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We consider nonlinear, directionally spread irregular wave fields in deep water and study
the statistical properties of the total inline force that would be induced by the waves
on a vertical circular cylinder. Starting from the two-dimensional Morison equation, we
specifically investigate the effect of wave steepness and directionality on the probability
density functions (PDFs) of the inertia and drag forces. To do so, we derive new analytical
expressions for the PDFs of these forces based on first-order theory and compare them
with the results of fully nonlinear numerical simulations. We show that the inertia force
for the main direction (x) of the wave field is in general unaffected by nonlinear effects,
while the inertia force for the direction perpendicular to the main direction (y) is subject
to substantial third-order effects when the steepness is appreciable and the wave field
becomes relatively long crested. Moreover, we show that the drag force for the x-direction
is in general subject to substantial second-order effects. The drag force for the y-direction is
also affected by second-order effects, but to a much smaller degree than the x-direction. It
is, however, strongly affected by third-order effects under the same conditions as the inertia
force in the y-direction. We conclude that the total force can be accurately approximated
by first-order theory when the ratio kpD/ε is large (with kp the peak wavenumber, D the
cylinder’s diameter and ε the wave steepness), while first-order theory underestimates the
probability of large forces considerably when this ratio is small.

Key words: surface gravity waves

1. Introduction

A classical problem of hydrodynamics is that of estimating the wave-induced force on
a vertical circular cylinder. In the most practically relevant form of the problem, the
wave field is assumed to be irregular, and the quantity of interest therefore becomes the
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probability density function (PDF) of the force exerted on the cylinder. In principle, this
variant of the problem may be solved exactly by calculating the irregular flow field around
the cylinder, constructing the stress tensor and integrating its projections over the part
of the cylinder’s surface immersed in the water. Unfortunately, this simple strategy is
not practically feasible under realistic ocean conditions where both pressure and viscous
effects give substantial contributions to the force. Analytical methods fall short due to a
combination of the complexity of the governing equations and the irregular geometry of
the fluid domain. Numerical methods, on the other hand, may in principle be used, but the
fine resolution required to accurately resolve the boundary layers, the shedding of vortices
as well as the wave field, combined with the large spatial and temporal scales required to
accurately sample the PDF, leave them impractical even with the immense computational
power available today.

Currently, inexact procedures therefore constitute the only vehicle with which estimates
for the PDF of the force on the cylinder can be produced under general conditions. Of
these procedures, by far the most popular has been the one proposed by Morison et al.
(1950), who heuristically derived what is now known as the Morison equation. Choosing
a coordinate system in which the (x, y)-plane coincides with the still water plane oriented
such that the x-axis points in the mean direction of the wave field, and the z-axis points
vertically upwards, the generalized form of this equation (Borgman 1958) states that the
inline force on the cylinder, F = (Fx, Fy), satisfies the relation

∂F
∂z

= KIan + KDvn|vn|, with KI = 1
4πρD2CM and KD = 1

2ρDCD. (1.1)

Here ρ is the density of the water, D is the diameter of the cylinder, and CM and CD are the
inertia and drag coefficients, respectively. Moreover, an = (ax, ay) and vn = (vx, vy) are
the fluid acceleration and velocity vectors in the (x, y)-plane at the centre of the cylinder,
respectively, for a wave field that is undisturbed by the cylinder. When the waves are
not breaking, such a wave field is very well described by potential flow theory, which
therefore may be used in connection with (1.1) to calculate the statistical properties of the
inline force. This fact has been utilized by, for example, Pierson & Holmes (1965) and
Borgman (1967) (see also Borgman 1972) who used first-order potential flow theory to
derive analytical expressions for the PDF of ∂zF at an arbitrary z-level for a unidirectional
wave field, and by Song, Wu & Wiwatanapataphee (2000) who carried out a derivation for
the same quantity to second order in nonlinearity. It should be noted, however, that these
PDFs cannot be used as replacements for the PDF of the total force, F , which is found
by integrating (1.1) from the seabed to the free surface with respect to z. The reason is,
of course, that ∂zF is a highly correlated stochastic process when viewed as a function of
z, and at a minimum the covariance structure of ∂zF therefore must be known in order to
calculate the PDF of F . This was realized by Tickell (1977), who wrote down a formal
expression for the joint PDF of ∂zF at an arbitrary number of different z-levels based on
first-order potential flow theory for a unidirectional wave field, but his work did not lead
to an actual distribution for the total force. In fact, to our knowledge, no results for the
PDF of the total force have been presented to date. Moreover, since the studies involving
the distribution of ∂zF all have been based on unidirectional wave fields described by
low-order theories, the effects of directionality and wave steepness on the total inline force
remain completely unclear.

In this paper we aim to shed light on exactly these effects on the total inline force
for nonlinear wave fields in infinitely deep water. To keep the investigation as general as
possible, we assume ρ, D, CM and CD to be constant with depth and time, and consider the
dimensionless total inline force F∗ = |F |/((KIa0/kp)

2 + (KDv2
0/kp)

2)1/2, where a0 and
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v0 are characteristic accelerations and velocities of the fluid for which expressions will be
derived and kp is the peak wavenumber of the wave field. Using (1.1) in combination with
these assumptions it is straightforward to show that

F∗=
∣∣∣∣∣(1 − P2)1/2 I

a0/kp
+ P D

v2
0/kp

∣∣∣∣∣ , (1.2)

in which P is a parameter given by

P = KDv2
0

((KIa0)2 + (KDv2
0)2)1/2

, (1.3)

and the vectors I = (Ix, Iy)
T and D = (Dx,Dy)

T are defined as

I ≡
∫ η

−∞
an dz and D ≡

∫ η

−∞
vn|vn| dz. (1.4a,b)

In these equations and throughout the paper η denotes the surface elevation, and we will
refer to I and D as the depth-integrated inertia and drag terms, respectively. Clearly, P is
a measure of the magnitude of the drag force relative to the total inline force with P = 0
and P = 1 corresponding to completely inertia and drag-dominated forces, respectively.
Moreover, it will at a later stage be seen that for a given wave field, P is completely
determined by the properties of the cylinder. As such, if F∗ is affected by the steepness
and directionality of the wave field then it must be because the depth-integrated quantities
are affected by these parameters, and we therefore begin our investigation by studying
the PDFs of the components of I and D. Having characterized the behaviour of these
quantities, we then study the PDF of F∗ parametrically as a function of P . In order to
understand the role played by nonlinear effects, we derive a number of results for the
PDFs Ix, Iy, Dx and Dy as well as for F∗ when P = 0 and 1 based on first-order theory
and compare them to the PDFs for the general nonlinear case. To calculate the latter
PDFs, we perform numerical simulations of large irregular wave fields with different
directional spreading and wave steepness using the numerical method of Klahn, Madsen &
Fuhrman (2021a). This numerical method solves the fully nonlinear equations of potential
flow theory for a single valued free surface, and has been shown to give highly accurate
results on a number of challenging deep water problems. In particular, its ability to handle
high-order nonlinear wave-wave interactions without any approximations is important for
this study, as, for example, third-order nonlinearities have been shown by Onorato et al.
(2009), Toffoli et al. (2010) and Xiao et al. (2013) to be capable of changing the statistical
properties of long-crested wave fields substantially.

Regarding the use of the Morison equation, we do acknowledge that more accurate
formulations exist. Several of these formulations use the idea of Lighthill (1986), who
suggested that the wave loads can be separated into potential flow forces and vortex
flow forces and that these can be treated independently. The most general extension of
the Morison equation based on this idea is perhaps that of Rainey (1989, 1995), who
derived an expression for the inertia term correct to second order in nonlinearity for a very
general assembly of slender cylinders from energy considerations. For a vertical circular
cylinder, his theory shows that the inertia term of the Morison equation should in fact
be supplemented with two additional terms: a term which arises because the fluid flow
is not uniform with depth, and a term which takes into account the point loads at the
free surface (see also Manners & Rainey 1992). Despite the obvious shortcomings of the
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Morison equation, we do believe that its widespread use justifies an investigation of its
statistical properties. In that connection we stress, however, that if the above mentioned
fully nonlinear simulations agree with the first-order approximations, it simply means
that the results of the Morison equation can be explained from first-order theory. It does
not (necessarily) mean that the more exact inertia term of e.g. Rainey is unaffected by
nonlinear effects.

The remainder of this paper is organized as follows. In § 2 we describe the physical
system under consideration, its governing equations and its initial condition. In § 3 we
briefly discuss the numerical methods used for the time integration of the wave fields as
well as the computation of the depth-integrated quantities, and state the computational
parameters used in the simulations. We derive the PDFs of the depth-integrated quantities
with first-order theory in § 4, and compare these with the PDFs obtained from the fully
nonlinear simulations for different degrees of wave steepness and directionality in § 5. In
the discussion of the nonlinear results, we make use of some results related to the effect
of second-order nonlinearities on the PDFs of Ix, Iy and vy|z=η, and for completeness, we
prove these results in appendices A and B. In § 6 we study the PDF of F∗ as a function of
P , before we finally draw conclusions in § 7.

2. Physical system and governing equations

We consider the time evolution of two-dimensional irregular wave fields in infinitely
deep water which are assumed to satisfy the conditions of a potential flow and to have
a non-overturning free surface. In addition, we take the wave fields to be periodic in the
x- and y-directions over distances Lx and Ly, respectively. Once the initial conditions for
the wave fields have been specified, their time evolution is completely determined by the
irrotational Euler equations. As has, for example, been shown by Zakharov (1968), these
equations may be written as

∂2Φ

∂x2 + ∂2Φ

∂y2 + ∂2Φ

∂z2 = 0 for z < η, (2.1a)

∂Φ

∂z

∣∣∣∣
z→−∞

= 0, (2.1b)

∂η

∂t
=
(

1 +
(

∂η

∂x

)2

+
(

∂η

∂y

)2
)

v(s)
z − ∂η

∂x
∂Φs

∂x
− ∂η

∂y
∂Φs

∂y
, (2.1c)

∂Φs

∂t
= −gη − 1

2

((
∂Φs

∂x

)2

+
(

∂Φs

∂y

)2
)

+ 1
2

(
1 +

(
∂η

∂x

)2

+
(

∂η

∂y

)2
)

v(s)
z , (2.1d)

where Φs ≡ Φ|z=η is the velocity potential at the surface, v
(s)
z ≡ ∂zΦ|z=η is the vertical

velocity of the fluid at the free surface and g is the gravitational acceleration. It should be
noted that this set of equations constitutes an initial value problem for the pair (η, Φs), and
so the initialization of the system amounts to initializing these two variables. Following
the work of Tanaka (2001), Toffoli et al. (2010) and Xiao et al. (2013), we construct the
initial conditions for (η, Φs) from a linear combination of sinusoidal wave components
with independent random phases distributed uniformly over the interval [0, 2π]. For a
generic component, we denote its angular frequency by ω, its propagation angle relative
to the x-axis by θ , and we choose its amplitude according to a directional JONSWAP
spectrum of the form J(ω, θ) = S(ω)D(θ). The frequency part of the spectrum is given by
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2D(θ)

θ

4

0

0

–π/2 –π/4 π/4 π/2

ND = 2

ND = 10

ND = 50

ND = 100

Figure 1. The function D(θ) given by (2.4) for the values ND = 2, 10, 50 and 100.

the expression

S(ω) = S0

(
ω

ωp

)−5

exp

(
−5

4

(
ω

ωp

)−4
)

γ exp(−((ω/ωp−1)2/2σ 2)), (2.2)

where γ = 3.3, σ = 0.07 if ω < ωp and 0.09 otherwise, ωp denotes the peak frequency
of the wave field, and the constant S0 is defined implicitly through the relation∫ ∞

0
S(ω) dω = 〈η2〉. (2.3)

As such, the value of S0 is dictated by the steepness of the wave field, ε = 2kp〈η2〉1/2. We
note that this definition of the wave steepness is the same as that used in the numerical
studies of, for example, Toffoli et al. (2010), Xiao et al. (2013) and Klahn et al. (2021a).
The directional part of the spectrum is given by the expression

D(θ) =

⎧⎪⎨
⎪⎩

Γ (ND/2 + 1)√
πΓ ((ND + 1)/2)

cosND(θ) if |θ | ≤ π/2,

0 otherwise,
(2.4)

where Γ (·) denotes the gamma function and ND is a parameter determining the width of
the directional spectrum. The function D(θ) is shown in figure 1 for ND = 2, 10, 50 and
100, and from it it is clear that the directional spread of the wave field decreases with ND.
It can also be seen from the figure that D(θ) always achieves its maximum at θ = 0, and
from this it follows that the main direction of the wave field is the positive x-direction.

