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1. Introduction

In operator theory, the classical Wold decomposition theorem states that every
isometric operator can be decomposed into a unitary component and a pure isome-
try component [18, theorem 1.1]. This powerful theorem soon becomes an essential
tool in the study of operator theory and operator algebra. For example, the cel-
ebrated Coburn’s theorem on C*-algebras generated by a proper isometry [4] is
rooted in this result.

There are numerous researches on generalizing this powerful result. Suciu first
considered a Wold-type decomposition for a semigroup of isometries. He showed
that a semigroup of isometries Vp decomposes into three components [17]: a unitary
component, a totally non-unitary component (corresponding to the unilateral shifts
in the Wold decomposition), and lastly, a third component for which he called the
‘strange’ component (see also [11]). Fully characterizing these components is not
an easy task, even for the seemingly simple case of a pair of commuting isometries.
S�lociński first obtained a Wold-type decomposition for a pair of doubly commuting
isometries [15, theorem 3]. He proved that a pair of doubly commuting isometries
decomposes into four components, one for each of the four possible combinations in
which each isometry is either unitary or pure. His result has been further generalized
to product systems in [14] and higher dimensions in [13]. However, without the
doubly commuting assumption, S�lociński constructed an example where the pair
of commuting isometries are neither unitary nor pure on a reducing subspace [15,
example 1]. This last mysterious piece was finally settled by Popovici [12] where
he introduced the notion of a weak bi-shift. Along another direction, for families of
non-commuting isometries, a well-known result of Popescu established a Wold-type
decomposition for row isometries [10].
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In this paper, we study the Wold-type decomposition for isometric representations
of the odometer semigroup. The odometer semigroup, also known as the adding
machine or the Baumslag–Solitar monoid BS(1, n)+, encodes a simple yet intriguing
semigroup structure. Its semigroup C*-algebra and boundary quotient has been
studied extensively in recent years [1, 3, 16].

We consider two classes of representations. One being the isometric representa-
tion, which is a generalization for a pair of commuting isometries. Another being
the isometric Nica-covariant representation, which is a generalization for a pair
of doubly commuting isometries. We obtain a Wold-type decomposition for each
class of representations, generalizing both Popovici’s and S�lociński’s results in this
context (theorem 3.10 and theorem 4.4). Prior literature on Wold decomposition
often assumes the doubly commuting condition, which is a special case of the Nica-
covariance condition. However, our understanding of the Wold decomposition in
the general Nica-covariance setting is limited. Our work contributes to this vein
in the literature. In particular, our results on the odometer semigroups is the first
Wold-type decomposition in the more general Nica-covariant setting. Finally, we
provide several concrete atomic representations as examples. In particular, exam-
ple 5.4 gives an example of weak bi-shift representation in our context, that bears
a close resemblance to the example of S�lociński.

2. Preliminary

We first recall that for an operator T ∈ B(H), a subspace K ⊂ H is invariant for T if
TK ⊂ K. We say K reduces T (equivalently, we say K is a reducing subspace for T )
if K is invariant for both T and T ∗. On the Hilbert space �2(N) = span{en : n � 0},
the unilateral shift is the isometry S defined uniquely by mapping en �→ en+1. For an
isometry V ∈ B(H), a subspace L is called wandering for V (equivalently, we say L is
a wandering vector space for V ) if {V mL : m � 0} are pairwise orthogonal. Given a
wandering subspace L for V , we can build an invariant subspace K =

⊕
m�0 V mL

for V , on which V is unitarily equivalent to a direct sum of dimL-copies of the
unilateral shift. This space K is reducing for V if L is invariant under V ∗. The
Wold decomposition theorem states that every isometry can be decomposed into a
unitary and a direct sum of unilateral shifts.

Theorem 2.1. Let V be an isometry on a Hilbert space H. Then H can be decom-
posed as a direct sum of two reducing subspaces Hu and Hs for V , such that V |Hu

is unitary and V |Hs
is unitarily equivalent to a direct sum of unilateral shifts.

Moreover, this decomposition is unique and we can describe Hu and Hs explicitly
by:

Hu =
⋂

m�0

V mH;

Hs =
⊕
m�0

V m ker V ∗.

Here, ker V ∗ is a wandering subspace for V .
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We call an isometry V pure if Hu = {0}. Equivalently, a pure isometry is a direct
sum of unilateral shifts. The spaces Hu and Hs are the largest reducing subspaces
for V on which V is unitary and pure respectively. In other words, if H0 reduces V
and V |H0 is unitary (or pure), then H0 ⊂ Hu (or H0 ⊂ Hs).

The Wold-type decomposition for a pair of commuting isometries is not sim-
ple. S�lociński first obtained a Wold-type decomposition when two isometries S1, S2

doubly commute (that is, S1 commutes with both S2 and S∗
2 ) [15, theorem 3].

Theorem 2.2. For a pair of doubly commuting isometries S1, S2 on H. The space H
uniquely decomposes into a direct sum of four reducing subspaces H = Huu ⊕Hus ⊕
Hsu ⊕Hss, such that the restriction of S1, S2 on each subspace is unitary-unitary,
unitary-pure, pure-unitary, and pure-pure respectively.

In fact, the Hss-component is unitarily equivalent to a direct sum of bi-shifts
on �2(N2). However, when S1, S2 do not doubly commute, it is possible to have a
reducing subspace on which Si are neither unitary nor pure. One example was given
by S�lociński [15, example 1], where we take H = span{ei,j : i, j ∈ Z, i � 0 or j � 0}
and S1ei,j = ei+1,j and S2ei,j = ei,j+1. The characterization of this final puzzling
piece was finally settled by Popovici, where he introduced the notion of weak bi-shift
[12, definition 2.5].

