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Motivated by the work on stagnation-point-type exact solutions (with infinite energy)
of 3D Euler fluid equations by Gibbon et al. (Physica D, vol. 132 (4), 1999,
pp. 497–510) and the subsequent demonstration of finite-time blowup by Constantin
(Int. Math. Res. Not. IMRN, vol. 9, 2000, pp. 455–465) we introduce a one-parameter
family of models of the 3D Euler fluid equations on a 2D symmetry plane. Our
models are seen as a deformation of the 3D Euler equations which respects the
variational structure of the original equations so that explicit solutions can be found
for the supremum norms of the basic fields: vorticity and stretching rate of vorticity.
In particular, the value of the model’s parameter determines whether or not there is
finite-time blowup, and the singularity time can be computed explicitly in terms of the
initial conditions and the model’s parameter. We use a representative of this family of
models, whose solution blows up at a finite time, as a benchmark for the systematic
study of errors in numerical simulations. Using a high-order pseudospectral method,
we compare the numerical integration of our ‘original’ model equations against a
‘mapped’ version of these equations. The mapped version is a globally regular (in
time) system of equations, obtained via a bijective nonlinear mapping of time and
fields from the original model equations. The mapping can be constructed explicitly
whenever a Beale–Kato–Majda type of theorem is available therefore it is applicable to
the 3D Euler equations (Bustamante, Physica D, vol. 240 (13), 2011, pp. 1092–1099).
We show that the mapped system’s numerical solution leads to more accurate (by three
orders of magnitude) estimates of supremum norms and singularity time compared
with the original system. The numerical integration of the mapped equations is
demonstrated to entail only a small extra computational cost. We study the Fourier
spectrum of the model’s numerical solution and find that the analyticity strip width
(a measure of the solution’s analyticity) tends to zero as a power law in a finite time.
This is in agreement with the finite-time blowup of the fields’ supremum norms,
in the light of rigorous bounds stemming from the bridge (Bustamante & Brachet,
Phys. Rev. E, vol. 86 (6), 2012, 066302) between the analyticity-strip method and the
Beale–Kato–Majda type of theorems. We conclude by discussing the implications of
this research on the analysis of numerical solutions to the 3D Euler fluid equations.
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1. Introduction
The three-dimensional incompressible Euler fluid equations represent a triple

point between the areas of engineering, physics and mathematics. Originally derived
by Leonhard Euler (Euler 1761), these equations have stood firm after 250 years
of research, playing a pivotal role in the description of fluids of all types. This
pivotal role lies in the mathematical modelling and numerical simulations of physical
phenomena taking place in fluids. One of the main challenges these equations pose is
that it is not known in detail how the energy content is transferred throughout spatial
scales. Efforts towards understanding this cascade process have generated significant
cross-fertilisation across disciplines of research. For real-life problems, understanding
this process is needed in order to optimise industrial production of metallic alloys,
gas and oil extraction and transport, and performance of turbo-machinery in general.
From atmospheric science and oceanography to plasma physics, the governing fluid
equations share the same feature: nonlinear terms due to advection and pressure,
which carry along transfers of energy throughout different length scales making
simulation and modelling a very difficult task. The main difficulties from the practical
point of view have to do with accuracy and stability of the numerical solutions. For
example, numerical weather prediction relies on accurate models to improve the skill
of a forecast. Interestingly, the same difficulties arise in the mathematical problem of
determining whether the solution of the 3D Euler equations develops a singularity in a
finite time. Accurate modelling of the 3D Euler and Navier–Stokes fluid equations can
also shed light on the unsolved problem of turbulence (Kolmogorov 1941), defined as
a hypothetical out-of-equilibrium nonlinear regime characterised by intermittent fluxes
of energy across scales, whereby the fluid’s degrees of freedom exhibit quasi-periodic
oscillations that are amenable to statistical analyses.

One of the most important conditional results known to date regarding regularity of
classical (as opposed to ‘weak’) solutions to the 3D Euler fluid equations, is the so-
called Beale–Kato–Majda (BKM) theorem (Beale, Kato & Majda 1984), which states
that all L2 Sobolev norms of the velocity field are bounded up to time T provided
the time integral, up to time T , of the supremum norm of vorticity is finite. For 3D
Euler fluid equations and other ideal equations, Cauchy’s Lagrangian formulation (and
Kelvin’s circulation theorem) dictate that a loss of regularity must be accompanied
by the collapse of vortex tubes, or regions of localised vorticity. Therefore, for a
given simulation, numerical methods and diagnostics will have progressive difficulties
in resolution and efforts must concentrate on resolving the spatial scales.

Here we attempt to review the extensive literature on the problem of finite-time
blowup in the 3D Euler equations. In the interests of brevity we direct the reader
to the reviews Bardos & Titi (2007) and Gibbon (2008) where pre-2008 efforts
are summarised and include several papers in the Proceedings of the international
conference ‘Euler equations: 250 years on’, notably (Grafke et al. 2008) and
Bustamante & Kerr (2008). As for post-2008 efforts, we highlight the following.

In Orlandi et al. (2014), finite difference methods are used to study numerical
simulations of the 3D Euler and Navier–Stokes equations in the context of the
Chaplygin–Lamb dipole initial conditions. These initial conditions have reduced
regularity in the sense that only low-order L2 Sobolev norms of the velocity field
exist: the initial vorticity has bounded support. The low regularity of the solution in
this case makes most of the available theorems inapplicable, so the focus is put on
the power law of the energy spectrum, E(k, t)∼ k−n(t), where the exponent n(t) seems
to tend to the value 3 at late times, consistent with a finite-time singularity in 3D
Euler.
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Kerr (2013) returns to an extended geometry case of the well-studied (Kerr 1993;
Hou & Li 2006) antiparallel vortex tube candidate initial conditions. Kerr uses new
bounds on Lp norms of the vorticity field introduced by Gibbon (2013) and shows
that the system has two distinct behaviours: an early time power-law growth of
(ordered) moments and late time super-exponential growth of moments (with broken
ordering). The analysis of Gibbon’s moments is extended in Donzis et al. (2013) via
four different pseudo-spectral methods by different research groups, to simulate 3D
Euler and Navier–Stokes equations, with regular (in fact, analytical) initial conditions,
obtaining evidence against finite-time singularity in both Euler and Navier–Stokes.

In Grafke & Grauer (2013), adaptive mesh refinement methods are applied to the
study of depletion of nonlinearity in the simulation of 3D Euler equations, with careful
analyses of the bounds introduced by Deng, Hou & Yu (2005) on the local behaviour
of vortex-line length and curvature near the vorticity maximum, with analytical initial
conditions of the Kida–Pelz type, leading to no finite-time singularity.

In Luo & Hou (2014), the role of boundaries was addressed in a numerical
simulation of axisymmetric 3D Euler equations in a cylinder, with strong evidence
for a finite-time blowup. Boundaries are also the subject of a recent work by Kiselev
& Zlatos (2014) who show that the normally regular 2D Euler equations can exhibit
finite-time singularity in a norm of vorticity when non-smooth bounded domains are
considered.

To the best of the authors’ knowledge, a thorough study is yet to materialise about
the role of initial conditions on the singularity of the 3D Euler or Navier–Stokes
equations. However, important steps towards this understanding have been taken in
terms of nonlinear optimisation of initial conditions, starting with Lu & Doering
(2008) and notably by Ayala & Protas (2014) in the 2D context.

It is worth mentioning some approaches that have tackled other models successfully,
related to but differing from 3D Euler in key technical aspects that allow for exact
results. Arguably the first example of an integrable inviscid fluid singularity was
presented by Vieillefosse (1984) where the self-motion of a Lagrangian ‘free’ fluid
element was considered via a local expansion of velocity and a pressure ansatz
which, while satisfying conservation of angular momentum, allows energy to grow
(see also further work by Cantwell 1992). Finite-time singularity was demonstrated
in the generalised surface quasi-geostrophic equation: see Li & Rodrigo (2009) and
references therein. In shell models of turbulence, Mailybaev (2013) demonstrate that
inertial-range cascades of energy transfers are due to the succession of intermittent
coherent structures in the form of finite-time blowups, described by universal
self-similar characteristics. The Hamiltonian approach introduced by Kuznetsov &
Ruban (2000) allows the authors to deform the 3D Euler equations to an integrable
model while keeping the vortex-line structure, establishing rigorously a finite-time
blowup scenario based on the breaking of vortex lines.

This paper introduces a new one-parameter family of models of 3D Euler on a 2D
symmetry plane, motivated by the work on stagnation-point type of exact solutions
(with infinite energy) of 3D Euler fluid equations by Gibbon, Fokas & Doering
(1999) and the subsequent demonstration of finite-time blowup by Constantin (2000).
Our new models are seen as a deformation of the 3D Euler equations, which still
respect the variational structure of the original equations so that explicit solutions
can be found for the supremum norms of the basic fields. In particular, the value
of the model’s parameter determines whether there is a finite-time blowup, and the
singularity time can be computed explicitly in terms of the initial conditions and the
model’s parameter.
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The state of the art to be exploited in this paper spins out of the BKM theorem as
a set of interesting applications.

(i) The bijective mapping to regular fields introduced by Bustamante (2011), which
is a nonlinear mapping of both time and velocity field, that transforms the
original system to a globally (in time) regular system. The solution of the
mapped system is amenable to numerical simulations using the same methods as
in the original system, and the evidence indicates that the numerical simulation of
the mapped equations should provide more accurate results than the numerical
simulation of the original equations. The applicability of this mapping has
a wide range, including 3D and 2D models of Euler, Navier–Stokes and
magnetohydrodynamics (MHD), and we will apply it to our model.

(ii) The bridge between the BKM theorem and the analyticity-strip method,
developed in Bustamante & Brachet (2012) for 3D Euler and applied in Brachet
et al. (2013) for 3D MHD. This bridge implies that, if the initial condition is
analytic with analyticity-strip width δ0, then the local blowup of a quantity (say
a supremum norm of some field) must be accompanied by a fast-enough loss of
analyticity of the solution. In the case of a finite-time singularity this means that
the instantaneous analyticity-strip width δ(t) must go to zero in a finite time, at
a fast-enough rate. This is applicable to our model.

