems. Their model has no entry pricing, and welfare increases when
more accurate delay information is available.

Debo, Parlour, and Rajan [4] considered a firm that knows the quality of the service
it provides but cannot credibly communicate it to its potential customers. There are
two types of customer, characterized by their private signal on the quality of the
service. Customers update their beliefs after observing the length of the queue and
decide whether to join. The authors show that, in general, when waiting in the
queue is costly, the equilibrium behavior is not of the threshold type. Other results
on the value of information in queuing systems are discussed in [1, 7, 8, 10].

Arnott, de Palma, and Lindsey [2, 3] analyzed effects of information on partici-
pation and time-of-use decisions in congestible systems, when capacity and de-
mand fluctuate. Other articles dealing with related questions are mentioned in these
references. They concluded that with appropriate price regulation of the system,
added information can improve the efficiency of the system. Otherwise, the effect of
information might be negative.

In this article we consider a structured model of a congested system—that of a
Markovian queue managed by a single server who aims to maximize profits. To sim-
plify the derivations, we assume that the random variable in question might only
obtain two values. For this model, we are able to obtain explicit answers to the
effect of information about the system’s parameters on the servers profits and the
system’s overall welfare.

We consider an M/M/1 system with a large potential demand of risk-neutral cus-
tomers, service rate m, waiting cost of C per unit time, entry fee T, and value of
service R. The queue length is unobservable to the customers while making their
decision of whether to join it. We consider three types of uncertainty, defined by
assuming that a random parameter takes on one of two values. In the first, the capacity
of the server, measured by m, is random. In the second, the cost of spending time in
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the system, as reflected by C, is random. In the third, the quality of the service as
reflected by R is a random variable. For example, the service rate and quality might
depend on the particular server on duty, and the waiting cost might be affected by
local time-variable conditions or quality of accommodation.

In each case we consider three submodels. In the first, the customers are not
informed about the realized value of the random parameter. In particular, this
means that the server sets a single price independent of the realized value of the param-
eter, because price differentiation might serve as a signal to the customers about the
value of the parameter.1 In the other two cases, the realized value is revealed to the
customers. In the second case the server might set a different price for each realized
value, charging a higher fee for better quality or for faster service. In the third case
this is not possible, for example, because the server cannot observe the realized
value or because it is technically impossible or too costly to modify the prices.

2. MAIN RESULTS

For a given set of parameters and information, customers join the system according to
a (Nash) equilibrium rate. By our assumption of large potential demand, this rate is
such that a customer is indifferent between joining and not joining. This means
that both in the case of uninformed customers and in the case of informed customers
and two prices, the expected net benefit of a customer, after deduction of the admis-
sion fee and waiting cost, is zero. It is well known (see, e.g., [9]) that since in this case
the server extracts all the customer surplus, the server’s objective coincides with the
social objective; therefore, the server’s decisions conform with welfare maximization.
Note that with informed customers and a single price, customers might have positive
surplus and the profit maximizing solution is, in general, not socially optimal.

Let Pun, P1
in, and P2

in denote the server’s maximum profit when customers are unin-
formed or informed, and in the latter case when a single price or two prices are set by the
server, respectively. Since customers’ arrival rate in equilibrium under the pro-
fit maximizing policy is socially optimal, additional information to the customers
can only increase social welfare. Therefore, P2

in � Pun. Obviously, P2
in � P1

in.
However, when the server is restricted to a single price, there is no straightforward
answer to whether informing the customers increases profits (and social welfare).

We find that with uncertain service rate or waiting cost, P1
in � Pun. However, with

uncertain value of service, this inequality does not hold in general. In particular, when
the waiting cost is sufficiently small, we get the reverse inequality.

† For uncertain service rate, we prove (Theorem 4.3) a result that is stronger than
the obvious P2

in � Pun: Informing customers is desired even if the price is
exogenously fixed and is not optimally set by the server. Moreover, the differ-
ence between the profits obtained with informed and uninformed customers
increases with the amount of uncertainty. Note that in such a case, customers
enjoy a positive consumer surplus and the server’s objective differs from the
social objective.
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† With uncertain waiting cost, for prices that induce positive demand in the case
with no information, the same level of social welfare is attained regardless of
whether customers are informed or not, but informing customers might be ben-
eficial when one of the possible values of the waiting cost is so high that
without information, no customers will show up.

† With uncertain quality of service and a single price, when the difference
between the possible values of service is large, the optimal price is so high
that no customer will choose to arrive if the low value is realized. It
follows that, for small values of C, the server is motivated to conceal the real-
ized value of service from the customers. For large values of C, the opposite is
true.

The effect of increasing uncertainty on the three profit functions is different from
case to case:

† With informed customers and two prices, increasing the variance has a
positive effect on profits and welfare in all three types of uncertainty that we
consider.

† With informed customers and a single price, the effect is positive except for
when the variance is small and the random variable is the quality of service.