Definition 2.3. A pair of commuting isometries S1, S2 is called a weak bi-shift if
S1|∩j�0 ker S∗

2Sj
1
, S2|∩j�0 ker S∗

1Sj
2
, and S1S2 are pure isometries.

The final pure-pure component in S�lociński’s result is then replaced by a weak
bi-shift component [12, theorem 2.8].

Theorem 2.4. For a pair of commuting isometries S1, S2 on H. The space H
decomposes into a direct sum of four reducing subspaces H = Huu ⊕Hus ⊕Hsu ⊕
Hws, such that the restriction of S1, S2 on each subspace is unitary-unitary, unitary-
pure, pure-unitary, and weak bi-shift respectively. Moreover, this decomposition is
unique and we can explicitly write out the spaces by the following formulae

Huu =
⋂
n�0

(S1S2)nH

Hus =
⊕
n�0

Sn
2

⎛
⎝ ⋂

m�0

Sm
1

( ∩i�0 ker S∗
2Si

1

)⎞⎠

Hsu =
⊕
n�0

Sn
1

⎛
⎝ ⋂

m�0

Sm
2

( ∩i�0 ker S∗
1Si

2

)⎞⎠
On a different direction, Popescu considered a Wold-type decomposition for n

non-commuting isometries. A family {V1, . . . , Vn} of n non-commuting isometries
is called a row isometry if

∑n
k=1 VkV ∗

k � I, or equivalently, {V1, . . . , Vn} have pair-
wise orthogonal ranges. It is called a row unitary if

∑n
k=1 VkV ∗

k = I and such
{V1, . . . , Vn} are often called Cuntz isometries as they generate the Cuntz alge-
bra On. Row isometries can be viewed as a representation of the free semigroup
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F
+
n , where for each μ = μ1 · · ·μm ∈ F

+
n , Vμ = Vμ1 · · ·Vμm

. One way to build a row
isometry is to consider the left regular representation of F

+
n on �2(F+

n ) = span{eμ}
and set Vieμ = eiμ. A space L is called wandering for {V1, . . . , Vn} if {VμL : μ ∈ F

+
n }

are pairwise orthogonal. Given a wandering subspace L, one can show that on the
reducing subspace K =

⊕
μ∈F

+
n

VμL, {V1, . . . , Vn} is unitary equivalent to a direct
sum of dimL-copies of left regular representations. Popescu showed that similar
to the Wold decomposition of a single isometry, every row isometry decomposes
into a row unitary component and a direct sum of left regular representations [10,
theorem 1.3].

Theorem 2.5. Let {V1, . . . , Vn} be a family of n isometries with orthogonal ranges
on H. Then H decomposes into two reducing subspaces H = Hu ⊕Hs, such that
{V1, . . . , Vn} is a row unitary on Hu and is a direct sum of left regular representa-
tions on Hs. Moreover, this decomposition is unique and we can explicitly describe
Hu and Hs by:

Hu =
⋂

m�0

⊕
|μ|=m

VμH;

Hs =
⊕

μ∈F
+
n

Vμ

(
n⋂

k=1

ker V ∗
k

)
.

Here,
⋂n

k=1 ker V ∗
k is a wandering subspace for {V1, . . . , Vn}.

We say a row isometry {V1, . . . , Vn} is pure if Hu = {0}, in other words, if it
is a direct sum of copies of the left regular representation. Similar to the Wold
decomposition for a single isometry, the spaces Hu and Hs are the largest reducing
subspaces for {Vi} on which {Vi} is unitary and pure respectively. In other words,
if H0 reduces {Vi} and {Vi}|H0 is unitary (or pure), then H0 ⊂ Hu (or H0 ⊂ Hs).

In this paper, we study a Wold-type decomposition for two classes of representa-
tion of the odometer semigroup On. The odometer semigroup On is generated by
n free generators v1, . . . , vn and one extra generator w such that wvk = vk+1 for
all 1 � k � n − 1 and wvn = v1w. It is also known as the adding machine, where
w mimics the add-one operation on the free semigroup F

+
n . One can view On as a

Zappa-Szép product of the free semigroup F
+
n by N [3]. The semigroup On is also

isomorphic to the Baumslag–Solitar monoid BS(1, n)+ which is generated by two
generators a, b with bna = ab. The isomorphism can be realized by identifying b
with w and bk−1a as vk. As a Baumslag–Solitar monoid, each element x ∈ On has
a unique representation [16, proposition 2.3]:

x = wa1−1v1w
a2−1v1 · · ·wam−1v1w

N , 1 � ai � n,N � 0.

This is obtained by shifting as many w to the right as possible. Using the notation
wai−1v1 = vai

, we have that each x ∈ On has a unique representation x = vμwN for
some μ ∈ F

+
n and N � 0. One can also shift as many w to the left as possible and

show that every x ∈ On has a unique representation x = wpvq
1 for some p, q � 0.

An isometric representation of the odometer semigroup On is defined as a collec-
tion of an isometry W and a row isometry {V1, . . . , Vn} such that WVk = Vk+1 for
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each 1 � k � n − 1 and WVn = V1W . One may equivalently describe it as a pair of
isometries W and V1 such that WnV1 = V1W and {W kV1 : 0 � k � n − 1} having
pairwise orthogonal ranges. It is clear that when n = 1, this is simply a pair of
commuting isometries.

