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Abstract. This paper presents the possible periodic solutions and the solitons of
the cubic–quintic nonlinear Schrödinger equation. Corresponding to five types of
different structures of the pseudo-potentials, five types of periodic solutions are
given explicitly. Five types of solitons are also obtained explicitly from the limiting
procedures of the periodic solutions. This will benefit the study of the generation
of fast ions or electrons, which are produced from the soliton breaking when the
plasma is irradiated a high-intensity laser pulse.

1. Introduction
Since the nonlinear Schrödinger equation (NLSE) model is one of the most im-
portant nonlinear models of modern science, many significant contributions have
been made in the development of NLSE soliton theory (Serkin and Hasegawa
2000; Zhonghao et al. 2000; Agüero 2001; Hayata and Koshiba 1995). The NLSE
appears inmany branches of physics, including plasma physics (Farina andBulanov
2001), nonlinear optics (Mihalach et al. 2002) and quantum electronics, and also
in fluid mechanics, the theory of turbulence and phase transitions, biophysics
and star formation. Zahkarov and Shabat (1971, 1972) developed the theory of
NLSE solitons for the first time. Since then, many applications and experiments
have appeared, such as in Boise–Einstein condensates (BEC) (Ruostekoski and
Anglin 2001). The study used here is laser interaction with plasmas. When we
considered the large amplitude Langmuir wave affected by strong nonlinearity
in the fourth-order beating frequency interactions, a series of analytical soliton
forms were given in the laser propagating direction. The problem related to ion and
electron acceleration, from the breaking of relativistic plasma waves (Modena et al.
1995) and radiative solitons energy in the form of low-frequency electromagnetic
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bursts (Sentoku et al. 1999) will be discussed later. In this paper, we consider the
dimensionless form of the cubic–quintic NLSE:

i∂tE + ∂xxE + |E|2E − g|E|4E = 0, (1)

whereE(x, t) is a slowly varying complex amplitude of high-frequency electric fields
of plasmas and g is the coupling constant of high-frequency fields with electrons,
which depends on the electron temperature and density, etc. The dimensional units
are defined as

E =
Ẽ√

16πn0(Ti + Te)
, t = ωpet

′, x =
√

2
3

x′

λD
. (2)

The density is

n(x, t) = −2|E|2(1 − γ|E|2), (3)

where γ is taken as

γ =
{

3(2Ti + 3Te)/Te (for the fourth-order field)
0, (for the second-order field).

(4)

Equation (1) describes the amplitude evolution of the fourth-order field’s inter-
action, under the static approximation. In (4), Ti and Te are the ion and electron
temperatures respectively. The dynamic equation involving quintic fields was de-
rived by He (1982) and the Schrödinger equation was studied numerically by He
and Zhou (1993). They deduced that the dynamic behavior of the NLSE with an
additional high-order Hamiltonian perturbation displayed a nonlinear interaction
between Langmuir waves and electrons in plasma. They showed that the quintic
nonlinear term leads to a spatio-temporal complexity of wave fields. Ying and Tan
(1996) extended (1) to a (2+1)-dimensional cubic–quintic NLSE with fully periodic
boundary conditions in order to study the propagation of laser pulses in plasma.
For (1), a special solitary wave solution was obtained (Liu and He 1984) and the
recurrence was also discussed numerically (Cloot et al. 1990).
In this paper, we propose to set out a systematic treatment of the possible periodic

solutions and the possible soliton structures. In Sec. 2, we change the quintic NLSE
to an energy integrable form of a quasi-particle for the envelope wave solutions. In
Sec. 3, we study the possible different structures of the pseudo-potentials of the
quasi-particle. Five different types of possible structures of the pseudo-potential
are plotted. In Sec. 4, using the two possible transformations, we solve the model
by means of the φ4 model. In Sec. 5, using the exact known solutions of the φ4

model, we obtain five exact explicit periodic solutions of the quintic NLSE. Under
some possible limiting procedures, these periodic solutions tend to five different
solitons. In the case of three of these periodic solutions we have included three-
dimensional graphics to further illustrate our findings. The last section is a short
summary and discussion.