† With uniformed customers, profits are independent of the variance when the
random variable is the waiting cost or quality of service. However, with
random service rate, profits decrease as the variance increases.

The article is organized as follows. In Section 3 we describe the well-known
outcome of the model when all parameters are known with certainty. Sections 4, 5,
and 6 deal with uncertain service rate, waiting cost, and quality of service,
respectively. Each section is divided into five subsections. The first three deal
with the cases of uninformed customers, informed customers with two prices,
and informed customers with a single price, respectively. The fourth subsection
compares the results and draws conclusions on the effect of the assumptions
on the server’s expected profit. The last subsection analyzes the effect of
uncertainty, as expressed by the variance of the random variable, in each of the
three models.

3. BACKGROUND

For given values of the parameter R, C, m, and T, if R 2 T , (C/m), then the equili-
brium arrival rate is zero. Otherwise, it satisfies R 2 T ¼ C/(m 2 l) or l ¼

m2(C/(R 2 T )).
Suppose that R, C, and m are given and that T is a decision variable. The rate of

profit is P ¼ lT. If R , C/m, then it is not possible to gain any profits. Otherwise,
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P is optimized by setting

T ¼ R�
ffiffiffiffiffiffiffi
RC

m

s
: (1)

Thus, the maximum rate of profit is

P� ¼

ffiffiffiffiffiffiffi
Rm
p

�
ffiffiffiffi
C
p� �2

; R � C

m

0; R ,
C

m

8>><
>>: (2)

(see, e.g., Table 3.2 in [9]).
In the following we measure uncertainty by the variance of the random parameter.

Suppose that the uncertain parameter is q and it obtains the values q1 and q2 with
probabilities p and 1 2 p, respectively. Denote its expected value by q̄, then
Var(q) ¼ p(q1 2 q̄)2 þ (1 2 p)(q̄ 2 q2)2. We consider two ways of controlling the
variance. In one, we fix q1 and obtain desired values of Var(q) and q̄ is by adjusting
p and q2. In the other, we fix p and adjust q1 and q2. In both types, we maintain a con-
stant value of q̄ ¼ pq1 þ (1 2 p)q2. Thus, q2 ¼ (q̄ 2 pq1)/(1 2 p) and

Var(q) ¼ p

1� p
(q1 � �q)2: (3)

4. UNCERTAIN SERVICE RATE

Assume that m ¼ m1 with probability p and that m ¼ m2 with probability 1 2 p,
where m1 . m2. Let

v ¼ R� T

C

and

r ¼ R

C
:

Thus, v and r represent the values of service and net gain from service after deduction
of service fee, respectively, normalized with respect to the time value.

4.1. Uniformed Customers

Without loss of generality,

R� T � C
p

m1
þ 1� p

m2

� �
; (4)

since otherwise l ¼ 0 and P ¼ 0. The proof of the following lemma is given in the
appendix.
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LEMMA 4.1: The equilibrium value of v is a root of

(m1 � m2)2½(m1 þ m2)2 � (m1 � m2)2�v4

þ 2(1� 2p)(m1 � m2)½(m1 þ m2)2 � (m1 � m2)2�v3

þ ½(m1 þ m2)2 � 2r(m1 � m2)2

� ½m1 þ m2 þ (1� 2p)(m1 � m2)� � (1� 2p)2(m1 � m2)2�v2

þ 2r(m1 � m2)½�2(1� 2p)(m1 þ m2)� (1� 2p)2(m1 � m2)� (m1 � m2)�v

þ r½r(m1 � m2)2 � 2(m1 þ m2)� r(1� 2p)2(m1 � m2)2

� 2(1� 2p)(m1 � m2)� ¼ 0:

We solve the above polynomial for v and then compute Pun ¼ lT ¼ l(R 2 Cv).2

4.2. Informed Customers: Two Prices

Suppose that customers are informed about the service rate and the server charges
different prices depending on the realization of m. In this case, we use (2) to obtain
that the server’s rate of profit is

Pin
2 ¼

pC
ffiffiffiffiffiffiffiffi
rm1
p � 1
� �2þð1� pÞC ffiffiffiffiffiffiffiffi

rm2
p � 1
� �2

; r � 1
m2

pC
ffiffiffiffiffiffiffiffi
rm1
p � 1
� �2

;
1
m1

, r ,
1
m2

0; r � 1
m1
:

8>>>>>><
>>>>>>:

(5)

4.3. Informed Customers: Single Price

Assume that the firm must set a fixed price and cannot change it when the value of m
is revealed. Moreover, customers are informed about the realized value of m.