In recent years, there is a great advancement in our understanding of semigroup
C*-algebras, started by the celebrated work of Nica on covariant representations
of quasi-lattice ordered semigroups. It is known that the odometer semigroups are
quasi-lattice ordered in the sense of Nica [16]. One may refer to [1, 3, 16] for studies
of its semigroup C*-algebras and [9] for the basic definition of the Nica-covariance
condition. Without diving into the rich literature of the Nica-covariance condition,
we call an isometric representation of On Nica-covariant if W ∗V1 = VnW ∗. This pre-
cisely coincides with isometric Nica-covariant representations of On [3]. Notice that
when n = 1, this corresponds to the case of a pair of doubly commuting isometries.

3. Wold decomposition for isometric representations

We first derive a Wold-type decomposition for isometric representations of On. The
decomposition can be greatly simplified when the representation is Nica-covariant.
Let {W,V1, V2, . . . , Vn} be an isometric representation of the odometer semigroup
On on some Hilbert space H. First, for the unitary-row unitary component, we
start with the following observation.

Lemma 3.1. An isometric representation {W,V1, . . . , Vn} has a unitary W and a
row unitary {V1, . . . , Vn} if and only if {V2, . . . , Vn, V1W} is a row unitary.

Proof. The forward direction is trivial. For the converse, we observe that

I = V1WW ∗V ∗
1 +

n∑
i=2

ViV
∗
i �

n∑
i=1

ViV
∗
i � I.

This implies that {V1, . . . , Vn} is a row unitary, and that V1WW ∗V ∗
1 = V1V

∗
1 which

implies W is unitary. �

We would like to point out that the set {V2, . . . , Vn, V1W} is precisely {WVi :
1 � i � n}. Recall that the unitary-unitary component for a pair of commuting
isometries S1, S2 corresponds to the unitary component for their product S1S2 ([12,
proposition 2.1]). We prove that the unitary-row unitary component Huu precisely
corresponds to the row unitary component for {V2, . . . , Vn, V1W}.

Proposition 3.2. Let

Huu =
⋂

m�0

⎛
⎝ ⊕

|μ|=m

m∏
j=1

WVμj
H
⎞
⎠ .

Then Huu reduces W and Vi’s, W |Huu
is unitary, and {V1, . . . , Vn}|Huu

is a row
unitary. Moreover, Huu is the largest subspace with this property.
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Proof. We first show that Huu is reducing for both W and Vi. For each m � 0,
denote Lm =

⊕
|μ|=m(

∏m
j=1 WVμj

)H. Take any |μ| = m and h ∈ H, consider the
vector k =

∏m
j=1 WVμj

h. First consider Wk, we repeatedly use the fact that WVi =
Vi+1 if i �= n and WVn = V1W and obtain:

Wk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(WVμ1+1)
∏m

j=2 WVμj
h, if μ1 �= n;

(WV1)(WVμ2+1)
∏m

j=3 WVμj
h, if μ1 = n, μ2 �= n;

...
(WV1)(WV1) · · · (WV1)Wh, if μ1 = μ2 = · · · = μm = n.

In any case, we have that Wk ∈ Lm. Similarly, for W ∗k,

W ∗k = W ∗
m∏

j=1

WVμj
h = Vμ1

m∏
j=2

WVμj
h

We repeatedly use the fact that Vi = WVi−1 if i �= 1 and V1W = WVn and obtain:

W ∗k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(WVμ1−1)
∏m

j=2 WVμj
h, if μ1 �= 1;

(WVn)(WVμ2−1)
∏m

j=3 WVμj
h, if μ1 = 1, μ2 �= 1;

...
(WVn)(WVn) · · · (WVn)︸ ︷︷ ︸

m−1

V1h, if μ1 = μ2 = · · · = μm = 1.

Therefore, W ∗k ∈ Lm with the exception of the last scenario in which W ∗k ∈ Lm−1.
This proves that Huu reduces W .

Now consider Vik = Vi

∏m
j=1 WVμj

h. We have that

Vik =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(WVi−1)
∏m

j=1 WVμj
h, if i �= 1;

(WVn)(WVμ1−1)
∏m

j=2 WVμj
h, if i = 1, μ1 �= 1;

...
(WVn)(WVn) · · · (WVn)V1h, if i = μ1 = μ2 = · · · = μm = 1.

We have that Vik ∈ Lm+1 with the exception of the last scenario in which Vik ∈ Lm.
Finally,

V ∗
i k =

{
V ∗

i Vμ1+1

∏m
j=2 WVμj

h, if μ1 �= n;
V ∗

i V1W
∏m

j=2 WVμj
h, if μ1 = n.

Since the V ’s have orthogonal ranges, V ∗
i k is either 0 when μ1 �= n or

W
∏m

j=2 WVμj
h ∈ WLm−1 ⊂ Lm−1 when μ1 = n. As a result, Huu reduces each Vi.

By [10, theorem 1.3], Huu is the largest reducing subspace for the family
{V2, V3, . . . , Vn, V1W} on which this family is a row unitary. By lemma 3.1, this
implies that W |Huu

is a unitary and {V1, . . . , Vn}|Huu
is a row unitary. If H0 is any

subspace that reduces W and Vi’s such that W |H0 is a unitary and {V1, . . . , Vn}|H0

is a row unitary, by lemma 3.1, we have that the family {V2, V3, . . . , Vn, V1W} is a
row unitary on H0 and thus H0 ⊂ Huu by [10, theorem 1.3]. �
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Remark 3.3. We would like to point out that the unitary-row unitary component
is often of special interest because it gives rise to representations of the boundary
quotient semigroup C*-algebra [3].

Proposition 3.4. Let

Hus =
⊕

μ∈F
+
n

Vμ

⎛
⎝ ⋂

m�0

Wm
( n⋂

i=1

⋂
j�0

ker V ∗
i W j

)⎞⎠ .

Then Hus reduces W and Vi’s, W |Hus
is unitary, and {V1, . . . , Vn}|Hus

is pure.
Moreover, Hus is the largest subspace with this property.

