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When Factors Do Not Span Their Basis
Portfolios

Mark Grinblatt and Konark Saxena*

Abstract
To price assets with a parsimonious set of factor-mimicking portfolios, one typically iden-
tifies and weights well-diversified basis portfolios. Traditional weightings lead to factor-
mimicking portfolios that are unlikely to price even the basis portfolios from which they
are formed. We offer a method to combine basis portfolios into a single factor-mimicking
portfolio that is closely linked to the optimal portfolio. In practice, this method improves
the pricing accuracy of parsimonious factor models, even for anomaly portfolios formed
from characteristics that are distinct from those underlying the basis portfolios.

I. Introduction
Virtually every modern asset pricing theory can be viewed as a set of assump-

tions that ultimately identify an optimal investment portfolio or a linear space that
contains an optimal portfolio. The asset pricing restrictions are merely first-order
conditions for optimality. When theory is explicit about the optimal portfolio,
as in the case of the Sharpe (1964)–Lintner (1965) capital asset pricing model
(CAPM), empirical asset pricing tests are fairly straightforward. For example,
Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973) show how to
conduct time-series and cross-sectional tests of the CAPM, respectively. Here, the
definition of optimality is a maximum Sharpe ratio, and the CAPM empirical tests
merely assess whether the market portfolio satisfies that optimization criterion.

The CAPM (and its multiperiod cousins) fail to explain several prominent
cross-sectional return anomalies. This failing has led empirical asset pricing re-
search toward multifactor models in hope of a better fit with the cross section
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of average returns. Starting with Huberman and Kandel (1985), these multifac-
tor models generally employ factor-mimicking portfolios tied to anomaly-related
characteristics that the CAPM cannot explain. The most popular versions of these
multifactor models, like the Fama and French (1993) 3-factor model,1 combine
a market factor with long–short spread portfolios that group stocks into long and
short categories, referred to as “basis portfolios,” from multidimensional rankings
of their firms’ attributes. Although weighting the longs and shorts equally is ap-
pealing for its simplicity, there is no statistical or theoretical foundation for the
equal magnitude weighting of basis portfolios. We refer to multifactor models as
“traditional” when they propose these kinds of spread portfolios as factors.

Our article shows that the pricing accuracy of most traditional multifactor
models can be vastly improved by removing the restriction of equally weighting
the longs and shorts within and across size groups. In particular, we propose and
test (out of sample) a single-factor alternative to traditional factor models. The
single-factor alternative applies the mathematics of mean–variance optimality to
weight extreme basis portfolios using sample average returns and covariances.
The single-factor alternative dominates its traditional counterpart at asset pricing.
In short, our article shows that building a parsimonious set of priced factors that
work well for asset pricing tests, valuation, and performance evaluation requires
some deference to the mathematics of portfolio optimization.

The theoretical foundation of the traditional multifactor models is Ross’s
(1976) arbitrage pricing theory (APT). If the APT pricing equation holds exactly,
as in Connor (1984), the alpha anomalies observed in the literature indicate that
the optimal portfolio lies outside the span of the factor-mimicking portfolios im-
plemented as benchmarks. The compelling logic of Ross’s theory suggests this
should not happen. In a K -factor return-generating model lacking arbitrage, the
linear space spanned by K distinct2 well-diversified benchmark portfolios con-
tains the space spanned by any set of well-diversified test assets. By definition,
this space includes the portfolio of the test assets with the highest Sharpe ratio.

So what went wrong with the empirical implementation? Ross’s (1976) pa-
per is vocal in suggesting that statistical techniques can identify both the number
and identity of the factors. However, it is silent about pricing when the factor-
mimicking portfolios are too few in number to span the factor space, a condition
we refer to as “rank deficiency.” When the implemented benchmarks are rank
deficient, there may be a specific construction of the factor-mimicking bench-
marks from basis portfolios that contains the optimal portfolio in its span. How-
ever, too many arbitrary restrictions on the construction of the factor benchmarks
(e.g., the equal magnitude weightings of the long and short basis portfolios) are
likely to prevent the factor-mimicking benchmarks from spanning the optimal
portfolio. This leads to spurious nonzero alphas, which we derive in the Appendix.
The empirical dilemma posed by the alpha anomalies cannot easily be resolved by
supplementing the benchmark portfolios with additional factor-mimicking port-
folios unless the number of distinct factor-mimicking portfolios is the same or

1Carhart (1997), Novy-Marx (2013), and Fama and French (2015) are other examples of multifac-
tor models constructed using similar methods.

2Here, “distinct” means the factor beta vectors are linearly independent.
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greater than the number of true factors. Empirical research tends to shun the latter
solution as the number of true factors is large, making estimation of the many less
important factors imprecise. Moreover, interpretation and practical implementa-
tion become a problem when the factor model contains large numbers of factors:
A 20-factor model is unwieldy for both researchers and practitioners.

In the rank-deficient setting, one must be careful that restrictions on fac-
tor portfolio construction do not prevent the factor-mimicking portfolios from
spanning the optimal portfolio. Some restrictions may be necessary for statisti-
cal power or practical implementation. However, equally weighting the longs and
shorts within a size category or equally weighting across size categories are not
well-thought-out restrictions. Such restrictions eliminate much of the influence of
portfolio return data on the weights employed in the construction of rank-deficient
factor mimicking portfolios.

For example, consider the Fama–French (1993) 3-factor model, which ef-
fectively forms its factors from 6 basis portfolios. The latter are value-weighted
portfolios of firms in 2 size categories (above and below the New York Stock Ex-
change breakpoint median) intersected by 3 book-to-market categories. We refer
to these 6 basis portfolios as small value, small neutral, small growth, large value,
large neutral, and large growth. The market portfolio is a variation of combining
all 6 portfolios. The high minus low (HML) factor portfolio is an equal weighting
of 2 spread portfolios: large value minus large growth and small value minus small
growth. Note that HML omits the 2 neutral portfolios and has the same magnitude
weight on the remaining 4 portfolios: either +1/2 or −1/2. The small minus big
(SMB) factor portfolio has the same magnitude weights on all 6 portfolios. The
average returns of small growth and small value are the outliers of the 6 basis
portfolios, but they have no greater weight in HML or SMB than the large-growth
and large-value basis portfolios. The consequences of this equal weighting show
up in empirical asset pricing tests: As Welch (2008) illustrates, the Fama–French
3-factor portfolios fail to price even the 6 basis portfolios from which they are de-
rived. This failing of the 3-factor model is common to other factor models solely
because of the weight restriction. Moreover, it is the weight restriction that ac-
counts for many of the cross-sectional asset pricing anomalies we observe in the
academic and practitioner literature.

The failures of various sets of traditional factor-mimicking portfolios to price
even their basis portfolios has an unambiguous geometric interpretation: The
optimal combination of the factor-mimicking portfolios has a significantly lower
Sharpe ratio than the optimal combination of the basis portfolios from which they
are created.3 By proposing a better weighting scheme for factor portfolios, rooted
in the mathematics of mean–variance optimality, we obtain factor portfolios that
not only price their basis assets but also do an adequate job of pricing portfolios
tied to a large number of cross-sectional return anomalies.

This article assesses the asset pricing efficacy of factor-mimicking portfo-
lios with statistical tests developed by Gibbons, Ross, and Shanken (1989) (GRS)

3The proof is a small extension of a standard result. Because the basis portfolios span the factor-
mimicking portfolios, the return space spanned by both the basis portfolios and the factor portfolios is
the same as that spanned by the basis portfolios themselves.
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(an F-statistic based on independent and identically distributed (i.i.d.) multivari-
ate normal returns) and Ledoit and Wolf (2008) (LW) (a more robust bootstrap
test). Both tests effectively compare the Sharpe ratios of ex post optimal combi-
nations of 2 opportunity sets consisting of the set of factor-mimicking portfolios
both with and without the test assets they are conjectured to price.4 The more ro-
bust LW test allows for changing means and covariance matrices, as well as other
sources of non-normally distributed unconditional returns.