Assume first that the price T is not too large, so that l . 0 for both values of m.
The arrival rate, given m ¼ mi, is li ¼ mi 2 (C/(R 2 T)). The expected arrival rate,
given T, is

l ¼ p m1 �
C

R� T

� �
þ (1� p) m2 �

C

R� T

� �

¼ pm1 þ (1� p)m2 �
C

R� T
:

(6)

Define m̄ ¼ pm1 þ (1 2 p)m2. The expected rate of profit, given T, is P(T ) ¼ Tl. Its
derivative with respect to T is

�m� C

R� T
� TC

(R� T)2 :
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The first-order optimality condition is (m̄/C )(R 2 T )2 2 R ¼ 0, which gives

T ¼ R +

ffiffiffiffiffiffiffi
RC

�m

s
:

Since T , R is required, only the root associated with the minus is relevant, and
l ¼ �m�

ffiffiffiffiffiffiffiffiffiffiffiffi
C �m=R

p
. Therefore,

P ¼ R�
ffiffiffiffiffiffiffi
RC

�m

s !
�m�

ffiffiffiffiffiffiffi
C �m

R

r !
¼ C

ffiffiffiffiffiffiffi
�mR

C

r
� 1

 !2

: (7)

However, the firm might choose a high price, which does not attract any customers
if m ¼ m2. In this situation, the firm will set the price to gain maximum profit when the

high rate is realized. Thus, T ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CR=m1

p
, as in (1), and

P ¼ pC

ffiffiffiffiffiffiffiffiffi
Rm1

C

r
� 1

 !2

: (8)

The firm will choose the solution giving the higher value between (7) and (8). The
two values are equal if

ffiffiffiffiffiffiffi
�mR

C

r
� 1

 !2

¼ p

ffiffiffiffiffiffiffiffiffi
Rm1

C

r
� 1

 !2

;

or ffiffiffiffiffiffi
�mr
p

� 1 ¼ ffiffiffi
p
p

(
ffiffiffiffiffiffiffiffi
rm1
p � 1):

Equivalently, r ¼ h, where

h ¼
1� ffiffiffi

p
pffiffiffiffi

�m
p � ffiffiffiffiffiffiffiffi

m1p
p

� �2

:

Remark 4.2: By concavity of the square root function, p
ffiffiffiffiffiffi
m1
p þ ð1� pÞ ffiffiffiffiffiffim2

p
.

ffiffiffiffi
�m
p

.
This inequality can be used to show that

ffiffiffiffiffiffiffiffi
m1p
p þ ffiffiffiffiffiffi

m2
p � ffiffiffiffiffiffiffiffi

m2p
p

.
ffiffiffiffi
�m
p

or h .1=m2,
for any p [ (0,1).

Denote the resulting profit by P1
in, then

Pin
1 ¼

C
ffiffiffiffiffiffi
r �m
p � 1ð Þ2; r � h

pC
ffiffiffiffiffiffiffiffi
rm1
p � 1
� �2

;
1
m1
� r � h

0; r � 1
m1
:

8>>>>><
>>>>>:

(9)
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4.4. Discussion

Denote by lin(T ) the equilibrium expected arrival rate when customers are informed
and there is a single price T. Similarly, let lun(T ) be the arrival rate when customers
are not informed.

THEOREM 4.3: Consider fixed input values of p, m1, and m2. For every price T, 0 ,

T , R 2 C(( p/m1) þ ((1 2 p)/m2)), lin(T ) � lun(T ).

PROOF: By (6) and (A2), we need to prove that (m̄ 2 1/v) 2 1/2 (21/v þ m1 þ m2 2

S ) � 0 or that S 2 [1/v þ (m1 2 m2)(1 2 2p)] � 0. It is sufficient to show that

1
v2
þ (m1 � m2)2 þ 2

v
(1� 2p)(m1 � m2Þ

� �
� 1

v
þ (m1 � m2)(1� 2pÞ

� �2

� 0:

This is equivalent to 1 2 (1 2 2p)2 � 0, and the claim follows. B

Note that the inequality in the theorem is strict except for when p [ f0,1g, the case
with no uncertainty. The difference in the expected arrival rates is concave and it is
maximized when p ¼ 1/2. Thus, we might say that the difference in the expected
arrival rates increases with the amount of uncertainty.

Also note that the range of prices in the theorem is the allowed range for the unin-
formed customers case. For the informed customers case, the allowed range is wider,
and in the added values, we have lin(T ) . 0, whereas lun(T ) ¼ 0, conforming with
the spirit of the theorem.

COROLLARY 4.4: P2
in � P1

in � Pun. Therefore, the firm is motivated to reveal the real-
ized value of m to its customers.

PROOF: The first inequality is obvious, and the second follows from Theorem 4.3.B

The relative behavior of the profit functions under the three models differs in
different regions of r as follows (we use here the inequality h . 1/m2 given in
Remark 4.2):

† If r [ (0,1/m1), then Pun ¼ P1
in ¼ P2

in ¼ 0.
† If r [ (1/m1, p/m1 þ (1 2 p)/m2), then 0 ¼ Pun , P1

in ¼ P2
in.