3. Numerical methods

To simulate the wave fields described above, we use the recently developed volumetric
pseudospectral method of Klahn et al. (2021a). This method may be divided into two
parts, namely, a part concerned with the time integration of η and Φs using (2.1c) and
(2.1d) under the assumption that v

(s)
z is known, and a part dealing with the computation of

v
(s)
z from η and Φs. The latter part is what sets it apart from other pseudospectral methods

such as the methods of Dommermuth & Yue (1987), West et al. (1987), Clamond & Grue
(2001) and Fructus et al. (2005) as it solves the Laplace equation in the fluid domain
without any kind of approximation except for discretization errors. As shown by Klahn
et al. (2021a), this strategy enables the solution of the Laplace equation with an error
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that decreases exponentially with the spatial resolution for practically all values of the
water depth and the wave steepness when considering steady nonlinear waves. In order to
remain efficient for large problems, the method utilizes an artificial boundary condition as
used by Nicholls (2011) and a preconditioning strategy inspired by the work of Fuhrman
& Bingham (2004). Denoting the total number of grid points by N, these techniques
ensure that the computational effort per time step grows in proportion to N log(N) when
increasing the horizontal resolution. In total, the method therefore offers high accuracy at
a low computational cost.

In this section we briefly review the method, and refer to Klahn et al. (2021a) for a
full description and validation. In addition, we discuss the initialization of η and Φs,
the numerical method used for the computation of Ix, Iy, Dx and Dy, as well as the
computational parameters used to perform the simulations.

3.1. Initialization
As mentioned in § 2, we initialize η and Φs from the JONSWAP spectrum J(ω, θ) =
S(ω)D(θ) with S(ω) and D(θ) given by (2.2) and (2.4), respectively. The adopted
numerical method for the solution of (2.1) approximates η and Φs in terms of truncated
Fourier series, i.e.

η(x, y, t) =
Nx−1∑

nx=−Nx

Ny−1∑
ny=−Ny

η̂nx,ny(t) exp(iknx,ny · r), (3.1a)

Φs(x, y, t) =
Nx−1∑

nx=−Nx

Ny−1∑
ny=−Ny

Φ̂nx,ny(t) exp(iknx,ny · r), (3.1b)

and, therefore, the initialization procedure consists of computing the expansion
coefficients η̂nx,ny and Φ̂nx,ny corresponding to J(ω, θ) with random phases. Here r =
(x, y) denotes the horizontal position and knx,ny = (2πnx/Lx, 2πny/Ly) is the (nx, ny)th
wavenumber vector. In order to compute the initial coefficients, we follow Tanaka (2001)
and start by computing the number

bnx,ny =
(

2π2g3

ω4
nx,ny

LxLy
J(ωnx,ny, θnx,ny)

)1/2

exp(iφnx,ny), (3.2)

where ωnx,ny = (g|knx,ny |)1/2 is the (nx, ny)th frequency, φnx,ny is a random number drawn
from a uniform distribution over the interval [0, 2π] and θnx,ny is the angle between knx,ny
and the x-axis measured positively in the counter clockwise direction. From bnx,ny we then
compute the initial coefficients as

η̂nx,ny =
(

|knx,ny |
2ωnx,ny

)1/2

(bnx,ny + b∗
−nx,−ny

), (3.3a)

Φ̂nx,ny = −i

(
ωnx,ny

2|knx,ny |

)1/2

(bnx,ny − b∗
−nx,−ny

), (3.3b)

where the symbol ∗ denotes complex conjugation. We note that this initialization
procedure gives a wave field which is consistent with the governing equations only when
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these are linearized around the rest state. For that reason, the initial surface elevation
should in all simulations ideally be normally distributed. With the present initialization
procedure, this is only achieved, however, when a sufficiently large number of Fourier
components is used, as described by Tucker, Challenor & Carter (1984). We have therefore
checked that the parameters stated in § 3.5 indeed yield an initial surface elevation that is
normally distributed to a high accuracy.

3.2. Time integration

Assuming that v
(s)
z is known, the numerical method discretizes the spatial part of (2.1c)

and (2.1d) using the Fourier collocation method (see e.g. Kopriva 2009). In this method,
η and Φs are approximated by truncated Fourier series as in (3.1) and the equations are
satisfied identically at the set of grid points{

(xnx, yny) =
(

Lxnx

2Nx
,

Lyny

2Ny

)∣∣∣∣1 ≤ nx ≤ 2Nx and 1 ≤ ny ≤ 2Ny

}
. (3.4)

At these points the spatial derivatives of η and Φs are calculated from the truncated Fourier
series with the fast Fourier transform providing the connection between grid point values
and expansion coefficients. The spatial discretization generates evolution equations for the
values of η and Φs at the grid points, and we integrate these in time using the classical
fourth-order Runge–Kutta method with fixed step size Δt. To avoid temporal instabilities
due to the initial condition being based on linear theory, we use the adjustment scheme of
Dommermuth (2000) to ramp up the nonlinear interactions among the Fourier components
of the wave field. We do so by multiplying the nonlinear terms of (2.1c) and (2.1d) by the
function

R(t) = 1 − exp
(

−
(

t
TR

)n)
, (3.5)

where n and TR are parameters to be specified, and we refer to the paper of Dommermuth
for a precise definition of the nonlinear terms. To avoid temporal instabilities in general,
which we note may be caused by the fact that our numerical method cannot take wave
breaking into account, we employ the artificial damping strategy outlined by Xiao et al.
(2013) and multiply the (nx, ny)th Fourier coefficients of η and Φs by the number

Dnx,ny = exp
(

−
( |knx,ny |

8kp

)30 )
(3.6)

every time step. In an attempt to quantify the effect of the damping, we show the time
evolution of the total mechanical energy

E = 1
2

∫ Ly

0

∫ Lx

0

(
Φs

∂η

∂t
+ gη2

)
dx dy (3.7)

for our simulations in figure 2. The simulations are made with the values 0.05 and 0.10 for
the steepness, ε, the values 2, 10, 50 and 100 for the parameter ND and the computational
parameters listed in § 3.5. The results show that the total energy changes by roughly
2.5 %–6 % within the first 100 peak periods, and as such, the change in the total energy is
comparable in magnitude to that found by Xiao et al. (2013).
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0
0.97

0.98E
(t

)/
E

(0
) 0.99

1.00

0.94

0.98

0.97

0.96

0.95

0.99

1.00

20 40 60 80

t/Tp

100 0 20 40 60 80

t/Tp

100

ND = 2
ND = 10
ND = 50
ND = 100

(b)(a)

Figure 2. The total mechanical energy (3.7) as a function of time for wave fields of steepness ε = 0.05 (a)
and ε = 0.10 (b) for different values of ND. The legend applies to both figures, and it should be noted that the
y-axes have different scales.

3.3. Computation of v
(s)
z given η and Φs

To compute v
(s)
z from η and Φs, one must solve the Laplace equation (2.1a) together with

the boundary condition (2.1b) and the condition Φ|z=η = Φs. In the present method this
is done by dividing the fluid domain into an upper part with z > −b and a lower part with
z < −b, where b is a positive number such that the level z = −b lies below the lowest
point of the surface elevation. As has, for example, been shown by Nicholls (2011), the
Laplace problem in the lower part of the domain can be solved analytically, and the full
Laplace problem therefore reduces to the set of equations

∂2Φ

∂x2 + ∂2Φ

∂y2 + ∂2Φ

∂z2 = 0 for − b < z < η, (3.8a)

Φ|z=η = Φs, (3.8b)

∂Φ

∂z

∣∣∣∣
z=−b

− T[Φ|z=−b] = 0, (3.8c)

which is a Laplace problem on the upper part of the domain only. Here the operator
T is defined through its action on the function exp(ik · r), which is T[exp(ik · r)] =
|k| exp(ik · r) for all k, and we note that this is slightly different than the definition given
in Klahn et al. (2021a), since a finite water depth is considered there. To solve the reduced
Laplace problem (3.8), the change of coordinates (x, y, z) 
→ (x, y, s) is performed with s
defined as

s(x, y, z) = 2z + b − η(x, y)
b + η(x, y)

. (3.9)

Using the chain rule it follows that the function F(x, y, s(x, y, z)) ≡ Φ(x, y, z) must satisfy
the equation

0 = ∂2F
∂x2 + ∂2F

∂y2 +
((

∂s
∂x

)2

+
(

∂s
∂y

)2

+
(

∂s
∂z

)2
)

∂2F
∂s2

+ 2
∂s
∂x

∂2F
∂x∂s

+ 2
∂s
∂y

∂2F
∂y∂s

+
(

∂2s
∂x2 + ∂2s

∂y2

)
∂F
∂s

, (3.10)
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as well as the boundary conditions

F|s=1 = Φs, (3.11a)

2
b + η

∂F
∂s

∣∣∣∣
s=−1

− T[F|s=−1] = 0. (3.11b)

Finally, F is computed numerically in a pseudospectral fashion by seeking the values of F
at the set of grid points{

(xnx, yny, sns) | 1 ≤ nx ≤ 2Nx, 1 ≤ ny ≤ 2Ny and 0 ≤ ns ≤ Ns
}
, (3.12)

where xnx and yny are given by (3.4) and sns is the nsth point of the
Legendre–Gauss–Lobatto quadrature of order Ns. To that end, F is assumed to be of the
form

F(x, y, s) =
Nx−1∑

nx=−Nx

Ny−1∑
ny=−Ny

Ns∑
ns=0

F̂nx,ny,ns exp(iknx,ny · r)Lns(s), (3.13)

where Lns is the nsth Lagrange polynomial of degree Ns, and (3.10) and (3.11) are required
to be satisfied identically at the set of grid points (3.12). This procedure yields a system
of 4NxNy(Ns + 1) linear equations for the grid point values of F which is solved using
the iterative method GMRES (Saad & Schultz 1986) with a preconditioner inspired by the
work of Fuhrman & Bingham (2004). Once the values of F at the grid points have been
computed, v

(s)
z is computed as

v(s)
z = 2

b + η

∂F
∂s

∣∣∣∣
s=1

. (3.14)

3.4. Computation of depth-integrated quantities
In this section we show how we compute the depth-integrated quantities Ix, Iy, Dx and Dy
numerically. As these are all of the same form and therefore can be calculated using the
same procedure, we only give a detailed explanation for Ix. For notational convenience,
we will suppress any dependence on the spatial coordinates r and z as well as time when
these are not strictly necessary.