We are careful to avoid a potential statistical bias in assessing the relative
efficacy of our 1-factor alternative to traditional benchmarks. To understand the
bias, consider what would happen if our 1-factor alternative to the 3-factor model
consists of the ex post efficient combination of all 6 basis portfolios. In this case, it
would price the 6 basis portfolios perfectly. However, there would be no statistical
test of ex ante optimality, just a mathematical tautology relating ex post efficiency
to its first-order condition. To conservatively address this issue, all comparisons
are with a proposed single-factor alternative that is an out-of-sample ex post effi-
cient combination of the basis portfolios.5

In an i.i.d. world, the out-of-sample estimates of the means, variance, and
covariances that help determine the efficient combination of the basis portfo-
lios are independent of the returns one is trying to price. This fact motivates a
new approach that prices assets with efficient out-of-sample combinations of the
basis portfolios. We refer to the benchmark produced with this approach as the
“jackknife MVE benchmark” because the procedure uses the jackknife statistical
methodology to estimate weights for a mean–variance efficient (MVE) bench-
mark. The jackknife MVE benchmark excludes only the time-series observation
being priced from the information used to generate the benchmark. For instance,
using monthly return data, we form a jackknife portfolio that prices assets in June
2005 with information gleaned from all months in the sample period, except for
June 2005.6 The 1-factor portfolio we implement as a benchmark thus has weights
on the basis portfolios that vary each month, but only slightly for a long sample
period.

We show that the jackknife MVE factor portfolio dominates the Fama–
French (1993) 3-factor model for pricing assets. This finding generalizes to the
other 3 traditional factor models we study. In all, there are 4 sets of traditional
multifactor benchmarks, each with an associated jackknife MVE benchmark that
is proposed as an alternative: the Fama–French 3-factor model based on size
and book-to-market; the Carhart (1997) 4-factor model based on size, book-to-
market, and momentum; the new Fama–French (2015) 5-factor model based on
size, book-to-market, profitability, and investment; and a 6-factor model that aug-
ments the 5-factor model with the momentum factor.

4See Section 3 of GRS for this interpretation of their test.
5Kan and Smith (2008) show that the ex post frontier is generally on the left of the population

frontier, providing an optimistic assessment of the population frontier. Hence, Sharpe ratio compar-
isons (in-sample) of out-of-sample optimized portfolios with in-sample optimized portfolios tend to
find higher Sharpe ratios for the in-sample optimized portfolios.

6Jackknife estimates are common in statistics and have been used in finance, for example, in Basak,
Jagannathan, and Ma (2009) who use them for estimating covariances to construct a minimum tracking
error variance portfolio, but they have not been used to estimate asset pricing benchmarks.
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We illustrate the superior ability of the jackknife MVE benchmarks to price
assets for several variations of the 4 traditional factor models. For example, we can
form the 4 traditional factor benchmarks from basis portfolios distinguished by ei-
ther coarse or finer groupings of firms ranked on their characteristics. We can also
form the jackknife MVE portfolios from fine or coarse groupings of firms. How-
ever, when the grouping is fine, many MVE portfolio weights need to be estimated
for basis portfolios that are highly multicollinear. Here, it is generally advisable
to mitigate sampling error in estimating the jackknife MVE benchmarks’ optimal
basis portfolio weights by forcing some restrictions on the estimation. When the
number of basis portfolios is large because the grouping of stocks is based on
relatively fine distinctions, we force the jackknife MVE benchmark to place zero
weight on basis portfolios with nonextreme amounts of a characteristic.

A benchmark that prices assets produces alphas of zero. Tests of zero alphas
are essentially equivalent to Sharpe ratio comparisons, and we use both zero alpha
tests and Sharpe ratio comparisons to make our point. We present this analysis in
various tables described in Section II. Table 1 uses the t- and GRS F-tests of
zero alpha to generalize the Welch (2008) finding: All 4 traditional factor mod-
els fail to price the basis portfolios from which they are constructed. Table 3,
using both ordinary least squares (OLS) and Newey–West (1987) t-statistics,
reveals that all of the jackknife MVE benchmarks have significant alphas when
benchmarked against traditional factor portfolios. It also reveals that each jack-
knife MVE benchmark has a far higher Sharpe ratio than the optimal mix of the
corresponding set of traditional factor portfolios. Table 4, using the GRS F-test,
demonstrates that the jackknife MVE benchmarks, but not the traditional multi-
factor benchmarks (or variations of them), price 5×5 sets of basis portfolios that
motivate and can be used to construct traditional factor-mimicking portfolios.

Table 5 effectively presents the same result as Table 4 using the LW
Sharpe ratio comparison test. Table 6 uses the t-statistics of alphas and the GRS
F-test to demonstrate the adequacy, as well as the superiority, of jackknife MVE
benchmarks compared to their traditional factor-mimicking counterparts, at pric-
ing decile spread portfolios associated with 10 anomalies. Finally, Table 7 uses
the LW Sharpe ratio comparison test to show that the jackknife MVE benchmarks
are far better than traditional factor-mimicking portfolios at pricing a set of 20
anomaly portfolios along with the basis portfolios.

II. Time-Series Tests of Various Asset Pricing Benchmarks
We now discuss time-series tests that address the ability of various sets

of factor benchmarks to price assets. Data on monthly portfolio returns, ob-
tained from the Kenneth French data library, are from Jan. 1973 to Dec. 2014.
Descriptions of portfolio construction are found at http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data library.html. One-month Treasury bill rates from
the same data source are used to generate the excess returns of the basis port-
folios needed for the pricing regressions. Table 1 studies the ability of 3 different
factor models (3-, 4-, and 5-factor models) to price various sets of coarse basis
portfolios that are the building blocks for factor portfolio construction. It reports
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TABLE 1
Do Factors Span Their Basis Portfolios?

Table 1 reports alphas from regressing basis portfolio excess returns (above the risk-free rate) on associated factor
portfolio returns. GRS is the F -statistic of Gibbons, Ross, and Shanken (1989), testing the hypothesis that all alphas for a
group of portfolios are jointly zero. The GRS p-value is in square brackets. Panel A reports alphas of the 6 basis portfolios
of the Fama–French (FF) (1993) 3-factor model (FF3). Panel B reports the alphas of the 12 basis portfolios of the Carhart
(1997) 4-factor model. Panel C reports the alphas of the 18 basis portfolios of the Fama–French (2015) 5-factor model
(FF5). Robust Newey and West (1987) t -statistics with 9 lags are reported in parentheses. MKT is market portfolio, HML
is high minus low book-to-market (BTM) stocks, SMB is small minus big stocks, WML is winners minus losers portfolios,
RMW is robust minus weak operating profitability (OP), CMA is conservative minus aggressive investments (INV), and
MOM is momentum. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The sample
period is from July 1973 to Dec. 2014.

Panel A. Size and Book-to-Market Portfolios

FF3 [MKT, SMB, HML]

BTM Rank

Size Rank Low Medium High

Small −0.19*** 0.09** 0.05**
(−3.50) (2.22) (2.03)

Big 0.11*** −0.02 −0.13***
(3.38) (−0.28) (−2.65)

GRS (all basis) 4.39***
[0.00]

Panel B. Size, Book-to-Market, and Momentum

Carhart Factors [MKT, SMB, HML, WML]

BTM Rank MOM Rank

Size Rank Low Medium High Low Medium High

Small −0.15*** 0.09*** 0.06** −0.12 0.11** 0.19***
(−3.15) (2.50) (2.15) (−1.62) (2.04) (3.42)

Big 0.11*** −0.02 −0.10** 0.25*** 0.03 −0.06
(3.55) (−0.30) (−2.07) (3.22) (0.49) (−1.14)

GRS (subgroup) 3.65*** 6.00***
[0.00] [0.00]

GRS (all basis) 4.96***
[0.00]

Panel C. Size, Book-to-Market, Profitability, and Investment Portfolios

FF5 [MKT, SMB, HML, RMW, CMA]

BTM Rank OP Rank INV Rank

Size Rank Low Medium High Low Medium High Low Medium High

Small −0.09*** 0.04 0.03 −0.08** −0.00 −0.03 0.07* 0.08*** −0.10***
(−2.38) (1.31) (1.15) (−2.32) (−0.05) (−0.64) (1.79) (2.54) (−2.92)

Big 0.03 −0.10* −0.09** 0.07 −0.02 0.01 −0.06 −0.02 0.10***
(0.92) (−1.76) (−1.97) (1.54) (−0.60) (0.62) (−1.32) (−0.67) (2.81)

GRS (subgroup) 2.23** 3.60*** 3.81***
[0.04] [0.00] [0.00]

GRS (all basis) 2.37***
[0.00]

alphas from regressing excess returns (above the risk-free rate) of various basis
portfolios on the factor portfolio returns.