2. Energy integral form of the quasi-particle
In this section, we are looking for the envelope solutions of the quintic NLSE in
the form

E(x, t) = Q(kx + ω1t) exp
[

−i

(
ω

2k
x + ωt

)]
, (5)
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where Q(kx + ω1t) is a real function of kx + ω1t and the parameters k, ω, ω1 are
undetermined constants. Letting τ = kx + ω1t and putting (5) into (4), we obtain
an ordinary differential equation for the function Q(τ),

−4gk2Q(τ)5 + 4k2Q(τ)3 −
(
4k2ω + ω2

1

)
Q(τ) + 4k4 ∂

∂τ2
Q(τ) = 0. (6)

Integrating (6) once with respect to τ , we get

−
(

∂

∂τ
Q(τ)

)2

+
1
3

gQ(τ)6

k2
− 1

2
Q(τ)4

k2
+

1
4

(
4k2ω + ω2

1

)
Q(τ)2

k4
+ C = 0, (7)

i.e., (
∂

∂τ
Q(τ)

)2

=
1
3

gQ(τ)6

k2
− 1

2
Q(τ)4

k2
+

1
4

(
4k2ω + ω2

1

)
Q(τ)2

k4
+ C (8)

where C is an arbitrary constant.
In Zhou et al. (1992), the authors have obtained a similar result to (8) (G ∼ Q(τ)):

1
2

(
dG

dτ

)2

+ V (G) = H0 (9)

V (G) = − 1
6gG6 + 1

4G4 − 1
2α2G2. (10)

However, in the following studies, H0 is fixed as zero.
Zhou et al. (1992) also present the pseudoenergy of a classical quasi-particle.

Obviously, (9) (or equivalently (8)) is the energy integral of a classical quasi-particle
with unit mass. Actually, according to different selections of the constant C (H0 in
(9)) g, k, ω, ω1, we may easily find many new types of exact periodic solitons.

3. Structures of the pseudo-potential for the quasi-particle
After some detailed analysis, we can find that the pseudo-potential function

V (Q(τ)) = −1
6
gQ(τ)6 +

1
4
Q(τ)4 − 4k2ω + ω2

1

8k4
Q(τ)2 +

C

2
(11)

has five independent characteristic structures for different regions of the paramet-
ers g, C, k, ω and ω1.
In order to give out the possible structures of the pseudo-potential V (Q(τ)) given

in (11) for physically positive g, we differentiate (11) once with respect toQ ≡ Q(τ).
The result reads

V ′ = −gQ5 + Q3 − 4k2ω + ω2
1

4k4
Q = −gQ

(
Q2 − 1 +

√
β

2g

)(
Q2 − 1 −

√
β

2g

)
, (12)

with

β = 1 − 4gω − g
ω2

1

k2
. (13)

From (13), we know that when β < 0, there is no real solution for V ′ = 0, except
for Q = 0. That means that the pseudo-potential (11) has only one maximum
located at Q = 0 and there is no minimum. The typical structure for this case is
plotted in Fig. 1(a).
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(a)

(b)

(c)

Figure 1. (a). The plot of (11) for β < 0. As earlier mentioned, there is no periodic solution in
this case. To arrive at this graph we used the parameters of (30) below with b = 0.055. This
gave a value of β = −0.422 375. (b). The parameters used here are the same as for (a) other
than that b = 0.14, giving β = 0.082 375. This is in compliance with the condition set out
above. (c) The plot for (11) using the parameters from (37) with b = 0.3. (d) The plot for (11)
using the parameters from (50) with a = 1.2575. (e) The plot for (11) using the parameters
from (50) with a = 0.055.