By the definition (1.4a,b) we have

Ix =
∫ η

−∞
ax dz =

∫ η

−b
ax dz︸ ︷︷ ︸

IU

+
∫ −b

−∞
ax dz︸ ︷︷ ︸

IL

≡ IU + IL, (3.15)

where the subscripts ‘U’ and ‘L’ stand for ‘upper’ and ‘lower’, respectively. To compute
the upper integral, IU , we replace z using the change of coordinates (3.9) and approximate
the resulting integral by the same Legendre–Gauss–Lobatto quadrature used to solve the
reduced Laplace problem (3.8) for F. This gives

IU =
∫ η

−b
ax dz = b + η

2

∫ 1

−1
ax ds ≈ b + η

2

Ns∑
ns=0

w(LGL)
ns

ax|z=z(sns )
, (3.16)

in which w(LGL)
ns and sns are the nsth weight and node of the Legendre–Gauss–Lobatto

quadrature, respectively. To compute the lower integral, IL, we follow a very similar
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procedure: we make the change of coordinates z = −l/kp − b and subsequently
approximate the resulting integral using a Laguerre quadrature rule with Nl points. This
gives

IL =
∫ −b

−∞
ax dz = 1

kp

∫ ∞

0
ax dl ≈ 1

kp

Nl∑
nl=1

(w(L)
nl

exp(lnl))ax|z=z(lnl )
, (3.17)

where w(L)
nl and lnl are the nlth weight and node of the Laguerre quadrature, respectively.

It thus only remains for us to explain how we compute ax at the different quadrature
points, and to that end, we recall that the fluid acceleration is a = (∂t + v · ∇)v, where
∇ = (∂x, ∂y, ∂z)

T is the gradient in Cartesian coordinates and v = (vx, vy, vz)
T is the fluid

velocity given by v = ∇Φ.
In the upper part of the fluid domain we compute the values of ax using a procedure that

involves solving the reduced Laplace problem (3.8) for F and the corresponding reduced
Laplace problem for G(x, y, s(x, y, z)) = ∂tΦ(x, y, z) (see, e.g. § 2.2.3 of Klahn, Madsen &
Fuhrman 2021b). More specifically, we compute F and G at the Legendre–Gauss–Lobatto
quadrature points using the method described in the previous section, and then compute
the acceleration field as

a = ∇̃G + ((∇̃F) · ∇̃)(∇̃F), (3.18)

where the operator ∇̃ is defined as ∇̃ = ∇ + (∇s)∂s and it is understood that ∂zF = ∂zG =
0. In the lower part of the domain we follow a rather different approach to compute the
values of ax at the Laguerre quadrature points. In this approach we first compute the values
of ∂tvx, vx, ∂xvx, etc. at the quadrature points, before we compute the values of ax as

ax = ∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
. (3.19)

In order to compute the values of, for example, vx at the quadrature points, we utilize
the fact that vx must be a solution to the Laplace equation within the fluid domain. This
implies that if we write

vx|z=−b ≡ ∇̃F|s=−1 =
Nx−1∑

nx=−Nx

Ny−1∑
ny=−Ny

v̂nx,ny exp(iknx,ny · r), (3.20)

then vx must be given by the expression

vx =
Nx−1∑

nx=−Nx

Ny−1∑
ny=−Ny

v̂nx,ny exp
(|knx,ny |(z + b)

)
exp(iknx,ny · r) (3.21)

for z < −b. Clearly, we therefore have

vx|z=z(lnl )
=

Nx−1∑
nx=−Nx

Ny−1∑
ny=−Ny

v̂nx,ny exp
(

−|knx,ny |
kp

lnl

)
exp(iknx,ny · r), (3.22)

and we note that all other terms entering the right-hand side of (3.19) may be computed in
a completely analogous way. For the sake of illustration, we show an example of how the
surface elevation may look during the simulations as well as how the horizontal velocities
and accelerations behave as a function of depth in figure 3.
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0

Figure 3. (a) An example of the free surface elevation in the region {0 ≤ x ≤ 3λp and 0 ≤ y ≤ 24λp} for
the simulations with ε = 0.10 and ND = 50 at time t = 75Tp. The vertical scale is exaggerated two times.
(b,c) Profiles of the horizontal velocities and accelerations below the red dot in (a). The black line shows the
level z = −b. The computational parameters used in the simulations are listed in § 3.5, and the velocity and
acceleration scales v0 and a0 are defined in §§ 4.2.1 and 4.1.1, respectively.

Before moving on, we note that one should be careful not to use very large values of Nl in
connection with this algorithm, since it becomes numerically unstable when Nl becomes
large. In practice we have found that when Nl ≈ 30 in the computations, the results are
converged to at least six significant digits which is sufficient for the present purpose. For
larger values of Nl, we have, however, found the results to become increasingly inaccurate.

3.5. Computational parameters
As basic dimensional parameters of the wave fields we choose the gravitational
acceleration, g = 9.81 m s−2, and the peak wavelength, λp = 275 m (corresponding to
the peak period Tp = 13.3 s). We characterize a wave field by its steepness ε and its value
of ND, and in this work we simulate wave fields with ε = 0.05 and 0.10, and ND = 2,
4, 10 and 100. For all values of ND, we discretize both the x- and y-directions of all
wave fields with 2Nx = 2Ny = 1024 grid points. Since the variation of the wave fields
in the x-direction does not depend much on ND, we take Lx = 50λp in all simulations. The
variation of the wave fields in the y-direction, however, depends strongly on ND, and we
therefore take

Ly = 〈(∂xη
(1))2〉1/2

〈(∂yη(1))2〉1/2 Lx =
(∫ 2π

0 D(θ) cos2(θ) dθ
)1/2

(∫ 2π

0 D(θ) sin2(θ) dθ
)1/2 Lx = (1 + ND)1/2Lx, (3.23)
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Figure 4. The frequency spectrum (2.2) (full line) compared with its discretized version when using the
discrete frequencies of the main direction (circles). The inset shows the spectrum in the range 0.9 � ω/

ωp � 1.2.

where η(1) is the first-order solution to (2.1) initialized from the JONSWAP spectrum
J(ω, θ) given by (4.4a) below. This choice of Ly is made in an attempt not to ‘waste’
degrees of freedom in the y-direction for large values of ND, and we note that although
the idea is rather simple, it has to our knowledge not been used in any numerical study of
irregular wave fields until now.

At this stage we believe that a few comments on the spatial scales and resolution are
appropriate. Since Nx and Ny are finite, it can be shown using the linear dispersion relation
for waves in deep water that the frequency spectrum (2.2) with the present choice of Ny
and Ly is effectively cut off at the frequency ωc, say, given by

ωc =
(

2 + ND

1 + ND

)1/4 ( Nx

Lx/λp

)1/2

ωp. (3.24)

As such, the cut-off frequency is determined by the directional spreading and half the
number of grid points used per peak wavelength in the main direction (recall that the total
number of grid points in the main direction is 2Nx rather than Nx). Since Nx = 512, slightly
more than 20 points are used per peak wavelength, and for the values of ND used in this
work, ωc therefore lies between 3.21ωp for ND = 100 and 3.44ωp for ND = 2. Thus, it
should be possible to capture the main features of the nonlinear interactions up to at least
third order with the present resolution. It is of course also important that the peak of the
initial spectrum is properly resolved. To that end, we note that the choice of Lx implies
that the frequency resolution in the vicinity of the spectral peak is Δω ≈ 0.01ωp for the
main direction, and from figure 4, it can be seen that this gives an accurate description of
the spectral peak. Since the frequency resolution in all other directions is similar, we are
content that the spatial scales and resolution used in this work are adequate for the present
purpose.

When solving the reduced Laplace problem (3.8), we take b = 6〈η2〉1/2 = 3ελp/(2π)

such that the dimensionless depth of the computational domain is kpb = 3ε. This should
be compared with the large, finite water depth, h, needed to simulate wave fields in infinite
depth by similar numerical methods which solve the Laplace equation for the entire
fluid domain by stretching the vertical coordinate without using the artificial boundary
condition (3.8c). These methods need a computational domain with the dimensionless
vertical extent kph = O(2π) in order to simulate wave fields in infinitely deep water
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(see the work of Barratt, Bingham & Adcock (2020) for an example), and as such, the
vertical extent of the domain of the present numerical method is therefore at least an
order of magnitude smaller than that needed by similar methods. We resolve the vertical
dimension using Ns = 10 (corresponding to 11 grid points) for all wave fields, and employ
the GMRES method with the relative tolerance 10−6. The time integration of the wave
fields is carried out for 0 ≤ t ≤ 100Tp with the time step Δt = Tp/50, and for each
combination of ε and ND, we have performed the time integration with 80 different random
initial conditions in order to ensure a reasonably low level of statistical noise in the final
results. In each of the simulations we ramp up the nonlinear interactions among the Fourier
components of the wave fields using the parameters n = 4 and TR = 10Tp.

The numerical method is implemented as a serial Matlab program, and the
computational bottleneck of the method is the reduced Laplace equation which is here
solved with 1024 × 1024 × 11 ≈ 11.5 × 106 grid points four times per time step. By
construction of the preconditioning strategy, the efficiency of the program varies with ε

and ND, but in all cases the wall-clock time per time step was typically limited from above
by about 4 minutes such that the 100 peak periods of simulation were each completed in
about two weeks on the high performance computing cluster of the Technical University
of Denmark. We note that the simulations have thus cumulatively taken about 25 years of
computation time in total.

4. First-order theory for the distributions of Ix, Iy, Dx and Dy

It goes without saying that reference results are required when evaluating the effect of wave
steepness and directionality on the PDFs of the depth-integrated quantities. For that reason,
we derive a number of results for these PDFs based on first-order theory in this section,
and we emphasize that these results are new. To begin with, we derive approximations
for the PDFs of Ix and Iy which are valid for arbitrary directional spread. For Dx and
Dy, the situation is more complicated due to the inherent nonlinearity of these terms; in
fact, a derivation of their PDFs valid for arbitrary directional spread has thus far eluded
us. We therefore derive a sampling procedure with which the PDFs of Dx and Dy can
be approximated to any desired accuracy for arbitrary ND. Since a sampling procedure
does not provide any qualitative insights, we derive an analytic approximation for the
PDF of Dx which formally becomes valid in the limit where the wave field becomes
long crested, but turns out to be remarkably accurate even for short-crested wave fields.
Although this asymptotic result will never be more accurate than the sampling procedure,
it completely explains the role played by ND to first order in ε. We note that an asymptotic
expression for the PDF of Dy can in principle be derived using a similar procedure, but
based on numerical evaluations we have found that the final result is rather inaccurate
unless ND � 100, and we therefore do not pursue the derivation of it in this work. To
validate the analytical expressions and the sampling method, we compare them with results
from simulations with ε = 10−6, for which first-order theory should apply. We note that
these simulations only consist of a single time step, since the statistical properties of a
small-amplitude wave field do not depend on time.

In an attempt to streamline the presentation as much as possible, we have chosen to use
the moment generating function as the basis for our derivations. For a vector of N possibly
correlated random variables, X , say, the moment generating function is defined as

MX (t) = 〈exp(tTX )〉, (4.1)

where t is a vector of length N and the angle brackets mean average over random variables.
In the present situation, the moment generating function turns out to be useful, since it

916 A59-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.256


M. Klahn, P.A. Madsen and D.R. Fuhrman

provides the integral equation

MX (t) =
∫

p (X ) exp(tTX ) dX (4.2)

for the PDF of X . Here the integration runs over the support of X , and the equation
may in the cases needed here be inverted for p(X ) using the inverse Fourier and
Laplace transforms. In fact, we note that if MX (t) = exp(1

2 tTΣt), where Σ is a matrix
of dimension N × N, then it follows from an application of the multidimensional
Fourier transform that X is normally distributed with zero mean and covariance matrix
Σ . In other words, the PDF of X is, in that case, given by the expression p(X ) =
((2π)Ndet(Σ))−1/2 exp(−1

2 X TΣ−1X ). To calculate the moment generating function, we
will in several cases utilize its power series form. This form of MX (t) reads

MX (t) =
∞∑

p=0

1
p!

〈(tTX )p〉, (4.3)

and is readily derived by Taylor expanding the exponential function in (4.1) and
interchanging the order of averaging and summation.