The structure of this paper is as follows. In § 2 we introduce the 3D Euler fluid
equations and then restrict the analysis to the so-called symmetry plane. We find that
the evolution on the plane is determined by two scalar fields: vorticity and stretching
rate. We obtain a rigorous system of evolution equations for these fields and show that
the equations are not closed: knowledge of the 3D flow is needed in order to get a
pressure term on the plane. However, we demonstrate that a simple closure condition
is sufficient in order to model this pressure term, thus generalising the condition on
the pressure term by Gibbon et al. (1999). In this way we introduce a one-parameter
family of models satisfying the closure condition.

In § 3 we provide the analytical solution along characteristics of this family of
models and show explicitly that the fields have a finite-time singularity, for generic
initial conditions and for some choices of the model’s parameter. In particular, the
singularity time is found analytically in terms of the initial condition and the value of
the model’s parameter.

In § 4 we apply the method introduced by Bustamante (2011) on mapping
bijectively the original variables to a globally regular system, with mapped time
and fields that are based on the existence of a BKM type of theorem (Beale et al.
1984). The analytic and numerical advantages of working on the mapped variables
are discussed. The analytical solutions for the blowup quantities are derived in terms
of the mapped variables. Importantly, formulae for the original blowup quantities
in terms of the mapped variables are presented. In particular, an estimate of the
singularity time of the original system is obtained in terms of the mapped system’s
numerical solution.

Section 5 presents a comparison of the numerical solution of the original symmetry
plane model and its mapped counterpart for the assessment of finite-time singularity.
We monitor errors in several quantities relative to the analytic solution and discuss
a number of nuances which arise. With reference to the works of Sulem, Sulem &
Frisch (1983) and Bustamante & Brachet (2012), we present a thorough study of the
spectra of stretching rate and investigate the spatial structure of the blowup via the
analyticity strip method. Finally we consider the estimation of singularity time from
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both systems and demonstrate a robust improvement on using the mapped system even
when considering the additional computational burden it incurs.

Finally in § 6 we summarise and highlight the most important results, and discuss
scope for using our methods in the research of the 3D Euler singularity problem.

2. 3D Euler fluid near a symmetry plane
2.1. 3D Euler fluid equations

Let us consider the 3D incompressible Euler equations for the velocity field
u(x, y, z, t) ∈R3 defined for (x, y, z) ∈R3 and in a time interval t ∈ [0, T):

∂u
∂t
+ u · ∇u=−∇p, ∇ · u= 0. (2.1a,b)

We define the vorticity field as the three-dimensional vector field ω≡∇ ∧ u.

2.2. Symmetry plane
We consider a special configuration of the fields and define a symmetry plane at z= 0
by the following conditions on the velocity and pressure fields:

ux(x, y, z, t)= ux(x, y,−z, t), uy(x, y, z, t)= uy(x, y,−z, t),
p(x, y, z, t)= p(x, y,−z, t), uz(x, y, z, t)=−uz(x, y,−z, t),

}
(2.2)

for arbitrary (x, y, z) ∈R3 and t ∈ [0, T). It is easy to show that these conditions are
consistent with the evolution (2.1a,b). As for the vorticity, these conditions imply

ωx(x, y, z, t)=−ωx(x, y,−z, t), ωy(x, y, z, t)=−ωy(x, y,−z, t),
ωz(x, y, z, t)=ωz(x, y,−z, t).

}
(2.3)

for all (x, y, z) ∈R3 and t ∈ [0, T).
At the symmetry plane z = 0, the 3D Euler fluid equations will simplify because:

(i) uz(x, y, 0, t) ≡ 0 so the velocity field is parallel to the plane; (ii) ωx(x, y, 0, t) =
ωy(x, y, 0, t) = 0 so the vorticity field is perpendicular to the plane. This leads to a
new system of equations which is ‘almost’ 2D (except for a pressure term depending
on the full 3D velocity field). Let us denote the ‘horizontal’ component of the velocity
field and the pressure at the symmetry plane by

uh(x, y, t)≡ (ux(x, y, 0, t), uy(x, y, 0, t)), ph(x, y, t)≡ p(x, y, 0, t). (2.4a,b)

The horizontal components of (2.1a,b) become, at z= 0,

∂uh

∂t
+ uh · ∇huh =−∇hph, (2.5)

where ∇h denotes the ‘horizontal’ gradient operator, ∇h = (∂x, ∂y). The incompressi-
bility condition in (2.1a,b) allows us to define the stretching-rate scalar on the
symmetry plane:

γ (x, y, t)≡ uz,z(x, y, 0, t)=−∇h · uh(x, y, t). (2.6)
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Therefore, even though uz= 0 at the symmetry plane z= 0, we have uz,z 6= 0 at z= 0.
Let us compute the z-derivative of the z-component of (2.1a,b) and then evaluate
at z = 0. We obtain (∂γ /∂t) + ∂z(uxuz,x + uyuz,y + uzuz,z)|z=0 = −p,zz|z=0. This can be
simplified by noticing that the symmetry-plane conditions (2.2) imply uz = uz,zz = 0
and ux,z = uy,z = 0 at z= 0 so that we are left with

∂γ

∂t
+ uh · ∇hγ + γ 2 =−p,zz|z=0. (2.7)

Although this equation does not close (the pressure still depends on the full 3D
velocity profile), it is remarkable that the equation for the vorticity at the symmetry
plane does close. As mentioned before, the vorticity at the symmetry plane has no
horizontal component so we can define the vorticity scalar

ω(x, y, t)≡ωz(x, y, 0, t)= ∂xuy − ∂yux. (2.8)

An evolution equation for vorticity is obtained by taking the curl of the 2D
equations (2.5). We readily obtain

∂ω

∂t
+ uh · ∇hω= γω, (2.9)

which explains the meaning of γ as the stretching rate of vorticity.
Taken together, equations (2.6)–(2.9) would be a closed system in two dimensions,

except for the pressure term which, as usual, depends on the full 3D velocity profile.
An important consistency condition on the pressure term is derived after integrating
spatially (2.7) over the whole horizontal domain, and discarding boundary terms by
assuming either periodic or vanishing boundary conditions on the horizontal velocity
field. The condition reads

∫∫
p,zz|z=0 dx dy=−2

∫∫
(γ (x, y, t))2 dx dy. (2.10)

In this paper we propose a consistent family of closure models for the pressure term,
based on an exact solution by Gibbon et al. (1999). These models will be discussed
in the following subsections.

From here on, we will assume periodic boundary conditions in the two spatial
directions (x, y), for the three-dimensional velocity field components u = (ux, uy, uz)
and the pressure scalar p, with periodicity box [0,2π]× [0,2π]. As for the z-direction,
we do not assume yet any boundary condition.

2.3. Gibbon et al. exact solution of 3D Euler (and Navier–Stokes)
A general class of exact solutions of 3D Euler (and Navier–Stokes) was presented
by Gibbon et al. (1999). In the case of the 3D Euler equations in the presence of a
symmetry plane, this exact solution becomes

u(x, y, z, t)= (uh(x, y, t), zγ (x, y, t)), (2.11)

where uh and γ satisfy (2.6)–(2.9), along with the following condition on the
pressure:

p,zz(x, y, z, t)= f (t) (2.12)
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(a function of time only). Due to the periodicity of the horizontal domain, condition
(2.10) implies the closure f (t)=−2〈γ 2〉, where

〈F〉 ≡ 1
(2π)2

∫ 2π

0

∫ 2π

0
F(x, y, t) dx dy. (2.13)

Correspondingly, (2.6)–(2.9) determine the fate of the full 3D flow via the knowledge
of the scalars γ and ω. Remarkably, along the characteristics of the horizontal velocity
field uh the equation for stretching rate γ is ‘decoupled’ from the system and reads

(
∂

∂t
+ uh · ∇h

)
γ + γ 2 = 2〈γ 2〉. (2.14)

This allowed Constantin (2000) to solve for γ along characteristics (and for vorticity
ω, which can be found a posteriori), proving that the stretching rate γ would blow
up in a finite time, with explicit formulae for the singularity time which confirmed
the accuracy of the numerical blowup predictions in Ohkitani & Gibbon (2000). We
also note here for completeness the work of Gibbon, Moore & Stuart (2003) who also
proved blowup in the axisymmetric case.

2.4. A physically motivated model on the symmetry plane
The main drawback of the exact-solution ansatz p,zz= f (t) is that it has infinite energy
(pressure goes like z2). In particular, the exact-solution ansatz is not suitable for 3D
numerical simulations on fully periodic domains, where the z coordinate is also
periodic. One can cure this drawback by re-interpreting the ansatz as a closure on the
symmetry plane: p,zz|z=0= f (t) and dealing with a model rather than an exact solution.
Importantly, condition (2.10) must be met at all times. However, this closure ansatz
has, by definition, a spatially uniform pressure curvature p,zz|z=0 on the symmetry
plane, a feature that is not observed in numerical simulations. Therefore, an improved
type of ansatz is required, satisfying condition (2.10) while at the same time showing
a spatial dependence of p,zz|z=0 on the symmetry plane. We propose a one-parameter
family of models which achieves all of this, while still keeping the structure of
characteristics, so blowup can be assessed analytically. Looking at (2.6)–(2.9), the
model is defined by the closure

p,zz|z=0 =−2〈γ 2〉 + λ(γ 2 − 〈γ 2〉), (2.15)

where λ is a real (free) parameter. With this closure, the family of models corresponds
to the following equations on the symmetry plane:

∂γ

∂t
+ uh · ∇hγ = (2+ λ)〈γ 2〉 − (1+ λ)γ 2, (2.16)

∂ω

∂t
+ uh · ∇hω= γω, (2.17)

where (x, y)∈T2≡ [0, 2π] × [0, 2π] and λ∈R. The case λ= 0 recovers the equations
of Gibbon et al. (1999). The horizontal velocity field uh= (ux, uy) is defined, as usual,
by (2.6) and (2.8). The evolution equations (2.16) and (2.17) are supplemented by
initial conditions γ (x, y, 0)= γ0(x, y) and ω(x, y, 0)=ω0(x, y), which must have zero
mean: 〈γ0〉 = 〈ω0〉 = 0.
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We must stress that we do not know whether this family of models could be
extended to three dimensions and become a valid solution of the full 3D Euler
equations; this is a matter of further investigation. What we do know is that any
smooth solution of 3D Euler with discrete mirror symmetry has a 2D plane (the
symmetry plane), where vorticity is a scalar satisfying (2.17), even in the case of
finite energy. The effective unknown is the governing equation for vorticity stretching
rate at the symmetry plane. We motivate our family of models by the physical
interpretation of the pressure term at the symmetry plane and the introduction of
a tuneable parameter, which provides a range of phenomenology and asymptotic
behaviours. This approach provides a valuable framework for developing methods for
assessing blowup.