If 0 < β < 1, then we have three maxima located at Q0 = 0 and

Q1± = ±1 +
√

β

2g
(14)
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(d)

(e)

Figure 1. Continued.

and two minima located at

Q2± = ±1 −
√

β

2g
. (15)

In this case, there are three different characteristic structures according to whether
the value V (Q0) is larger than, equal to or less than V (Q1±). Figure 1(b) is a typical
plot of the pseudo-potential for

0 < β < 1
4 , V (Q0) > V (Q1±). (16)

Figure 1(c) is related to the structure of the pseudo-potential with

β = 1
4 , V (Q0) = V (Q1±) (17)

and Fig. 1(d) is a typical structure of the pseudo-potential when

1
4 < β < 1, V (Q0) < V (Q1±). (18)

The last characteristic structure of the pseudo-potential is related to

β = 0 or β � 1. (19)

In this case, there exist two maxima located at Q1± expressed by (14) and one
minimum located at Q = 0. Figure 1(e) shows the characteristic structure of the
pseudo-potential related to (19).
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4. Transformation relations between the φ4 model and the
pseudo-energy equation

To find some explicit solutions of the pseudo-energy equation (7) (or (8)), we use
the following two transformations

Q(τ) =
φ1(τ)√

a1φ1(τ)2 + b1

, (20)

and

Q(τ) =
1√

a2φ2(τ)2 + b2

(21)

where φi(τ), i = 1, 2 are the solutions of the φ4 model

(φiτ (τ))2 = λiφi(τ)2 + 1
2µiφi(τ)4 + Ci, i = 1, 2. (22)

In the transformations (20)–(22), the relations among parameters; λi, µi, Ci, g, C,
k, ω and ω1, read

4(3Ca1 − λ1)k4 + 4k2ω + ω2
1 = 0,

(
6Ca2

1 − µ1b1

)
k4 + (4ωa1 − 1)k2 + ω2

1a1 = 0,

12Ck4a3
1 +

(
−6a1 + 4g + 12ωa2

1

)
k2 + 3ω2

1a2
1 = 0, C1 = b1C, (23)

and

2
(
a2C2 − 3Cb2

2

)
k4 + (1 − 4ωb2)k2 − ω2

1b2 = 0, 4(3Cb2 − λ2)k4 + 4k2ω + ω2
1 = 0,

12Ck4b3
2 +

(
12ωb2

2 + 4g
)
k2 + 3ω2

1b2
2 = 0, 2Ca2 = µ2. (24)

Now using the transformation relations (20)–(4) and explicit solutions of the φ4

model, we may obtain many exact solutions of the quintic NLSE.

5. Periodic solutions and solitary wave solutions
Various explicit solutions have been given in terms of the Jacobi elliptic functions
(Lou and Ni 1989). In this section we select some of them to write down the exact
periodic solutions and the solitons of the pseudo-energy equation (7). It is known
that for a quasi-particle, a kink soliton solution is linked with two neighboring
degenerated maxima in pseudo-potential. A bell or ring shape linked with a single
non-degenerate maximum and the minimum is not the largest point of the pseudo-
potential. A periodic solution is related to two non-maximum degenerated points
of a potential well. According to these general viewpoints, we know that the kink
soliton solutions exist for the cases when the pseudo-potential possesses the struc-
tures shown by Figs. 1(c), 1(d) and 1(e); the bell or ring shape soliton solutions are
allowed for the structures except for that shown by Fig. 1(a).
From the above discussions, we know that there is no periodic solution and soliton

when the pseudo-potential has the characteristic structure of Fig. 1(a).
Selecting φ(τ) of (21) as cn(τ), we have the first type of periodic solution (5)

with

Q(τ) = ± 1√
acn2(τ) + b

(25)
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while the parameters are related by

a =
2g − b − 2k2b2(2m2 − 1)

