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COMPARATIVE DYNAMICS IN
STOCHASTIC MODELS WITH
RESPECT TO THE L∞–L∞ DUALITY:
A DIFFERENTIAL APPROACH

KENJI SATO AND MAKOTO YANO
Kyoto University

Many economic analyses are based on the property that the value of a commodity vector
responds continuously to a change in economic environment. As is well known, however,
many infinite-dimensional models, such as an infinite–time horizon stochastic growth
model, lack this property. In the present paper, we investigate a stochastic growth model in
which dual vectors lie in an L∞ space. This result ensures that the value of a stock vector
is jointly continuous with respect to the stock vector and its support price vector. The
result is based on the differentiation method in Banach spaces that Yano [Journal of
Mathematical Economics 18 (1989), 169–185] develops for stochastic growth models.

Keywords: Stochastic Optimal Growth Model, Comparative Dynamics,
Infinite-Dimensional Differential Approach

1. INTRODUCTION

It is one of the most important properties in economic analysis that the value of
economic activities behaves continuously with respect to an exogenous parameter
of the model. For example, the gross domestic product is often treated as contin-
uous with respect to economic environments. This is because, usually, both the
equilibrium economic activities and their prices can be assumed to be continuous.
Although this is true in the finite-dimensional deterministic model, it does not hold
in infinite-dimensional stochastic models such as the stochastic optimal growth
model; even if both a state variable vector and its dual price vector are convergent
in their respective spaces, their inner product (i.e., the value of a state variable) may
not be convergent [Mas-Colell and Zame (1991)]. This difficulty has hampered
various comparative dynamic analyses in stochastic models.

To overcome this difficulty, the present study constructs a stochastic optimal
growth model in which the partial derivatives of the expected utility function lie
in the same L∞ space as that in which the state variables lie. In that case, the
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“inner product” between a dual vector (partial derivative) and a state variable may
be continuous with respect to an exogenous parameter of the model.

For this purpose, we adopt the differential approach of Yano (1989), in which
he transforms a stochastic optimal growth model into an infinite-dimensional
deterministic model that is differentiable. Although his study is confined to local
structure around the stochastic modified–golden rule state, we are concerned with
the global property of a support price.

This study is related to Bewley (1972, 1981), Marimon (1989), and Evstigneev
and Flåm (2002), in which the existence of a dual price vector in the L1 space is
demonstrated.1 As is well known, however, the “inner product” (value) of a state-
variable vector in L∞ and a price vector in L1 is not continuous on their product
space, L∞ ×L1. In contrast, we demonstrate that the dual price of a state-variable
vector lies in the L∞ space, in which case the “inner product” of a state-variable
vector and its price is continuous in L∞ ×L∞, which makes it possible to perform
comparative dynamics. This study is related also to Arkin and Evstigneev (1987),
in which they derive a dual vector in L1 by extending the Lagrangian method to
an infinite-dimensional stochastic growth model.2

There has been an extensive literature on stochastic growth theory. Brock and
Mirman (1972) show that there is a unique stationary distribution of allocations
at each period. Mirman and Zilcha (1975) show the existence of the optimal
policy function and the steady state stock using the theory of Markov processes.
Stokey and Lucas (1989) and Hopenhayn and Prescott (1992), among others, prove
similar existence theorems using stochastic monotonicity and monotone Markov
processes.

The rest of the paper is organized as follows: In Section 2, we will provide
mathematical preliminaries regarding to differentiation in Banach spaces. We
review the stochastic growth model of Yano (1989) in Section 3. Section 4 is
concerned with assumptions. We will investigate the validity of one of those
assumptions in Section 5. After reviewing how the stochastic model is transformed
into an equivalent deterministic model in Section 6, we will present the main
theorem in Section 7. In Section 8, we give a brief discussion of our result.