3. Symmetry-plane model: analytical solutions
Equations (2.16) and (2.17) can be solved for γ and ω along characteristics, using

a classical method that will be presented in detail in a subsequent paper. The result
presented below can be verified independently by direct inspection. We consider the
case λ 6= −1 (the case λ=−1 requires a limiting procedure and is omitted here for
brevity). Characteristics are two-dimensional curves (X(t),Y(t)) defined by the system
of equations

dX
dt
= ux(X(t), Y(t), t),

dY
dt
= uy(X(t), Y(t), t). (3.1a,b)

Explicitly, let the characteristic have initial condition (X(0), Y(0))= (X0, Y0). Then, in
the case λ 6= −1 the solution is

γ (X(t), Y(t), t)= d
dt

(
ln
[

1+ (λ+ 1)γ0(X0, Y0)S(t)
Ṡ(t)1/2

](1/(λ+1))
)
, (3.2)

ω(X(t), Y(t), t)=ω0(X0, Y0)

[
1+ (λ+ 1)γ0(X0, Y0)S(t)

Ṡ(t)1/2

](1/(λ+1))

, (3.3)

where the function S(t) satisfies the following ordinary differential equation (ODE):

Ṡ(t)=
[

1
4π2

∫ 2π

0

∫ 2π

0
[1+ (λ+ 1)γ0(x, y)S(t)](−1/(λ+1))dx dy

]−2(λ+1)

, S(0)= 0. (3.4)

This ODE is obtained due to an identity satisfied by the Jacobian of the back-to-labels
transformation:

J(t; X0, Y0)= det
(
∂(X(t), Y(t))
∂(X0, Y0)

)
. (3.5)

From the fact that ∇h · uh =−γ we readily obtain an evolution equation for J which
can be solved:

J̇(t; X0, Y0)

J(t; X0, Y0)
=−γ (X(t), Y(t), t) H⇒ J(t; X0, Y0)= exp

(
−
∫ t

0
γ (X(s), Y(s), s) ds

)
,

(3.6)
and using (3.2) we obtain the solution

J(t; X0, Y0)=
[

1+ (λ+ 1)γ0(X0, Y0)S(t)
Ṡ(t)1/2

]−(1/(λ+1))

. (3.7)
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This Jacobian satisfies the identity (
∫
T2 dx dy=)4π2= ∫T2 J(t;X0, Y0) dX0 dY0, which

leads to the ODE (3.4) satisfied by S(t).
Note that Kelvin’s theorem on circulation conservation, or more accurately Cauchy’s

invariants (Kuznetsov 2006; Frisch & Villone 2014), follow directly from the fact that
J(t;X0,Y0)ω(X(t),Y(t), t)=ω0(X0,Y0) for any characteristic’s initial condition (X0,Y0).

3.1. Blowup solutions
The solutions along characteristics for stretching rate (3.2) and vorticity (3.3) will
develop a singularity if the factor 1 + (λ + 1)γ0(X0, Y0)S(t) becomes zero for some
time t and position (X0, Y0). Since S(0)= 0 and Ṡ(t)> 0, it follows that S(t) can only
grow in time and thus the singularity will occur first at the characteristic starting at
the position of the infimum (if λ>−1) or the supremum (if λ<−1) of γ0 over T2.
Consequently, the singularity time T∗ is defined by the condition S(T∗) = S∗, where
S∗(> 0) is defined by

− 1
S∗
=





(λ+ 1) sup
(x,y)∈T2

γ0(x, y), λ<−1,

(λ+ 1) inf
(x,y)∈T2

γ0(x, y), λ>−1.
(3.8)

From the ODE (3.4) an explicit formula for the singularity time T∗ is derived:

T∗ =
∫ S∗

0

[
1

4π2

∫ 2π

0

∫ 2π

0
[1+ (λ+ 1)γ0(x, y)s](−1/(λ+1)) dx dy

]2(λ+1)

ds. (3.9)

We consider briefly the blowup structure for the stretching and vorticity solutions
for different values of the model’s free parameter λ (a detailed explanation will be
presented in a forthcoming paper). The parameter space is divided in regions of finite-
time blowup alternating with regions of infinite-time blowup as illustrated in figure 1.
The region of λ where Ṡ(t)= 0 depends on the initial conditions; if the local profile
of initial stretching near the infimum is parabolloidal (a generic situation), then the
regions are as depicted as in figure 1.

3.2. Motivation for the choice of parameter λ=−3/2 and generic initial conditions
In this paper we will focus on one particular choice of parameter: λ = −3/2. This
choice has several advantages.

(i) In this case the evolution equation for S(t) is of the form

Ṡ= 1+ a2S2, S(0)= 0, (3.10)

which can be solved analytically for any initial condition (a depends on the initial
condition), leading to explicit analytical solutions in terms of trigonometric
functions for all of the blowup quantities. The utility of this is that we can
perform direct comparisons between theory and numerics.

(ii) This case gives finite-time singularity with Ṡ(T∗) < ∞, leading to simple
asymptotic expressions for the blowup quantities. The singularity is controlled by
the supremum of γ0 and leads to a blowup of the form sup γ (x, y, t)∼ 2(T∗− t)−1

when t is close to the singularity time T∗. This feature is analogous to what
is normally expected in a 3D Euler fluid simulation in a potential singularity
scenario.
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)[) [) )

–10

FIGURE 1. Singular/non-singular behaviour of system (3.2)–(3.4) depending on the value
of the model’s parameter λ. The limiting case λ=−1 (not analysed in this paper) gives
an infinite-time singularity.

(iii) In this case there exists a special conserved quantity: 〈γ 2〉, which is reminiscent
of the ‘energy’ in 2D and 3D ideal models, and provides an opportunity for a
simplified analysis of the Fourier spectrum.

We will exploit analytical solutions (3.3) for vorticity and (3.2) for stretching rate
in order to validate direct numerical simulations of the system. For example, using the
fact that the back-to-labels transformation is bijective for t < T∗, one can use (3.2)–
(3.4) to calculate the infimum and supremum of stretching rate and vorticity from
the knowledge of the initial conditions. This gives either explicit expressions in terms
of simple functions or numerically computable expressions to any desired accuracy.
In table 1, we summarise the relevant analytical solutions for the initial condition
ux(x, y, 0) = cos(x) sin(y), uy(x, y, 0) = cos(x) + sin(y) or, in terms of stretching rate
and vorticity,

γ0(x, y)= sin(x) sin(y)− cos(y), (3.11)
ω0(x, y)=−sin(x)− cos(x) cos(y). (3.12)

Figure 2 shows contour plots of the initial condition for both the vorticity and
stretching rate. The discrete symmetry (x→ π + x, y→−y, ux→ ux, uy→−uy) of
this initial condition is preserved under the time evolution. Thus, we can restrict the
analysis to the quadrant π6 x 6 2π, π6 y 6 2π.

4. Mapping to regular fields and their evolution equations

Regardless of the availability of an analytical solution for the relevant fields,
Bustamante (2011) developed a general theory to study nonlinear evolution equations
whose solutions present evidence of possible finite-time singularity. The main idea is
to transform the original physical variables (such as velocity field) into new, so-called
mapped variables which are regular (globally in time), and thus more amenable to
new analytical studies and more accurate numerical studies. The transformation,
or mapping, has applications in a wide variety of PDE models including 3D
Euler/Navier–Stokes fluid equations, 3D and 2D magneto-hydrodynamics equations,
Burgers equations, etc. The key ingredient to construct this mapping is a type of BKM
theorem (Beale et al. 1984), which states that all relevant norms of the velocity field
are bounded if and only if τ(t) = ∫ t

0 F[u](t′) dt′, is bounded: where F[u] is a given
functional of the velocity field u. In the case of our 2D symmetry-plane model (2.16)
and (2.17), following a classical analysis analogous to that in Gibbon & Ohkitani
(2001) we deduce that the functional is F[uh](t′) ≡ ‖γ (·, t′)‖∞, the L∞ norm of the
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Case λ=−3/2
Initial condition γ0(x, y)= sin(x) sin(y)− cos(y)

ω0(x, y)=−sin(x)− cos(x) cos(y)

Singularity time T∗ = 4√
3

arctan

(√
6

4

)
≈ 1.26894

Solution for S(t) S(t)= 4√
3

tan

(√
3t

4

)

S(T∗)(= S∗) and Ṡ(T∗) S∗ =√2, Ṡ(T∗)= 11/8

(‖γ (·, t)‖∞ =) sup
(x,y)∈T2

γ (x, y, t)=
√

3
2

tan

(√
3

4
t

)
+

√
2

cos2

(√
3

4
t

) 1(
1− 4√

6
tan

(√
3

4
t

))

inf
(x,y)∈T2

γ (x, y, t)= 11

2
√

3 cot

(√
3t

4

)
+ 4
√

2

−√2 (bounded)

〈[γ (·, t)]2〉T2 = 3
4

(constant, only in the case λ=−3/2)

Vorticity at position of ‖γ (·, t)‖∞ ω(Xγ (t), t)=
sec2

(√
3t

4

)

(
1–2

√
2
3

tan

(√
3t

4

))2

Asymptotics as t→ T∗ sup γ ∼ 2(T∗ − t)−1

supω∼ 16
11 (T

∗ − t)−2

TABLE 1. Summary of analytical results for the case studied in this paper. Supremum of
vorticity is computable numerically from formula (3.3).

stretching rate γ (x, y, t) over the spatial domain T2. Explicitly, the boundedness of
the integral

τ(t)=
∫ t

0
‖γ (·, t′)‖∞ dt′ (4.1)

will ensure the continuity of the velocity field uh until time t (provided the initial
conditions are smooth). For example, if τ(t) is bounded then vorticity is bounded
because, from (3.3), it follows

|ω(X(t), Y(t), t)| = |ω0(X0, Y0)| exp
(∫ t

0
γ (X(t′), Y(t′), t′) dt′

)