Proof. Let L =
⋂

m�0W
m(
⋂n

i=1

⋂
j�0 ker V ∗

i W j). It is clear that for each 1 � i � n,
V ∗

i L = {0}. Therefore, L ⊂ ⋂n
i=1 ker V ∗

i . By [10, theorem 1.3], L is a wandering
subspace for {V1, . . . , Vn}. Therefore, Hus reduces each Vi and {V1, . . . , Vn}|Hus

is
pure.

To see it reduces W , first notice that L ⊂ ⋂m�0W
mH and thus by the Wold

decomposition of a single isometry, L reduces W and W |L is unitary. Therefore,
L = WL. For each μ ∈ F

+
n , we have

WVμL =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vμ1+1Vμ2 · · ·Vμm
L, if μ1 �= n;

V1Vμ2+1 · · ·Vμm
L, if μ1 = n, μ2 �= n;

...
V1 · · ·V1WL, if μ1 = μ2 = · · · = μm = n;

and,

W ∗VμL =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vμ1−1Vμ2 · · ·Vμm
L, if μ1 �= 1;

VnVμ2−1 · · ·Vμm
L, if μ1 = 1, μ2 �= 1;

...
Vn · · ·VnL, if μ1 = μ2 = · · · = μm = 1.

Here, in the last case, W ∗V m
1 L = W ∗V m

1 WL = V m
n L. As a result, Hus reduces

W . It is also clear from the computation that for each m � 0, W is unitary on⊕
|μ|=m VμL. Therefore, W is unitary on Hus.
Suppose now H0 is another reducing subspace on which W is unitary and

{V1, . . . , Vn} is pure. Apply [10, oheorem 1.3], we have that H0 =
⊕

μ∈F
+
n

VμL0

where L0 =
⋂n

i=1 ker(V ∗
i ) ∩H0 is a wandering subspace for {V1, . . . , Vn} that

generate H0. We now prove that L0 ⊂ L.
We first observe that, since W is unitary on H0,

W ∗(WVn)W ∗ = W ∗(V1W )W ∗.

It implies that on H0, VnW ∗ = W ∗V1 and thus V ∗
1 W = WV ∗

n . In other words, the
representation is in fact Nica-covariant on H0.
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Let us prove that L0 reduces W . Take any h ∈ L0, we need to show that
Wh,W ∗h ∈ ker(V ∗

i ) for all 1 � i � n. We have:

V ∗
i Wh =

{
V ∗

i−1h, if i �= 1;
WV ∗

n h, if i = 1;

In either case, since h ∈ ker(V ∗
i ) for all 1 � i � n, we have that V ∗

i Wh = 0 for all
i as well. Furthermore, we have:

V ∗
i W ∗h =

{
V ∗

i+1h, if i �= n;
W ∗V ∗

1 h, if i = n;

Again, we have that V ∗
i W ∗h = 0 in either case. This proves that L0 reduces W .

Finally, let us prove that L0 ⊂ L. Pick any h ∈ L0. For any m � 0, since W
is unitary on H0, h = WmW ∗mh. From the definition of L, it suffices to show
that W ∗mh ∈ ⋂n

i=1

⋂
j�0 ker V ∗

i W j . Equivalently, it suffices to show that W ∗mh ∈
ker V ∗

i W j for all 1 � i � n and j � 0, which is also equivalent to showing that
W jW ∗mh ∈ ker V ∗

i for all 1 � i � n and j � 0. Since L0 reduces W , the vector
k = W jW ∗mh ∈ L0 for all j � 0 and m � 0. By the definition of L0, k ∈ ker(V ∗

i ) for
all 1 � i � n. Therefore, we can prove that L0 ⊂ L and thus H0 ⊂ Hus, establishing
the maximality of Hus. �

Remark 3.5. From the proof of proposition 3.4, we can also conclude that for each
m � 0, the m-th graded subspace,

H(m)
us =

⊕
|μ|=m

Vμ

⎛
⎝ ⋂

m�0

Wm

⎛
⎝ n⋂

i=1

⋂
j�0

ker V ∗
i W j

⎞
⎠
⎞
⎠ ,

reduces W . Moreover, W is unitary on each of H(m)
us . In fact, we show that W is

uniquely determined by W |H(0)
us

.

Corollary 3.6. Suppose {V1, . . . , Vn} is a pure row isometry on H that is gener-
ated by a wandering space L. Then each unitary operator W0 ∈ B(L) determines
a unique unitary operator W on H such that W |L = W0 and {W,V1, . . . , Vn}
is an isometric representation of the odometer semigroup On. Conversely, every
unitary-pure row isometry representation arises in this manner.

Proof. Since L is wandering for Vi, H =
⊕

μ∈F
+
n

VμL. For each μ = μ1 · · ·μm ∈ F
+
n

and each h ∈ L, define

WVμh =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V(μ1+1)μ2···μm
h, if μ1 �= n,

V1(μ2+1)μ3···μm
h, if μ1 = n, μ2 �= n,

...
V1 · · · 1︸ ︷︷ ︸

m

W0h, if μ1 = · · · = μm = n.

In particular, for m = 0, define Wh = W0h for all h ∈ L. One can easily see that for
each m,

⊕
|μ|=m VμL reduces W , and W is unitary on this subspace. Moreover, from
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the construction, we also have WVk = Vk+1 for all 1 � k � n − 1 and WVn = V1W .
Therefore, we have {W,V1, . . . , Vn} is a unitary-pure row isometry representation
of On. One may notice that the definition of W on each vector Vμh is forced by the
relations on On, and thus W is unique.