Panel A of Table 1 studies the Fama and French (1993) 3-factor model and
its ability to price the 6 basis portfolios that effectively combine to form the 3
Fama–French factors of market (MKT), HML, and SMB; Panel B studies the
Carhart (1997) 4-factor alphas from the 12 basis portfolios that effectively form
the 4 Carhart factors of MKT, HML, SMB, and winners minus losers (WML);
and Panel C studies the Fama and French (2015) 5-factor model and its ability to
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price the 18 basis portfolios (or subsets of the 18) that effectively form the 5 fac-
tors, which consist of the traditional Fama–French factors MKT, HML, and SMB
plus a robust minus weak (RMW) profitability factor and a conservative minus
aggressive (CMA) investment factor. The t-statistics for the individual alphas test
whether the alpha is significantly different from zero against the factors listed in
the panel. GRS F-statistics test whether the alphas jointly differ from 0.

Panel A of Table 1 confirms the empirical finding of Welch (2008), indi-
cating that the 3 Fama–French (1993) factors (MKT, HML, and SMB) generate
significant alphas for the 6 basis portfolios from which they are formed.7 The GRS
F-statistic of 4.39, which is significant at the 1% level, indicates that the 6 alphas
in Panel A jointly deviate from 0. Thus, even if the space spanned by all of the true
factors is spanned by the 6 basis portfolios used to construct the 3 Fama–French
3-factor portfolios, the Fama–French factors do not span the optimal combination
of their 6 basis portfolios.

Panel B of Table 1 confirms a similar result for the 4 Carhart (1997) factors.
Moreover, the 4 Carhart factors cannot even price the 6 basis portfolios used to
construct the 3-factor model benchmark. Of the 6 basis portfolios used for the 3-
factor construction, 5 of the 6 have significant alphas against the 4 Carhart factors.
The GRS test statistic on these portfolios, 3.65, strongly rejects zero alphas for all
6. Of the remaining 6 basis portfolios in Panel B, the 4-factor model again rejects
zero alphas (F= 6.00), in part because large-cap losing stocks have a positive
alpha of 25 basis points per month and small-cap winners have a positive alpha of
19 basis points per month. That is, the Carhart 4-factor model underpredicts the
average return of both the large-cap losing stocks and small-cap winning stocks.
All of the rejections of jointly zero alphas are at the 1% significance level or less,
including the rejection (F= 4.96) of the 12 alphas of the Carhart model’s basis
portfolios in Panel B.

Panel C of Table 1 focuses on the Fama and French (2015) 5-factor model
and its ability to price 18 basis portfolios: 6 based on size and book-to-market
groupings, 6 on size and operating profitability (OP) groupings, and 6 on size and
investment (INV) groupings. For each of the 3 subgroups of 6 basis portfolios,
as well as for all 18 portfolios, the 5-factor model is rejected as an accurate asset
pricing model. In particular, it has difficulty pricing small-cap firms, which are
growth oriented or less profitable, as well as high-investment firms (both large
and small cap). Combined with the results in Panels A and B, it appears that the
ability of these parsimonious factor models to price assets is dismal.

Our key point here is that this failure is less an issue of the pricing ability
of factor models per se, and more a consequence of the equal long–short weight
restriction that is typically applied to construct factor portfolios. The question
remains: Can we apply the mathematics of optimality (here, mean–variance ef-
ficiency) to obtain a better set of priced factors from the basis portfolios? The
answer is yes. As we subsequently show, dispensing with the arbitrary restriction

7Moreover, Gerakos and Linnainmaa (2014) detect an unpriced component in the HML factor
that distorts inferences, and Cremers, Petajisto, and Zitzewitz (2013) find that money managers earn
nonzero alphas because of the weights used to construct the factors.
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on portfolio weights in traditional constructions of factor-mimicking portfolios
greatly improves the pricing accuracy of factor models.

Our new approach to factor construction begins with 4 sets of 5×5 basis
portfolios. To contrast our approach with those of traditional factor design that use
coarser basis portfolio groupings, we construct a set of traditional pseudofactors
that mimic the traditional factors studied in Table 1. These are factors constructed
from the returns of sets of 5×5 basis portfolios, as illustrated in Figure 1, used
to more clearly illustrate that it is the weighting restrictions of the traditional fac-
tor models that account for their nonzero alphas. We cannot construct the actual
factors used in the traditional factor models from 2-way sorts of quintile portfo-
lios because the actual factor portfolios overlap cells. Note that the 8 symmetric
cells with weights of +1 and −1 in the 5×5 arrays in Figure 1 are in the border
rows and columns, indicating extreme quintiles of the attribute. Weighting ex-
treme quintiles captures the characteristic while holding the other characteristic
constant. The parsimony of having only 8 of 25 cells with nonzero weights adds
statistical power to subsequent tests, although modest expansions of the number
of nonzero cells to more interior cells does not alter our conclusions. We also note
that the models employing pseudofactors lack a market factor. This is because
the market factor rarely plays a significant alpha-influencing role once there are

FIGURE 1
Construction of Equal-Weighted Long–Short (Pseudo) FF Factors

Figure 1 illustrates the weighting scheme used to construct pseudo factors from sets of 5×5 basis portfolios. The 8
symmetric cells with weights +1 and −1 are in border rows and columns, and they indicate extreme quintiles of size and
one other attribute. Graph A illustrates the weighting scheme for pseudo small minus big (SMB) stocks where, from top to
bottom, the rows represent increasing size and, from left to right, columns represent increasing book-to-market. Graph B
illustrates the weighting scheme for pseudo Fama–French (FF) factors high minus low (HML), robust minus weak (RMW),
conservative minus aggressive (CMA), or winners minus losers (WML) where, from left to right, the columns represent
increasing book-to-market, profitability, investments, or past returns respectively. As before, the rows, from top to bottom,
represent increasing size.

Graph A. Pseudo SMB

Graph B. Pseudo HML/RMW/CMA/WML
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factors for both size and book-to-market. As we see later, the market factor omis-
sion is usually innocuous.

Table 2 indicates that the returns of the pseudofactors are nearly propor-
tional to those of the corresponding traditional factors studied. (The scale differs
between the zero-cost pseudo and traditional factors, so means and standard de-
viations are not separately comparable.) The middle column of Panel A reports
factor portfolio Sharpe ratios, which are the ratios of (zero-cost) portfolio means
to their standard deviations. The Sharpe ratios of the factors in the 3-, 4-, and 5-
factor models and those of the corresponding pseudo factors constructed from sets
of 2, 3, and 4 groups of 5×5 portfolios, respectively, are similar. Moreover, the
correlations between the factors in these models and their associated pseudo fac-
tors are generally above 0.9 and often above 0.95. Thus, the returns of our pseudo
factors are largely scaled versions of their traditional counterparts.

TABLE 2
Descriptive Statistics

Table 2 presents descriptive statistics on various traditional factors and traditional pseudo factor portfolios. The traditional
factors are the 5 Fama and French (2015) factors (market portfolio (MKT), small minus big stocks (SMB), high minus
low book-to-market stocks (HML), robust minus weak operating profitability (RMW), and conservative minus aggressive
investments (CMA)) and the Carhart (2014) factor (winners minus losers portfolio (WML)). The traditional pseudo factors
are analogous zero-cost portfolios constructed fromgroups of 5×5 basis portfolios using theweighting scheme illustrated
in Figure 1 (scaled by the number of nonzero weights). Panel A presents the means, standard deviations, Sharpe ratios,
and minimum and maximum realizations for these (zero-cost) factor portfolios. Panel B presents their correlation matrix.
The sample period is from July 1973 to Dec. 2014.