6 |ω0(X0, Y0)| exp
(∫ t

0
‖γ (·, t′)‖∞ dt′

)

= |ω0(X0, Y0)| exp(τ (t)). (4.2)

The bijective mapping from ‘original variables’ to ‘mapped, regular variables’ consists
of the time mapping t→ τ , (4.1), along with a re-scaling of stretching rate, vorticity
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FIGURE 2. (Colour online) Stretching rate (γ ) and vorticity (ω) plots for λ = −3/2 at
t= 0 (a,b), 0.5 (c,d) and 1.0 (e, f ) from the original 2D Euler model.

and velocity vector fields:

γmap(x, y, τ )= γ (x, y, t)
‖γ (·, t)‖∞ , (4.3)

ωmap(x, y, τ )= ω(x, y, t)
‖γ (·, t)‖∞ , (4.4)

H⇒ umap(x, y, τ )= uh(x, y, t)
‖γ (·, t)‖∞ . (4.5)

For this bijective mapping to lead to tractable evolution equations for the mapped
variables, the ‘BKM’ functional ‖γ (·, t)‖∞ must have a time derivative that can be
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expressed in terms of the original variables. In our case, equation (2.16) implies

d
dt
(‖γ (·, t)‖∞)= σ∞[(2+ λ)〈γ 2〉 − (1+ λ)‖γ (·, t)‖2

∞], (4.6)

where
σ∞ ≡ sign γ (Xγ (t), t) (4.7)

is the sign of γ at the position Xγ (t) where the maximum of |γ (x, t)| is attained.
With these ingredients, the mapped variables satisfy the following system of

evolution equations:

∂γmap

∂τ
+ umap · ∇γmap = (2+ λ)〈γ 2

map〉 − (1+ λ)γ 2
map

+ σ∞γmap{1+ λ− (2+ λ)〈γ 2
map〉} (4.8)

∂ωmap

∂τ
+ umap · ∇ωmap = γmapωmap + σ∞ωmap{1+ λ− (2+ λ)〈γ 2

map〉}. (4.9)

These equations are supplemented with the initial constraint ‖γmap(·, 0)‖∞ = 1. They
differ from the original system simply by extra ‘drag’ terms, which ensure that
‖γmap(·, τ )‖∞ = 1 for all τ <∞. The most striking result is that, as the condition
τ <∞ implies boundedness of the original fields, the solution of the mapped system
(4.8) and (4.9) is globally regular in time τ .

4.1. Using the mapped system to assess blowup of original system
The mapping (4.1), (4.3) and (4.4) is bijective as long as τ <∞. Correspondingly,
integration of the mapped system (4.8) and (4.9) should give enough information to
assess blowup quantities in the original variables.

The norm ‖γ (·, t)‖∞ satisfies the ODE (4.6). In terms of τ and the mapped
stretching rate γmap(x, y, τ ), this equation reads

d
dτ

ln(‖γ (·, t(τ ))‖∞)= σ∞[(2+ λ)〈γ 2
map〉 − (1+ λ)], (4.10)

where we have used (dτ/dt) = ‖γ (·, t(τ ))‖∞. Correspondingly we obtain, after a
simple τ integration,

‖γ (·, t(τ ))‖∞ = ‖γ0‖∞ exp
[
−(1+ λ)

∫ τ

0
σ∞ dτ ′ + (2+ λ)

∫ τ

0
σ∞〈γ 2

map〉 dτ ′
]
. (4.11)

Note that the right-hand side is written entirely in terms of mapped fields. The
integrands σ∞ and σ∞〈γ 2

map〉 are bounded by 1 so, remarkably, the blowup assessment
of the original variables is done in terms of bounded quantities. In particular, this
leads to the following general formula for the singularity time T∗:

T∗ = 1
‖γ0‖∞

∫ ∞

0
exp

[
(1+ λ)

∫ τ

0
σ∞ dτ ′ − (2+ λ)

∫ τ

0
σ∞〈γ 2

map〉 dτ ′
]

dτ . (4.12)

Note that this integral converges if and only if the original problem has a finite-time
singularity.
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From (2.17) it follows that the norm ‖ω(·, t)‖∞ satisfies

d ln ‖ω(·, t)‖∞
dt

= γ (Xω(t), t), (4.13)

where Xω(t) is the position at which the maximum of |ω(x, t)| is attained. In terms
of the mapped variables, this reads (d ln ‖ω(·, t(τ ))‖∞/dτ)= γmap(Xω(t(τ )), τ ), which
gives

‖ω(·, t(τ ))‖∞ = ‖ω0‖∞ exp
[∫ τ

0
γmap(Xω(t(τ ′)), τ ′) dτ ′

]
. (4.14)

Remarkably again, the blowup assessment of the original vorticity depends on a
bounded quantity (−1 6 γmap 6 1).

4.2. Analytical solution for the mapped variables in the case λ=−3/2
The analytical solution along characteristics (3.2)–(3.4) leads to a connection with the
mapped variables. Let us consider the case λ=−3/2 and the initial conditions (3.11)
and (3.12). Since λ<−1, the supremum of γ blows up and this happens along the
characteristic starting at the position of the supremum of γ0, X+ = ((3π/2), (5π/4))
(see figure 2 for reference). On the other hand, the infimum of γ (a negative quantity)
remains small in size. Thus, in this case the norm ‖γ (·, t)‖∞ can be identified with
sup γ (·, t) (i.e. one can set σ∞ ≡ 1) for all times 0 6 t< T∗. Equation (3.2) evaluated
at X0 =X+ is then compared with definition (4.1) of mapped time τ to give

τ(t)= ln
1

[
cos

(√
3t

4

)
− 2

√
2
3

sin

(√
3t

4

)]2 . (4.15)

The above relation can be inverted to solve for t as a function of τ , provided t< T∗.
The supremum of original stretching rate, in terms of τ , can be obtained after using
this inversion along with the formula in table 1, giving

‖γ (·, t(τ ))‖∞ = 1
2 eτ/2
√

11− 3e−τ , 0 6 τ <∞. (4.16)

There is a simple analytical expression (in terms of mapped time τ ) for vorticity at the
position where the maximum of |γ (x, t)| is attained, Xγ (t). Equation (3.3) evaluated
at X0 =X+ gives

ω(Xγ (t(τ )), t(τ ))= eτ , 0 6 τ <∞. (4.17)

Note that this is a lower bound for the L∞ norm of the vorticity. The latter norm can
be obtained at all times in terms of the initial conditions, by maximising the right-
hand side of (3.3) over the quadrant π 6 x, y 6 2π. Although this rarely leads to an
explicit analytical expression for ‖ω(·, t(τ ))‖∞, it can always be computed numerically
to any desired accuracy.

5. Numerical solution of original and mapped systems and comparison with
analytic solution

5.1. Numerical solutions of the original and mapped systems
We turn our attention to the original evolution (2.16) and (2.17) and the mapped
evolution (4.8) and (4.9). Both systems were solved numerically using a standard
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FIGURE 3. (Colour online) The errors Qγ (a) and Qω (b) for both the original 2D Euler
model and the mapped 2D Euler model at various resolutions. Labels are (a) N = 256
mapped system, (b) N = 256 original system, (c) N = 512 mapped system, (d) N = 512
original, (e) N= 1024 mapped, (f) N= 1024 original, (g) N= 2048 mapped, (h) N= 2048
original. There is a clear accuracy gain by performing the mapping; the errors remain
small for later times. Grey dotted vertical line is at τ = 4.34, representing the reliability
time at which the N = 2048 case becomes unresolved, see § 5.3 and table 2.

pseudospectral method written in CUDA, using CUFFT library and implemented on
NVIDIA GPUs. To remove the usual aliasing errors, Hou’s high-order exponential
filter (Hou & Li 2007) is used, where we multiply the spectrum at each time step
by the factor exp(36(2k/N)36), where k is the modulus of the wavevector and N is
the spatial resolution. We checked that the 2/3 dealiasing rule (in which the last 1/3
of the high-frequency modes are set to zero) gives similar results, but Hou’s filter
provides sensible spectra for a slightly broader range of wavevectors.

In both systems time marching was carried out using the fourth-order Runge–Kutta
method. In the mapped system, a uniform time step dτ is used since τ stretches the
temporal domain such that the singularity is at τ =∞. This uniform dτ would imply
that in the original system the time step dt should be adaptive, via dt= dτ/‖γ (·, t)‖∞.
This adaptive method is normally used in 3D Euler blowup assessment studies for
reasons of accuracy close to singularity. In the results below adaptive time stepping
in original variables is used for this reason, with the added advantage that the data
from the original and the mapped systems are more comparably spaced. A striking
result of this paper, to be shown and discussed thoroughly below in this section, is
that even within this fair-comparison scenario, the mapped system gains a significant
amount of accuracy in the estimation of blowup quantities (cf. figures 3, 10 and 11).

Finally, unlike the integration of the original system, the numerical integration of
the mapped system requires a special method: a normalisation so that the mapped
system satisfies the constraint ‖γmap(·, τ )‖∞ = 1, for all τ . The accuracy of this
normalisation is essential for the performance of the mapped system’s numerical
integration. To apply the normalisation, ‖γmap(·, τ )‖∞ is computed using a P6,k

quarter-section interpolation. This P6,k interpolation is an efficient procedure to
compute the field’s maximum and its position using an iterative application of
cubic splines at progressively finer resolution. This was tested against several other
interpolation methods. See the discussion in appendix A.
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The initial conditions were chosen as in (3.11) and (3.12). Figure 2 shows contour
plots for both the vorticity and stretching rate at various times.