Conversely, if {W,V1, . . . , Vn} is a unitary-pure row isometry representation of
On, then H = Hus =

⊕
μ∈F

+
n

VμL for some wandering subspace L of {V1, . . . , Vn}.
Define W0 = W |L, and as observed in remark 3.5, W0 is unitary since L reduces
W . One can easily verify that we can recover W from W0. �

Proposition 3.7. Let

Hsu =
⊕
k�0

W k

⎛
⎝ ⋂

m�0

V m
1

( ⋂
j�0

ker W ∗V j
1

)⎞⎠ .

Then Hsu reduces W and Vi’s, W |Hsu
is pure and {V1, . . . , Vn}|Hsu

is a row unitary.
Moreover, Hsu is the largest subspace with this property.

Proof. Let L =
⋂

m�0V
m
1 (
⋂

j�0 ker W ∗V j
1 ). It is clear that W ∗L = {0} and thus

L ⊂ ker W ∗. By the Wold decomposition of a single isometry, L is a wandering
subspace for W , and thus Hsu reduces W and W |Hsu

is pure.
Next, we show that L reduces V1. First,

⋂
j�0 ker W ∗V j

1 is clearly invariant
under V1 and thus L is invariant under V1. For any h ∈ L and any m � 0,
there exists x ∈ ⋂j�0 ker W ∗V j

1 such that h = V m+1
1 x. Therefore, V ∗

1 h = V m
1 x ∈

V m
1 (
⋂

j�0 ker W ∗V j
1 ). This proves that L reduces V1.

To see it reduces Vi, pick any k � 0, h ∈ L, and consider W kh ∈ Hsu. There
exists an m � 0 such that W kV m

1 = Vμ for some |μ| = m. By the definition of L,
there exists x ∈ ⋂j�0 ker W ∗V j

1 such that h = V m
1 x. We have

ViW
kh = ViVμx = W k′

V m+1
1 x = Wm′

V1h.

Since L is invariant for V1, we have W k′
V1h ∈ W k′L ⊂ Hsu. In addition, we have

V ∗
i W kh = V ∗

i Vμx. This is either 0 when μ1 �= i or Vμ2 · · ·Vμm
x = W k′′

V m−1
1 x =

W k′′
V ∗

1 h. Again, since L is invariant for V ∗
1 , W k′′

V ∗
1 h ∈ W k′′L ⊂ Hsu. Therefore,

Hsu reduces Vi. Following the computation above can also easily establish that∑n
i=1 ViV

∗
i = I on Hsu because each W kh = Vμx is in the range of some Vi.

Suppose now H0 is another reducing subspace on which W is a pure isometry
and {V1, . . . , Vn} is a row unitary. By the Wold decomposition for a single isometry,
H0 = ⊕k�0W

kL0 where L0 = ker W ∗ ∩H0. It suffices to show that L0 ⊂ L. First,
since {V1, . . . , Vn} is a row unitary on H0, when restricted on H0, we have that∑m

i=1 ViV
∗
i = I. Furthermore, on H0, we have that:

I =
m∑

i=1

Vi

⎛
⎝ m∑

j=1

VjV
∗
j

⎞
⎠V ∗

i =
∑
i,j

VijV
∗
ij .

Inductively, we have that for each m � 1, on H0,∑
|μ|=m

VμV ∗
μ = I.
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In particular, for any h ∈ ker W ∗ ∩H0 and m � 1, h =
∑

|μ|=m VμV ∗
μ h. Each

Vμ = W kV m
1 and VμV ∗

μ h = 0, except when μ = 1 · · · 1 and Vμ = V m
1 . Therefore,

h = V m
1 V ∗m

1 h for all m � 1. It now suffices to show that V ∗m
1 h ∈ ⋂j�0 ker W ∗V j

1

for all m � 0. Equivalently, it suffices to show that W ∗V j
1 V ∗m

1 h = 0 for all m � 0
and j � 0. Since V m

1 V ∗m
1 h = h for all m � 0, we have that V j

1 V ∗m
1 h = V j−m

1 h when
j � m and V j

1 V ∗m
1 h = V

∗(m−j)
1 V m

1 V ∗m
1 h = V

∗(m−j)
1 h when j < m. It suffices to

show that W ∗V k
1 h = 0 and W ∗V ∗k

1 h = 0 for all k � 0. We have,

W ∗V k
1 h = 0 and W ∗V ∗k

1 h = 0 for all k � 0,

⇐⇒ V k
1 h, V ∗k

1 h ∈ ker W ∗ for all k � 0,

⇐⇒ ker W ∗ ∩H0 reduces V1,

⇐⇒ ran W ∩H0 reduces V1.

Pick h ∈ H0 and Wh ∈ ran W ∩H0 = ran W |H0 , we have that V1Wh = WVnh ∈
ran W |H0 . Since {V1, . . . , Vn} is a row unitary on H0, we have h =

∑n
i=1 ViV

∗
i h.

Therefore,

V ∗
1 Wh = V ∗

1 W

n∑
i=1

ViV
∗
i h

= V ∗
1 (V2V

∗
1 + V3V

∗
2 + · · · + V1WV ∗

n )h

= WV ∗
n h ∈ ran W |H0 .

Therefore, ran W |H0 reduces V1 and thus L0 ⊂ L and H0 ⊂ Hsu, establishing the
maximality of Hsu. �

Remark 3.8. One may notice the space Hsu has seemingly the same definition as
the Hsu-component in Popovici’s result for the pair (W,V1). However, the funda-
mental difference is that W and V1 satisfy WnV1 = V1W and they do not commute
unless n = 1. Therefore, one cannot apply Popovici’s result directly here.

Finally, we extend Popovici’s notion of weak bi-shift to our context.