Before presenting the derivations, we briefly recall some properties of the solution of
(2.1) to first order in ε that we will use repeatedly in the following. First of all, it is well
known that when the solution is sought in terms of a classical Stokes-type perturbation
series, the first-order solution satisfying the prescribed initial condition may be expressed
as

η(1) =
∑

n

ân cos (kn · r − ωnt + φn) , (4.4a)

Φ(1) =
∑

n

ânωn

|kn| exp (|kn|z) sin (kn · r − ωnt + φn) . (4.4b)

Here the superscript (1) indicates that the solution is accurate to first order in ε, n runs over
a set of indices which we will discuss shortly, kn is the nth wavenumber vector and ωn =
(g|kn|)1/2. The phases φ1, φ2, . . . are independent random numbers which are uniformly
distributed on the interval [0, 2π], and the nth coefficient ân is chosen as the positive
solution to the equation

1
2 â2

n = J(ωn, θn)ΔωnΔθn, (4.5)

where Δωn = (ωn+1 − ωn−1)/2 and Δθn = (θn+1 − θn−1)/2. We note that since
wave-wave interactions are absent to first order in ε and the initial state is homogeneous in
space, the statistical properties of the system are independent of r and t. We will therefore
take r = 0 and t = 0 throughout the derivations without loss of generality. In addition,
we note that it follows from (4.5) that for any reasonably behaved function f (ω, θ), the
approximation

∑
n

1
2

â2
n f (ωn, θn) ≈

∫ ∞

0

∫ 2π

0
f (ω, θ)J(ω, θ) dθ dω (4.6)

can be made arbitrarily accurate by choosing the set of indices, over which n runs,
appropriately. As such, we will in the following assume that the set of indices is such
that the left-hand side and right-hand side of (4.6) are in fact identical.
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4.1. Probability density functions of Ix and Iy

4.1.1. The PDF of Ix
By the definition (1.4a,b), the depth-integrated inertia term in the x-direction is given by
the expression

Ix =
∫ η

−∞
ax dz. (4.7)

To first order in ε, this expression reduces to

Ix =
∫ 0

−∞
a(1)

x dz, (4.8)

where a(1)
x ≡ ∂t∂xΦ

(1) is the first-order fluid acceleration in the x-direction. Using (4.4b)
gives

a(1)
x =

∑
n

ânω
2
n cos(θn) exp (|kn|z) sin(φn), (4.9)

and, therefore, to first order in ε, we have

Ix = g
∑

n

ân cos(θn) sin(φn), (4.10)

which follows from (4.8) and the fact that |kn| = ω2
n/g. Using this expression for Ix,

we now calculate the power series form of its moment generating function by directly
calculating its moments. For all non-negative integers p, it holds that

〈I2p+1
x 〉 = g2p+1

∑
n1

· · ·
∑
n2p+1

((ân1 · · · ân2p+1)

× (cos(θn1) · · · cos(θn2p+1))〈sin(φn1) · · · sin(φn2p+1)〉)
= 0, (4.11)

since by definition of the phases the average of a product of an odd number of sine
functions is zero. Thus, all odd moments vanish identically. For the even moments, we
find that

〈I2p
x 〉 = g2p

∑
n1

· · ·
∑
n2p

((ân1 · · · ân2p)

× (cos(θn1) · · · cos(θn2p))〈sin(φn1) · · · sin(φn2p)〉), (4.12)

and this is zero unless the phases of the sine functions have the same indices in groups of
2, 4, 6, etc. The contributions from the groups larger than 2, however, become negligible
when the set of indices is chosen such that the sum-to-integral-conversion rule (4.6)
applies (see, e.g. the remark by Longuet-Higgins (1963) immediately after his (2.3)). For
that reason, we find that

〈I2p
x 〉 = (2p)!

2pp!

(
g2
∑

n

∑
m

ânâm cos(θn) cos(θm)〈sin(φn) sin(φm)〉
)p

, (4.13)

where the numerical factor in front of the parenthesis is the number of unique pairs that
can be chosen from a set of 2p numbers. If we now utilize the fact that 〈sin(φn) sin(φm)〉 =
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1
2δn,m, where δn,m is the Kronecker delta, we find that

〈I2p
x 〉 = (2p)!

2pp!

(
g2
∑

n

1
2

â2
n cos2(θn)

)p

. (4.14)

Using (4.6) as well as the definition of ε, it may be shown that

g2
∑

n

1
2

â2
n cos2(θn) = g2

∫ ∞

0
S(ω) dω

∫ 2π

0
D(θ) cos2(θ) dθ = 1

4
1 + ND

2 + ND

(
a0

kp

)2

,

(4.15)
where a0 = εg, and clearly this implies that the even moments of Ix are

〈I2p
x 〉 = (2p)!

2pp!

(
1
4

1 + ND

2 + ND

)p (a0

kp

)2p

. (4.16)

Using the one-dimensional analogue of (4.3) and a few straightforward algebraic
manipulations in combination with (4.11) and (4.16) now shows that the moment
generating function of Ix is

MIx(t) =
∞∑

p=0

1
p!

(
1
2

(
a0t
kp

)2 (1
4

1 + ND

2 + ND

))p

= exp

(
1
2

(
a0t
kp

)2 (1
4

1 + ND

2 + ND

))
,

(4.17)

where the second equality follows from the fact that the infinite series is simply the Taylor
expansion of an exponential function. From the remark given immediately after (4.2), it
now follows that Ix/(a0/kp) is normally distributed with zero mean and variance (1 +
ND)/(4(2 + ND)), and its PDF therefore reads

p
( Ix

a0/kp

)
=
(

2
π

2 + ND

1 + ND

)1/2

exp

(
−2(2 + ND)

1 + ND

( Ix

a0/kp

)2
)

. (4.18)

Combining this result with the fact that the fraction (2 + ND)/(1 + ND) decreases with
ND, we conclude that the probability of finding a value of Ix/(a0/kp) with large magnitude
increases with the parameter ND. We note that this is in line with what one would expect,
as the wave motion becomes increasingly concentrated around the x-direction when ND
becomes large.

4.1.2. The PDF of Iy
To first order in ε, the PDF of Iy may be calculated using the exact same steps as used
above. In fact, the only difference is that a(1)

x should be replaced by

a(1)
y =

∑
n

ânω
2
n sin(θn) exp (|kn|z) sin(φn) (4.19)

in (4.8). Since the expression for a(1)
y is identical to that of a(1)

x except that it contains a
sine function instead of a cosine function, the PDF of Iy/(a0/kp) can be obtained directly
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from (4.18) simply by replacing the fraction (1 + ND)/(2 + ND) with∫ 2π

0
D(θ) sin2(θ) dθ = 1

2 + ND
. (4.20)

The final result for the PDF of Iy/(a0/kp) therefore reads

p
( Iy

a0/kp

)
=
(

2
π

(2 + ND)

)1/2

exp

(
−2(2 + ND)

( Iy

a0/kp

)2
)

. (4.21)

Clearly, the tails of this PDF will decay more rapidly to 0 as ND increases, and we therefore
conclude that large values of Iy become less probable when ND becomes large. We note
that this is in line with what one would expect for the same reason as given above.

4.1.3. Comparison of (4.18) and (4.21) with simulations of wave fields for negligible ε

We conclude the treatment of the depth-integrated inertia terms by validating the
expressions (4.18) and (4.21) against the results of simulations of wave fields with ε =
10−6. In figure 5 a comparison between the simulated and analytical results are shown
for ND = 2, 10, 50 and 100, and from it we conclude that the derived expressions for
p(Ix/(a0/kp)) and p(Iy/(a0/kp)) match the simulation results very well. In this connection
it is interesting to note that while the PDF of Ix/(a0/kp) only widens slightly when ND
is increased from 2 to 100, the PDF of Iy/(a0/kp) narrows significantly. As such, the
statistical properties of Iy/(a0/kp) seem to be much more sensitive to changes in the
directional spread of the wave field than the statistical properties of Ix/(a0/kp).

4.2. Probability density functions of Dx and Dy

4.2.1. A method for sampling the PDFs of Dx and Dy
In the following we describe a method based on first-order theory with which random
realizations of Dx and Dy can be sampled. Obviously, by binning these samples and
normalizing the bin values, the PDFs of the depth-integrated drag terms can be estimated.
Since the method is essentially the same for Dy as for Dx, we only describe it for the latter.

The starting point of the method is the definition of Dx (see (1.4a,b)), i.e.

Dx =
∫ η

−∞
vx(v

2
x + v2

y )1/2 dz, (4.22)

which, when approximated to lowest order in ε, becomes

Dx =
∫ 0

−∞
v(1)

x (v(1)2

x + v(1)2

y )1/2 dz. (4.23)

Here v
(1)
x ≡ ∂xΦ

(1) and v
(1)
y ≡ ∂yΦ

(1) are the first-order fluid velocities in the x- and
y-directions, respectively, and using (4.4b) it is straightforward to show that

v(1)
x =

∑
n

ânωn cos(θn) exp (|kn|z) cos(φn), (4.24a)

v(1)
y =

∑
n

ânωn sin(θn) exp (|kn|z) cos(φn). (4.24b)

To proceed from here we perform a change of coordinates, setting z = −α/kp in (4.23),
and approximate the resulting integral using a Laguerre quadrature rule with Nα points.
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Figure 5. A comparison of the PDFs of Ix (left column) and Iy (right column) obtained from simulation of
wave fields with ε = 10−6 with the analytical expressions (4.18) and (4.21) for different values of ND. The
legend applies to all figures.
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This gives

Dx = 1
kp

∫ ∞

0
v(1)

x

(
v(1)2

x + v(1)2

y

)1/2
dα

≈ 1
kp

Nα∑
nα=1

Wnα

(
v(1)

x

(
v(1)2

x + v(1)2

y

)1/2
)∣∣∣∣

z=z(αnα )

, (4.25)

where Wnα = wnα exp(αnα ), and αnα and wnα are the nαth quadrature point and weight
of the Laguerre quadrature rule, respectively. We note that since v

(1)
x and v

(1)
y are both

solutions to the Laplace equation, they depend analytically on z and the quadrature
therefore converges to the exact result at an exponential rate. Thus, for all practical
purposes, the finite sum may be considered to be exact as long as Nα is moderately large.
As such, we conclude that a realization of Dx may be computed from a realization of the
vector

v =
[
v

(1)
x |z=z(α1), . . . , v

(1)
x |z=z(αNα ), v

(1)
y |z=z(α1), . . . , v

(1)
y |z=z(αNα )

]T
, (4.26)

and to complete the description of the sampling method we therefore simply need to derive
the PDF of v. From (4.3), it is clear that the moment generating function of v can be
evaluated from the term 〈(tTv)p〉, for which we therefore seek an expression. Denoting the
nth entry of v by vn and the nth entry of t by tn, we have

〈(tTv)p〉 =
2Nα∑

n1=1

· · ·
2Nα∑

np=1

(
tn1 · · · tnp

) 〈vn1 · · · vnp〉, (4.27)

and from this result we immediately conclude that the term is zero whenever p is odd,
since the average in that case will be over an odd number of cosine functions, cf. (4.24).
Substituting p with 2p, we find after a few calculations that the even terms are

〈(tTv)2p〉 =
2Nα∑

n1=1

· · ·
2Nα∑

n2p=1

(tn1 · · · tn2p)〈vn1 · · · vn2p〉

= (2p)!
2pp!

(2Nα∑
n=1

2Nα∑
m=1

tntm〈vnvm〉
)p

. (4.28)

If we now define the matrix Σv such that its (n, m)th entry is 〈vnvm〉, the results for the
even and odd terms imply that the moment generating function of v is

Mv(t) =
∞∑

p=0

1
(2p)!

〈(tTv
)2p〉 =

∞∑
p=0

1
p!