† If r [ ( p/m1 þ (1 2 p)/m2,1/m2), then 0 , Pun , P1
in ¼ P2

in.
† If r [ (1/m2,1), then 0 , Pun , P1

in , P2
in. The difference P2

in 2 P1
in is equal

to kC
ffiffi
r
p

, where k ¼ 2ð ffiffiffiffi�mp � p
ffiffiffiffi
m
p

1 � ð1� pÞ ffiffiffiffimp 2Þ.

Figure 1 (left) gives the expected rate of profit for p ¼ 0.2, C ¼ 30, m1 ¼ 1.5, and
m2 ¼ 0.5.3

Remark 4.5: Clearly, when p ¼ 1, we have Pun ¼ P1
in ¼ P2

in. However, limp!1

Pun( p) , Pun(1), whereas limp!1 Pj
in( p) ¼ Pj

in(1), for j ¼ 1, 2. The functions
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when p! 1 are illustrated in Figure 1 (right). The reason is that when p ¼ 1, we
might have m2 , l , m1, whereas for any p , 1, we must have l , m2 to guar-
antee a finite value for the expected waiting time.4 Actually, the value
l ¼ m1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cm1=R

p
for p ¼ 1 is given by the root corresponding to the plus

sign in (A1).

4.5. The Effect of Uncertainty

We consider two types of change in uncertainty. In both types we fix m̄.
In the first case, we also fix m1 . m̄ (recall that m1 . m2) and simultaneously

change p and m2 so that m̄ is preserved at the same level and Var(m) varies.
In Figure 2 (left) we assumed m̄ ¼ 2 and m1 ¼ 2.5, so that by (3), Var(m) ¼ p/
(4(1 2 p)). We note that this is an increasing function of p. In the second case, we
fix p and modify m1 and m2, again preserving m̄. In Figure 2 (right) we set p ¼ 0.5
and m̄ ¼ 2, giving Var(m) ¼ (m1 2 2)2.

As expected from (9), P1
in depends only on m̄, not on the individual values of

m1 and m2, as long as h � r. For h . r, P1
in linearly increases with p in Figure 2

(left) (recall that m1 is fixed). We obtain that P1
in ¼ P2

in when p is large enough so
that to maintain m̄ ¼ 2, the value of m2 is smaller than C/R.5 Figure 2 (right) gives
similar results, but this time, p ¼ 1/2 is fixed, m1 [ (2, 3.4), and m2 ¼ 4 2 m1 [
(C/R ¼ 0.6, 2) so that, again, m̄ ¼ 2 is preserved. The two figures are essentially
identical except for a nonlinear change of scale.

The function ð ffiffiffiffimp � 1Þ2 is convex. Suppose that Var(m) is increased while
maintaining m̄. Then P2

in in the first two cases of (5) also increases. Therefore, P2
in,

which is the maximum of these two expressions (and zero) is a nondecreasing func-
tion of the variance (and strictly increasing where the profit is positive).

Finally, Pun decreases when the variance increases due to the convexity of the
expected waiting time as a function of l for any given m.

FIGURE 1. Profits when p ¼ 0.2 (left) and when p! 1 (right).
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5. UNCERTAIN WAITING COST

Suppose that C ¼ C1 with probability p and C ¼ C2 with the complementary prob-
ability, where C1 , C2. Denote the expected value of C by C̄ ¼ pC1 þ (1 2 p)C2.

5.1. Uniformed Customers

Given a price T, the equilibrium arrival rate is l ¼ (m 2 C̄/(R 2 T ))þ. By (2), the
maximum rate of profit is

Pun ¼
� ffiffiffiffiffiffiffi

Rm
p

�
ffiffiffiffi
�C

p �2
; Rm � �C

0; Rm , �C

	
(10)

5.2. Informed Customers: Two Prices

Suppose that customers are informed about the service rate and that the server charges
different prices depending on the realization of C. Then

Pin
2 ¼

p
ffiffiffiffiffiffiffi
Rm
p

�
ffiffiffiffiffiffi
C1
p� �2þ(1� p)

ffiffiffiffiffiffiffi
Rm
p

�
ffiffiffiffiffiffi
C2
p� �2

; Rm � C2

p
ffiffiffiffiffiffiffi
Rm
p

�
ffiffiffiffiffiffi
C1
p� �2

; C1 , Rm , C2

0; Rm � C1:

8><
>: (11)

5.3. Informed Customers: Single Price

Given the price T and the information that Ci is realized, the equilibrium arrival rate is
li ¼(m 2 (Ci/(R 2 T )))þ.