2. MATHEMATICAL PRELIMINARIES AND NOTATION

Let (H,H , π) be a probability space and Rm the m -dimensional Euclidean space.
We denote as Bm the usual Borel σ -algebra on Rm. L∞(H,H ; Rm) denotes the
set of H -measurable functions that are bounded with probability 1. We treat two
functions f, g ∈ L∞(H,H ; Rm) as equivalent if f = g on some measurable set
A ∈ H such that π(A) = 1.3 L∞(H,H ; Rm) is a Banach space equipped with
the norm

‖f ‖∞ := inf
A∈H :π(A)=1

{sup |f (x)| : x ∈ A}.

Our approach is based on the fact that differentiation is defined for functions
between Banach spaces (V , ‖ · ‖V ) and (W, ‖ · ‖W). We define the derivative
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of f : D(f ) → W at the point x ∈ D(f ) as the bounded linear operator
∇f (x) : V → W that satisfies

lim
y→x, x �=y

‖{f (y) − f (x)} − ∇f (x)(y − x)‖W

‖y − x‖V

= 0,

where D(f ) ⊂ V is the domain of f . The continuous differentiability of a deriva-
tive and the Lipschitz number are defined in a standard manner. We denote the
partial derivatives of f (x1, x2) with respect to the first and the second coordinates
as ∇1f (x1, x2) and ∇2f (x1, x2), respectively.

3. STOCHASTIC ECONOMY

Here, we review the definitions and concepts used in Yano (1989).

3.1. States of Nature

We describe a state of nature by a bilaterally infinite stream of exogenously driven
“economic conditions.” The formal definitions are given as follows:

A set S consists of all possible economic conditions in each period. S denotes a
σ -algebra on S, and hence (S,S ) is a measurable space. The history of economic
conditions is described by an S-valued two-sided sequence; that is, the set of
histories is H := ∏

n∈Z Sn, where Sn = S for every n ∈ Z,4 and a history (or
state) is an element of H . Let Hn denote the σ -algebra generated by sets of the
form (. . . , An−1, An, S, S, . . . ), where Ak ∈ S for all k = n, n − 1, . . . . Note
that {Hn}n∈Z+ constructs a filtration of the measurable space (H,H ), where H
is the σ -algebra generated by

⋃∞
n=0 Hn.

Let π be a probability measure on (H,H ). With this measure, a history may
be thought of as a realization of a stochastic process.5 Thus, we regard economic
conditions as driven by a stochastic process h ∈ H . Moreover, we restrict the
analysis to the case where the associated probability distribution is stationary.
In order to state this rigorously, let us denote the backward-shift operator σ :
H → H : {hn}∞n=−∞ �→ {hn+1}∞n=−∞. We say that the stochastic environment is
stationary 6 if π(A) = π(σA) for all A ∈ H .

3.2. Capital Stocks

We consider m capital stocks. A program is a stochastic process {κn}n∈Z+ such
that κn is independent of hn+1, hn+2, . . . Note that for each n ∈ Z+, κn is an
Hn-measurable function on H into Rm. Furthermore, we assume that they are
essentially bounded; i.e., κn ∈ L∞(H,Hn; Rm). A stationary program {κn}n∈Z+
generated by stock γ ∈ L∞(H,H0; Rm) is a program that satisfies κn(h) =
γ (σnh) for almost every h ∈ H .
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3.3. Utility Functions

In each period and in each state, the economy is subject to some resource and
technological constraints. Let us assume that such constraints can be described by
sets �h ⊂ Rm

+ × Rm
+. Rigorously, in period 0 and in the state h ∈ H , (x, y) ∈ �h

means that the stock level y in the end of the period is achievable with the
beginning-of-period stock x. If we assume time invariance of the technology,
�σnh can be regarded as the period-n constraint.

Assume that in each period, n, and in each economic state, h, the stock level
(x, y) ∈ �σnh has utility vh

n(x, y), where vh
n : �σnh → R (n ∈ Z+, h ∈ H) are

Bm
+ ⊗ Bm

+-measurable 7 with respect to (x, y) and Hn-measurable with respect
to h.

We say that a program {κn}n∈Z+ is feasible from γ ∈ L∞(H,H0; Rm) if κ0 = γ

and (κn−1(h), κn(h)) ∈ �σnh for almost every h ∈ H and for n = 1, 2, . . . . A
feasible program {κn}n∈Z+ is said to be optimal if it maximizes the expected sum of
utilities E

[∑∞
n=1 vh

n (ζn−1, ζn)
]

over all feasible programs {ζn}n∈Z+ from γ . Here,
E [·] is the expectation operator in terms of π .