Panel A. Summary Statistics

Variable Mean Std. Dev. Sharpe Ratio Min. Max.

SMB 0.2578 3.1106 0.0829 −16.4000 22.0200
Pseudo SMB 0.1299 2.2451 0.0579 −10.2850 17.1462

HML 0.3601 2.9981 0.1201 −12.6100 13.8800
Pseudo HML 0.2233 1.8055 0.1237 −10.5287 7.6475

WML 0.6403 4.4514 0.1438 −34.7200 18.3900
Pseudo WML 0.4541 2.6105 0.1739 −20.2850 11.4400

RMW 0.2793 2.2621 0.1235 −17.6000 12.2400
Pseudo RMW 0.1677 1.2737 0.1316 −9.3025 6.7488

CMA 0.3697 1.9554 0.1891 −6.7600 8.9300
Pseudo CMA 0.2219 1.1026 0.2013 −3.9475 −4.1275

MKT 0.5707 4.6214 0.1235 −23.2400 16.1000

Panel B. Correlation Matrix
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Pseudo SMB 0.9545

HML −0.2258 −0.2551
Pseudo HML −0.3087 −0.3596 0.9652

WML 0.007 0.0117 −0.1548 −0.1492
Pseudo WML 0.0129 0.0134 −0.1429 −0.1376 0.9798

RMW −0.4543 −0.5078 0.1752 0.2607 0.0768 0.0971
Pseudo RMW −0.3529 −0.417 0.237 0.3048 0.0745 0.101 0.9479

CMA −0.1288 −0.127 0.6988 0.6754 0.0283 0.0466 −0.0086 0.0239
Pseudo CMA −0.1360 −0.1373 0.7067 0.6965 −0.0605 −0.0421 −0.0085 0.0132 0.9279

MKT 0.2709 0.2478 −0.3213 −0.3197 −0.1288 −0.1672 −0.2269 −0.1994 −0.4037 −0.3144
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Comparing Figure 2 with Figure 1 illustrates a less restrictive weighting
scheme of the 8 relevant cells of the 5×5 arrays’ basis portfolios. We now choose
weights for nonzero cells to generate a singled priced factor that is judged based
on its ability to price assets (i.e., generate zero alphas). The weights are simply
those that maximize the Sharpe ratio of the excess returns of the 8-, 16-, 24-, or 32-
cell combination. Thus, the optimization problem is over the 8 nonzero weights
for a comparison with the 3-factor model, over 16 for the 4-factor model, and over
24 for the 5-factor model. Because the new Fama–French (2015) 5-factor model
lacks a momentum factor, we create our own 6-factor model by tacking WML on
to the Fama–French 5-factor model. The corresponding unconstrained portfolio
weights 32 different cells among four 5×5 sorted portfolios.

The mean–variance optimization of the cells used in our factor construc-
tion generates a maximum Sharpe ratio that is influenced by sampling error. The
weighting scheme described previously generates a portfolio with the largest ratio
of sample mean to sample standard deviation. This compromises in-sample pric-
ing tests because of the correlation between sample means and sample standard
deviations across assets, here, between the MVE factor portfolio and the basis
portfolios used for testing. To address this issue, our mean–variance optimized
factor portfolio does all of its optimization out of sample so that there is no corre-
lation between the weights and returns used for testing the pricing efficacy of the
proposed factor. The procedure is a jackknife: For each test month, we generate
mean–variance optimal weights for nonzero cells in Figure 2 that maximize the
Sharpe ratio of all observations in the time series that exclude that month. Thus,
each month has a different factor that weights the basis portfolios differently, al-
though the differences across months are small with our large sample.

Table 3 compares the jackknifed mean–variance optimized portfolios (re-
ferred to as the jackknife MVE(8), MVE(16), MVE(24), and MVE(32), respec-
tively) with their traditional counterparts. Panel A reports alphas of the jackknifed
MVE portfolios’ returns from regressions against the returns of each of their cor-
responding traditional benchmarks.8 The standard OLS t-statistics for the alphas

FIGURE 2
Construction of Optimally Weighted (MVE) Benchmarks

In Figure 2, we construct mean–variance efficient (MVE) benchmarks by choosing nonzero weights for the 8 nonshaded
cells from 5×5 arrays of basis portfolios. From top to bottom, the rows represent increasing size and from left to right,
the columns represent increasing book-to-market, profitability, investments, or past returns.
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8The scale of these alphas (but not their t-statistics) depend on the weights used to construct our
(zero-investment) jackknifed MVE benchmarks. These weights are given by ŵt=6̂

−1
t µ̂t , where 6̂t

https://doi.org/10.1017/S0022109018000376  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109018000376


Grinblatt and Saxena 2345

TABLE 3
Do Traditional Factors Price Jackknife Benchmarks?

Table 3 compares traditional factors with their associated jackknife benchmarks. The jackknife benchmarks are con-
structed from groups of 5×5 basis portfolios by optimally weighting the 8 extreme quintiles as illustrated in Figure 2.
Panel A reports alphas (α) from regressing the excess returns from jackknife benchmarks on their associated traditional
factors. Ordinary least squares (OLS) t -statistics and Newey–West (1987) (NW) corrected t -statistics with 9 lags are re-
ported in parentheses. MVE stands for mean–variance efficient. Panel B reports the maximum Sharpe ratio obtained by
optimally weighting a set of portfolios both in and out of sample using our jackknife procedure. The sets of optimized port-
folios include sets of traditional factors as well as sets of basis portfolios portrayed in Figure 2. The FF3 column reports
results for the Fama–French (1993) 3 factors; Carhart for the FF3 factors augmented with the Carhart (1997) momentum
factor; FF5 for the Fama–French (2015) factors; and FF6 for FF5 factors augmented with the momentum factor. *** indi-
cates statistical significance at the 1% level. RHS and LHS refer to right-hand side and left-hand side of the regression
equation, respectively. The sample period is from July 1973 to Dec. 2014.

Panel A. Alphas of Jackknife MVE Benchmarks

Traditional Factors (RHS): FF3 Carhart FF5 FF6
Jackknife MVE Benchmark (LHS): MVE(8) MVE(16) MVE(24) MVE(32)

αMVE 0.1066*** 0.2055*** 0.1521*** 0.3249***
t -stat. (OLS) (6.4131) (8.3023) (6.1727) (9.2828)
t -stat. (NW) (5.6221) (8.1171) (5.1134) (7.9960)

Panel B. Maximum Sharpe Ratios

Sharpe Ratio FF3 Carhart FF5 FF6

Traditional factor benchmark 0.2234 0.2998 0.3774 0.4041
Jackknife traditional factor benchmark 0.1907 0.2609 0.3410 0.3595

MVE(8) MVE(16) MVE(24) MVE(32)

In-sample MVE benchmark 0.4223 0.5900 0.5847 0.7556
Jackknife MVE benchmark 0.3700 0.4908 0.4593 0.5926

along with Newey–West (1987) corrected t-statistics with 9 lags are reported in
parentheses. All of the alphas in Panel A are highly significant, with the more
conservative Newey–West t-statistics ranging from 5.11 (MVE(24) on the Fama–
French (2015) 5-factor model) to 8.12 (the Carhart (1997) 4-factor model). These
are impressive t-statistics in light of the fact that the MVE portfolio weights,
which change each month, are estimated out of sample. Moreover, the alphas,
which range from 11 to 32 basis points per month, are the same as those obtained
from a single-factor ex post efficient combination of the traditional factors in
sample. Hence, despite the out-of-sample handicaps placed on the MVE port-
folio, the ability to relax the weights on the basis portfolios, even out-of-sample,
has far outweighed the disadvantage of obtaining the MVE cell weights out of
sample.