(
1
2

tTΣvt
)p

= exp
(

1
2

tTΣvt
)

, (4.29)

and when combined with the remark given immediately after (4.2), this result implies
that v follows a multivariate normal distribution with covariance matrix Σv . We note that
samples of such a distribution may nowadays be generated efficiently by a wide variety
of software packages, and to complete the description of the sampling method it therefore
suffices to construct the covariance matrix of v. For arbitrary n and m, it may be shown
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that 〈v(1)
x |z=z(αn)v

(1)
y |z=z(αm)〉 = 0, and as a consequence, the covariance matrix simplifies

to

Σv =
[
Σvx 0

0 Σvy

]
. (4.30)

Here Σvx ≡ 〈vxv
T
x 〉 and Σvy ≡ 〈vyv

T
y 〉 are the covariance matrices of the vectors

vx =
[
v

(1)
x |z=z(α1), . . . , v

(1)
x |z=z(αNα )

]
, (4.31a)

vy =
[
v

(1)
y |z=z(α1), . . . , v

(1)
y |z=z(αNα )

]
. (4.31b)

Using (4.6) these matrices may be shown to be given by the expressions

Σvx = v2
0

1 + ND

2 + ND
Σ, and Σvy = v2

0
1

2 + ND
Σ, (4.32a,b)

where v0 ≡ ε(g/kp)
1/2 and the matrix Σ is defined such that its (n, m)th entry is

Σn,m =

∫ ∞

0
exp
(
−x2(αn + αm)

)
x−3 exp

(
−5

4
x−4
)

γ exp(−((x−1)2/2σ 2)) dx

4
∫ ∞

0
x−5 exp

(
−5

4
x−4
)

γ exp(−((x−1)2/2σ 2)) dx
, (4.33)

in which γ and σ are parameters of the frequency spectrum (2.2). This concludes the
description of the sampling method.

4.2.2. An asymptotic result for the PDF of Dx
We now derive an analytical expression for the PDF of Dx, and because the derivation
is somewhat more complicated than those presented above, we divide it into three steps.
In the first step, the PDF of Dx is related to that of |Dx|, and the latter is approximated
by a finite sum. In the second step, the finite sum is rewritten as a linear combination of
independent random variables, from which the moment generating function is calculated.
Finally, in the third step, this function is inverted using the inverse Laplace transform.

Our derivation starts from (4.23), which we rewrite as

Dx =
∫ 0

−∞
v(1)

x |v(1)
x |
⎛
⎝1 +

(
v

(1)
y

v
(1)
x

)2
⎞
⎠1/2

dz. (4.34)

From (4.32a,b), it follows that at any fixed depth we have (v
(1)
y /v

(1)
x )2 = O((1 + ND)−1)

in a statistical sense, and neglecting the square root factor of the integrand thus introduces
an error which on average is proportional to (1 + ND)−1. For long-crested wave fields, for
which ND is large, this error is small, and we therefore make the approximation

Dx ≈
∫ 0

−∞
v(1)

x |v(1)
x | dz, (4.35)

while keeping in mind that the final result will formally only be valid in the limit of large
ND. It follows from the results of the previous section that v

(1)
x is a Gaussian process with
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zero mean when considered as a function of z. The symmetry of this process around 0
implies that the PDF of Dx is symmetrical around 0, and we may hence write

p (Dx) = 1
2 p (|Dx|) . (4.36)

We note that this relation could also have been guessed from pure physical reasoning, as
the velocity of the water in the x-direction at any given z-level is known to be positive as
often as negative when described with first-order theory. The relation (4.36) implies that
we can restrict our attention to computing the PDF of |Dx|, and from (4.35) we have

|Dx| ≈
∣∣∣∣∣
∫ 0

−∞
v(1)

x |v(1)
x | dz

∣∣∣∣∣ ≈
∫ 0

−∞
v(1)2

x dz, (4.37)

where the approximation comes from the fact that v
(1)
x may change sign with depth. We

simplify the expression for |Dx| further by employing the same Laguerre quadrature as in
section (4.2.1), and find that

|Dx| ≈ 1
kp

∫ ∞

0
v(1)2

x dα ≈ 1
kp

Nα∑
nα=1

Wnαv
(1)2

x

∣∣∣∣∣∣
z=z(αnα )

. (4.38)

For clarity, we recall that Wnα = wnα exp(αnα ), and that αnα and wnα are the nαth
quadrature point and weight of the Laguerre quadrature rule, respectively. This completes
the first part of the derivation.

In order to calculate the moment generating function of |Dx| we seek to rewrite (4.38)
as a linear combination of squares of independent normally distributed random variables
with zero mean and unit variance. To that end, we note that the vector vx defined in (4.31)
consists of correlated normal random variables and that its covariance matrix Σvx defined
in (4.32a,b) is symmetric positive-semidefinite (SPD) by construction. The latter of these
facts enables us to define the dimensionless vector X = Σ

−1/2
vx vx, with Σ

1/2
vx the SPD

square root of Σvx , and we may therefore rewrite (4.38) as

|Dx| ≈ 1
kp

X T(Σ1/2
vx

WΣ1/2
vx

)X = v2
0

kp

1 + ND

2 + ND
X T(Σ1/2WΣ1/2)X . (4.39)

Here W is the diagonal matrix whose (n, n)th entry is Wn, and the second equality follows
from using (4.32a,b). The symmetry of Σ1/2 implies that the matrix Σ1/2WΣ1/2 is also
symmetric and can therefore be orthogonally diagonalized, meaning that it can be factored
as PTΛP, where P and Λ are orthogonal and diagonal matrices, respectively. By setting
Y = PX and using this result in (4.39), we arrive at the relation

|Dx| ≈ v2
0

kp

1 + ND

2 + ND
Y TΛY = v2

0
kp

Nα∑
nα=1

(
1 + ND

2 + ND
Λnα

)
Y2

nα
, (4.40)

which we claim is a linear combination of squared uncorrelated normally distributed
variables with zero mean and unit variance. To prove this assertion, we first note that
Y = PΣ

−1/2
vx vx is in fact normally distributed, since it is a linear transformation of the

vector vx which is normally distributed. Secondly, a straightforward calculation shows
that 〈Y 〉 = 0 and that 〈YY T〉 is the identity matrix, and in combination these three results
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nα 1 2 3 4 5 6

Λnα 0.117892 0.006 098 0.000721 0.000110 0.000014 0.000001

Table 1. The eigenvalues Λnα of the matrix Σ1/2WΣ1/2 in descending order converged to six significant
digits. The eigenvalues with nα > 6 are all smaller than 10−6.

imply the desired conclusion. If we now define μnα = 2(1 + ND)/(2 + ND)Λnα and set
ξ = |Dx|/(v2

0/kp), then from (4.40),

ξ ≈
Nα∑

nα=1

1
2
μnα Y2

nα
. (4.41)

When combined with the facts that the components of Y are independent and all
have identical PDFs, namely p(Ynα ) = (2π)−1/2 exp(−Y2

nα
/2), this result implies that the

moment generating function of ξ , when evaluated at −t, is

Mξ (−t) ≈
〈

exp

⎛
⎝−

Nα∑
nα=1

1
2
μnα Y2

nα
t

⎞
⎠〉

=
Nα∏

nα=1

〈
exp
(

−1
2
μnα Y2

nα
t
)〉

=
Nα∏

nα=1

1
(1 + μnα t)1/2 . (4.42)

The PDF of ξ must therefore satisfy the relation∫ ∞

0
exp (−ξ t) p(ξ) dξ ≈

Nα∏
nα=1

1
(1 + μnα t)1/2 , (4.43)

and this completes the second part of the derivation.
At this stage the only thing left to do is to invert the relation (4.43) for p(ξ). To do

so, we start by considering the eigenvalues Λnα , which are given to six significant digits
in table 1. From the table we see that the eigenvalues decay extremely rapidly with nα ,
such that the approximation is very accurate even for Nα as small as, say, 5. Moreover, the
eigenvalues are all positive, and this implies that the singularities on the right-hand side of
(4.43) all are located on the negative real axis. As such, p(ξ) may be expressed as

p(ξ) ≈ 1
2πi

lim
R→∞

∫ iR

−iR

exp (ξ t)

(1 + μ1t)1/2 (1 + μ2t)1/2 · · · (1 + μNLt)1/2
dt, (4.44)

by using the complex inversion formula for the Laplace transform (see, e.g. Spiegel 1965).
To calculate this integral, we take the branch cut of the square root to be the negative part
of the real line and consider the contour integral∫

Γ

exp (ξz)

(1 + μ1z)1/2 (1 + μ2z)1/2 · · · (1 + μNα z)1/2
dz

=
6∑

n=1

∫
Γn

exp (ξz)

(1 + μ1z)1/2 (1 + μ2z)1/2 · · · (1 + μNα z)1/2
dz, (4.45)

where the components of the contour Γ are shown in figure 6, and should be considered in
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Re(z)

Im(z)

z1z2zNα
...

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

r

R

Figure 6. The contour Γ = ∪6
n=1Γn, which should be considered in the limits where R tends to ∞ and r tends

to 0. Here Γ1 is a straight line from −iR to iR, Γ2 is a quarter circle from iR to −R, Γ3 is a straight line from −R
to t1, Γ4 is a half-circle with centre t1 and radius r, Γ5 is a straight line from t1 to −R and Γ6 is a quarter circle
from −R to −iR. The numbers z1 = −μ−1

1 , z2 = −μ−1
2 ,. . . , zNα = −μ−1

Nα
are the singularities of the integrand

(4.45).

the limits R → ∞ and r → 0. Since the integrand is holomorphic in the region inside Γ ,
the residue theorem (see, e.g. Berg 2013) implies that the integral along the entire curve
vanishes identically. Moreover, the contribution from Γ1 clearly gives 2πip(ξ), and it can
be shown that the contributions from Γ2, Γ4 and Γ6 to the integral tend to 0 when R and r
tend to ∞ and 0, respectively. In total, we can therefore rewrite (4.45) as

p(ξ) ≈ i
2π

(∫
Γ3

exp (ξz)

(1 + μ1z)1/2 (1 + μ2z)1/2 · · · (1 + μNLz)1/2
dz

+
∫

Γ5

exp (ξz)

(1 + μ1z)1/2 (1 + μ2z)1/2 · · · (1 + μNLz)1/2
dz

)
, (4.46)

and upon utilizing that the square root carries the opposite sign on Γ3 than on Γ5, we find
that

p(ξ) ≈ i
2π

Nα∑
n=1

(
((−i)n − in)

×
∫ μ−1

n+1

μ−1
n

exp(−ξ t)

(μ1t − 1)1/2 · · · (μnt − 1)1/2 (1 − μn+1t)1/2 · · · (1 − μNLt)1/2
dt

)
,

(4.47)
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where μ−1
Nα+1 ≡ ∞. The integrals inside the sum have, as we will now show, very simple

asymptotic forms with which the total expression may be simplified significantly. Using
Watson’s lemma (see e.g. Holmes 2013) it can be shown that

∫ μ−1
n+1

μ−1
n

exp(−ξ t)

(μ1t − 1)1/2 · · · (μnt − 1)1/2 (1 − μn+1t)1/2 · · · (1 − μNLt)1/2
dt

∼ Cn

(
π

μ1ξ

)1/2

exp(−μ−1
n ξ) (4.48)

as ξ → ∞, where the number Cn is given by the expression

Cn =
(

Λ1

Λn
− 1
)−1/2

· · ·
(

Λn−1

Λn
− 1
)−1/2 (

1 − Λn+1

Λn

)−1/2

· · ·
(

1 − ΛNα

Λn

)−1/2

.