FIGURE 2. The effect of uncertain m: changing ( p, m2) (left) and (m1, m2) (right).
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For T , R 2 (C1/m), we have l1, l2 . 0. The expected rate of profit is then

P ¼ T ½ pl1 þ (1� p)l2� ¼ T pm� p
C1

R� T
þ (1� p)m� (1� p)

C2

R� T

	 


¼ Tm�
�CT

R� T
:

This is the same expression as in the uniformed customers case and the maximum
profit is

P ¼
ffiffiffiffiffiffiffi
Rm

p
�

ffiffiffiffi
�C

p� �2
: (12)

Expression (12) is correct if the maximizing price satisfies T , R 2 (C1/m).
Otherwise, it underestimates the profit by assuming a negative l2, whereas the true
value is zero. For T [ (R 2 (C2/m), R 2 (C1/m)), we have l1 . 0 and l2 ¼ 0. In
this range, the profit maximizing price is R�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RC1=m

p
and the profit is

P ¼ p
ffiffiffiffiffiffiffi
Rm

p
�

ffiffiffiffiffiffi
C1
p� �2

: (13)

We compare (13) with (12) to compute the maximum possible profit given R and m.
Thus,

Pin
1 ¼ max

ffiffiffiffiffiffiffi
Rm

p
�

ffiffiffiffi
�C

p� �2
; p

ffiffiffiffiffiffiffi
Rm

p
�

ffiffiffiffi
C
p

1

� �2
	 


:

The two values are equal if
ffiffiffiffiffiffiffi
Rm
p

�
ffiffiffiffi
�C

p
¼ ffiffiffi

p
p ð

ffiffiffiffiffiffiffi
Rm
p

�
ffiffiffiffiffiffi
C1
p
Þ, or Rm ¼ g, where

g ¼
ffiffiffiffi
�C

p
�

ffiffiffiffiffiffiffiffi
pC1
p

1� ffiffiffi
p
p

 !2

:

Note that from C2 . C1 it follows that g . C1. Therefore,

Pin
1 ¼

ffiffiffiffiffiffiffi
Rm
p

�
ffiffiffiffi
�C

p� �2
; Rm � g

p
ffiffiffiffiffiffiffi
Rm
p

�
ffiffiffiffi
C
p

1

� �2
; C1 , Rm , g

0; Rm � C1:

8>><
>>: (14)

5.4. Discussion

The relative behavior of the profit functions under the three models differs in different
regions of Rm defined by 0 � C1 � C̄ � C2 � g , 1 as follows:

† If Rm [ (0, C1), then Pun ¼ P1
in ¼ P2

in ¼ 0.
† If Rm [ (C1, C̄), then 0 ¼ Pun , P1

in ¼ P2
in.

† If Rm [ (C̄, C2), then 0 , Pun , P1
in ¼ P2

in.
† If Rm [ (C2, g), then 0 , Pun , P1

in , P2
in.

INFORMATION AND UNCERTAINTY IN A QUEUING SYSTEM 371

https://doi.org/10.1017/S0269964807000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000022


† If Rm [ (g, 1), then 0 , Pun ¼ P1
in , P2

in. The difference P2
in 2 P1

in is equal
to k

ffiffiffiffiffiffiffi
Rm
p

, where k ¼ 2ð
ffiffiffiffi
�C

p
� p

ffiffiffiffiffiffi
C1
p

� ð1� pÞ
ffiffiffiffiffiffi
C2
p

Þ.

Figure 3 shows the profit functions for p ¼ 0.2, C1 ¼ 20, and C2 ¼ 80. The vari-
able corresponding to the x-axis is Rm, which is the value produced by the server
per unit of time of service.6

COROLLARY 5.1: P2
in � P1

in � Pun. Therefore the firm is motivated to reveal the real-
ized value of C to its customers.

5.5. The Effect of Uncertainty

We consider two types of change in uncertainty. In both types we fix C̄. In the first
case we also fix C1 � C̄ (recall that C1 � C2) and simultaneously change p and C2

so that C̄ is preserved at the same level. In Figure 4 (left) we assumed C̄ ¼ 30 and
C1 ¼ 20, giving, by (3), Var(m) ¼ 100p/(1 2 p). In the second case we fix p and
modify C1 and C2, again preserving C̄. An increase in C1 comes with an adequate
decrease of C2. In Figure 4 (right) we assumed p ¼ 0.5 and C̄ ¼ 30, giving, by (2),
Var(m) ¼ (C1 2 30)2.7

FIGURE 3. Random waiting cost example.
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6. UNCERTAIN QUALITY OF SERVICE

Let R ¼ R1 with probability p, and R ¼ R2 with the complementary probability.
Assume R1 . R2 and that m and C are fixed. Denote �R ¼ pR1 þ ð1� pÞR2:

6.1. Uninformed Customers

Given a price T, the equilibrium arrival rate is l ¼ (m 2 C/(R 2 T ))þ. By (2), the
maximum rate of profit is

Pun ¼
ffiffiffiffiffiffiffi
�Rm

p
�

ffiffiffiffi
C
p� �2

; �Rm � C

0; �Rm , C:

8<
: (15)

6.2. Informed Customers: Two Prices

Suppose that customers are informed about the service quality and that the server
charges different prices depending on the realization of R. Then