3.4. Golden Rule States

The economy is said to be in a stochastic modified–golden rule state if it follows
an optimal stationary program. If a stationary program maximizes periodwise
expected utilities, we say that the economy is in a stochastic golden rule state.

In the rest of this paper, we extend the differential method of Yano (1989)
into a global one. We will see that optimal paths are supported by dual vectors,
which equips us with a tool for deriving a turnpike property [McKenzie (1976)].
Furthermore, the dual vectors are explicitly characterized by partial derivatives of
the utility function. This property facilitates as application to various economic
analyses.

4. ASSUMPTIONS

In this section we collect all the basic assumptions.

Assumption 1. The stochastic process that is the source of economic uncer-
tainty is stationary on the probability space (H,H , π).

Assumption 2. For any h ∈ H , �h ⊂ Rm
+ × Rm

+ is closed and convex.

This assumption is standard and needs no explanation.

Assumption 3. The economy has quasi-stationary and strictly concave utility
functions. That is, the utility vh

n(x, y) : �h → R in each period n and in each
history h satisfies vh

n(x, y) = ρnv(x, y, h) for some ρ ∈ (0, 1) and v, which is
Bm ⊗ Bm × Hn-measurable and strictly concave.
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Assumption 3 states that the utility function is additively separable. Its Hn-
measurability is a translation of the fact that the utility at period n is independent
of the stock level at periods after n for an Hn-measurable function that takes a value
on (. . . , hn−1, hn, S, S, . . . ) for fixed hn, hn−1, . . . ∈ S. The next assumption is
rather technical, but it is required to ensure the existence of an expected utility.

Assumption 4. For any (x, y) ∈ Rm × Rm such that (x, y) ∈ �h for almost
every h ∈ H , v(x, y, h) is integrable with respect to h.

Conditions similar to Assumptions 5–8 are usually imposed on a classical
growth model. For a detailed discussion, see McKenzie (2002).

Assumption 5. For any α < ∞, there is β < ∞ such that if (x, y) ∈ �h and
|x| < α, then |y| < β.

Assumption 6. There are constants ξ < ∞ and γ < 1 such that if |x| > ξ and
(x, y) ∈ �h, then |y| < γ |x|.

Assumption 7. For any (x, y) ∈ �h, x ≤ z and 0 ≤ w ≤ y imply that
(z, w) ∈ �h and v(x, y, h) ≤ v(z,w, h).

Assumption 8. There exists a vector (x̃, ỹ) ∈ Rm × Rm and ρ̃ ∈ (0, 1) such
that ρ̃ỹ > x̃ and (x̃, ỹ) ∈ �h for almost every h.

Smoothness assumptions are also imposed:

Assumption 9. The utility functions v(·, ·, h), h ∈ H are continuous on �h

and continuously differentiable on the interior of �h.

To derive existence and uniformity of derivatives of utility functions, we require
an additional assumption. Let ε > 0 and vε(·, ·, h) be the restriction of v(·, ·, h)

to the domain �h
ε := {(x, y)|∃δ > ε s.t. the δ-neighborhood of (x, y) ⊂ �h}.

Assumption 10. For every ε > 0, vε(·, ·, h) (h ∈ H) are Lipschitz continuous.
Furthermore, the associated Lipschitz numbers are uniformly bounded with respect
to h.

5. AN EXAMPLE

Although Assumption 10 might appear stringent, it is relatively innocuous, as is
shown here. Think of the economy summarized by the triple ({f h}h∈H , u, ρ). To
simplify the analysis, we confine ourselves to a one-good model. Thus, the state-
contingent production functions {f h} (h ∈ H) map R+ to R+ with f h(0) = 0.
They are strictly concave and satisfy Inada conditions. The (state-independent)
utility function u is assumed to hold similar properties. Suppose also that f h (h ∈
H) and u are twice continuously differentiable.