Panel B of Table 3, which reports the Sharpe ratios for the ex post MVE com-
bination of the traditional factor portfolios and their corresponding MVE counter-
parts (both in sample and when jackknifed before optimizing), is highly consistent
with Panel A. In all 4 cases, the Sharpe ratio of the jackknife MVE portfolio (bot-
tom row of Panel B) is significantly larger than that of the in-sample optimal mix
of the traditional factor portfolios (top row of Panel B). As a matter of mathe-
matics, the larger Sharpe ratio for the jackknife MVE factor implies that it will
generate positive alphas when regressed on the traditional factors.

Panel B of Table 3 also shows that the Sharpe ratios of the in-sample versions
of efficient combinations of the traditional factors are about 10%–15% larger than
the Sharpe ratios of jackknife-optimized versions of the traditional factors; for

and µ̂t are the basis portfolio covariance matrix and mean vector for excess returns (above the riskless
rate) estimated using our jackknife procedure.
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the 4 MVE portfolios in the bottom two rows, the Sharpe ratios of the in-sample
optimized combination of the portfolios are about 15%–30% larger than Sharpe
ratios of the jackknife MVE portfolios. Thus, inferences about the inefficiency of
traditional factor portfolios are conservative when based on comparisons of in-
sample traditional factor portfolios with jackknife MVE portfolios. The “apples-
to-apples” comparison of the jackknife-optimized portfolios in the second and
fourth rows shows that the weight restrictions of the second row can reduce Sharpe
ratios by almost 50%.

To assess the ability to price assets more generally, Table 4 studies the pric-
ing of groups of 5×5 basis portfolios that are associated with the various factor
models. Panels A–D correspond to tests of the 3-, 4-, 5-, and 6-factor models,
respectively. This is an extension of the GRS tests in Table 1 to a less coarse
set of basis portfolios. For comparison purposes, the more comprehensive tests
here study the pricing ability not only of the traditional factor portfolios, but also
of the traditional factor portfolios stripped of a market factor, the pseudo-factor
portfolios (which the basis portfolios directly construct), and the jackknife MVE
portfolios.

TABLE 4
Do Factors Price Their 5×5 Basis Portfolios? Evidence from the GRS Test

Table 4 reports the F -statistic of the Gibbons, Ross, and Shanken (1989) (GRS) test for the mean–variance efficiency
(MVE) of various factor models relative to their associated groups of 5×5 basis portfolios. The p-values are reported in
square brackets. Panels A–D correspond to tests of groups of 5×5 basis portfolios associated with the Fama–French
(1993) 3-factor model, the Carhart (1997) 4-factor model, the Fama and French (2015) 5-factor model, and a 6-factor
model where the Fama–French (2015) factors are augmented with a momentum factor, respectively. The first 3 columns
report statistics for the traditional factor models (W/ MKT), traditional factor models without the market portfolio (W/O
MKT), and their traditional pseudo-factor models (Pseudo), respectively. The last column reports statistics for jackknife
MVE benchmarks denoted as ‘‘Jackknife MVE(N ),’’ where N represents the number of basis portfolios used to construct
the jackknife benchmark. MKT is market portfolio, HML is high minus low book-to-market stocks, SMB is small minus big
stocks,WML is winnersminus losers portfolios, RMW is robust minus weak operating profitability, andCMA is conservative
minus aggressive investments. The GRS statistic is calculated after taking into account the rank of the residual covariance
matrix. * and *** indicate statistical significance at the 10% and 1% levels, respectively. The sample period is from July
1973 to Dec. 2014.

Panel A. 25 Basis Portfolios: Size and Book-to-Market

SMB, HML
Jackknife

W/ MKT W/O MKT Pseudo MVE(8)

GRS 3.4282*** 3.8902*** 3.8164*** 1.2569
p-value [0.0000] [0.0000] [0.0000] [0.2162]

Panel B. 50 Basis Portfolios: Size, Book-to-Market, and Momentum

SMB, HML, WML
Jackknife

W/ MKT W/O MKT Pseudo MVE(16)

GRS 3.3927*** 3.7526*** 4.1999*** 1.4180*
p-value [0.0000] [0.0000] [0.0000] [0.0628]

Panel C. 75 Basis Portfolios: Size, Book-to-Market, Profitability, and Investment

SMB, HML, RMW, CMA
Jackknife

W/ MKT W/O MKT Pseudo MVE(24)

GRS 2.0195*** 2.3399*** 1.9361*** 0.8943
p-value [0.0000] [0.0000] [0.0000] [0.6808]

Panel D. 100 Basis Portfolios: Size, Book-to-Market, Profitability, Investment, and Momentum

SMB, HML, RMW, CMA, WML
Jackknife

W/ MKT W/O MKT Pseudo MVE(32)

GRS 2.7474*** 3.1243*** 2.9701*** 1.2198
p-value [0.0000] [0.0000] [0.0000] [0.1260]
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Panel A of Table 4 shows that the 25 basis portfolios sorted into quintiles
by size and book-to-market have jointly significant alphas whether benchmarked
against the traditional Fama–French (1993) 3-factor model, the 3-factor model
without the market, or the pseudo 3-factor model constructed from 8 of the ex-
treme basis portfolios. By comparison, the corresponding GRS F-statistic of the
MVE benchmark constructed from 8 basis portfolios with the jackknife procedure
has a p-value of 0.22. The relatively high p-value indicates that the 25 jackknife
MVE-benchmarked alphas of the 5×5 size and book-to-market portfolios cannot
be statistically distinguished from 0.

The story in Panels B–D of Table 4 is similar. The 3 versions of the traditional
factor models fail miserably at pricing their corresponding basis portfolios. By
contrast, 2 of the 3 remaining jackknife MVE factor portfolios have insignificant
GRS test statistics. The latter 2 have p-values of 0.68 (from alphas of 75 basis
portfolios benchmarked against MVE(24)) and 0.13 (from alphas of 100 basis
portfolios benchmarked against MVE(32)). The GRS F-statistic for MVE(16) is
significant at the 10% level (from alphas of 75 basis portfolios) but, with a p-
value of 0.06, is still orders of magnitude less significant than the F-statistics
of the traditional benchmarks to which it is compared. One interpretation of the
higher p-values with the MVE jackknife benchmarks is that the MVE benchmarks
generate alphas estimated with less precision. Another is that lifting the weight
restriction of traditional factor models improves their ability to price the basis
portfolios used to construct them. Barillas and Shanken (2017), (2018) argue that
the only relevant test of which of 2 factor models is superior comes from analyzing
the alphas of one set of factors against the other. As we see in Panel A of Table 3,
the jackknife benchmarks tend to have significant alphas when regressed on the
traditional factors. However, the traditional factors (individually and jointly) all
have insignificant alphas when regressed on the jackknife MVE counterpart (not
shown in a table for brevity). Hence, the evidence in Table 4 is consistent with the
weight restrictions of traditional models as the source of their nonzero alphas.

To address the possibility that the tests in Table 4 might be influenced by the
strong assumptions of the GRS test, including i.i.d. normally distributed returns,
Table 5 compares the Sharpe ratios of 2 portfolios using the LW test. The format
is similar to Table 4, except that we report the difference in Sharpe ratios between
i) the optimal combination of the test portfolios listed in the panel title, estimated
with the same jackknife procedure used for the MVE portfolios described ear-
lier, and ii) the jackknifed optimal combination of the set of benchmark portfolios
in the column heading. The LW test requires that both Sharpe ratios being com-
pared derive from portfolios that are prespecified; neither portfolio’s weights can
be endogenously determined by return data used to compute the Sharpe ratios.
Optimizing both portfolios with data from the jackknife achieves this goal.