Pin
2 ¼

p
� ffiffiffiffiffiffiffiffiffi

R1m
p

�
ffiffiffiffi
C
p �2

þ (1� p)
� ffiffiffiffiffiffiffiffiffi

R2m
p

�
ffiffiffiffi
C
p �2

; R2 �
C

m

p
� ffiffiffiffiffiffiffiffiffi

R1m
p

�
ffiffiffiffi
C
p �2

; R2 ,
C

m
, R1

0; R1 �
C

m
:

8>>>>>><
>>>>>>:

(16)

6.3. Informed Customers: Single Price

For a given price T, the arrival rate is li ¼ (m 2 C/(Ri 2 T ))þ if Ri is realized.
To have positive gain, the price cannot exceed R1 2 (C/m). We distinguish the two

cases according to whether T , R2 2 (C/m).

FIGURE 4. The effect of uncertain C: changing ( p, C2) (left) and (C1, C2) (right).
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† Consider first the case T , R2 2 (C/m): The expected profit is

P(T) ¼ T ½ pl1 þ (1� p)l2�

¼ T pm� pC

R1 � T
þ (1� p)m� (1� p)C

R2 � T

� �

¼ Tm� CT
p

R1 � T
þ 1� p

R2 � T

� �
:

The first-order optimality conditions are

P0 ¼ m� C
p

R1 � T
þ 1� p

R2 � T

� �
� CT

p

(R1 � T)2 þ
1� p

(R2 � T)2

� �
¼ 0:

Multiplication by ((R1 2 T )2(R2 2 T )2)/C gives

m

C
(R1 � T)2(R2 � T)2 � p(R1 � T)(R2 � T)2 þ (1� p)(R1 � T)2(R2 � T)

� �
� T( p(R2 � T)2 � (1� p)(R1 � T)2) ¼ 0;

or

m

C
(R1 � T)2(R2 � T)2 � pR1(R2 � T)2 � (1� p)(R1 � T)2R2 ¼ 0:

This gives the following polynomial:

m

C
T4�2

m

C
(R1þR2)T3þ m

C
(R2

1þR2
2þ4R1R2)� �R

� �
T2

þ2R1R2 1�m

C
(R1þR2Þ

� �
TþR1R2

m

C
R1R2�pR2� (1�p)R1

� �
¼0;

(17)

where R̄ ¼ pR1 þ (1 2 p)R2.
† Suppose now that T � R2 2 (C/m). In this case l2 ¼ 0 and the optimal price

gives profit pð
ffiffiffiffiffiffiffiffiffi
R1m
p

�
ffiffiffiffi
C
p
Þ2.

Figure 5 (left) shows the profit as a function of the price for C ¼ 20, p ¼ 0.2, R1 ¼

70, m ¼ 1, and R2 ¼ 30. With these parameters, R2 2 (C/m) ¼ 10, and we see that the
server gains more by raising the price to a level that induces no arrivals when R2 is
realized. Lowering R1 to 60 and increasing R2 to 40 (and then R2 2 (C/m) ¼ 20),
we obtain a new situation, shown in Figure 5 (right), in which it is worth lowering
the price to attract customers also when R2 is realized.

6.4. Discussion

When C is close to zero, Pun ¼ P2
in ¼ mR̄ . m[max(R2, pR1)] ¼ P1

in. Thus, for small
values of C, if the server is restricted to a single price, the server is motivated to
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conceal the realized value of R from the customers. However, for large values of C,
the opposite is true.

Figure 6 gives the profits as a function of C when R1 ¼ 100, R2 ¼ 30, p ¼ 0.2, and
m ¼ 1. Note that these are actually functions of C/m.8

FIGURE 5. Optimal price is greater (left) or smaller (right) than R2 2 C/m.

FIGURE 6. Random value of service.
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6.5. The Effect of Uncertainty

We fix R̄ and thus R2 ¼ (R̄ 2 R2 p)/(1 2 p). In the first case, we also fix R1 � R̄ (recall
that R1 . R2) and simultaneously change p and R2 so that R̄ is preserved. In Figure 7
(left) we assumed R̄ ¼ 30 and R1 ¼ 50, giving (by (3)) Var(m) ¼ 400p/(1 2 p). In
the second case, we fix p and modify R1 and R2, again preserving R̄. In Figure 7
(right) we assumed p ¼ 0.5 and R̄ ¼ 30, giving Var(m) ¼ (R1 2 30)2.

We see that Pun only depends on R̄ and is not affected by the change in uncertainty,
as expected from (15). We also see that in the case of informed customers and two
prices, profits increase with uncertainty. However, in the case of a single price,
profits initially decrease as a function of the variance, and only for larger variance
is there an increase.9
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Notes

1. See [11] for how price might serve as a signal for quality.
2. In our numerical solution, we obtained at most two real roots that satisfy (4), only one of which

corresponds to an equilibrium; see Remark A1.
3. In this example, h 	 110, corresponding to R 	 110. The R values corresponding to 1/m1, p/m1 þ

(1 2 p)/m2, and 1/m2, are 20, 52, and 60, respectively.
4. In the other cases that we consider later, where C or R are random, we naturally have Pun ¼ P1

in ¼

P2
in in the limit, when p!1.