(4.49)

If we then combine (4.36), (4.47) and (4.48) with the definitions of ξ and μn, we finally
find that

p

(
Dx

v2
0/kp

)
∼ C1

(
8πΛ1

1 + ND

2 + ND

|Dx|
v2

0/kp

)−1/2

exp

(
− 1

2Λ1

2 + ND

1 + ND

|Dx|
v2

0/kp

)
(4.50)

as |Dx|/(v2
0/kp) → ∞, which concludes our derivation of the PDF of Dx. From the

asymptotic result (4.50) we conclude that when |Dx|/(v2
0/kp) is large, it tends to follow

a (scaled) chi-square distribution with one degree of freedom. We note that this result
could have been anticipated qualitatively from (4.41) by combining the fact that the first
term in the sum (when considered in isolation) follows a chi-square distribution with one
degree of freedom with the fact that it is this term which, in some sense, is responsible for
generating the events with large |Dx|/(v2

0/kp), as it has the largest variance.
From the asymptotic result (4.50), it is clear that the PDF of Dx decays less rapidly to

zero when ND increases. We therefore conclude that events where |Dx| is large become
more probable when the directional spread of the wave field is small, as one would expect.

4.2.3. Comparison of the sampling method and the asymptotic approximation (4.50) with
simulations of wave fields for negligible ε

We conclude the treatment of the depth-integrated drag terms by validating the derived
results against simulations of wave fields with ε = 10−6. For Nα = 5 and ND = 2, 10,
50 and 100, the simulated and derived results are compared in figure 7, from which it is
clear that the sampling method provides a highly accurate result even when using only five
points in the quadrature (4.25). The asymptotic result (4.50) in general also provides a very
good match for the simulated results for all values of ND, except for close to Dx/(v

2
0/kp) =

0 where it diverges due to an inverse square root singularity. This is remarkable not only
because of the small value of Nα , but also because of the many approximations which
have been made throughout the derivation of (4.50). In this connection one may, of course,
wonder whether an even better match could be found by using the formally more accurate
expression (4.47). We have tested this by evaluating (4.47) numerically, but the result does
not provide a better match, since it approaches 0 as Dx becomes small. The reason for
this behaviour is the approximation (4.37), which effectively excludes the possibility that
Dx = 0.
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Figure 7. A comparison of the PDFs of Dx (a,c,e,g) and Dy (b,d, f,h) obtained from simulation of wave fields
with ε = 10−6 with the results of the sampling method described in § 4.2.1 and the analytical expression (4.50)
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The legend applies to all figures.
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In addition to providing a measure for the accuracy of the derived PDFs, we note
that figure 7 also illustrates the effect of the directional spread on p(Dx/(v

2
0/kp))

and p(Dy/(v
2
0/kp)). To that end, we conclude that the statistical properties of the

depth-integrated drag terms exhibit the same qualitative behaviour as the statistical
properties of the depth-integrated inertia terms in the sense that while the PDF of
Dx/(v

2
0/kp) only widens slightly as ND is increased from 2 to 100, the PDF of Dy/(v

2
0/kp)

narrows significantly.

5. The distributions of Ix, Iy, Dx and Dy as a function of ε and ND

In this section we present the results for the PDFs of Ix, Iy, Dx and Dy obtained from
the nonlinear simulations for ε = 0.05 and 0.10 and ND = 2, 10, 50 and 100 at a fixed
point in time and compare them with our theoretical results based on first-order theory. In
that connection we re-emphasize the fact that our numerical method does not take wave
breaking into account, and that the presented PDFs therefore may deviate from the true
results in general and underestimate the probability of extreme events in particular, since
these are expected to occur when a wave breaks right into the cylinder. The comparisons of
the PDFs will be purely qualitative, but the results presented here can be freely downloaded
(Klahn, Madsen & Fuhrman 2021c) and quantitative investigations can therefore easily be
performed if desired. Before comparing the PDFs, we briefly discuss the time evolution
of the skewness and kurtosis of the surface elevation, since we use these quantities to
define a non-arbitrary time for the measurement of the depth-integrated quantities. Prior to
presenting the PDFs, we also discuss the decay of the kinematic quantities ax, ay, vx(v

2
x +

v2
y )1/2 and vy(v

2
x + v2

y )1/2 with depth, as these represent the inertia and drag forces per
unit vertical length, respectively.

5.1. Time of measurement
At the start of the simulations, the components of the wave fields considered in this work
have finite amplitudes but uncorrelated, random phases. As such, the statistical properties
of the wave fields are expected to vary considerably over the first O(ε−2) peak periods
(see, e.g. Dysthe et al. 2003; Annenkov & Shrira 2009; Xiao et al. 2013), which we
note corresponds roughly to the length of our simulations. Specifically, these statistical
variations relate to the skewness and kurtosis, i.e. the quantities

S = 〈η3〉
〈η2〉3/2 and K = 〈η4〉

〈η2〉2 . (5.1a,b)

These quantities respectively take the values 0 and 3 in the case of a linear wave field, and
can therefore be used as a measure of the degree of nonlinearity of the wave field. Our
results for the skewness and kurtosis are shown in figure 8, from which it can be seen that
S in all cases quickly reaches an almost constant level while K does not. At the instance
of maximum kurtosis, the wave fields may therefore be considered to be in their most
nonlinear state during the simulations, and we therefore choose to measure the statistical
properties of the depth-integrated quantities at this time. In this connection we note that
Toffoli et al. (2010) used the same instance in time for their measurement of the PDF of
the surface elevation. For completeness, the time of measurement for the different values
of ε and ND is listed in table 2.
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Figure 8. The time evolution of the skewness (a,c,e,g) and kurtosis (b,d, f,h) for ε = 0.05 and 0.10 and
ND = 2, 10, 50 and 100. The legend applies to all figures.

5.2. The decay of kinematic quantities with depth
Although this study is mainly focused on the statistical properties of the depth-integrated
inertia and drag forces, we here report on the depth variation of the forces per unit
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ND

ε 2 10 50 100

0.05 65 99 15 17
0.10 63 82 75 47

Table 2. The dimensionless time t/Tp at which the PDFs of the depth-integrated quantities are measured as a
function of ε and ND. At the times listed, the kurtosis of the surface elevation reaches it maximum during the
simulations.

vertical length. This variation is important for at least two reasons, the first being that
it can be used to qualitatively explain the behaviour of the PDFs of Dx and Dy, and the
second being that knowledge about the magnitude of the contributions to the total force
at different depths is very useful for practical purposes. In deep water, which is assumed
throughout this work, most offshore structures such as tension-leg platforms do not extend
all the way to the seabed. As such, the total force calculated in this work presents an upper
bound for the force on such structures, and how useful this bound is in practice obviously
depends on whether substantial contributions to the force are found at great depth.

To quantify this, we have calculated the standard deviations of ax, ay, vx(v
2
x + v2

y )1/2

and vy(v
2
x + v2

y )1/2 at the time of maximum kurtosis. As mentioned above, these quantities
represent the inertia and drag forces per unit vertical length, respectively. The results for
ε = 0.10 and ND = 2, 10, 50 and 100 are shown in figure 9, and from this it is clear
that both the contributions to the inertia and drag force decay extremely rapidly with
depth. We have found similar results for ε = 0.05 and, therefore, conclude that significant
contributions to the inertia force are limited to the region z � −λp, and that substantial
contributions to the drag force are limited to the region z � −λp/2. If a structure penetrates
deeper into the water than a single peak wavelength, the results for the depth-integrated
force in this work will thus provide an accurate estimate on the total inline force on the
structure. On the other hand, if the vertical extent of the structure is less than a peak
wavelength, the results of this work can only be used as an upper bound.

5.3. The PDF of Ix

In figure 10 we show a comparison of the PDF of Ix obtained from the nonlinear
simulations together with the first-order result (4.18). From the figure, it is clear that
the first-order result matches the nonlinear PDF almost perfectly for all values of ε and
ND, and this hints that the statistical properties of Ix are unaffected by nonlinear effects.
In appendix A we present a proof of the fact that the contributions from second-order
nonlinearities to the PDFs of both Ix and Iy vanish identically regardless of the shape
of the underlying frequency and directional spectrum. As a consequence, the exact PDF
of these quantities can only differ from the first-order result if they are affected by
third- or higher-order nonlinear interactions, and for Ix, this is clearly not the case for
the range of parameters investigated here. We note that this finding may be of great
practical value, since it hints that the result of the depth-integrated Morison equation
(without the extensions due to, for example, Rainey 1989) in many cases may be accurately
approximated by the normal distribution (4.18), specifically, as may be seen from (1.2),
when the parameter P is close to zero. We return to this finding when discussing the PDF
of F∗ in § 6.
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Figure 9. The variation of the standard deviations of (a) ax, (b) ay, (c) vx(v
2
x + v2

y )1/2 and (d) vy(v
2
x + v2

y )1/2

with depth for ε = 0.10 and different values of ND. The results are computed at the time of maximum kurtosis
and the legend applies to all figures.

5.4. The PDF of Iy

Our results for the PDF of Iy from the nonlinear simulations are shown in figure 11
together with the first-order result given by (4.21). For ε = 0.05 there is a very good
agreement between the nonlinear PDFs and the first-order approximation for all values of
ND, and this is in line with the fact that the statistical properties of Iy are not affected by
second-order effects, cf. appendix A. For ε = 0.10 there is likewise a very good agreement
between the exact nonlinear PDFs and the first-order approximation for ND = 2 and 10,
but for ND = 50 and 100, the linear and nonlinear results deviate visibly as the tails of
the nonlinear PDF decay much more slowly to zero. This is a clear indication of the
fact that the statistical properties of Iy are affected by third-order nonlinearities when the
steepness is appreciable and the wave field becomes long crested. We note that this finding
is consistent with the results of, for example, Onorato et al. (2009) and Toffoli et al. (2010),
who found that the PDF of the surface elevation is only affected by third-order interactions
in the case where the directional spread of the wave field is relatively small.

5.5. The PDF of Dx

Figure 12 shows our results for the PDF of Dx from the nonlinear simulations together
with the results of the first-order sampling method presented in 4.2.1 when executed
with Nα = 5. From the figure, it can be seen that the first-order PDF does not provide
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Figure 10. A comparison of the PDF of Ix obtained from fully nonlinear simulations at the time of maximum
kurtosis with the first-order result (4.18) for different values of ε and ND. The legend applies to all figures.
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Figure 11. A comparison of the PDF of Iy obtained from fully nonlinear simulations at the time of maximum
kurtosis with the first-order result (4.21) for different values of ε and ND. The legend applies to all figures.
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Figure 12. A comparison of the PDF of Dx obtained from fully nonlinear simulations at the time of maximum
kurtosis with the result of the first-order sampling method presented in § 4.2.1 for different values of ε and ND.
The sampling method has been employed with Nα = 5. The legend applies to all figures.
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an accurate description of the nonlinear PDF for any of the pairs (ε, ND) used in this
study. Assuming that third-order effects only come into play when ND is large, we
therefore conclude that Dx is in general affected by second-order nonlinearities by a simple
contradiction argument. To understand this result we recall that by definition

Dx =
∫ η

−∞
vx(v

2
x + v2

y )1/2 dz, (5.2)

and owing to figure 9c as well as the fact that ND > 0 in this study, we conclude that the
dominant contribution to Dx comes from vx close to the surface. As has been shown by
Song & Wu (2000) for arbitrary depth, this quantity is in general affected by second-order
nonlinearities (consider, for example, their (68) in the limit of large kph). In particular,
Song & Wu show that the PDF of vx becomes skewed to second order, and it may be
checked by numerical calculations that the skewness is positive for all cases presented
here. This explains why Dx is more likely to be positive than negative. An important
consequence of the fact that second-order nonlinearities affect the PDF of Dx is that
the total inline force is likely to be only poorly described by first-order theory when the
parameter P is close to 1. We return to this finding in § 6 when presenting our results for
the PDF of F∗.

Regarding the effect of third-order nonlinearities when ε and ND are both large,
we note that the present results imply that these interactions cannot be significant
for the bulk of the PDFs. For if they were, the deviations between the linear and
nonlinear PDFs for the long-crested case given by ε = 0.10 and ND = 100 and the
short-crested case given by ε = 0.10 and ND = 10 should be substantially different,
and this is not the case. A more interesting question is of course whether third-order
interactions lead to differences in the tail of the distributions. With the present
information, this can, however, not be determined, as it would require the exact results
of second-order theory. More research is therefore called for in order to answer this
question.