4bk2(m2 − 1)
, C =

6k2b2(2m2 − 1) − 3b + 2g

12k2b3
, (26)

and

ω = −k2(2k2b2(2m2 − 1) − 3b + 2g) + ω2
1b2

12k2b3
, (27)

with b a root of

12k4b4 − (8gk2(2m2 − 1) + 3)b2 + 8bg − 4g2 = 0 (28)

andm being the modulus of the elliptic function cn(τ). After detailed consideration
of the real conditions of b and Q(τ), we know that the periodic solution (25) with
(26)–(28) is related to the periodic motion of the quasi-particle at the potential
wells shown in Fig. 1(b). The upper sign of (25) is related to the motion at the right
potential well and the lower sign is related to the motion at the left potential well.
Using the definition of the Jacobi elliptical functions (Abramowitz and Stegun

1972), defined as cn(τ) is the solution to:

d2y

dτ2
= −(1 + k2)y + 2k2y3,

etc, we know that g is the coefficient of the quintic term in (1) and ω, ω1 and k are
the space–time constants in τ from (5), c is the constant of integration in (11) and
m is the modulus of the Jacobi elliptical functions cn, sn and dn. From Abramowitz
and Stegun (1972) we know that for m = 0, sn(τ) = Sin(τ), cn(τ) = Cos(τ) and
dn(τ) = 1. For m = 1, cn(τ) = Sech(τ), dn(τ) = Sech(τ) and sn(τ) = Tanh(τ).
After considering the limiting procedure of (25) for m → 1, we get a symmetric

non-topological gray-type soliton.

Q(τ) = ± Cosh(τ)√
bCosh2(τ) + a

, (29)

with a > 0, b > 0, b/2 < g < 3b/4 (g > 0), and

C =
−4g + 3b

3(−2g + b)b
, ω =

ω2
1b4 + 4g2 − 6gb + 2b2

2b2(b − 2g)
, a =

3(2g − b)b
(3b − 4g)

, k2 =
2b2

2g − b
,

(30)

for arbitrary b.
We can now show what this looks like in three dimensions by plotting Q[τ ] as a

function of space and time. This gives us the very interesting graph shown in Fig. 2.
The simulation presented here for Figs. 1(b), 1(c) and 1(d) are the three-

dimensional representation of the soliton equations for each case where a periodic
solution occurs and the three-dimensional representation of the envelope equa-
tion (5) for the soliton found in each of the above cases. In the case of the soliton
equation, the axes represent the amplitude of the soliton, Q(τ), against space and
time. These simulations are produced using the software Mathematica.
Using (29) with these parameters gives the plot shown as (5), for the three-

dimensional form of E[x, t], as in the equation. The ring shape soliton (upper line
in Fig. 3) is related to the upper sign of (29). The right maximum of Fig. 1(b) and
the bell shaped soliton (lower line of Fig. 3) are related to the lower sign of (29) and
the left maximum of Fig. 1(b).
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Figure 2. Three-dimensional graph of the soliton produced by (29). This shows the peaks
extended downwards, the typical posture of a dark soliton.

Figure 3. A typical plot of the non-topological dark soliton (29) related to the
pseudo-topological structure of Fig. 1(b).

It is known (Lou 2001) that when a further nonlinear effect is included in the
model, there may be three effects on the solitons of the model. The first effect
is that the old exact solutions are changed by perturbation. In this case, we can
use many kinds of perturbation theory to study the new effect on the old exact
solutions. The second effect is that the old exact solutions are totally destroyed.
This type of case would occur when the old solutions are not stable. The third effect
is that some new types of exact solutions may be induced. These types of solutions
can be treated by perturbation. From (30), we know that when g = 0, k becomes
purely imaginary, so this type of soliton can exist only for g � 0. In other words,
the non-topological soliton (5) with (29) and (30) is induced by the quintic term of
the NLSE and cannot be treated by perturbation from the cubic NLSE.
The corresponding periodic solution related to the structure of the pseudo-

potential shown in Fig. 1(c) reads

Q(τ) = ± cn(τ)√
acn2(τ) + b(1 + sn(τ))2

, (31)
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Figure 4. The typical plot of the asymmetric topological kink (solid lines) and anti-kink
(dotted lines) soliton (36) related to the pseudo-potential structure of Fig. 1(c).

and can be obtained by taking φ(τ) in (20) as

φ(τ) =
cn(τ)