5.2. Errors in local quantities near blowup: ‖γ (·, t)‖∞ and ω(Xγ (t), t)
A sensible definition of the error of the numerical simulation of the original 2D Euler
model is the relative difference between the supremum norm of γ obtained from the
numerical simulation and the exact analytical formula, given in table 1. We can also
define the error in ω by evaluating it at Xγ (t), the location of the supremum of |γ |,
also given analytically in table 1. We define the relative errors as

Eγ (t)=
∣∣∣∣
‖γnum(·, t)‖∞
‖γana(·, t)‖∞ − 1

∣∣∣∣ , (5.1)

Eω(t)=
∣∣∣∣
ωnum(Xγ (t), t)
ωana(Xγ (t), t)

− 1
∣∣∣∣ , (5.2)

where the subscripts ‘num’ and ‘ana’ stand for ‘numerical’ and ‘analytic’. While
these are useful for instantaneous monitoring purposes, given a time series of a
numerical solution of γ or ω we would like to measure the error using a single
number for each variable. The naive measure in terms of the L2 norm of the relative
error, ‖E ‖2 ≡

√∫ T
0 [E (t)]2 dt, is not the best choice because it is not bounded a

priori. Given two signals f (t) and g(t) for comparison, we define an L2 norm of the
error (not relative error) normalised with the sum of norms of the individual signals
(Perlin & Bustamante 2014):

Q(f , g)= ‖f − g‖2

‖f‖2 + ‖g‖2
(5.3)

which has three advantageous properties:

(i) Q and ‖E ‖2 are proportional if they are small: ‖E ‖2 ∝
√

TQ if E � 1;
(ii) Q, being dimensionless, does not explicitly require a time scale (T) so it can be

applied in a variety of contexts; in practice, though, and for assessment purposes,
we will normally plot Q as a function of the total integration time T;

(iii) Q is bounded, 0 6 Q 6 1, with value 0 representing perfect match and value 1
representing perfect mismatch.

Thus, we work with Qγ = Q(‖γnum(·, t)‖∞, ‖γana(·, t)‖∞) and Qω = Q(ωnum(Xγ , t),
ωana(Xγ , t)).

To gain an appropriately accurate estimate of these errors we must consider the best
method for approximating ‖γnum(·, t)‖∞, Xγ and ωnum(Xγ , t). The simplest approach
is to apply the maximum value across the collocation points of the discretised field,
however this leads to significant spurious oscillations. The more accurate procedure
is to perform some post-processing interpolation. We use the same highly-accurate
interpolation as in the normalisation procedure in the mapped system. The various
interpolation options are described in appendix A.

The numerical solution of the mapped system does not provide direct access to
the original variable ‖γ (·, t)‖∞ so in order to compute it we employ (4.11), namely
‖γ (·, t(τ ))‖∞ = ‖γ0‖∞ exp[−(1 + λ) ∫ τ0 σ∞ dτ ′ + (2 + λ) ∫ τ0 σ∞〈γ 2

map〉 dτ ′], where∫ τ
0 σ∞〈γ 2

map〉 dτ is computed using Simpson’s rule. We compare this against (4.16).
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FIGURE 4. (Colour online) (a) Ratio between the terms (2 + λ)∫ τ0 σ∞〈γ 2
map〉 dτ ′ and

−(1+ λ) ∫ τ0 σ∞ dτ ′, case λ=−3/2, appearing in the exponent in (4.11). (b) Resolution
study. Plots of 〈γmap(·, τ )2〉 as a function of τ using data from the numerical integration
of the mapped system, at different resolutions: from top to bottom, N = 256, 512, 1024,
2048. The curves converge to the analytically-obtained asymptotic regime 〈γmap(·, τ )2〉 ∼
(3/11) exp(−τ).

Note that we are using the global quantity 〈γ 2
map〉 for the assessment of the

local quantity ‖γ (·, t)‖∞. Therefore, errors of the global quantity 〈γ 2
map〉 might

affect the errors of this assessment. To see at which times these errors might be
important, figure 4(a) shows the ratio between the terms (2+ λ) ∫ τ0 σ∞〈γ 2

map〉 dτ ′ and
−(1 + λ) ∫ τ0 σ∞ dτ ′, appearing in the exponent in (4.11). It is clear that at early
times the global quantity has more influence on the size of the error Qγ . This is
addressed in § 5.2.1. In contrast, at late times the global quantity is not relevant and
this explains why the size of the error Qγ remains small and stable.

To evaluate the original variable ω(Xγ (t(τ )), t(τ )) from the mapped variables we
use

ω(Xγ (t(τ )), t(τ ))=ωmap(Xγ (t(τ )), τ )‖γ (·, t(τ ))‖∞. (5.4)

We compare this against (4.17).
Figure 3 shows a comparison of the errors Qγ and Qω at various resolutions and

demonstrates how the analysis of the mapped system along with its numerical solution
serve to improve the accuracy of the blowup quantities ‖γ (·, t)‖∞ and ω(Xγ (t), t) near
the singularity time.

We produce standard resolution convergence studies of the quantities relevant to
this section. Figure 5(a) shows the classical convergence study of the multiplicative
inverse of the supremum norm of stretching rate, using the numerical solution of the
original system, plotted as a function of original time t. Good convergence to the
analytical result is obtained. This is the basis for the method of computing running
estimates of singularity time T∗ (method A in § 5.4). Figure 5(b), shows the less
classical (but similar in spirit) lin–log convergence study of the supremum norm of
stretching rate, again using the numerical solution of the original system, plotted as
a function of mapped time τ . Again, good convergence to the analytical asymptote
is obtained. Finally, figure 4(a) shows the lin–log convergence study of the spatial
average of the square of the mapped stretching rate, 〈γ 2

map〉, using the numerical
solution of the mapped system. Good convergence to the analytical asymptote is
verified.
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FIGURE 5. (Colour online) Two different resolution studies of the data from original
system at different resolutions N = 256, 512, 1024, 2048. (a) Classical plot of
1/‖γ (·, t)‖∞, giving a convergence to the analytically obtained asymptotic regime
1/‖γ (·, t)‖∞ ∼ (T∗ − t)/2 (solid line). (b) New plot, in lin–log scaling, of ‖γ (·, t(τ ))‖∞
as a function of τ , giving a convergence to the analytically-obtained asymptotic regime
‖γ (·, t(τ ))‖∞ ∼√11/2 exp(τ/2) (solid line).

5.2.1. Errors in global quantities near blowup: 〈γ 2
map〉 and 〈γ 2〉

Figure 3 shows that the numerical solution of the mapped system contains higher
early time errors in Qγ than the numerical solution of the original system. These
errors do not affect the late-time (near singularity) behaviour and can be controlled by
reducing the time step dτ . They arise because the mapped equations contain additional
terms (those proportional to σ∞ in (4.8) and (4.9)) which introduce an extra time scale
in the τ variable, proportional to 〈γ 2

map〉−1. This time scale is bounded from below and
goes to infinity as τ→∞, so we are able to resolve it by reducing the time step dτ
at early times. This extra time scale feeds into the error Qγ via formula (4.11) which
gives the supremum norm of stretching rate in terms of the mapped variables. This
entails the numerical approximation of the integral

∫ τ
0 〈γ 2

map〉 dτ ′ which is sensitive to
the extra time scale at early times. Figure 4(a) gives a quantitative measure of the
significance of this integral term as a function of time.

We conclude that after τ ≈ 6 the integral term contributes less than 5 % to the
total exponent in (4.11). Therefore, at late times, the assessment of ‖γ ‖∞ using the
mapped system’s numerical solution is controlled by the term −(1 + λ)∫ τ0 σ∞ dτ ′

in (4.11), which surprisingly does not depend on the numerical field γmap, except
through the term σ∞ which takes values ±1 according to its definition in (4.7).
Recall that, analytically, in the case λ=−3/2 we have σ∞ = 1 for all times, for the
choice of initial conditions that we made. Hence, the dominant term in the exponent
is just −(1 + λ)τ which, although still numerical, is a prescribed function of the
timesteps. The role of σ∞ computed numerically is illustrated by looking at the error
Qγ , figure 3(a). For example, at resolution 2048, the jump observed at τ ≈ 16 is due
to the fact that the numerical solution becomes under-resolved already at τ ≈ 6, and
consequently the quantity σ∞(τ ) becomes noisy. We will discuss in detail the loss of
spectral resolution of the numerical solutions in § 5.3.

We now perform a direct analysis of the errors in the global quantities 〈γmap(·, τ )2〉
and 〈γ 2(·, t)〉, computed respectively from the numerical integrations of the mapped
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FIGURE 6. (Colour online) Evolution of errors of global quantities 〈γ 2〉 and 〈γ 2
map〉 at

resolution N=1024, as a function of the total integration time τ , obtained from (5.6)–(5.8).
Note that the curves Q∗〈γ 2

map〉 (obtained from original system numerical data) and Q〈γ 2
map〉

(obtained from mapped system numerical data) are nearly the same, illustrating that their
source of errors is the same. Grey dotted vertical line is at τ = 4.34, representing the
reliability time at which the N = 2048 case becomes unresolved, see § 5.3 and table 2.

and original systems. We compute the error in the function

〈γmap(·, τ )2〉 = 〈γ (·, t(τ ))2〉
‖γ (·, t(τ ))‖2∞

(5.5)

in two different ways.

(i) Using the numerical solution of the original system:

Q∗〈γ 2
map〉 =Q

( 〈γnum(·, t(τ ))2〉
‖γnum(·, t(τ ))‖2∞

,
〈γana(·, t(τ ))2〉
‖γana(·, t(τ ))‖2∞

)
. (5.6)

(ii) Using the numerical solution of the mapped system:

Q〈γ 2
map〉 =Q

(
〈γmap,num(·, τ )2〉, 〈γana(·, t(τ ))2〉

‖γana(·, t(τ ))‖2∞

)
. (5.7)

Figure 6 shows the evolution of these errors. It is evident that they have a
comparable size and behaviour. To understand this we also plot in the same figure
the error

Q〈γ 2〉 =Q(〈γ 2
num(·, t(τ ))〉, 〈γana(·, t(τ ))2〉), (5.8)

computed directly from the numerical solution of the original system. This latter error
is surprisingly small at all times, which implies that the error Q∗〈γ 2

map〉 is dominated by
the error in ‖γnum(·, t(τ ))‖2

∞. On the other hand, the error Q〈γ 2
map〉 includes accumulated

errors due to repeated normalisations of the field γmap in the mapped system. The fact
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that the two errors Q〈γ 2
map〉 and Q∗〈γ 2

map〉 are comparable indicates that they have the same
origin: ‖γnum(·, t(τ ))‖∞.

A last comment about the global quantity 〈γ (·, t)2〉. In the case λ = −3/2 an
interesting coincidence occurs whereby this quantity is a constant of the motion. This
can be verified directly from the evolution (4.8). One may think of this situation
as resembling 3D Euler, where energy is conserved numerically even at late times
when resolution has been lost. The fact that our error Q〈γ 2〉 remains consistently
small for all times is thus not a surprise, rather a consequence of the pseudo-spectral
method (this is highlighted in figure 6 by the vertical line denoting the reliability time
defined in § 5.3). For other values of λ, we expect (and this will be demonstrated
in a forthcoming paper) that the error Q〈γ 2〉 grows without bound due to loss of
resolution.