5.6. The PDF of Dy

Finally, our results for the PDF of Dy obtained from the nonlinear simulations are
compared with the results of the first-order sampling method with Nα = 5 in figure 13.
For ε = 0.05, deviations between the linear and nonlinear PDFs can be seen, but these are
notably smaller than the deviations for the same value of ε found in connection with the
PDF of Dx in figure 12. This indicates that the statistical properties of Dy are much less
affected by second-order effects than are the statistical properties of Dx, and an argument
supporting this finding goes as follows. The definition

Dy =
∫ η

−∞
vy(v

2
x + v2

y )1/2 dz (5.3)

in connection with figure 9(d) implies that the statistical properties of Dy must be
intimately linked to the statistical properties of vy|z=η. Moreover, when the directional
distribution, D(θ), is an even function as in this work, it turns out that vy|z=η is unaffected
by second-order nonlinearities. Therefore, Dy is not expected to be affected substantially
by second-order effects. A rather technical proof of the claim that vy|z=η is unaffected by
second-order effects is given in appendix B, but we note that the result can in fact also be
understood intuitively. As shown by Longuet-Higgins (1963), the only possible effects of
second-order nonlinearities on a given quantity are to (i) change its mean value and (ii)
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Figure 13. A comparison of the PDF of Dy obtained from fully nonlinear simulations at the time of maximum
kurtosis with the result of the first-order sampling method presented in § 4.2.1 for different values of ε and ND.
The sampling method has been employed with Nα = 5. The legend applies to all figures.
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change its skewness. When D(θ) is an even function, it is reasonable to assume that the
PDF of vy|z=η must be an even function regardless of the order, to which the calculation is
carried out. As such, all odd moments of vy|z=η are always zero, and, therefore, no change
in the statistical behaviour of vy|z=η can appear when extending the first-order description
to include the effect of second-order nonlinearities.

For ε = 0.10, the linear and nonlinear PDFs in figure 13 only differ slightly for ND =
2 and 10, but for ND = 50 and 100 a substantial deviation can be seen. This suggests
that when the steepness is appreciable and the wave field is relatively long crested, the
statistical properties of Dy are significantly affected by third-order effects.

6. The distributions of F ∗ as a function of ε and ND

In this section we consider the PDF of F∗ as a function of the parameter P (see (1.3) for
the definition of P). We briefly describe how first-order PDFs for F∗ can be constructed
in the completely inertia and drag-dominated regimes, i.e. when P = 0 and P = 1, and
subsequently compare these to the fully nonlinear results for ε = 0.05 and 0.10 and ND =
2, 10, 50 and 100. The comparisons will again be of a qualitative nature, but quantitative
results can easily be checked, as the results are publicly available (Klahn et al. 2021c).
The nonlinear PDFs are computed at the times stated in table 2, and, to be clear, we take
a0 = εg and v0 = ε(g/kp)

1/2 in (1.3) such that the parameter P becomes

P =
(

1 +
(

π

2
CM

CD

kpD
ε

)2
)−1

. (6.1)

This shows that, for a given wave field, the value of P is determined by the properties
of the cylinder as claimed in the introduction. Moreover, since we typically have
(πCM)/(2CD) = O(1), it shows that P is close to zero when the ratio kpD/ε is large
and close to one when the ratio is small.

6.1. First-order theory for the distribution of F∗ when P = 0 and P = 1
When P = 0, the total non-dimensional inline force is given by the length of I/(a0/kp),
and using an argument similar to that used in § 4.2.1 it can be shown that the components
of this vector are independent and normally distributed with zero mean and variances
(1 + ND)/(4(2 + ND)) and 1/(4(2 + ND)), respectively. As such, the PDF of F∗ may in
this case be calculated using the exact same procedure as, for example, used by Klahn et al.
(2021b) to compute the PDF of the horizontal fluid velocity at the surface. Since the steps
in this procedure are explained in § 5.1 in the paper of Klahn et al., we are content with
stating the final result, which reads

p(F∗) = 4(2 + ND)

(1 + ND)1/2 F∗ exp
(

−(2 + ND)2

1 + ND
F∗2
)

I0

(
(2 + ND)ND

1 + ND
F∗2
)

. (6.2)

Here I0 is the modified Bessel function of the first kind of order 0, and it is interesting
to note that I0(x) ∼ exp(x)/(2πx)1/2 as x → ∞ (see, for example, Abramowitz & Stegun
1972), because it implies that

p(F∗) ∼
(

8
π

2 + ND

ND

)1/2

exp
(

−2(2 + ND)

1 + ND
F∗2
)

as F∗ → ∞. (6.3)
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Figure 14. The PDF of F∗ for P = 1 obtained using the sampling method described in § 4.2.1 with Nα = 5
for different values of ND. The dashed lines show functions of the form CF∗−1/2

exp(−1/(2Λ1)(2 + ND)/(1 +
ND)F∗), where the constant C has been chosen such that the asymptotic behaviour agrees with p(F∗).

It will be seen that the asymptotic exponential decay of p(F∗) is the same as that of
P(Ix/(a0/kp)) (see (4.18)), and, therefore, hints that the asymptotic behaviour of F∗ is
determined by the kinematics of the wave field in the main direction.

When P = 1, the total non-dimensional inline force is given by the length of
D/(v2

0/kp), and the PDF of F∗ can therefore be sampled using the method presented in
§ 4.2.1. In figure 14 we show the sampled PDF obtained using Nα = 5 for ND = 2, 10 and
100, together with functions of the form CF∗−1/2

exp(−1/(2Λ1)(2 + ND)/(1 + ND)F∗)
with C a constant, i.e. functions that decay at the same rate as the PDF of Dx given by
(4.50). For large values of F∗ there is a very good agreement between the sampled PDFs
and the asymptotic behaviour of the PDF of Dx. This gives further support to the assertion
that the asymptotic behaviour of p(F∗) is determined by the kinematics of the wave field
in the main direction.

6.2. The nonlinear distribution of F∗ as a function of P
Our results for the PDF of F∗ obtained from the nonlinear simulations are shown in
figure 15 for different values of P together with the first-order distributions described
in the previous section. From the figure we conclude that when P = 0, the PDF of F∗ is
very well described by the first-order result (6.2) for all values of ε and ND as anticipated
in § 5.3. We stress, however, that this result not necessarily implies that the more accurate
formulation of the inertia force by, for example, Rainey (1989) is unaffected by nonlinear
effects. We also conclude that the first-order sampling method for computing the PDF
of F∗ when P = 1 drastically underestimates the probability of large forces for all ε and
ND as anticipated in § 5.5. Clearly, the deviation between the linear and nonlinear results
for P = 1 become more significant when the steepness increases. From the figure we
also conclude, regardless of the value of P , that large forces become substantially more
probable when ε and ND increase. When 0 < P < 1, it appears that when F∗ is small, its
PDF behaves qualitatively like the inertia-dominated PDF (P = 0), and when F∗ is large,
its PDF behaves qualitatively like the drag-dominated PDF ((P = 1)). By this we mean
that p(F∗) initially grows to a maximum for small values of F∗, while it decays at a rate
which on a logarithmic scale appears to be constant for large values of F∗. This finding may
be understood by recalling that the PDF of the depth-integrated inertia terms in general
decay much more rapidly than the PDF of the depth-integrated drag terms. We emphasize,
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Figure 15. The PDF of the non-dimensional total inline force, F∗, as a function of the parameter P for different
values of ε and ND. The upper dashed line shows the first-order result (6.2) for P = 0 while the lower dashed
line shows the result of the first-order sampling method for p(F∗) executed with Nα = 5 when P = 1. The
legend applies to all figures.

however, that when P < 1, the quantitative behaviour of p(F∗) for large values of F∗ is
not the same as that of the drag-dominated PDF, since the asymptotic decay is different.

7. Conclusions

In this paper we have presented a study of the effect of wave steepness and directional
spread on the statistical properties of the non-dimensional total inline force F∗ as well
as the depth-integrated quantities Ix, Iy, Dx and Dy as defined in (1.4a,b) for nonlinear
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irregular wave fields based on directional JONSWAP spectra. We have described the wave
fields using potential flow theory and specifically considered the values ε = 0.05 and
0.10 for the steepness and ND = 2, 10, 50 and 100 for the directional spread. The study
was motivated by the fact that while the Morison equation remains the most popular tool
for estimating the wave-induced inline force on a vertical circular cylinder, its statistical
properties have until now been largely unknown, as these have mostly been studied for
unidirectional wave fields using first-order theory.

In order to provide the necessary benchmark needed to clarify the role of nonlinear
effects in connection with the depth-integrated quantities, we have derived a number
of results related to the PDFs of the depth-integrated quantities analytically using their
moment generating function in connection with first-order theory. We have shown that Ix
and Iy both follow normal distributions to first order in ε as given in (4.18) and (4.21).
In addition, we have derived a sampling procedure with which the first-order PDFs of Dx
and Dy can be computed to any desired accuracy for an arbitrary directional spread of
the wave field. The sampling procedure is based on a Laguerre quadrature, and we have
shown that it is highly accurate even when using only five quadrature points. Assuming
that the directional spread of the wave field is small, we have derived the asymptotic result
(4.50) for the PDF of Dx, which shows that Dx asymptotically follows a (scaled) chi-square
distribution with a single degree of freedom. Despite the many approximations employed
to arrive at the final result, the expression is remarkably accurate even for small values of
ND. It is only inaccurate close to the origin where it diverges due to an inverse square root
singularity.

To obtain the PDFs of the depth-integrated quantities and the total inline force in
the general nonlinear case, we have performed extensive numerical simulations using the
numerical method of Klahn et al. (2021a). This method is fully nonlinear and solves the
governing potential flow equations without any approximations using a pseudospectral
discretization strategy. The PDFs of the depth-integrated quantities were measured at the
time of maximum kurtosis during the simulations, and the following was concluded. The
PDF of Ix is, for all values of ε and ND used in this work, essentially unaffected by
nonlinear effects. It is therefore very well approximated by the first-order result (4.18).
The PDF of Iy is very well described by the first-order result (4.21) for ε = 0.05 and all
values of ND used in this work. For ε = 0.10, third-order effects give rise to substantial
deviations from the first-order results when ND ≥ 50. The PDF of Dx is, for all values of
ε and ND used in this work, strongly affected by second-order nonlinear effects. Finally,
the PDF of Dy was found to be much less affected by second-order effects than the PDF
of Dx. In many cases, the former is therefore well approximated by the result of first-order
theory. We explained this by pointing to the fact that when the directional distribution of
the wave field is an even function, the second-order corrections to the fluid velocity in the
y-direction at the surface vanish. For ε = 0.10 and ND ≥ 50, however, the PDF of Dy is
strongly affected by third-order nonlinearities and, therefore, deviates substantially from
the first-order PDF.

The PDF of the total inline force F∗ as given in (1.2) was likewise measured at the time
of maximum kurtosis during the simulations. It was found that in the inertia-dominated
regime (i.e. when the parameter P is close to zero), the force is very well described
by first-order theory. Caution should, however, be taken when interpreting this result; it
simply means that the result of the classical Morison equation in many situations can
be accurately approximated by first-order theory. It does not necessarily mean that the
additional inertia terms in the formulations of, for example, Rainey (1989, 1995) are not
affected by nonlinear effects. In the drag-dominated regime (i.e. when P is close to 1)
the total inline force is only very poorly described by first-order theory. The probability
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of large forces was found to increase substantially with both the wave steepness and the
directional spread for all values of P . For P satisfying 0 < P < 1, we concluded that the
PDF of F∗ behaves qualitatively similar to the inertia-dominated PDF for small values of
F∗ while it behaves qualitatively similar to the drag-dominated PDF for large values of F∗.
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Appendix A. Second-order nonlinear effects on the PDFs of Ix and Iy

Although the PDFs (4.18) and (4.21) were derived with first-order theory, it turns out that
they are identical to the PDFs that can be derived when taking into account the effect of
second-order nonlinearities. As such, the PDFs are in fact accurate to second order in ε,
and it is the purpose of this section to prove this result. The basic idea of the proof is
to show that the second-order corrections to the moments of Ix and Iy vanish, implying
that their moment generating functions and, hence, their PDFs do not change when the
second-order corrections are included. Since the steps and arguments used in connection
with the PDF of Iy are completely analogous to those used in connection with the PDF
of Ix, we only prove the result for the x-direction. In addition, we take r = 0 and t = 0
without loss of generality throughout this section.