Definition 3.9. We say an isometric representation {W,V1, . . . , Vn} is a weak
bi-shift if the operators W |⋂n

i=1
⋂

j�0 ker V ∗
i W j and V1|⋂

j�0 ker W∗V j
1

are pure isome-
tries and the family {V2, . . . , Vn, V1W} is a pure row isometry.

Theorem 3.10. Let {W,V1, V2, . . . , Vn} be an isometric representation of the
odometer semigroup On on some Hilbert space H. Then H decomposes uniquely as

H = Huu ⊕Hus ⊕Hsu ⊕Hws,

such that,

(1) The subspaces Huu,Hus,Hsu,Hws are reducing for W and Vi.

(2) The W |Huu
is unitary and {V1, . . . , Vn}|Huu

is a row unitary.
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(3) The W |Hus
is unitary and {V1, . . . , Vn}|Hus

is pure.

(4) The W |Hsu
is pure, and {V1, . . . , Vn}|Hsu

is a row unitary.

(5) The family {W |Hws
, V1|Hws

, . . . , Vn|Hws
} is a weak bi-shift.

Proof. Define Huu, Hus and Hsu as in proposition 3.2, proposition 3.4 and proposi-
tion 3.7 respectively. Each is a reducing subspace such that conditions (2) through
(4) hold. Let Hws be the orthogonal complement to Huu ⊕Hus ⊕Hsu, which must
be reducing, proving condition (1). Since Huu is the largest subspace such that the
family {V2, . . . , Vn, V1W} is a row unitary, this family is pure on H⊥

uu ⊃ Hws. By
Hws ⊥ Hus, we have that

Hws ⊥
⋂

m�0

Wm

⎛
⎝ n⋂

i=1

⋂
j�0

ker V ∗
i W j

⎞
⎠ .

The space
⋂n

i=1

⋂
j�0 ker V ∗

i W j is clearly invariant for W and consider the Wold
decomposition for the single isometry W |⋂n

i=1
⋂

j�0 ker V ∗
i W j , its unitary compo-

nent corresponds to
⋂

m�0W
m(
⋂n

i=1

⋂
j�0 ker V ∗

i W j) which is orthogonal to Hws.
Therefore, W |⋂n

i=1
⋂

j�0 ker V ∗
i W j is pure on Hws. Similarly, since Hws ⊥ Hsu, we

have

Hws ⊥
⋂

m�0

V m
1

⎛
⎝⋂

j�0

ker W ∗V j
1

⎞
⎠ .

This implies that V1|⋂
j�0 ker W∗V j

1
is pure. By definition 3.9, the family

{W |Hws
, V1|Hws

, . . . , Vn|Hws
} is a weak bi-shift, proving (5). The uniqueness of this

decomposition can be easily established since Huu, Hus and Hsu are maximal for
their respective properties and the subspace corresponding to the weak bi-shift
component has to be orthogonal to Huu, Hus and Hsu. �

4. Wold decomposition for Nica-covariant representations

Now, let us focus on the case when {W,V1, . . . , Vn} is isometric Nica-covariant,
that is with the additional assumption that W ∗V1 = VnW ∗. We first prove that
an isometric representation of On is automatically Nica-covariant if either W is
unitary or {V1, . . . , Vn} is a row unitary.

Lemma 4.1. Let {W,V1, . . . , Vn} be an isometric representation of On. If W is
a unitary or {V1, . . . , Vn} is a row unitary, then it is also a Nica-covariant
representation.
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Proof. When W is unitary,

W ∗V1 = W ∗(V1W )W ∗ = W ∗WVnW ∗ = VnW ∗.

When {V1, . . . , Vn} is a row unitary,

W ∗V1 = (
n∑

k=1

VkV ∗
k )W ∗V1 = (

n∑
k=1

Vk(WVk)∗)V1

= (V1V
∗
2 + · · · + Vn−1V

∗
n + VnW ∗V ∗

1 )V1 = VnW ∗.

�

As a result, among the four components in theorem 3.10, only the weak bi-
shift component may not be Nica-covariant. We would like to prove the only Nica-
covariant weak bi-shift is a direct sum of the left-regular representations of On.

Consider the usual Wold decomposition for the isometry W : let HW
u =⋂

m�0W
mH and HW

s =
⊕

m�0 Wm ker W ∗.

Lemma 4.2. When {W,V1, . . . , Vn} is Nica-covariant, both HW
u and HW

s reduce all
the V1, . . . , Vn.

Proof. First of all, since H = HW
u ⊕HW

s , it suffices to show that HW
u reduces all

the V1, . . . , Vn. We first prove that HW
u reduces V1. Take any h ∈ HW

u . Since HW
u =⋂

k�0W
kH, h is in the range of each W k. For each k � 0, we can write h = W khk

for some hk ∈ HW
u . We have

V1h = V1W
khk = WnkV1hk ∈

nk⋂
m=0

WmH.

On the other hand, the Nica-covariance condition implies that V ∗
1 W = WV ∗

n =
WV ∗

1 W ∗(n−1), and thus V ∗
1 Wn = WV ∗

1 . Pick k = mn, we have

V ∗
1 h = V ∗

1 Wmnhmn = WmV ∗
1 hmn ∈ WmH.

Therefore, HW
u reduces V1. Now since Vi = W i−1V1, we have that

ViHW
u = W i−1V1HW

u ⊂ W i−1HW
u ⊂ HW

u ,

V ∗
i HW

u = V ∗
1 W (i−1)∗HW

u ⊂ V ∗
1 HW

u ⊂ HW
u .