One should be careful about drawing too strong conclusions from these error
measures. It should be remembered that the mapping does nothing to improve the
spatial resolution of a calculation, so any small-scale structures present in the flow
may be expected to suffer from a loss of resolution at roughly the same time. How
this contributes to the errors in certain measures of the flow will vary from one case
to the next and from one measure to the next. To investigate this we consider the
spectra of γ in the following section.

5.3. Spectra, analyticity strip and BKM theorem
An effective diagnostic for the spatial collapse associated with a typical finite-time
blowup scenario presents itself in the form of the analyticity strip (Sulem et al. 1983;
Bustamante & Brachet 2012). Given the spectrum of spatial Fourier coefficients
provided in our numerical simulation, the L2 spectrum of γ is defined as the sum
of the squares of modulus of the Fourier coefficients over circular shells, or in short,
the L2 stretching-rate spectrum:

E(k, t)=
∑

k−(1/2)<|k|<k+(1/2)
|γ̂ (k, t)|2. (5.9)

While we know analytical solutions for the blowup quantities, so far we have not
found a method to obtain analytical expressions regarding the stretching-rate spectrum,
other than the formula valid for λ=−3/2, stating

∑∞
k=1 E(k, t)= 3/4(const).

The lack of analytical results for spectra is seen as an advantage since it allows us
to test the analyticity-strip method and its bridge with the BKM theorem (Bustamante
& Brachet 2012) from a purely numerical point of view. The results presented in this
section can therefore be contrasted against future analytical developments.

The function γ (x, t) remains analytic in the space variables if E(k, t) can be
bounded by

E(k, t)/ CE(t)k−nE(t)e−2kδE(t), (5.10)

where δE(t) is the analyticity strip width, also known as the logarithmic decrement,
and CE(t), nE(t) are positive numbers. We assume this approximation holds for our
functions. Figure 8 shows snapshots of the L2 spectrum E(k, t), in log–log as well
as lin–log scaling, to provide evidence of the feasibility of this approximation. The
common procedure is to find the coefficients CE(t), nE(t), δE(t) by performing a least-
squares fit, at each time t, on ln E(k, t) over some interval ki 6 k 6 kf . The problem
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FIGURE 7. (Colour online) Results at resolution N = 2048 (except (a)) for the fit
parameters of the L2 spectra E(k, t) and L1 spectra F(k, t) at several times (as function
of mapped time τ ). (a) Resolution study (N = 256, 512, 1024, 2048) for nE(t(τ )).
Progressive convergence is observed towards nE ≈ 5/3 (within a 5 % error) near reliability
time. (b) Results for nF(t(τ )) (circles). Solid and dashed curves represent the upper and
lower bounds nE/2 and (nE − 1)/2, respectively, cf. inequality (5.15). The curve nF is
consistently between these bounds. (c) Results for CE(t(τ )) (+ symbols) and CF(t(τ ))
(circles). At late times these coincide, thus confirming the isotropy of the 2D spectrum.
(d) Results for δE(t(τ )) (+ symbols) and δF(t(τ )) (circles). These coincide, in agreement
with inequalities (5.15). The horizontal line is the smallest resolved scale 1x= 2π/2048
and the dotted line corresponds to the numerical fit δ = exp(0.53–1.33τ) obtained using
data in the range 3 6 τ 6 4.34.

becomes linear in the parameters ln CE(t), nE(t) and δE(t). More details can be found
in, e.g., Bustamante & Brachet (2012, equation (5)).

It is customary to define a ‘reliability time barrier’ trel by the condition

δE(t)6 dx⇔ t 6 trel, (5.11)

where dx is the grid spacing of the numerical simulation. This barrier represents the
obvious requirement that the smallest scales available in the numerical simulation are
well resolved. Figure 7 shows the results at resolution N= 2048 for the fit parameters
at several times (in mapped time τ ). Figure 7(d) indicates a reliability time τrel ≈
4.2, corresponding to trel ≈ 1.121. In figure 7(a), the + symbol shows nE(t) with the
remarkable convergence to nE=5/3±0.08 (dotted horizontal line) near reliability time.
The error bar 0.08 stands for the 5 % error of the least-squares fit procedure.
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A classical method used in Bustamante & Brachet (2012) gives rise to the following
rigorous inequality:

‖γ (·, t)‖∞ 6
∞∑

k=1

∑

k−(1/2)<|k|<k+(1/2)
|γ̂ (k, t)|. (5.12)

This inequality is saturated if and only if there is alignment of the phases of the
Fourier components γ̂ (k, t) that carry a significant amplitude. This alignment is
expected to happen near the singularity time, as learned from the 1D inviscid Burgers
equation. The fact that a L1 norm (rather than the more familiar L2 norm E(k, t))
appears in this rigorous inequality, motivates the introduction of a new type of
spectrum, the L1 stretching-rate spectrum

F(k, t)=
∑

k−(1/2)<|k|<k+(1/2)
|γ̂ (k, t)|. (5.13)

In terms of this L1 spectrum the above inequality becomes

‖γ (·, t)‖∞ 6
∞∑

k=1

F(k, t). (5.14)

We now make a connection between this new L1 spectrum and the more familiar
L2 spectrum, via a rigorous equivalence:

√
E(k, t)6 F(k, t)6

√
Sk

√
E(k, t), (5.15)

where

Sk ≡
∑

k−(1/2)<|k|<k+(1/2)
1. (5.16)

We have the approximate result valid as k→∞:

Sk ≈ 2πk. (5.17)

Inequalities (5.15) allow us to work with the L1 spectrum F(k, t) in the same way as
we would work with the more familiar L2 spectrum E(k, t). In particular, a fit of the
form

E(k, t)/ CE(t)k−nE(t) exp(−2kδE(t)) (5.18)

implies a fit of the form

F(k, t)/ CF(t)k−nF(t) exp(−kδF(t)). (5.19)

One could interpret these two fits as working hypotheses, as in Bustamante & Brachet
(2012). In the limit k→∞ the inequalities (5.15) imply a sandwich so δE(t)= δF(t)
is necessary. This is verified numerically in figure 7(d).

In the intermediate-k range, the inequalities imply the following bounds:

nE(t)− 1
2

6 nF(t)6
nE(t)

2
. (5.20)

These bounds are verified in figure 7(b).
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FIGURE 8. (Colour online) (a) and (b) Snapshots of stretching-rate 1D shell spectra E(k, t)
at mapped times τ = 1, 2, 3, 4, 5 (curves progressing from bottom to top) in log–log scale
(a) and lin–log scale (b). The slopes of the straight lines on the left panel are proportional
to the exponent nE(t). The slopes of the straight lines on the right panel are proportional
to the logarithmic decrement δE(t). Resolution N = 2048.
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FIGURE 9. (Colour online) Snapshots of stretching-rate 2D spectra at mapped times τ = 2
(a) and τ = 4 (b). Resolution N = 2048.

Finally, the proportionality factors CF(t) and CE(t) cannot be easily related unless
the above bounds (5.20) for nF(t) become saturated. For example, if the upper bound
was saturated, this would correspond rigorously to a very anisotropic 2D spectrum
|γ̂ (k, t)| in terms of orientation of k. In this case we would have CF ≈

√
CE. On

the other hand, if the lower bound was saturated, as it happens at late times (see
figure 7(b)) this would correspond rigorously to a very isotropic 2D spectrum |γ̂ (k, t)|.
In this case we would have CF ≈

√
2πCE. Figure 7(c) shows the curves CF and√

2πCE as functions of time, showing equality at late times. So we can conclude that
the 2D spectrum becomes nearly isotropic at late times. To support this analysis we
provide in figure 9 two snapshots of the stretching-rate 2D spectrum, at mapped times
τ = 2 (a) and τ = 4 (b). It is evident that the spectrum is strongly anisotropic at early
times and evolves towards isotropy at late times, in agreement with the saturation of
inequalities found.

Following an analogous discussion to that in Bustamante & Brachet (2012), we see
that the left-hand-side of inequality (5.14) has a singular behaviour. In fact, a BKM
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type of theorem can be demonstrated for the left-hand side, namely we can assume

∫ T∗

0
‖γ (·, t)‖∞ dt=∞. (5.21)

This is obvious from the analytical solution presented in table 1. This will imply a
singular behaviour of the right-hand side of inequality (5.14):

∫ T∗

0

∞∑

k=1

F(k, t) dt=∞. (5.22)

Using the above fit for F(k, t) we get the result

∫ T∗

0

∞∑

k=1

k−nF(t) exp(−kδF(t)) dt=∞. (5.23)

We recognise the Jonquiere’s function Li(nF(t), e−δF(t)). We get

∫ T∗

0
Li(nF(t), e−δF(t)) dt=∞. (5.24)

Now, in the limit as t→ T∗ we have δF→ 0 so we can approximate the Jonquiere’s
function to get

∫ T∗

0
(δF(t))n0−1 dt=∞, (5.25)

where n0 = lim inft→T∗ nF(t). So the asymptotic behaviour δF(t)∼ (T∗ − t)Γ would be
consistent with singularity behaviour if and only if

Γ > 1
1− n0

. (5.26)

From figure 7(b), we see that n0 ≈ 0.36 if we consider the data near reliability
time (τrel ≈ 4.34). This gives Γ > 1.56, which is consistent with the fits obtained
from figure 7(d), that produce Γ ≈ 2.66 by virtue of the analytical result (T∗ − t)≈
exp(−τ/2). At the same time this shows that the inequality (5.14) is not saturated by
the field γ (x, t). The interpretation of this lack of saturation is that the Fourier phases,
{arg γ̂ (k, t)}∞k=1, do not all align near the singularity time. In fact this is evident from
the physical-space snapshots in figure 2, where the singular structure is between a
filament and a point.

5.4. Estimating the singularity time T∗ efficiently
It would be meaningless to provide results comparing the accuracy of particular
numerical methods, without including some quantification of their relative computa-
tional expense.