Table 5 obtains its asterisked significance levels and associated p-values for
the Sharpe ratio differences from the LW circular block bootstrap algorithm.9

9Lahiri (1991) shows that the bootstrap estimate of the sampling distribution is more accurate than
the normal approximation, provided it is centered around the bootstrap mean (not around the sam-
ple mean as is customary). Politis and Romano (1992) introduce a variant of this block-resampling
bootstrap: The circular block-resampling bootstrap, which has the additional advantage of being
automatically centered around the sample mean. “Circular” describes the resampling procedure, which
amounts to “wrapping” the data around in a circle before blocking them.
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TABLE 5
Do Factors Price Their 5×5 Basis Portfolios? Evidence from Differences in Sharpe Ratios

Table 5 reports differences in maximum Sharpe ratios obtained by jackknife-optimized test portfolios constructed from
factors plus their associated groups of 5×5 basis portfolios and those obtained by optimally combining only the factors
using our jackknife procedure. The p-values of the Sharpe ratio differences, reported in square brackets, use the Ledoit
and Wolf (2008) (LW) robust algorithm with 5,000 simulated data sets. When the difference in maximum Sharpe ratios is
negative, p-values are reported as [N/A]. Panels A–D correspond to tests of groups of 5×5 basis portfolios associated
with the Fama–French (1993) 3-factor model, the Carhart (1997) 4-factor model, the Fama–French (2015) 5-factor model,
and a 6-factor model where the Fama–French (2015) factors are augmented with a momentum factor, respectively. The
first 3 columns report statistics for the traditional factor models (W/ MKT), traditional factor models without the market
portfolio (W/O MKT), and their traditional pseudo-factor models (Pseudo), respectively. The last column reports statistics
for jackknife mean–variance efficient benchmarks, denoted as ‘‘Jackknife MVE(N )’’ where N represents the number of
nonzero weights used to construct the jackknife benchmark factor (as illustrated in Figure 2). MKT is market portfolio,
HML is high minus low book-to-market stocks, SMB is small minus big stocks, WML is winners minus losers portfolios,
RMW is robust minus weak operating profitability, and CMA is conservative minus aggressive investments. *, **, and ***
indicate a positive and statistically significant difference at the 10%, 5%, and 1% levels, respectively. The sample period
is from July 1973 to Dec. 2014.

Panel A. 25 Basis Portfolios: Size and Book-to-Market

SMB, HML
Jackknife

W/ MKT W/O MKT Pseudo MVE(8)

Difference in Sharpe ratio 0.1569** 0.2076*** 0.2074*** −0.0222
p-value [0.0118] [0.0006] [0.0008] [N/A]

Panel B. 50 Basis Portfolios: Size, Book-to-Market, and Momentum

SMB, HML, WML
Jackknife

W/ MKT W/O MKT Pseudo MVE(16)

Difference in Sharpe ratio 0.1919*** 0.2503*** 0.2276*** −0.0381
p-value [0.0008] [0.0002] [0.0002] [N/A]

Panel C. 75 Basis Portfolio: Size, Book-to-Market, Profitability, and Investment

SMB, HML, RMW, CMA
Jackknife

W/ MKT W/O MKT Pseudo MVE(24)

Difference in Sharpe ratio 0.0220 0.0983* 0.1034* −0.0960
p-value [0.6683] [0.0852] [0.0566] [N/A]

Panel D. 100 Basis Portfolios: Size, Book-to-Market, Profitability, Investment, and Momentum

SMB, HML, RMW, CMA, WML
Jackknife

W/ MKT W/O MKT Pseudo MVE(32)

Difference in Sharpe ratio 0.1739*** 0.1733*** 0.2436*** −0.0592
p-value [0.0072] [0.0012] [0.0008] [N/A]

This p-value assesses whether the difference in Sharpe ratios significantly differs
from 0. The test accounts for the possibility that observed Sharpe ratios come from
returns generated by changing population means, variances, and covariances, or
other sources of non-normal distributions. The LW algorithm simulates 5,000 data
sets by the circular block bootstrap and takes critical values as the empirical quan-
tiles of the simulated data sets.

The negative numbers in the rightmost column of Table 5 indicate that each
jackknife MVE benchmark has a larger Sharpe ratio than the jackknife-optimized
combination of all of its basis portfolios, a phenomenon that cannot happen if the
optimization is in sample.10 The likely cause is estimation noise: The jackknifed
basis portfolio weights are far from optimal for the population. The estimation
noise leads to relatively low Sharpe ratios when tested on data not used for the

10The p-values are not reported when the Sharpe ratio difference is negative.
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portfolio weight optimization. Sensible restrictions, like the jackknife MVE zero
weight on some of the interior basis portfolios, thus improve the Sharpe ratio.
What is surprising here is that the same principle does not apply for any of the
traditional factor benchmarks, which have additional restrictions but lower Sharpe
ratios than the jackknife-optimized basis portfolios. Thus, it appears to be the
arbitrary equal magnitude weight restriction on the basis portfolios imposed in
traditional factor portfolio construction that makes the Sharpe ratios of traditional
factor portfolios so low.

We now investigate whether the asset pricing deficiencies generated by the
weight restrictions of traditional factor construction carry over to the pricing of
other portfolios. In particular, we study the alpha differences of portfolio pairings
based on the decile extremes of the 10 anomalies listed in the Kenneth French
data library: cash-flow-to-price, dividend yield, earnings-to-price, variance, resid-
ual variance, market beta, short-term reversal, long-term reversal, accruals, and
net share issuance. For each anomaly, Table 6 reports the differences in the alphas
(along with t-statistics) of equal-weighted portfolios of stocks ranked in deciles
1 (lowest) and 10 (highest) based on the anomaly-generating characteristic.
The bottom of the table reports the GRS F-statistic testing whether all 10 al-
pha differences are zero. In almost every instance, the t-statistic for the traditional
factor benchmark is larger than the t-statistic for its jackknife MVE counterpart.
Moreover, although most of the t-statistics are insignificant at the 10% level on
both the left (traditional) and right (jackknife MVE) halves of the table, the 4
jackknife MVE portfolios are especially adept at pricing the anomalies. Each of
the jackknife MVE portfolios prices at least 8 of the anomalies and the jackknife
MVE(32) prices all 10 anomalies, both individually and jointly. By contrast, many
of the anomaly portfolios have extreme alphas with traditional factor benchmarks
and none of the traditional factor benchmarks comes close to jointly pricing all
anomaly portfolios.

Table 7 performs the LW test from Table 5 but focuses on a different test
portfolio set. The set now includes both the 20 extreme decile anomaly portfolios
and the 8, 16, 24, or 32 basis portfolios with nonzero weight in the MVE factor
construction. We exclude 17 of the 25 basis portfolios with which the Fama and
French (1993) 3-factor model and MVE(8) are associated, 34 of the 50 with which
the Carhart (1997) 4-factor model and MVE(16) are associated, and so on, before
jackknife optimizing. Excluding these “interior” basis portfolios reduces the ef-
fect of sampling error on the Sharpe ratio maximizing weights, making it harder
to price the jackknife-optimized test portfolio (as noted in the Table 5 discussion).
Table 7 shows that adding the anomaly portfolios and excluding the interior basis
portfolio from the test assets reverses the sign of the Sharpe ratio difference be-
tween the jackknife MVE portfolio and the full set of test portfolios. Recall that
these differences are negative in Table 5, but are now positive. Table 7 also differs
from earlier tables by offering a more complete set of tests. It effectively com-
pares the Sharpe ratios of each jackknife-optimized benchmark with those of test
portfolios derived from all 4 sets of basis assets (and the 20 anomaly portfolios).