1 + sn(τ)
. (32)

In this case, the parameters are related by

ω = − gm2

12a2
− 8g − 9a

12a2
− 12a2ω2

1 − 8ag + 4g2 + 3a2

48a4k2
− 4g2 + 3a2 + 4a2k2g − 8ag

48a4k2m2
,

(33)

b = − 3a3k2(m2 − 1)
3a2k2(m2 + 1) − 3a + 2g

, C =
3a2k2(m2 + 1) − 3a + 2g

12a3k2
(34)

for arbitrary b.
Figure 4 shows the typical plot of the asymmetric topological kink and anti-kink

soliton (36) related to the pseudo-potential structure of Fig. 1(c) for k is determined
by

8ag − 4g2 − 3a2 − 4g(m2 + 1)a2k2 + 12a4k4m2 = 0 (35)

with arbitrary a, g, ω1 and the modulus m of the Jacobi elliptic functions. Solution
(31) with the upper sign and (33)–(35) describes the periodic motion of the quasi-
particle at the right potential well of Fig. 1(c), while the lower sign describes the
motion at the left potential well.
A special type of asymmetric topological kink soliton linked with two right (left)

neighboring degenerated maxima of Fig. 1(c) can be obtained from the limiting
procedure of (31) with upper (lower) sign m → 1:

Q(τ) = ± Exp[τ ]√
aExp[2τ ] + b

(36)

where

k2 =
3

16g
, ω = −64ω2

1g2 − 9
48g

, a =
4
3
g, C = 0. (37)

The upper two lines of Fig. 4 are the kink and anti-kink related to two right
neighboring degenerated maxima of Fig. 1(c) and the lower two lines are the kink
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and anti-kink related to the two left neighboring degenerated maxima. From (37),
we can see that this type of soliton is also induced by the quintic term of the NLSE
and cannot be treated as the perturbation of the cubic NLSE.
For the structure of the pseudo-potential shown by Fig. 1(d), there exist two types

of periodic solutions. The first type of periodic solution is related to the motion of
quasi-particle at the large potential well between two degenerated maxima while
the second type of periodic solution is related to the motion of quasi-particle at
the left or right small potential well only. The periodic solution related to the large
potential well can be obtained by selecting φ(τ) = sn(τ) in (20):

Q(τ) = ± sn(τ)√
asn2(τ) + b

, (38)

and the relations among the parameters now read

ω =
1
2
(m2 + 1)k2 +

3
4a

− g

2a2
− ω2

1

4k2
, (39)

C = − (m2 + 1)
2a

+
2g − 3a

12a3k2
, b =

12k2a3

2g − 6a2(m2 + 1)k2 − 3a
(40)

while a is a root of

12(m2 − 1)2k4a4 + 8g(m2 + 1)k2a2 − 3a2 + 8ga − 4g2 = 0. (41)

When the modulusm of the Jacobi elliptic function sn(τ) tends to one, the periodic
solution (38) with (39)–(41) becomes a symmetric topological kink for upper sign
or anti-kink for lower sign.

Q2(τ) = ± Tanh(τ)√
aTanh2(τ) + b

(42)

with

C = −1
3

−2g + 3a

(−2g + a)a
, b = −3a

a − 2g

3a − 2g
, k2 =

(a − 2g)(3a − 2g)
16ga2

(43)

and

ω = −−48g3a + 32g2a2 + 12ga3 + 64ω2
1a4g2 + 16g4 − 9a4

16ga2(a − 2g)(3a − 2g)
. (44)

Figure 5 shows the structure of the symmetric topological kink (continuous curve)
and anti-kink (dotted curve). From (43) and (42), we can see that when g tends to
zero, k and ω tend to ∞, b tends to −a and then the soliton will be induced by the
quintic term of the NLSE and cannot be treated as the perturbation of the cubic
NLSE. Figure 6 represents Fig. 5 in three dimensions.
The periodic solution

Q(τ) = ± cn(τ)√
acn2(τ) + b

(45)

related to the right (upper sign of (45)) or left (lower sign of (45)) small potential
well can be obtained by selecting φ(τ) = cs(τ) in (20) with the parameter relations

b = − 12k2a3(m2 − 1)
6k2a2(2m2 − 1) − 3a + 2g

, C =
6k2a2(2m2 − 1) − 3a + 2g

12k2a3
, (46)
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Figure 5.A typical plot of the first type of symmetric topological kink (continuous curve) and
anti-kink (dotted curve) soliton (42) related to the pseudo-potential structure of Fig. 1(d).