The representative agent’s problem is to maximize the expectation of the dis-
counted sum of utilities from consumption under the production constraint. That
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is,

max
{cn}∞n=0

E

[ ∞∑
n=0

ρn−1u(cn(h))

]
subject to cn(h) + kn(h) ≤ f h (kn−1(h)) , a.e.,

where cn(h) and kn(h) respectively denote the period-n consumption and the
capital stock under the state h.

Assume that the production functions are bounded from above.

Assumption 11. There is a function g such that g(x) ≥ f h(x) for all x ∈ R+
and h ∈ H .

The reduced-form utility functions are

v(x, y, h) := u(f h(x) − y), h ∈ H.

The feasible regions are 0 ≤ y ≤ f h(x). Hence, the agent’s utility maximization
boils down to the following problem:

max
{(kn,kn+1)}∞n=0

E

[ ∞∑
n=0

ρn−1v (kn(h), kn+1(h), h)

]

subject to (kn(h), kn+1(h)) ∈ �h, a.e.,

where �h := {(x, y) | 0 ≤ y ≤ f h(x)}.
The proposition we will show is the following:

PROPOSITION 1. In this model, Assumption 11 implies Assumption 10.

Note the following fact:

LEMMA 1. Let f, g be continuously differentiable functions R+ → R+ that
satisfy f ≥ g on R+ and f (0) = g(0). Then, for every a > 0, there exists some
ε ∈ (0, a) such that f ′(ε) ≥ g′(ε).

Proof of Proposition 1. By the definition of v(·, ·, h), the slope of the utility
function has the highest value on the edge of �h that is determined by f h. Let
us define �h

ε as the set of interior points in �h that is apart from the edge with
distance ε.

Pick any (x̃, ỹ), (x̄, ȳ) ∈ �h
ε . We have

|u(f h(x̃) − ỹ) − u(f h(x̄) − ȳ)| ≤ u′(ε)|(f h(x̃) − ỹ) − (f h(x̄) − ȳ)|
≤ u′(ε)[|f h(x̃) − f h(x̄)| + |ỹ − ȳ|]
≤ u′(ε)[(f h)′(ε)|x̃ − x̄| + |ỹ − ȳ|].

The first and the last inequality follow from the fact that u and f h are concave
functions. By Lemma 1, there exists an ε′ ∈ (0, ε) such that (f h)′(ε′) ≤ g′(ε′).
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Thus,

u′(ε′){(f h)′(ε′) |x̃ − x̄| + |ỹ − ȳ|}
≤ u′(ε′) · max{g′(ε′), 1} · (|x̃ − x̄| + |ỹ − ȳ|)
≤

√
2u′(ε′) · max{g′(ε′), 1} · |(x̃, ỹ) − (x̄, ȳ)| .

As this lemma shows, Assumption 10 can be guaranteed by Assumption 11,
which is economically interpretable in a straightforward fashion.

6. EQUIVALENT DETERMINISTIC ECONOMY

Our stochastic growth model can be regarded as an infinite-dimensional determin-
istic growth model. The domain of the latter’s utility function is

D := {(ξ, η) ∈ L∞(H,H0; Rm)

×L∞(H,H0; Rm) | (
ξ(σ−1h), η(h)

) ∈ �h, a.e. h}.
The utility function u : D → R is defined by

u(ξ, η) := E[v(ξ(σ−1h), η(h), h)], (1)

where E[·] is the expectation operator with respect to (H,H , π). Note here that
u is well defined on D . Because ξ ∈ L∞(H,H0; Rm), there is some x ∈ Rm

such that ξ(h) ≤ x a.e. h. Hence, 0 ≤ v(ξ(σ−1h), η(h), h) ≤ v(x, 0, h), a.e. h

by Assumption 7. By Assumption 4, the right-hand side of (1) is finite. Convexity
of the feasible sets is also inherited to the infinite-dimensional model.

LEMMA 2. D is a convex subset of L∞(H,H0; Rm) × L∞(H,H0; Rm).

Our analysis is based on the facts that are shown in Yano (1989).