The p-values of the cells along the diagonal on the left of the two 4×4 arrays
in Table 7 show that 3 of the 4 traditional benchmarks have virtually 0 p-values,
with the remaining p-value below 2%. By contrast, among the p-values of the
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TABLE 6
Do Factors Price Anomaly Portfolios? Evidence from Alphas and the GRS Test

Table 6 reports alphas (α) and corresponding test statistics for 10 long–short anomaly portfolios. These portfolios are
long and short the two most extreme decile portfolios constructed using univariate sorts on cash-flow-to-price, dividend
yield, earnings-to-price, variance, residual variance, market beta, short-term reversal, long-term reversal, accruals, and
net share issues. Newey–West (1987) corrected t -statistics with 9 lags are reported in parentheses. The 4 columns in
the left matrix correspond to statistics for the Fama–French (1993) 3-factor model (FF3), the Carhart (1997) 4-factor
model (Carhart), the Fama–French (2015) 5-factor model (FF5), and a 6-factor model where the Fama–French (2015)
factors are augmented with a momentum factor (FF6). The 4 columns in the right matrix correspond to statistics for their
corresponding jackknife mean–variance efficiency (MVE) benchmarks: MVE(N ), where N denotes the number of basis
portfolios with nonzero weights in the jackknife MVE benchmark. The GRS row corresponds to the F -statistic of Gibbons,
Ross, and Shanken (1989). Its corresponding p-values are reported below in square brackets. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period is from July 1973 to Dec. 2014.

In Sample Jackknife

Anomaly Portfolios FF3 Carhart FF5 FF6 MVE(8) MVE(16) MVE(24) MVE(32)

Cash-Flow-to-Price
α −0.1227 −0.0440 −0.1414 −0.0781 −0.1922 −0.2059 −0.3293 −0.2775
t -stat. (−0.9440) (−0.3535) (−1.1425) (−0.6320) (−0.8917) (−0.9773) (−1.4680) (−1.0998)

Dividend Yield
α 0.0536 −0.0731 −0.0494 −0.1364 0.0662 −0.1076 0.0913 −0.1115
t -stat. (0.2698) (−0.3711) (−0.2530) (−0.7345) (0.2186) (−0.3599) (0.2913) (−0.3149)

Earnings-to-Price
α −0.0551 −0.0061 −0.0446 −0.0053 −0.0728 −0.0789 −0.2027 −0.1594
t -stat. (−0.3626) (−0.0430) (−0.3492) (−0.0432) (−0.3400) (−0.3617) (−0.8953) (−0.6146)

Variance
α 1.0094*** 0.7325*** 0.3481 0.2008 0.5228 0.1628 0.3965 0.0463
t -stat. (3.8517) (2.8248) (1.5187) (0.8082) (1.2084) (0.3150) (0.9056) (0.0854)

Residual Variance
α 1.1335*** 0.8226*** 0.4969*** 0.3208* 0.5870 0.2632 0.4692 0.1603
t -stat. (5.1179) (3.7984) (2.5997) (1.6609) (1.6020) (0.5543) (1.2749) (0.3365)

Market Beta
α 0.3392* 0.1228 0.0515 −0.0819 0.1326 −0.0931 −0.0782 −0.2845
t -stat. (1.8795) (0.6983) (0.2809) (−0.4430) (0.3889) (−0.2194) (−0.2384) (−0.6526)

Short-Term Reversal
α 0.0257 0.3737 0.1307 0.3748 0.0599 0.2557 0.1039 0.1466
t -stat. (0.1066) (1.5245) (0.4486) (1.4717) (0.2110) (0.6737) (0.3287) (0.3529)

Long-Term Reversal
α −0.1341 0.0059 −0.1638 −0.0505 −0.1388 0.0417 −0.0737 0.1410
t -stat. (−0.6330) (0.0276) (−0.8178) (−0.2502) (−0.5528) (0.1374) (−0.2605) (0.3806)

Accruals
α 0.4020*** 0.3153*** 0.4361*** 0.3712*** 0.4636*** 0.3676*** 0.3830*** 0.2431
t -stat. (3.2437) (2.4938) (2.9704) (2.5151) (3.3447) (2.6596) (2.4760) (1.5806)

Net Share Issues
α 0.5660*** 0.4949*** 0.2319*** 0.2098 0.4220*** 0.3700** 0.3343* 0.2688
t -stat. (3.7517) (3.4142) (1.6825) (1.5538) (2.7195) (2.0878) (1.9278) (1.3420)

All 10 Anomaly Portfolios
GRS 6.2099*** 4.5342*** 3.0857*** 2.4135*** 2.4847*** 2.0034** 2.2566** 1.5487
p-value [0.0000] [0.0000] [0.0008] [0.0083] [0.0065] [0.0313] [0.0139] [0.1191]

Sharpe ratio differences along the diagonal of the array on the right, we see that
only the top left p-value is significant at the 5% level. Thus, when 20 anomaly
portfolios are added to the mix, the MVE alternative to the traditional 3-factor
model cannot price both the “restricted” basis portfolios formed from extreme
size and book-to-market along with the 20 anomalies. There is 10% significance
but not 5% significance for the 0.0625 difference between the Sharpe ratios of
the MVE alternative to the Carhart (1997) 4-factor model and the optimal combi-
nation of the 16 Carhart basis portfolios and the 20 anomaly portfolios. Despite
the MVE(16) benchmark’s “on-the-fence” ability to price these 36 portfolios, it is
still far better than the traditional alternative, which generates a Sharpe ratio dif-
ference of 0.2866, more than 4 times larger than its MVE counterpart. Even more
impressive are the MVE alternatives to the Fama–French (2015) 5- and 6-factor
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TABLE 7
Do Factors Price Anomaly Portfolios? Evidence from Differences in Sharpe Ratios

Table 7 reports the differences between maximum Sharpe ratios obtained by a jackknifed optimal test portfolio con-
structed from 20 anomaly portfolios plus various sets of basis portfolios and Sharpe ratios obtained by optimally com-
bining only the factors. The p-values of the Sharpe ratio difference, reported in square brackets, use the Ledoit and
Wolf (2008) robust algorithm with 5,000 simulated data sets. The 20 anomaly portfolios include the two most extreme
decile portfolios constructed using univariate sorts on 10 characteristics: cash-flow-to-price, dividend yield, earnings-to-
price, variance, residual variance, market beta, short-term reversal, long-term reversal, accruals, and net share issues.
In addition to these anomaly portfolios and factors, we use 8 extreme cells in various groups of 5×5 basis portfolios to
construct jackknifed optimal test portfolios. The 4 panels correspond to tests in which the basis portfolios are the 8, 16,
24, or 32 basis portfolios associated with the Fama–French (1993) 3-factor model (FF3), the Carhart (1997) 4-factor model
(Carhart), the Fama–French (2015) 5-factor model (FF5), and a 6-factor model where the Fama–French (2015) factors
are augmented with a momentum factor (FF6). The 4 columns in the left matrix correspond to statistics for the traditional
3-, 4-, 5-, and 6-factor models. The 4 columns in the right matrix correspond to statistics for their corresponding jackknife
mean–variance efficiency (MVE) benchmarks, denoted ‘‘MVE(N ),’’ where N denotes the number of basis portfolios with
nonzero weights in the jackknife benchmark. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. The sample period is from July 1973 to Dec. 2014.

Jackknife Jackknife

Test Portfolios FF3 Carhart FF5 FF6 MVE(8) MVE(16) MVE(24) MVE(32)

8 Basis Portfolios and Anomalies
Difference in Sharpe ratio 0.2574*** 0.1809*** 0.1098** 0.0842* 0.0848** 0.0652* 0.0233 0.0037
p-value [0.0002] [0.0012] [0.0234] [0.0500] [0.0466] [0.0928] [0.4215] [0.8816]

16 Basis Portfolios and Anomalies
Difference in Sharpe ratio 0.3557*** 0.2866*** 0.2030*** 0.1861*** 0.1860*** 0.0652* 0.1370*** 0.0037
p-value [0.0000] [0.0002] [0.0004] [0.0009] [0.0014] [0.0928] [0.0008] [0.8816]

24 Basis Portfolios and Anomalies
Difference in Sharpe ratio 0.2669*** 0.2104*** 0.1327** 0.1105** 0.1126** 0.1055** 0.0233 0.0037
p-value [0.0002] [0.0008] [0.0188] [0.0440] [0.0266] [0.0358] [0.4215] [0.8816]

32 Basis Portfolios and Anomalies
Difference in Sharpe ratio 0.3993*** 0.3272*** 0.2412*** 0.2212*** 0.2263*** 0.1055** 0.1370*** 0.0037
p-value [0.0002] [0.0002] [0.0002] [0.0003] [0.0002] [0.0358] [0.0008] [0.8816]

models. Both of these models price their respective basis assets plus the anomaly
portfolios, as the Sharpe ratio differences between these 2 MVE benchmarks and
their respective test assets are close to zero.