Figure 6. The three-dimensional form of (42), the axes referring to the equation. It goes
without saying that we have here another ‘dark’ soliton. Here we show the view from below,
as in Fig. 2.

and

ω =
1
2
(1 − 2m2)k2 − ω2

1

4k2
+

3
4a

− g

2a2
(47)

while a is a solution of

12k4a4 − 8g(2m2 − 1)a2k2 − 4g2 − 3a2 + 8ag = 0. (48)

When m → 1, the periodic solution (45) with (46)–(48) reduces to a symmetric
non-topological dark soliton:

Q(τ) = ± Sech(τ)√
aSech2(τ) + b

. (49)

In this case, the parameters should satisfy the conditions 0 < g < 9/48k2, C = 0
and

b = −2a +
1

2k2
, g +

3
2
a(2ak2 − 1) = 0, ω = k2 − ω2

1

4k2
. (50)
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Figure 7. This figure represents the three-dimensional form of (49), the axes representing
that equation. The representation here typifies the ‘bright’ soliton as opposed to Figs 2
and 6.

Figure 8. Plot of the non-topological dark soliton (49) with quintic term (continuous curves)
and without quintic term (dotted curves) using the same parameters. The pseudo-potential
structure is related to Fig. 1(d).

This type of soliton is equivalent to that given in Mihalach et al. (2002). Figure 8
is a plot of the non-topological dark-type wave related to the right small potential
well (upper continuous curve) of Fig. 1(d) and the left small potential well (lower
continuous curve). From (49) and (50), we see that this type of soliton is valid also
for g = 0 and the usual non-singular soliton is just the case of (49) and (50) for
g = a = 0. That means this type of soliton may be treated perturbatively when
g is small. The corresponding black soliton solutions for the cubic NLSE are also
plotted in Fig. 8 by point lines under the same parameters, except g = 0. From
Fig. 8, we see that the effects of quintic nonlinear term enhances the amplitude
and width of the soliton. Figure 7 represents Fig. 8 in three dimensions.
For the last characteristic structure of the pseudo-potential shown by Fig. 1(e),

the corresponding period solution has the form

Q(τ) = ± sn(τ)√
adn2(τ) + bsn2(τ)

(51)
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Figure 9. A plot of the second type of symmetric topological kink (continuous curve) and
anti-kink (dotted curve) solitary wave solution (56) related to the pseudo-potential structure
of Fig. 1(e).

which can be obtained from (21) by selecting φ(τ) as

φ(τ) =
dn(τ)
sn(τ)

(52)

with the parameters being fixed as

C =
2m2 − 1

2b
+

2g − 3b

12b3k
, a = −2g − 2(2m2 − 1)b3k2 − b

4m2(m2 − 1)bk2
, (53)

and

ω =
1
2
(1 − 2m2)k2 +

3
4b

− g

2b2
− ω2

1

4k2
(54)

while b is given by

12k4b4 − 8g(2m2 − 1)k2b2 − 3b2 + 8bg − 4g2 = 0. (55)

Similarly, when the modulus m of the Jacobi elliptic functions tend to one, the
periodic solution (51) with (52)–(55) reduces to a new type of symmetric topological
kink (or anti-kink) soliton:

Q(τ) = ± Sinh(τ)√
aSinh2(τ) + b

(56)

with g > 0, b > 0, G > 3a/4, a > 0 and

C =
1
3

3a − 4g

(a − 2g)a
, ω =

ω2
1a4 + 4g2 − 6ga + 2a2

2a2(a − 2g)
, k2 =

2g − a

2a2
, b =

3(a − 2g)a
3a − 4g

.