LEMMA 3 [Yano (1989, Lemma 1)]. The deterministic model satisfies the
following:

(1) The utility function u is a concave function from D into R.
(2) For any α < ∞, if (ξ, η) ∈ D and ‖ξ‖∞ < α, there is β < ∞ such that ‖η‖∞ < β.
(3) There are constants α < ∞ and γ < 1 such that ‖ξ‖∞ > α implies ‖η‖∞ < γ ‖ξ‖∞

for any (ξ, η) ∈ D .
(4) If (ξ, η) ∈ D , ξ ≤ ζ and 0 ≤ ω ≤ η imply (ζ, ω) ∈ D and u(ξ, η) ≤ u(ζ, ω).8

(5) There are (ξ̄ , η̄) ∈ D and ρ̄ < 1 such that ρ̄η̄ ≥ ξ̄ + ε1L∞ for some ε > 0, where
1L∞ is a function h �→ (1, . . . , 1) ∈ Rm, which is in L∞(H,H0; Rm).

This lemma implies that the infinite-dimensional deterministic model satisfies
standard assumptions in a growth model.
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To make this relationship clear, it is convenient to represent the stock levels in
terms of the present t = 0. So, for a given program κ , κ̂ denotes the associated
path in a deterministic model; i.e., κ̂n(h) = κ(σ−nh).

PROPOSITION 2 [Yano (1989, Theorem 1)]. The stochastic model and the as-
sociated deterministic model are equivalent in the following sense:

(1) κn ∈ L∞(H,Hn; Rm) for n ∈ Z+ iff κ̂n ∈ L∞(H, H0; Rm) for n ∈ Z+;
(2) {κn} is feasible iff {κ̂n} is feasible;
(3) {κn} is stationary iff {κ̂n} is stationary;
(4) {κn} is optimal iff {κ̂n} is optimal; and
(5) Stock k ∈ L∞(H,H0; Rm) generates a stochastic modified–golden rule state in the

stochastic model iff it generates a deterministic modified–golden rule state in the
deterministic model.

7. SUPPORT PRICES IN L ∞ SPACE

By Assumption 9, each v(·, ·, h) is continuously differentiable. So, for each
(ξ, η) ∈ L∞(H,H0; Rm) × L∞(H,H0; Rm), let us define

u1(ξ, η)(h) := E[v1(ξ(h), η(σh), σh)|H0], (2)

u2(ξ, η)(h) := v2(ξ(σ−1h), η(h), h).

PROPOSITION 3. For any (ξ, η) ∈ L∞(H,H0; Rm) × L∞(H,H0; Rm),
u1(ξ, η) and u2(ξ, η) are well-defined on H into Rm and in L∞(H,H0; Rm).

Proof. Let i = 1 or i = 2. By Assumptions 9 and 10, the norm of the partial
derivative vi is bounded by a Lipschitz number independent of h. Hence, vi(ξ ◦
σ−1(·), η(·), ·) is an L∞(H,H0; Rm) function, and this immediately implies that
u2(ξ, η) ∈ L∞(H,H0; Rm). Because L∞ ⊂ L1, v1 is integrable. This implies that
u1 is well defined. Together with its uniform boundedness, we obtain u1(ξ, η) ∈
L∞(H,H0; Rm).

By Proposition 3, u1(ξ, η) and u2(ξ, η) may be considered as bounded lin-
ear functionals on L∞(H,H0; Rm). For ζ ∈ L∞(H,H0; Rm), let us define the
bilinear forms

〈ζ, ui(ξ, η)〉 :=
∫

H

ui(ξ, η)(h) · ζ(h)dπ(h), i = 1, 2.