It is possible to obtain two independent estimates of the singularity time T∗ by using
the numerical solutions from either the original system or the mapped system.
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Method A. For the original system, we fit the stretching rate norm ‖γ (·, t)‖∞ as a
power law locally in time, using a method introduced in Bustamante & Kerr (2008)
to determine an estimate of singularity time T∗. The power-law fits are of the form

f (t)∝ (T∗A − t)α, (5.27)

where f (t) stands for ‖γ (·, t)‖∞ in this case. This ansatz is justified in this case by
the analytically obtainable asymptotic formulae in table 1. The local fits are achieved
using the function

g(t)=
(

d ln f (t)
dt

)−1

= f
ḟ
=− 1

α
(T∗est − t). (5.28)

Instantaneous running estimates α and T∗A are then computed by linear fitting the
function g(t) instantaneously using adjacent data points, or more generally over a
small time window (of size ∼ 0.2) containing a good number of data points, in order
to eliminate spurious oscillations in the running estimates. Note that this method
provides an extra quantity: the exponent α, which serves as an extra measure of
validation. In the case λ=−3/2 one should get α=−1 (see table 1). This validation
is consistently held throughout the computation (figure not shown).

Method B. For the mapped system, the situation relies on the explicit formula (4.12).
There, the only relevant numerical quantity is

∫ τ
0 〈γmap(·, τ ′)2〉 dτ ′. In analogy to the

previous case, we will fit the integrand. But, unlike the previous case, we cannot rely
on local fits because doing this would lead to accumulation of errors in the estimation
of the integral.

Using (4.11) and (4.12) we obtain the estimate

T∗B(τ ) =
∫ ∞

0

1
‖γ (·, t(τ ′))‖∞ dτ ′

≈
(∫ τ

0

1
‖γ (·, t(τ ′))‖∞ dτ ′

)

num

+
(∫ τ̂

τ

1
‖γ (·, t(τ ′))‖∞ dτ ′

)

extrap

(5.29)

where in both terms we compute the integrand using (4.11). The subscript ‘num’
means that we use the numerical solution of the mapped system to compute the time
integrals, using Simpson’s rule. As for the subscript ‘extrap’, τ̂ is a very big number
chosen so that the numerical integral converges (∼1000 in practice) and we compute
the integrand, using (4.11), as follows:

1
‖γ (·, t(τ ′))‖∞ =

1
‖γ (·, t(τ ))‖∞
× exp

[
(1+ λ)

∫ τ ′

τ

σ∞ dτ ′′ − (2+ λ)
∫ τ ′

τ

σ∞〈γ 2
map〉 dτ ′′

]
(5.30)

where we set σ∞(τ ′′) = σ∞(τ ) in the above exponent, and we model the functions
appearing in the above exponent using the following fit ansatz that is motivated by
the generic asymptotic behaviour of 〈γ 2

map〉 as τ ′′→∞:

〈γ 2
map(·, τ ′′)〉 =

β

2+ λ [c exp(βτ ′′)− 1]−1, (5.31)
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FIGURE 10. (Colour online) Errors in the running estimates of singularity time T∗ using
data from original system’s numerical integration (lines) and mapped system’s numerical
integration (symbols) at different resolutions: from top to bottom in each case, N = 256,
512, 1024, 2048.

where β and c are two positive fit parameters. In order to obtain these fit parameters
we use the numerical data for 〈γ 2

map(·, τ ′′)〉 in the range 0 6 τ ′′ 6 τ and use a

least-squares fit. The integral
∫ τ ′
τ
σ∞〈γ 2

map〉 dτ ′′ is done analytically in terms of the

fit parameters. Finally, the resulting integral
∫ τ̂
τ
(1/‖γ (·, t(τ ′))‖∞) dτ ′ is done using

Simpson’s rule.
It is important to stress that in both original and mapped systems the estimation of

the singularity time T∗ depends on two fit parameters. In general, we tried to lever as
much accuracy as possible from both methods. For example, we used adaptive time
stepping in the original system to get a distribution of data points that is comparable
with that of the mapped system, so that a more accurate estimate for T∗ could be
obtained in the original system.

We present results from original and mapped systems regarding the assessment of
estimates of singularity times. First, in figure 10 we plot the relative error of the
running estimates

ET∗A,B(τ )=
∣∣∣∣
T∗A,B
T∗ana

− 1
∣∣∣∣ (5.32)

where T∗ana= (4/
√

3) arctan (
√

6/4)≈ 1.26894 is the analytically computed singularity
time and T∗A,B stands for the running estimate obtained either from method A (for
the original system) or from method B (for the mapped system). It is observed
from the figure that: (i) for each method, there is good resolution convergence in
the assessment of T∗; (ii) method B (for the mapped system) produces much better
results as compared with method A (for the original system), with an improvement
of about three orders of magnitude at any given resolution.

The second set of results is the following. We produce, from each method, a
single estimate (not a running estimate) T0

A,B of the singularity time, computed using
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FIGURE 11. (Colour online) The singularity-time error EA,B (error between estimated
singularity time and analytically computed singularity time T∗, (5.33)), as a function of
CPU time for both the original system, method A (filled symbols) and the mapped system,
method B (open symbols) at various resolutions: N = 256 (squares, red online), N = 512
(circles, green online), N = 1024 (triangles, blue online), N = 2048 (diamonds, magenta
online). The CPU overhead of applying the mapping is shown to be more than covered
by the accuracy gain.

the running estimates already obtained. It is important to stress the perhaps obvious
fact that the procedure to find this single estimate is completely independent of any
previous knowledge of the singularity time T∗. The procedure is simple: since we
have a reliability time trel (or, in mapped time, τrel) well defined for each resolution,
in terms of the analysis of spectra done in § 5.3, we evaluate our running estimates
at the reliability time. So we define, for the mapped system, T0

B = T∗B|τrel . As for the
original system, setting the single estimate to T∗A|trel would be possible, however we
found that a better estimate is obtained by averaging the running estimates between
trel and tmin, where tmin (> trel) depends on the resolution and is defined by the time
at which the running estimate has a global minimum.

Figure 11 shows the CPU time versus relative error of the estimated singularity time,

EA,B =
∣∣∣∣
T0

A,B

T∗ana

− 1
∣∣∣∣ , (5.33)

for the numerical solutions of both the original (method A) and mapped systems
(method B) at various resolutions. It is clear that while the mapping incurs some
additional expense in evaluating the extra terms, computing the interpolated supremum
and applying the normalisation, it is far outweighed by the positive effect on the
errors (three orders of magnitude in this study). In these measures one can make
a significant improvement, saving not only CPU time, but also the memory cost of
high-resolution runs.

We present in table 2 a useful summary of the reliability times and relative errors
EA,B of the estimated singularity time, for a range of resolutions, showing that the
errors are dramatically reduced in the case of the mapped equations.
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N trel τrel |T0
A/T
∗ − 1| |T0

B/T
∗ − 1|

256 0.97070 2.80 1.2× 10−2 2.55× 10−5

512 1.04100 3.34 4.3× 10−3 6.03× 10−6

1024 1.09280 3.85 1.3× 10−3 9.28× 10−7

2048 1.13116 4.34 4.9× 10−4 3.70× 10−7

TABLE 2. Summary of results for a range of resolutions: reliability times, obtained
using the stretching-rate spectra (original or mapped system give the same reliability
times); relative error of the estimated singularity time T0

A stemming from original system’s
numerical data (method A); relative error of the estimated singularity time T0

B stemming
from mapped system’s numerical data (method B).

6. Conclusion and discussion

In this paper we have introduced a new family of symmetry plane models of the 3D
Euler equations and presented numerical and analytical solutions exhibiting finite-time
blowup. Although these models do not necessarily correspond to actual solutions of
3D Euler equations they still represent a valuable simplified and tuneable setting for
the study and assessment of finite-time singularity in an idealised fluid. We make use
of this example to evaluate the performance of the mapping to regular systems of
Bustamante (2011) in improving the diagnosis of singular behaviour. We simulate both
systems using the same pseudospectral methods and find that direct determination
of blowup quantities from the numerical integration of the mapped regular system
produces more accurate and reliable results compared with the integration of the
original system.

We present a thorough investigation of the evolution of the Fourier spectrum of
the numerical solution, however unlike the case of the supremum norms of the fields,
there is no available explicit solution for the Fourier components. We validated the
numerical solution by checking rigorous bounds on the Sobolev norms, using the
working hypotheses introduced by Bustamante & Brachet (2012). These hypotheses
were designed in order to bridge the study of the loss of analyticity of solutions with
the classical BKM type of theorems. The main results here are as follows.

(i) The finite-time blowup of the supremum norm of the stretching rate implies
that the Fourier spectrum’s logarithmic decrement δ(t) (a measure of the loss of
analyticity) must decay to zero fast enough at the singularity time. We observe
a decay δ(t)∼ (T∗ − t)3, consistent with the rigorous bounds.

(ii) An ‘inertial range’ of wavenumbers at which the conserved quantity 〈γ 2〉 is
transferred to small scales is found, with a 1D spectrum (i.e. shell integrated) of
the form E(k, t)∼ k−5/3 at times close to the singularity time (but still resolved).

(iii) The 2D spectrum of the Fourier amplitude |γ̂ (k, t)|2 becomes isotropic at late
times, in agreement with the saturation of our rigorous bounds for the L1 shell
spectrum in terms of the L2 spectrum E(k, t). Figures 7 and 9 complement the
above results.

We discuss, in the interest of fairness, a technicality that arises in the mapped
system. Recovering the original system’s supremum norm from the mapped variables
has a subtlety. At late times the dominant contribution comes from a term that depends
explicitly on τ , which is therefore independent of the numerical simulations. This
explains the strong and robust late-time convergence we observe in our comparisons.
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In a work in progress we will consider the case λ ∈ [−1, 0], where this behaviour is
relaxed.

On the other hand, the coincidence occurring at λ=−3/2 where 〈γ 2〉 is an invariant
of the motion, reduces the errors in the original system with respect to the mapped
system. In a work in progress we have confirmed that for any other value of λ this
invariance does not hold and as a result the original system accumulates significant
additional errors. This scenario favours the mapped system even more than in the case
λ=−3/2 studied here.