(57)

In Fig. 9 we plot the typical kink (continuous curve) and anti-kink (dotted curve)
solitons shown by (56) and (57). From (57), we can see that when g = 0, k becomes
purely imaginary. That means this type of soliton is also induced by the quintic
term of the NLSE (2) and cannot be treated perturbatively from the cubic NLSE.
Consequently there are no three-dimensional plots for Fig. 1(e), as they appear
simply as a plane.
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6. Results and discussion
In summary, by changing the envelope solution of the quintic NLSE to an equi-
valent pseudo-energy form of a classical quasi-particle and by means of the known
periodic solutions of the φ4 model, we can obtain quite an abundance of periodic
wave solutions. Bymeans of suitable limiting procedures for these periodic solutions,
various solitons can be obtained. For the pseudo-potentials of the quasi-particle,
there are five types of different characteristic structures. For the first such char-
acteristic structure shown in Fig. 1(a), there is no periodic solution or soliton. For
the other four types of characteristic structure, we obtain five types of periodic
wave solution and five types of soliton. From these we have chosen to show three
three-dimensional soliton graphs. The fifth appears only as a plane on the graph.
To our knowledge there are no representations of the soliton as a three-dimensional
graph.
For the second type of characteristic structure shown in Fig. 1(b), one type of

explicit periodic solution which describes the motion of the quasi-particle at the
left (or right) potential well is given. The corresponding soliton obtained from the
periodic solution m → 1 is a ring-type (or bell-shaped) symmetric non-topological
gray soliton. A set of three-dimensional graphs has been developed for this.
Related to the third characteristic structure shown by Fig. 1(c), the explicit

periodic solution also describes the motion of the quasi-particle at the left (or
right) potential well. However, the corresponding soliton obtained from the periodic
solution by m → 1 is an asymmetric topological soliton. Again we show this in its
three-dimensional form.
For the fourth type of characteristic structure shown in Fig. 1(d), there are two

types of explicit periodic solutions which describe the periodic motions of the quasi-
particle in the large potential well and two small potential wells, respectively. The
soliton with the large period is the generalization of a special type of symmetric
non-topological black soliton. This is also shown here in three dimensions.
For the last type of characteristic structure shown in Fig. 1(c), there exists only

one symmetric potential well. The corresponding symmetric topological kink (anti-
kink) soliton is different from that which was found in the fourth characteristic
structure shown by Fig. 1(d). The related explicit periodic solution is also the gen-
eralization of the soliton. Since the parameters for this soliton are purely imaginary,
there is no point of plotting a three-dimensional graph, as this will only produce a
plane.
Except for the symmetric non-topological black soliton for the fourth type of

characteristic structure, all the solitons are induced by the higher order nonlinearity
(quintic term) of (2) and cannot be treated perturbatively. For the symmetric non-
topological black soliton, the effects of the higher order nonlinear term enhances its
amplitude and width compared with those for the cubic NLSE. Since the NLSE is
one of the basic evolution models for nonlinear waves in various branches of physics,
much work on Langmuir solitons in plasma, optical solitons and imaginary solitons
has been stimulated and it is worth further study.
For the aforementioned consequences in plasma physics, we underline laser in-

teraction in inhomogeneous plasmas as driving pseudo-Langmuir waves with very
large amplitude longitudinal oscillations (Hora et al. 1984; Eliezer and Hora 1989)
which have to be discussed for the electron acceleration to be of the order of very
high energies (Hora et al. 2000). The properties of the nonlinear (ponderomotive)
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forces in laser produced plasma have a general and unique role as the preferred
solution to the Korteweg–de Vries equation, where the inclusion of dissipation
by collisional damping clearly indicates the change from the initial non-soliton
behavior into the soliton properties of laser–plasma interaction (Hora 2000).
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