LEMMA 4. For every (ξ, η) ∈ int D , there exists a neighborhood V ⊂ D of
(ξ, η) such that there is an α > 0 that satisfies that∣∣v (

ξ ′(σ−1h), η′(h), h
) − v

(
ξ ′′(σ−1h), η′′(h), h

)∣∣
≤ α

∣∣(ξ ′(σ−1h), η′(h)
) − (

ξ ′′(σ−1h), η′′(h)
)∣∣ (3)

for almost every h ∈ H whenever (ξ ′, η′), (ξ ′′, η′′) ∈ V .
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Proof. Pick (ξ, η) ∈ int D . There is an ε > 0 such that ‖(ξ, η) − (ξ ′, η′)‖∞ <

ε for every (ξ ′, η′) ∈ int D . This implies that |(ξ(σ−1h), η(h)) − (ξ ′(σ−1h),

η′(h))| < ε for almost every h ∈ H , and hence (ξ(σ−1h), η(h)) ∈ �h
ε . Let

V := {(ξ ′, η′) ∈ D |(ξ ′(σ−1h), η′(h) ∈ �h
ε }. This is a neighborhood of (ξ, η), and

inequality (3) immediately follows from Assumption 10.

LEMMA 5. Function u : D → R is differentiable on the interior of
D . The derivative of u(ξ, η), ∇u(ξ, η), is a bounded linear functional on
L∞(H,H0; Rm) × L∞(H,H0; Rm) satisfying

∇u(ξ, η)(ζ, ω) = 〈ζ, u1(ξ, η)〉 + 〈ω, u2(ξ, η)〉,

where (ζ, ω) ∈ L∞(H,H0; Rm) × L∞(H,H0; Rm).

Proof.

O(�ξ,�η)

:= |u(ξ + �ξ, η + �η) − u(ξ, η) − {〈�ξ, u1(ξ, η)〉 + 〈�η, u2(ξ, η)〉}|
= |E[v(ξ(σ−1h) + �ξ(σ−1h), η(h) + �η(h), h)]

−E[v(ξ(σ−1h), η(h), h)]

−E[E [v1(ξ(h), η(σh), σh)|H0] (h) · �ξ(h)]

−E[v2(ξ(σ−1h), η(h), h) · �η(h)]|
= |E[v(ξ(σ−1h) + �ξ(σ−1h), η(h) + �η(h), h) − v(ξ(σ−1h), η(h), h)

− v1(ξ(σ−1h), η(h), h) · �ξ(σ−1h) − v2(ξ(σ−1h), η(h), h) · �η(h)]|
≤ E[|v(ξ(σ−1h) + �ξ(σ−1h), η(h) + �η(h), h) − v(ξ(σ−1h), η(h), h)

− v1(ξ(σ−1h), η(h), h) · �ξ(σ−1h) − v2(ξ(σ−1h), η(h), h) · �η(h)|]
=: E[Oh(�ξ,�η)].

Hence, we obtain

0 ≤ O(�ξ,�η)

‖(�ξ,�η)‖∞
≤ E[Oh(�ξ,�η)]

‖(�ξ,�η)‖∞
≤ E

[
Oh(�ξ,�η)

|(�ξ(σ−1h),�η(h))|
]

.

If (�ξ,�η) lies in a sufficiently small neighborhood of (0, 0), then
Oh/|(�ξ(σ−1h),�η(h))| (h ∈ H) are uniformly bounded by Lemma 4. By
Assumption 9, Oh/|(�ξ(σ−1h),�η(h))| → 0 as |(�ξ(σ−1h),�η(h))| → 0.
Applying the bounded convergence theorem, we have

lim
(�ξ,�η)→0

O(�ξ,�η)

‖(�ξ,�η)‖∞
≤ E

[
lim

(�ξ,�η)→0

Oh(�ξ,�η)

|(�ξ(σ−1h),�η(h))|
]

= 0.
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The last assumption we impose is as follows:

Assumption 12. For any optimal path k = {kn}∞n=0, kn lies in the interior of D
for n = 0, 1, . . . .

The following theorem is the main result.

THEOREM 1. An optimal path k = {kn}∞n=0 is supported by a sequence of dual
vectors that are in L∞(H,H0; Rm).