Therefore, HW
u reduces all the Vi as well. �

Since both HW
u and HW

s reduce {V1, . . . , Vn}, we can apply Popescu’s Wold
decomposition for row isometries on these two reducing subspaces. As a result, we
obtain:

(1) H0
uu =

⋂
m�0

⊕
|μ|=m VμHW

u , on which W is unitary and {V1, . . . , Vn} is a
row unitary;
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(2) H0
us =

⊕
μ∈F

+
n

Vμ(
⋂n

i=1 ker V ∗
i ∩HW

u ) and on which W is unitary and
{V1, . . . , Vn} is pure;

(3) H0
su =

⋂
m�0

⊕
|μ|=m VμHW

s , on which W is pure and {V1, . . . , Vn} is a row
unitary;

(4) H0
ss =

⊕
μ∈F

+
n

Vμ(
⋂n

i=1 ker V ∗
i ∩HW

s ) and on which W is pure and
{V1, . . . , Vn} is pure.

By the uniqueness of the decomposition in theorem 3.10, we have that H0
uu =

Huu, H0
us = Hus, H0

su = Hsu and finally H0
ss = Hws. As a result, both W and

{V1, . . . , Vn} are pure if it is a Nica-covariant weak bi-shift. We further claim that the
Nica-covariant weak bi-shift component must be a direct sum of the left regular rep-
resentation of the On. We call a space L a wandering subspace for {W,V1, . . . , Vn} if
the collections {VμWmL : μ ∈ F

+
n ,m � 0} are pairwise orthogonal. It is easy to see

that when L is a wandering subspace, we can define K =
⊕

μ∈F
+
n

⊕
m�0 VμWmL

and it is easy to verify that on K, {W,V1, . . . , Vn} is unitarily equivalent to a direct
sum of dimL-copies of the left regular representation of On.

Proposition 4.3. Let {W,V1, . . . , Vn} be a Nica-covariant weak bi-shift on
H. Then L =

⋂n
i=1 ker V ∗

i ∩ ker W ∗ reduces {W,V1, . . . , Vn}, and we have H =⊕
μ∈F

+
n

⊕
m�0 VμWmL so that {W,V1, . . . , Vn} is unitarily equivalent to a direct

sum of dimL-copies of the left regular representation of On.

Proof. We have shown that when {W,V1, . . . , Vn} is Nica-covariant, both W and
{V1, . . . , Vn} are pure. Therefore, by the Wold decomposition for row isometries, let
L0 =

⋂n
i=1 ker V ∗

i , we have H =
⊕

μ∈F
+
n

VμL0.
We observe that L0 reduces W : pick any h ∈ L0 and any 1 � i � n, compute

V ∗
i Wh =

{
V ∗

i−1h, if i �= 1,

WV ∗
n h, if i = 1.

V ∗
i W ∗h =

{
V ∗

i+1h, if i �= n,

W ∗V ∗
1 h, if i = n.

In any case, since V ∗
i h = 0 for all i, Wh,W ∗h ∈ L0.

Next, for each 1 � i � n and j � 0, consider the space ker V ∗
i W j . Repeatedly

apply V ∗
1 W = WV ∗

n and V ∗
k = V ∗

1 W ∗(k−1), we have V ∗
i W j = W j′

V ∗
i′ for some

j′ � 0 and 1 � i′ � n. Since W is an isometry, ker V ∗
i W j = ker W j′

V ∗
i′ = ker V ∗

i′ .
Therefore,

n⋂
i=1

⋂
j�0

ker V ∗
i W j =

n⋂
i=1

ker V ∗
i = L0.

Since {W,V1, . . . , Vn} is a weak bi-shift, we have W |L0 is a pure isome-
try. Therefore, L0 =

⊕
m�0 Wm(ker W ∗ ∩ L0) =

⊕
m�0 WmL. Since {VμL0}μ∈F

+
n

are pairwise orthogonal and {WmL}m�0 are pairwise orthogonal, we have
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{VμWmL : μ ∈ F
+
n ,m � 0} are pairwise orthogonal, and

H =
⊕

μ∈F
+
n

VμL0 =
⊕

μ∈F
+
n

Vμ(
⊕
m�0

WmL) =
⊕

μ∈F
+
n

⊕
m�0

VμWmL.

�

Finally, after combining these results, we obtain the following Wold-type
decomposition for isometric Nica-covariant representations of On.

Theorem 4.4. Let (W,V1, V2, . . . , Vn) be an isometric Nica-covariant representa-
tion of the odometer semigroup On on some Hilbert space H. Then H decomposes
uniquely as

H = Huu ⊕Hus ⊕Hsu ⊕Hss,

where,

(1) The subspaces Huu,Hus,Hsu,Hss are reducing for W and Vi.

(2) The W |Huu
is unitary and {V1, . . . , Vn}|Huu

is a row unitary.

(3) The W |Hus
is unitary and {V1, . . . , Vn}|Hus

is pure.

(4) The W |Hsu
is pure, and {V1, . . . , Vn}|Hsu

is a row unitary.

(5) The family {W,V1, . . . , Vn}|Hss
is unitarily equivalent to a direct sum of copies

of the left regular representation of On.

Proof. Apply theorem 3.10 to {W,V1, . . . , Vn} as they are isometric representations
of On. The first three components are automatically Nica-covariant by lemma 4.1.
Proposition 4.3 implies that the weak bi-shift component is a direct sum of the left
regular representations. �

5. Examples

This paper is largely motivated by our recent progress on the characterization of
atomic Nica-covariant representations of the odometer semigroup. We shall leave the
full characterization for a subsequent paper. Atomic representations often provide
a simple yet interesting class of representations (see, for example, representations of
free semigroup algebra [7], single vertex 2-graph [8] and free semigroupoid algebras
[5]). One special class of atomic representations is called the permutation represen-
tation, first considered for Cuntz algebras in [2]. In this section, we build concrete
atomic isometric representations of On for each of the four possible components in
the Wold-type decomposition that we established in theorem 3.10.