To get started with the proof, we recall that to second order in ε the solution to (2.1)
takes the form

η = η(1) + η(2), (A1a)

Φ = Φ(1) + Φ(2). (A1b)

Here the first-order solution (indicated with the superscript (1)) is given by (4.4), while
the second-order correction (indicated by the superscript (2)) has been calculated by, for
example, Longuet-Higgins (1963). As we will use this result in the following, we mention
here that he found the second-order correction to the velocity potential to be given by the
expression

Φ(2) = 1
2

∑
n

∑
m

(
ânωn

|kn|
âmωm

|km|

×
(

(ωn − ωm)(kn · km + |kn||km|)
(ωn − ωm)2 − g|kn − km| exp (|kn − km|z) sin(φn − φm)

+(ωn + ωm)(kn · km − |kn||km|)
(ωn + ωm)2 − g|kn + km| exp (|kn + km|z) sin(φn + φm)

))
, (A2)

where the factor 1/2 has been added, as it is missing in the paper by Longuet-Higgins. The
form of the second-order solution (A1) implies that the fluid acceleration in the x-direction
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is ax = a(1)
x + a(2)

x , where a(1)
x ≡ ∂t∂xΦ

(1) as in section (4.1) and

a(2)
x ≡ ∂v

(2)
x

∂t
+ v(1)

x
∂v

(1)
x

∂x
+ v(1)

y
∂v

(1)
x

∂y
+ v(1)

z
∂v

(1)
x

∂z
. (A3)

Here v
(1)
x , v

(1)
y and v

(1)
z are the fluid velocities in the x-, y- and z-directions to first order in

ε, respectively, while v
(2)
x ≡ ∂xΦ

(2) is the second-order correction to the fluid velocity in
the x-direction. This result implies that Ix to second order in ε is given by the expression

Ix =
∫ 0

−∞
a(1)

x dz + η(1)a(1)
x |z=0

+
∫ 0

−∞

(
∂v

(2)
x

∂t
+ v(1)

x
∂v

(1)
x

∂x
+ v(1)

y
∂v

(1)
x

∂y
+ v(1)

z
∂v

(1)
x

∂z

)
dz. (A4)

If (4.4b) and (A2) are inserted into the expressions for a(1)
x and a(2)

x and subsequently into
(A4), Ix turns out to be of the form

Ix =
∑

n

An sin(φn) +
∑

n

∑
m

Bn,m cos(φn) sin(φm), (A5)

where An = gân cos(θn) and Bn,m is a function of ωn, θn and kn as well as ωm, θm and km.
While the exact expression for Bn,m is not particularly important for the present purpose,
it is important to note that the first term in (A5) is of order a0/kp while the second term is
of order εa0/kp. This may be shown by considering the variance of the terms individually,
but we note that care must be taken in this process when considering the part of Bn,m

arising from the term a(1)
x |z=0η

(1). When taken strictly, the variance of this term is infinite
for the spectrum (2.2) since the resulting integral, which runs from 0 to ∞, diverges.
If restricted to any finite interval, as is effectively done in the numerical simulations,
the integral however converges and turns out to be of order εa0/kp. Now, using (A5) in
combination with the binomial theorem, we find that the pth moment of Ix can be written
as

〈Ip
x 〉 =

p∑
j=0

(
p
j

)〈(∑
n

An sin(φn)

)p−j (∑
l

∑
m

Bl,m cos(φl) sin(φm)

) j〉
, (A6)

and it is clear from the above order of magnitude estimations that the jth term in this
expression is of order ε j(a0/kp)

p. We therefore truncate the sum at j = 1 to be consistent
with the second-order approximation. To complete the proof, we note that the term with
j = 0 corresponds to the first-order contribution and that the contribution from the term
with j = 1 is

p
∑
n1

· · ·
∑
np−1

∑
l

∑
m

((An1 · · · Anp−1)Bl,m

× 〈sin(φn1) · · · sin(φnp−1) cos(φl) sin(φm)〉) = 0, (A7)

since by definition of the phases the average of the product of the sine and cosine functions
vanishes. In conclusion, all moments of Ix are the same to second order as to first order.
Therefore, the moment generating function of Ix is the same to second order as to first
order, and, thus, the PDF of Ix is the same to second order as to first order. We note
that this result is solely implied by the randomness of the phases, and, therefore, holds
regardless of the shape of the directional spectrum.
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Appendix B. Second-order nonlinear effects on the PDF of vy|z=η

When the directional part of the underlying spectrum is an even function, i.e. when
D(−θ) = D(θ), it turns out that the contribution from second-order nonlinearities to
the PDF of v

(s)
y ≡ vy|z=η vanishes identically. In the following, we give a proof of this

assertion by showing that the second-order corrections to the moments of v
(s)
y are all zero.

To simplify the notation, we again take r = 0 and t = 0 without loss of generality.
To second order in ε, we have

v(s)
y = ∂Φ(1)

∂y

∣∣∣∣∣
z=0

+
(

η(1) ∂2Φ(1)

∂z∂y

∣∣∣∣∣
z=0

+ ∂Φ(2)

∂y

∣∣∣∣∣
z=0

)
, (B1)

where η(1) and Φ(1) are given by (4.4) and Φ(2) is given by (A2). Inserting the results from
(4.4) and (A2) into this relation, however, yields a very long expression, and we therefore
start by defining some auxiliary notation. We define the numbers An and Bl,m by

An = ωn sin(θn), (B2a)

Bl,m = 1
2 (ωl|kl| sin(θl) + ωm|km| sin(θm)) , (B2b)

as well as the number β
(±)
l,m = α

(−)
l,m ± α

(+)
l,m , where

α
(±)
l,m = 1

2
(|kl| sin(θl) ± |km| sin(θm))

ωlωk

|kl||km|
(ωl ± ωm)(kl · km ∓ |kl||km|)

(ωl ± ωm)2 − g|kl ± km| . (B3)

Using these definitions, it may be shown that (B1) can be written as

v(s)
y =

∑
n

ânAn cos(φn)

+
∑

l

∑
m

âlâm((Bl,m + β
(+)
l,m ) cos(φl) cos(φm) + β

(−)
l,m sin(φl) sin(φm)), (B4)

and we note that β
(+)
l,l = β

(−)
l,l = 0 for all l which may be proven by taking the limit km →

kl (see, e.g. the remark by Longuet-Higgins (1963) immediately after his (3.9)). Moreover,
we note that it can be shown by considering the variances of the first and second term in
this expression separately that the former is of order v0 while the latter is of order εv0.
Now, from (B4) and the binomial theorem, it follows that the pth moment of v

(s)
y is given

by

〈
v(s)p

y

〉
=

p∑
j=0

(
p
j

)〈(∑
n

ânAn cos(φn)

)p−j

×
(∑

l

∑
m

âlâm((Bl,m + β
(+)
l,m ) cos(φl) cos(φm) + β

(−)
l,m sin(φl) sin(φm))

)p〉
,

(B5)

and since the jth term in this sum is of order ε jv
p
0, we truncate the sum at j = 1 to be

consistent with second-order theory. The second-order contribution to the pth moment,
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SOC( p), of v
(s)
y is thus

SOC( p) = p
∑
n1

· · ·
∑
np−1

∑
l

∑
m

(ân1 · · · ânp−1 âlâm)(An1 · · · Anp−1)

× ((Bl,m + β
(+)
l,m )〈cos(φn1) · · · cos(φnp−1) cos(φl) cos(φm)〉

+ β
(−)
l,m 〈cos(φn1) · · · cos(φnp−1) sin(φl) sin(φm)〉), (B6)

and from this we immediately conclude that SOC( p) = 0 whenever p is even, for in that
case the averages are taken over an odd number of cosine functions. We also conclude that
regardless of whether p is even or odd, the contribution from the term containing β

(−)
l,m

vanishes, since we must require l = m for the phase average to be non-zero, but in that
case β

(−)
l,m = 0 as noted above. Setting p = 2q + 1, the odd moments of v

(s)
y therefore are

SOC(2q + 1) = (2q + 1)
∑
n1

· · ·
∑
n2q

∑
l

∑
m

(ân1 · · · ân2q âlâm)(An1 · · · An2q)

× (Bl,m + β
(+)
l,m )〈cos(φn1) · · · cos(φn2q) cos(φl) cos(φm)〉. (B7)

To make progress from here, we recall that the phases must be equal in pairs for the average
to be non-zero, and that 〈cos(φn) cos(φm)〉 = 1

2δn,m. Using these results together with the
fact that β

(+)
l,l = 0, we find that

SOC(2q + 1) = (2q + 1)

(
(2q)!
2qq!

(∑
n

1
2

â2
nA2

n

)q (∑
l

1
2

â2
l Bl,l

)

+ (2q)!
2q−1(q − 1)!

(
1 − δq,0

) (∑
n

1
2

â2
nA2

n

)q−1

×
(∑

l

∑
m

1
4

â2
l â2

mAlAm(Bl,m + β
(+)
l,m )

))
, (B8)

where the Kronecker delta in the second term comes from the fact that the term is absent
when q = 0. Clearly the odd moments of v

(s)
y are zero if the sums in (B8) involving Bl,l and

Bl,m + β
(+)
l,m are zero, and to complete the proof that the PDF of v

(s)
y is the same to second

order as to first order, we therefore simply need to show that these sums vanish. Employing
the definition of Bl,m, the sum-to-integral-conversion rule (4.6) and the decomposition of
the JONSWAP spectrum J(ω, θ) = S(ω)D(θ) yields

∑
l

1
2

â2
l Bl,l =

∑
l

1
2

â2
l ωl|kl| sin(θl) = 1

g

∫ ∞

0
ω2S(ω) dω

∫ π

−π

D(θ) sin(θ) dθ = 0, (B9)

where the last equality follows from the fact that D(θ) is an even function while sin(θ) is
an odd function. To show that the sum in (B8) involving Bl,m + β

(+)
l,m is zero, we start by
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using the definition of An and the conversion rule (4.6) twice, which gives

∑
l

∑
m

1
4

â2
l â2

mAlAm(Bl,m + β
(+)
l,m ) =

∫ ∞

0

∫ ∞

0
S(ωl)S(ωm)I(ωl, ωm) dωl dωm, (B10)

where the quantity I(ωl, ωm) is defined as

I(ωl, ωm) =
∫ π

−π

∫ π

−π

(D(θl)D(θm)A(ωl, θl)A(ωm, θm)

× (B(ωl, ωm, θl, θm) + β(+)(ωl, ωm, θl, θm))) dθl dθm. (B11)

Finally, we note that D(θ) is an even function and that A(ωl, θl), B(ωl, ωm, θl, θm)

and β(+)(ωl, ωm, θl, θm) all change sign under the reflection of coordinates (θl, θm) →
(−θl, −θm). As such, the integrand in (B11) changes sign under the substitution (θl, θm) →
(−θl, −θm), and, therefore, we have I(ωl, ωm) = 0 regardless of the values of ωl and ωm.
In total we have thus shown that SOC( p) = 0 for both even and odd values of p, and this
implies that the PDF of v

(s)
y is the same to second order as to first order. We stress, however,

that the result relies heavily on the fact that the directional distribution of the wave field is
an even function, and does not hold for arbitrary directional distributions.
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