These significant Sharpe ratio differences also reveal an interesting fact: Nei-
ther the traditional factor portfolios nor their MVE alternatives can price basis
portfolios that are not used to form the MVE portfolio. The jackknife MVE bench-
marks still represent progress in that the Sharpe ratio difference between the 4 test
portfolios and the MVE portfolios are smaller than those with traditional factor
models. Moreover, looking above the diagonals for the 2 arrays indicates that only
the MVE alternatives price subgroups of their basis assets plus anomaly portfo-
lios. The one highly significant Sharpe ratio difference above the diagonal actually
buttresses our argument. The failing of the MVE alternative to the 5-factor model
(MVE(24)) to price the 16 basis portfolios formed from size, book-to-market, and
momentum (plus the 20 anomaly portfolios) indicates only that the 24 portfolios
used to form MVE(24) are missing the extreme momentum portfolios used in the
Carhart (1997) model, MVE(16), and MVE(32).

Although we have no similar table for the pseudo factors or the traditional
factors without the market, the conclusions from such a table would be similar
to those reported in the left array of Table 5. Thus, once again, it is the unwar-
ranted restriction to equal weights on basis portfolios that hinders the ability of
traditional factor models to adequately price assets.
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III. Conclusion
When factors are constructed by combining a set of characteristic-sorted

portfolios, prespecified simple weights are likely to produce nonzero estimates
of alpha. This is true theoretically even when the underlying basis portfolios span
the MVE portfolio because parsimony prevents the rank-deficient factor portfolios
themselves from spanning that efficient portfolio.

We propose an alternative to the traditional factor construction method that
corrects for spurious nonzero alphas, and we test the pricing acumen of these
alternative factors against those constructed with the traditional approach. The al-
ternative is to use the ex post efficient combination of a small subset of extreme
basis portfolios. Tested with an out-of-sample jackknife approach to their con-
struction, the MVE 1-factor alternatives we propose vastly outperform traditional
factor models as predictors of the cross section of expected returns.

The MVE alternative prices not only its basis assets, but often anomaly port-
folios as well. The MVE alternative also often prices anomaly portfolios plus the
basis portfolios used to form the MVE portfolio. The jackknife MVE alternative
to traditional factor models thus represents a large improvement over traditional
factor portfolios. In the only fair comparison, where the optimal combinations
of traditional factor models are jackknifed as well, even the Sharpe ratio of the
MVE(8) portfolio (the proposed alternative to the traditional 3-factor model) is
about the same as the Sharpe ratio of the optimal combination of the factor port-
folios from the traditional 6-factor model, and it exceeds the Sharpe ratios of the
optimal combinations of all the other sets of traditional factor portfolios. Thus,
even when basis assets consists of only size and book-to-market portfolios, the
mere relaxation of the equal weight restriction improves the pricing of assets as-
sociated with other characteristics besides size and value.

The jackknife MVE alternative studied here uses rudimentary estimation
techniques. Sample averages and sample covariance matrices are used in the jack-
knife as inputs to portfolio optimization. However, a large body of statistical re-
search suggests that the out-of-sample performance could be improved with more
sophisticated estimation techniques. One useful extension of this article would be
improve the estimation of the jackknife covariance matrix with shrinkage models
from statistics. A recent paper by Engle, Ledoit, and Wolf (2018) offers a promis-
ing (albeit computationally intensive) way of estimating dynamic covariance ma-
trices that works well out of sample. Another useful extension of this article would
be to apply our jackknife MVE factors to other arenas such as mutual and hedge
fund performance. Both extensions are currently work in progress, but are beyond
the scope of this article.

Appendix. Alpha Estimation with Rank-Deficient
Factor-Mimicking Portfolios

Without loss of generality, we represent a K -factor securities market with covariances
determined by exposures to both a single mean-zero priced factor f̃0 and K −1 mean-zero
unpriced factors f1, . . . , fK−1 that are orthogonal to the priced factor and to each other. To
simplify algebra, we scale the factors to have equal variance. We ignore firm-specific risk
because the asset pricing tests we discuss are all based on sets of well-diversified assets.
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In this case, Ross’s (1976) no-arbitrage condition implies that the excess return-generating
process for N diversified assets is:

(A-1) R̃ = λB0+Bf̃,

where R̃ is the N -vector of excess returns, λ is the risk premium attached to unit exposure
to the priced factor, B0 is the N -vector of loadings on the priced factor (also the first column
of the N×K factor loading matrix B), and f̃ is the K -vector of priced and unpriced factors.
We use boldface to refer to vectors and matrices.

In the absence of arbitrage, one prices the N assets by identifying K well-diversified
assets or K portfolios of those assets with a full rank submatrix of factor loadings (i.e., lin-
early independent beta vectors). These factor portfolios, when combined with a risk-free
asset, span the same space as the factors. However, empirical asset pricing research gen-
erally selects a smaller set of J factor-mimicking portfolios to price assets. The necessary
and sufficient criterion that allows this smaller subset of portfolios to price assets is that
the rows of the J× (K −1) matrix, bu, of factor loadings on the K −1 unpriced factors be
linearly dependent. Any portfolio weight J -vector, w, that makes wTbu

=0T is an optimal
portfolio provided that this portfolio return has a nonzero loading on the priced factor. If
J=K and the factor loading matrix, b, of the factor portfolios is of full rank (i.e., no fac-
tor portfolios are redundant), a K -vector of portfolio weights can simultaneously set the
K −1 loadings on the unpriced factors to zero while preserving a nonzero loading on the
priced factor. However, if J<K , there is no guarantee that the optimal portfolio, and hence
the priced factor, is captured in the span of the J factor-mimicking portfolios. Alphas are
nonzero whenever the Sharpe-ratio-maximizing combination of the J factor-mimicking
portfolios contains any unpriced factor risk. That is, the alphas of assets measured against
the J factor-mimicking portfolios will differ from the zero true alphas they actually possess
when measured against a K -factor model. The bias in measured alpha from benchmarking
against factor-mimicking portfolios that cannot be combined to eliminate unpriced factor
risk is easy to see.

Regressing the N well-diversified excess returns on J well-diversified factor portfo-
lios with excess return vector F̃ and J×K factor loading matrix b (with first column b0)
yields,

R̃ = α+βT F̃+ ε̃,

with the J×N matrix of slope coefficients and the N -vector of alphas given by

β = (bbT)−1bBT,

α = λB0− λBbT(bbT)−1b0.

The slope coefficients are derived from substituting the right side of equation (A-1) for
the regression’s dependent variable and applying the formula for projections; the intercepts
use the slope coefficients and no-arbitrage mean excess returns in the standard regression
formula for intercepts.

α is the zero vector only when

B0 = BbT(bbT)−1b0.(A-2)

Equation (A-2) holds if b is of rank J and some J -vector w can make wTb=eT
1 , the first

unit vector. This is the case where the J factor portfolios span the optimal portfolio in the
K -factor environment. If such a w exists, it is proportional to (bbT)−1b0 in the absence of
arbitrage, as this is the familiar first-order condition for Sharpe ratio maximization applied
to the case of one priced factor. Such a w always exist when J=K and the factor portfolios

https://doi.org/10.1017/S0022109018000376  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109018000376


2354 Journal of Financial and Quantitative Analysis

have a b matrix of rank K . In this case of perfect regression fit, bT(bbT)−1b is the identity
matrix because (bbT)−1

= (bT)−1b−1, making

B = [BbT(bbT)−1
]b.

This condition relates each column of B on the equation’s left side to the corresponding
column of the outside-the-bracket b on the right side, including the leftmost columns B0

and b0, thus yielding equation (A-2).
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