For the odometer semigroup, we say a representation (W,V1, . . . , Vn) on a sepa-
rable Hilbert space H is atomic if there is an orthonormal basis {ei}i∈I for H and
injective maps τ and {π1, . . . , πn} on I, such that

(1) The ranges of πk’s are pairwise disjoint;
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(2) For each i ∈ I, Wei = λieτ(i) for some λi ∈ T ;

(3) For each i ∈ I and 1 � k � n, Vkei = ωk,ieπk(i) for some ωk,i ∈ T.

Recall that the atomic row isometries {V1, . . . , Vn} were fully characterized in
[7, theorem 3.4] to study the free semigroup algebras (see also [6]). We briefly go
over three types of atomic row isometries. First, we construct a directed graph
whose vertices are ei and there is an edge from ei to ej if there exists Vk such that
Vkei ∈ span{ej}. Each connected component of this directed graph corresponds to
a reducing subspace of the atomic representation, and thus we assume this directed
graph is connected. For each basic vector ei0 , if ei0 is in the range of a unique Vk1 ,
we let ei1 be the basic vector such that Vk1ei1 ∈ span{ei0}. Repeat this process,
there are three possibilities:

(1) The process stops at some eim
that is not in the range of any Vk. Then eim

is
a wandering vector, and on span{Vμeim

: μ ∈ F
+
n }, {V1, . . . , Vn} is unitarily

equivalent to the left regular representation of F
+
n . This is called the left-

regular type.

(2) The process enters into a cycle when eis
= eit

for some 0 � s < t. This
corresponds to the cycle type.

(3) The process never stops and we obtain an infinite sequence of unique basic
vectors {eim

}m�0 and Vkm
. In this case, we can rescale ei such that Vkm

eim
=

eim−1 for all m � 1. This corresponds to the inductive type. An inductive
type atomic representation is called non-cyclic if the sequence {km} is not
eventually periodic (that is, {km : m � M} is non-periodic for each M).

We first show that non-cyclic inductive type atomic representations always give
rise to a unique unitary-row unitary representation of the odometer semigroup.
These are examples for the Huu component.

Proposition 5.1. Let {V1, . . . , Vn} be a non-cyclic inductive type atomic rep-
resentation on H. Then there exists a unique unitary operator W such that
{W,V1, . . . , Vn} is an atomic representation of the odometer semigroup On. More-
over, W is a unitary and {V1, . . . , Vn} is a row unitary.

Proof. First of all inductive type atomic representation gives rise to a row unitary
{V1, . . . , Vn}. For each basic vector ei0 ∈ H, it can be uniquely written as ei0 =
Vk1ei1 . Since V is non-cyclic, we can eventually find m � 1 with km �= n, so that
ei0 = V m−1

n Vkm
eim

. Define Wei0 = V m−1
1 Vkm+1eim

. One can easily verify that W
is a well-defined isometry such that {W,V1, . . . , Vn} is an atomic representation
of On. To see W is unitary, for any basic vector ei0 , we can write it as ei0 =
V m−1

1 Vkm
eim

for some 2 � km � n, and ei0 = WV m−1
n Vkm−1eim

by the definition
of W . This choice of W is unique since WV m

n Vk = V m
1 Vk+1 for any m � 0 and

1 � k � n − 1. �
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For unitary-pure row isometry representation, corollary 3.6 describes their general
structure. It is essentially composed of a pure row isometry and a unitary operator
on its wandering space. One can easily build such an atomic representation.

Example 5.2. Let H = span{eμ : μ ∈ F
+
n } and Vi be the left-regular representation

of F
+
n . For each λ ∈ T, define

Weμ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e(μ1+1)μ2···μm
, if μ1 �= n,

e1(μ2+1)μ3···μm
, if μ1 = n, μ2 �= n,

...
λe1 · · · 1︸ ︷︷ ︸

m

, if μ1 = · · · = μm = n.

In particular, for the empty word ∅ ∈ F
+
n , by convention, define We∅ = λe∅. One

can clearly see that W is unitary on span{eμ : |μ| = m} for each m � 0. Therefore,
W is unitary. One can verify that {W,V1, . . . , Vn} is an atomic representation of
On. Different choices of λ clearly induce non-equivalent isometric representations,
because e∅ is an eigenvector of W with eigenvalue λ. Moreover, by corollary 3.6,
these are all the unitary-pure row isometry type representations where the row
isometry is the left regular representation.

We now construct a pure-row unitary type that corresponds to the Hsu

component.

Example 5.3. Consider the following diagram where each vertex corresponds to
a basic vector, dotted arrows correspond to the map W , solid arrows corresponds
to the map Vk depending on the label. One can verify that this defines an atomic
representation {W,V1, V2} for O2 where W is a unilateral shift and {V1, V2} is a
row unitary.
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Finally, for the weak bi-shift component, the left-regular representation of On

clearly falls under this category. We would like to construct an example that is
not from the left regular representation of On. The atomic representation in the
following example is in the same spirit of S�lociński’s example, and in fact, this
research is mostly motivated by their similarity.

Example 5.4. Consider the atomic representation {W,V1, V2} defined by the
following diagram.

One can easily verify that this atomic representation has no Huu, Hus and Hsu

components, and it is not the left-regular representation of O2.
One may notice that the red dots are wandering vectors for {V1, V2} while the

blue dots are wandering vectors for W . This is quite similar to the S�lociński’s
example [15, example 1] in which the vectors {e0,−n}n�1 are wandering for S1 and
{e−n,0}n�1 are wandering for S2.
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