5. Specifically, for the parameters used for Figure 2 (left), m2 � 30/50 is obtained when p � 14/19, or
Var(m) � 0.7.

6. With these data, C̄ ¼ 68, g 	 127.7, and k 	 0.39.
7. P1

in ¼ P2
in when Rm � C2, see (11) and (14). With the parameters used for Figure 4 (right), this

means C2 . 50, p � 2/3, and, equivalently, Var(C ) . 200. In Figure 4 (left), the analogous condition is
C1 � 10 or Var(C ) � 400. Similarly, from (10) and (14), P1

in ¼ Pun if Rm � r. In Figure 4 (left), this means

FIGURE 7. The effect of uncertain R: changing ( p, R2) (left) and (R1, R2) (right).
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C1 � ð
ffiffiffiffiffi
60
p

þ
ffiffiffiffiffi
50
p

� 10Þ2, or approximately Var(C ) � 60. In Figure 4 (right), this means
C1 � ð

ffiffiffiffiffi
60
p

þ
ffiffiffiffiffi
50
p

� 10Þ2, giving approximately Var(C ) � 46.
8. For this instance, Pun . 0 for C , mR̄ , 44, and the other curves are positive for C , mR1 ¼ 100.
9. We have P1

in ¼ P2
in if R2 � C/m. With the parameters used to create Figure 7, this means R2 � 20. In

Figure 7 (left) this means p � 1/3 and, thus, Var(R) � 200. In Figure 7 (right) it means R1 � 40 and, thus,
Var(R) � 100.
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1. Altman, E., Jiménez, T., Núñez-Queija, R., & Yechiali, U. (2004). Optimal routing among ./M/1
queues with partial information. Stochastic Models 20: 149–171.

2. Arnott, R., de Palma, A., & Lindsey, R. (1996). Information and usage of free-access congestible
facilities with stochastic capacity and demand. International Economic Review 37: 181–203.

3. Arnott, R., de Palma, A., & Lindsey, R. (1999). Information and time-of-usage decisions in the
bottleneck model with stochastic capacity and demand. European Economic Review 43: 525–548.

4. Debo, L.G., Parlour, C.A., & Rajan, U. (2005). The value of congestion. Working paper, Carnegie
Mellon University.

5. Guo, P. & Zipkin, P. (2004). Analysis and comparison of queues with different levels of delay
information. Working paper, Duke University.

6. Hassin, R. (1986). Consumer information in markets with random products quality: The case of queues
and balking. Econometrica 54: 1185–1195.

7. Hassin, R. (1996). On the advantage of being the first server. Management Science 42: 618–623.
8. Hassin, R. & Haviv, M. (1994). Equilibrium strategies and the value of information in a two line

queuing system with threshold jockeying. Communications in Statistics: Stochastic Models 10: 415–
436.

9. Hassin, R. & Haviv, M. (2003). To queue or not to queue: Equilibrium behavior in queueing systems.
Amsterdam: Kluwer.

10. Larsen, C. (1998). Investigating sensitivity and the impact of information on pricing decisions in an M/
M/1/1 queuing model. International Journal of Production Economics 56–57: 365–377.

11. Milgrom, P. & Roberts, J. (1986). Price and advertising signals of product quality. Journal of Political
Economy 94: 796–821.

APPENDIX
Proof of Lemma 4.1

In equilibrium,

v ¼ p

m1 � l
þ 1� p

m2 � l
;

or

v(m1 � l)(m2 � l) ¼ pm2 þ (1� p)m1 � l;

and

vl2 þ l(1� vm1 � vm2)þ vm1m2 � pm2 � (1� p)m1 ¼ 0;
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and, finally,

l ¼ �1þ v(m1 þ m2)
2v

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� vm1 � vm2)2 � 4v½vm1m2 � pm2 � (1� p)m1�

q
2v

¼ 1
2
� 1

v
þ (m1 þ m2) +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v2
þ (m1 � m2)2 þ 2

v
(1� 2p)(m1 � m2)

r( )
:

(A:1)

Assuming m1 . m2, the square root is minimized when p ¼ 1, and then it is equal to v 2 (m1 2

m2). Therefore, the root corresponding to the plus sign is greater than m2. We conclude that the
equilibrium is defined by the root corresponding to the minus sign. Hence,

l ¼ 1
2
� 1

v
þ (m1 þ m2)� S

	 

;

where (A.2)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v2
� (m1 � m2)2 þ 2(1� 2p)(m1 � m2)

v

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v
� (m1 � m2Þ

� �2

þ 4(1� p)
m1 � m2

v

s
:

Note that by our assumptions that p [ (0, 1) and m1 . m2, it follows that S is strictly positive.
The derivative of l with respect to v is

l0v ¼
1

2v2
1�
�1

v
� (1� 2p)(m1 � m2)

S

8><
>:

9>=
>;;

and with respect to T, it is

l0T ¼ l0v
dv

dT
¼ � 1

2Cv2
1�
� 1

v
� (1� 2p)(m1 � m2)

S

8><
>:

9>=
>;:

The profit Pun is equal to lT. The first-order optimality condition is Tl0T þ l ¼ 0, or

� T

2Cv2
1þ

1
v
þ (1� 2p)(m1 � m2)

S

0
B@

1
CAþ 1

2
� 1

v
þ (m1 þ m2)� S

� �
¼ 0:

Multiply by 2S (allowed since S . 0),

S � T

Cv2
� 1

v
þ m1 þ m2

� �
¼ T

Cv3
þ T(1� 2p)

m1 � m2

Cv2
þ 1

v2

þ (m1 � m2)2 þ 2(1� 2p)
m1 � m2

v
:
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Substitute T ¼ R 2 vC:

S � R

Cv2
þ m1 þ m2

� �
¼ R

Cv3
þ R(1� 2p)

m1 � m2

Cv2
þ (1� 2p)

m1 � m2

v

þ (m1 � m2)2: ðA:3Þ

Recall that r ; R/C. Multiply the left-hand side of (20) by v3 and square:

LS ¼ 1
v2
þ (m1 � m2)2 þ 2(1� 2p)

m1 � m2

v

� �
(r2v2 þ v6(m1 þ m2)2

� 2r(m1 þ m2)v4)

¼ r2 þ (m1 þ m2)2v4 � 2r(m1 þ m2)v2

þ 2(1� 2p)r2(m1 � m2)vþ (m1 � m2)2r2v2 þ (m1 � m2)2(m1 þ m2)2v6

� 2r(m1 � m2)2(m1 þ m2)v4 þ 2(1� 2p)(m1 � m2)(m1 þ m2)2v5

� 4r(1� 2p)(m1 � m2)(m1 þ m2)v3:

Multiply the right-hand side of (20) by v3 and square:

RS ¼ r2 þ r2(1� 2p)2(m1 � m2)2v2 þ (1� 2p)2(m1 � m2)2v4 þ (m1 � m2)4v6

þ 2r2(1� 2p)(m1 � m2)vþ 2r(1� 2p)(m1 � m2)v2 þ 2r(m1 � m2)2v3

þ 2r(1� 2p)2(m1 � m2)2v3 þ 2r(1� 2p)(m1 � m2)3v4

þ 2(1� 2p)(m1 � m2)3v5:

By (20), LS 2 RS ¼ 0. Division by v2 gives

(m1 � m2)2½(m1 þ m2)2 � (m1 � m2)2�v4 þ 2(1� 2p)(m1 � m2)

� ½(m1 þ m2)2 � (m1 � m2)2�v3

þ ½(m1 þ m2)2 � 2r(m1 � m2)2

� ½m1 þ m2 þ (1� 2p)(m1 � m2)� � (1� 2p)2(m1 � m2)2�v2

þ 2r(m1 � m2)½�2(1� 2p)(m1 þ m2)� (1� 2p)2(m1 � m2)� (m1 � m2)�v

þ r½r(m1 � m2)2 � 2(m1 þ m2)� r(1� 2p)2(m1 � m2)2

� 2(1� 2p)(m1 � m2)� ¼ 0:

(With m1 ¼ m2 ¼ m, the polynomial reduces to (2m)2v2 ¼ 4rm, or v ¼
ffiffiffiffiffiffiffi
r=m

p
. This gives T

as in (1).) B

Remark A.1: Figure A1 shows the roots as a function of R, with p ¼ 0.2, m1 ¼ 1.5, and m2 ¼

0.5. The figure shows the real roots that satisfy 0 � T � R 2 C( (p/m1) þ ((1 2 p)/m2)). (Recall
that by (4), T must be bounded this way, ie, P ¼ 0 if R , C (( p/m1) þ ((1 2 p)/m2)) ¼ 44. For
large values of R, we get two such roots, marked P1

un and P2
un. For example, with R ¼ 3000, the

values of l, v, T, and Pun are (0.44, 12.82, 2615.4, 1142.1) and (0.20, 2.80, 2916.1, 575.49),
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respectively. However, the new root, denoted P2
in in Figure A1, does not correspond to a new

equilibrium. Substituting these values in (A.3), we obtain that the left-hand side is negative,
whereas the right-hand side is positive (and equal to the left-hand side in its absolute value).
Thus, the root P2

un results from the squaring of the two sides of (A.3).

FIGURE A1. Profits corresponding to the two real roots.
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