Proof. By Lemma 5 and the concavity of the problem, we have

u(kn, kn+1) + 〈kn, u1(kn, kn+1)〉 + 〈kn+1, u2(kn, kn+1)〉
≥ u(ξ, η) + 〈ξ, u1(kn, kn+1)〉 + 〈η, u2(kn, kn+1)〉, n = 1, 2, . . . ,

for any (ξ, η) ∈ D . Considering the Euler equations 9

u2(kn−1, kn) + ρu1(kn, kn+1) = 0, n = 1, 2, . . . ,

define qk
n := u2(kn−1, kn), n = 1, 2, . . . . Then we obtain the desired result:

u(kn, kn+1) + 〈kn+1, q
k
n+1〉 − ρ−1〈kn, q

k
n〉 ≥ u(ξ, η) + 〈η, qk

n+1〉 − ρ−1〈ξ, qk
n〉.

The fact that qk
n ∈ L∞(H,H0; Rm) is the result of Proposition 3.

8. DISCUSSION

Theorem 1 guarantees the joint continuity of a value with respect to a quantity
vector and its support price vector. Many stochastic models do not satisfy this joint
continuity, on which the standard economic analysis is based. Theorem 1 makes
it possible to overcome this difficulty.

Under our assumptions, the pricing formula is given by the following duality
between L∞ and itself:

〈k, q〉 =
∫

q(h)k(h)dπ,

where the convergence in the spaces is defined by

ks → k :⇐⇒ 〈ks, q〉 → 〈k, q〉 for all q ∈ L∞,

qs → q :⇐⇒ 〈k, qs〉 → 〈k, q〉 for all k ∈ L∞.

In this case, the joint continuity of the bilinear form 〈k, q〉 is readily proved as
follows. Given the convergence of equilibrium capital ks

n → kn, by (2), we obtain
the convergence of price

qs
n = u2

(
ks
n−1, k

s
n

) → u2(kn−1, kn) =: qn.
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By Theorem 1, we have∣∣〈ks
n, q

s
n

〉 − 〈kn, qn〉
∣∣ ≤ ∣∣〈ks

n, q
s
n

〉 − 〈
ks
n, qn

〉∣∣ + ∣∣〈ks
n, qn

〉 − 〈kn, qn〉
∣∣

≤ ∥∥ks
n

∥∥ · ∣∣〈1, qs
n

〉 − 〈1, qn〉
∣∣ + ∣∣〈ks

n, qn

〉 − 〈kn, qn〉
∣∣

→ 0.

Unlike the standard construction in infinite-dimensional economic models, the
structure of our price space ensures the continuity of a value with respect to pa-
rameters such as the discount rate, which makes it possible to conduct comparative
dynamics with respect to a value of economic activities. A potential application of
this result includes a proof of turnpike properties in a stochastic dynamic economy.

NOTES

1. As Bewley (1972) points out, the mathematically natural space for price vectors is the dual space
of L∞. The studies mentioned provide sufficient conditions for price vectors to lie in L1, which is a
subspace of the dual space of L∞.

2. In deterministic optimal growth theory, the existence of a dual vector is proved in Weitzman
(1973) and McKenzie (1976, 1983) for the discrete-time case, and in Benveniste and Scheinkman
(1982) for the continuous-time case. Because their models deal with finite-dimensional commodity
spaces, the discontinuity problem in the value of a commodity vector such as that of this study does
not appear.

3. Sometimes, we just say f = g instead of f = g almost everywhere (a.e.) or almost surely (a.s.).
4. Z is the set of all integers and Z+ the set of all nonnegative integers.
5. More precisely, if we identify the coordinate process Wn : {hk}∞k=−∞ �→ hn (n ∈ Z) with h

itself, we can consider the history as a realization of a stochastic process on (H, H , π).
6. In a normal sense, stationarity is defined as π(W−1(A)) = π(W−1(σA)). In our case, because

W−1(A) = A, the definition is valid.
7. Bm+ is the Borel σ -algebra of Rm+ and Bm+ ⊗ Bm+ is the σ -algebra generated by the product

Bm+ × Bm+ .
8. For ξ, η ∈ L∞(H, H0; Rm), ξ ≥ η ⇔ ξ(h) ≥ η(h) a.e.
9. An optimal path satisfies the Euler equations even when we apply Banach-space differential

analysis to models with an infinite-dimensional commodity space.
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