To estimate the singularity time we perform a two-parameter fit for both the
original and mapped systems in order to extrapolate a running estimate for the
singularity time. The result is up to three orders of magnitude increase in accuracy
when employing the mapping over the original system. It should be emphasised
that this gain in performance stems from a number of sources, for example, the
form of the extrapolation to compute T∗, the global quantity 〈γ 2

map〉 being used to
‘unmap’ the variables, the redistribution of numerical error within the simulation
via the normalisation procedure and finally the mapping of time to distribute data
appropriately near T∗. On this final point, it is tempting to assume that this is
the main advantage of the mapping and it would be equivalent to simply employ an
adaptive time step. This paper has shown, not only are the accuracy gains unrelated to
time step convergence, but also that the manner of recomputing the original variables
has important consequences. For these reasons, and the observations summarised
earlier in this section, we show errors (figures 3 and 6), singularity time estimates
T∗ (figure 10), etc. at values of τ far beyond the usual reliability time cut-off.

To conclude this section we remark that the work done here has served to
benchmark and validate the methods that we will apply in a forthcoming paper for
the analysis of numerical simulations of 3D Euler equations, in both original variables
and mapped variables. In the 3D case, we do not have at hand any analytical solution
to compare with. However, the fact that the mapped system’s numerical solution leads
to a more accurate estimation of singularity time than the original system, motivates
the use of the mapped approach on the 3D Euler equations.
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Appendix A. Interpolation of supremum
Polynomial interpolation is the de facto standard for problems of this type where

the data is regularly spaced and the region of interest is local. In particular, spline
interpolants, piecewise polynomials constructed to maintain continuity of derivatives,
are known to be able to reconstruct a function with high accuracy while using
lower-order polynomials. The primary advantage of this is to reduce the required
support of the contributing data. A number of examples exist for spline interpolants,
we will focus on the cubic Hermite spline and a variant of the cubic B-spline. There
is a considerable body of literature on spline interpolation, we refer the reader to
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the texts of Knott (2000) and de Boor (1978). The cubic Hermite spline over an
interval of uniform data can be computed for N data points by solving an N × N
tridiagonal system for the slopes at the knots. This yields the following expressions
for the interpolating polynomial at the interval k when considering four and six points,
respectively:

P4,k(s) = yk−1

6
s(1− s)(s− 2)+ yk

2
(1− s2)(2− s)

+ yk+1

2
s(2− s)(s+ 1)+ yk+2

6
s(s2 − 1), (A 1)

P6,k(s) = yk−2

90
(7s− 12s2 + 5s3)+ 4yk−1

45
(−7s+ 12s2 − 5s3)

+ yk

90
(90− 11s− 174s2 + 95s3)+ yk+1

90
(74s+ 111s2 − 114s3)

+ 4yk+2

45
(−2s− 3s2 + 5s3)+ yk+3

90
(2s+ 3s2 − 6s3), (A 2)

where the yk are the values on the collocation points, and s = ((xp − xk)/dx) is the
distance of the point of interest, xp from the collocation point xk divided by the
spacing, dx. One can also perform the global N ×N problem, i.e. PN,k, allowing each
collocation point to contribute, however this incurs additional computational expense
and the influence of the far away points is minimal.

The second interpolation kernel is a variant of the cubic B-spline, developed by
Monaghan (1985) for use in smoothed particle hydrodynamics. The order of accuracy
is increased via Richardson extrapolation and it has become a popular method in SPH
and vortex methods (Cottet, Salihi & El Hamraoui 1999; Cottet & Koumoutsakos
2000; Koumoutsakos 2005). The four-point interpolant is

M′4,k(s) =
yk−1

2
(−s)(1− s)2 + yk

2
(2− 5s+ 3s2)

+ yk+1

2
(s− 4s2 − 3s3)+ yk+2

2
s2(s− 1) (A 3)

Note that these are 1D kernels, their 2D counterparts (bicubic splines) are simply
their convolution in each direction. This leads to a computationally simple algorithm;
weights for each collocation point in each direction are simply computed as above and
combined to form the full interpolant.

Given these choices for cubic splines for computing the value of a variable at a
given point, a difficulty still remains as the position of the maximum is unknown
and must be located (accurately) as part of the solution. Maximising the bicubic
representation is impractical analytically, computationally a more efficient and reliable
strategy is a numerical approach, either a Newton method or steepest ascent given
a starting point near the collocation point. Unfortunately the robustness of such
algorithms is still problematic here, especially where the profile is steepening and
values approaching infinity. For instance, given a maximum collocation point we will
not know which of the four adjacent cells contains the true maximum which will
result in four attempts solving the maximisation problem, three of which are likely
to diverge. A short test was carried out to solve the Newton method for the roots of
the derivatives of P4,k and converge on the maximum, results are surprisingly poor
compared with the other strategies attempted.
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FIGURE 12. Schematic of point stencil for bisection and quarter-section interpolation
centred about the current maximum. Unfilled circles are the adjacent collocation points (at
the first iteration, neighbouring interpolated points at following steps), larger filled circles
the midpoint stencil, small filled circles (plus the midpoints) the 7× 7 interpolated grid.

The most straightforward robust approach is to populate the grid cells adjacent to
the collocation maximum with a refined grid of interpolated points, and pick from
them a new maximum. However, this will entail a large number of interpolations and
accuracy is limited to the level of refinement chosen. A more efficient method is to
develop a 2D ‘bisection’ method, whereby interpolation points are included on a grid
at midpoints (i.e. eight points surrounding the collocation maximum) and from them a
new maximum is found (or collocation maximum is retained if it is still largest) and a
new set of midpoints (now spaced at dx/4 intervals) is populated about the new point.
In practice we discovered that in fact a quarter-section method outperforms a bisection;
at each iteration we populate the 7× 7 grid of dx/4 spaced points, giving a slightly
broader support at each step (see figure 12). Note we always use the collocation data
points for the interpolation onto the new points, the iterative method is simply an
efficient strategy for placing points to search for the maximum.

Note one may also consider employing a more intuitive method whereby a particular
function is fit through the collocation points about the collocation maximum and an
interpolated maximum extracted from this local representation. An attempt was
made to this end using an elliptical Gaussian profile and a Newton method to
converge on the fit parameters. The method is appealing as the maximum and its
position are immediately given as fit parameters. Accuracy and efficiency could be
equivalent to the polynomial methods outlined above, however at late times where the
profile steepens the Jacobian matrix of the Newton method becomes ill-conditioned
and the method fails. Several workarounds were explored but none resulted in the
accuracy and robustness of the polynomial interpolation where matrix inversions are
not required and interpolation weights are readily expressible a priori (equations
(A 1)–(A 3)).

To assess the performance of each method we compute the errors Eγ (t) and Eω(t)
as defined in § 5.1 over a simulation of the λ = 3/2 model system (unmapped) at
5122 resolution for T = 1.0 (see the reliability time estimate in table 2). In addition to
the error measures, we determine an estimate of the average CPU time by computing
1000 executions of the interpolation algorithm. Table 3 shows the errors of each
interpolation method and CPU times. It was found that the accumulation of numerical
error at late times, i.e. as the singularity time is approached, dominates the integral
measures so we show the error measures of a truncated time series (T = 0.8) which
gives a more reliable measure of the errors throughout the simulation (see figure 13).

Figure 13 and table 3 show that errors are consistently smallest for the PN,k and
P6,k interpolants, better for the cases where 100× 1000 points are used or the quarter-
section method. Considering the computational cost of each method it becomes quite
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Interpolation CPU Qγ Qω
‖Eγ ‖2

T
‖Eω‖2

T
(s) (T = 1.0) (T = 1.0) (T = 1.0) (T = 1.0)

None 7.8 6.2× 10−8 6.0× 10−5 0.190 1.32
PN,k quarter-section 374 2.1× 10−10 7.1× 10−7 0.030 0.19
P6,k quarter-section 17.1 6.7× 10−10 1.1× 10−6 0.038 0.20
P4,k quarter-section 16.7 5.1× 10−9 1.2× 10−5 0.070 0.44
PN,k on 1002 points 74.5 2.7× 10−10 3.4× 10−6 0.032 0.30
PN,k on 102 points 72.0 4.0× 10−10 4.4× 10−6 0.038 0.49
P6,k on 1002 points 71.2 4.8× 10−10 4.0× 10−6 0.037 0.31
P6,k on 102 points 16.8 6.0× 10−10 6.5× 10−6 0.039 0.51
P4,k on 1002 points 43.4 5.4× 10−10 1.3× 10−5 0.071 0.46
P4,k on 102 points 16.3 5.9× 10−10 1.4× 10−5 0.074 0.57
M′4,k on 1002 points 34.2 6.9× 10−9 1.9× 10−5 0.078 0.53
M′4,k on 102 points 16.4 7.0× 10−9 2.0× 10−5 0.078 0.62
Gaussian fit 16.9 6.2× 10−8 6.0× 10−5 0.180 1.00
P4,k maximisation 16.4 2.1× 10−8 2.9× 10−5 0.110 0.77

Interpolation CPU Qγ Qω

‖Eγ ‖2

T
‖Eω‖2

T
(s) (T = 0.8) (T = 0.8) (T = 0.8) (T = 0.8)

None 7.8 2.8× 10−9 1.5× 10−5 0.1400 1.280
PN,k quarter-section 374 7.3× 10−15 8.8× 10−11 0.0034 0.036
P6,k quarter-section 17.1 4.4× 10−15 5.2× 10−11 0.0029 0.028
P4,k quarter-section 16.7 5.1× 10−13 5.1× 10−9 0.0110 0.097
PN,k on 1002 points 74.5 7.3× 10−15 1.3× 10−9 0.0037 0.130
PN,k on 102 points 72.0 4.1× 10−13 1.5× 10−7 0.0140 0.420
P6,k on 1002 points 71.2 3.4× 10−15 1.25× 10−9 0.0028 0.130
P6,k on 102 points 16.8 3.1× 10−13 1.5× 10−7 0.0135 0.420
P4,k on 1002 points 43.4 5.3× 10−13 7.6× 10−9 0.0110 0.150
P4,k on 102 points 16.3 1.38× 10−12 1.5× 10−7 0.0170 0.420
M′4,k on 1002 points 34.2 1.3× 10−12 8.4× 10−8 0.0150 0.250
M′4,k on 102 points 16.4 2.1× 10−12 2.9× 10−7 0.0180 0.440
Gaussian fit 16.9 2.3× 10−9 1.2× 10−5 0.0940 0.730
P4,k maximisation 16.4 1.3× 10−10 5.0× 10−6 0.0420 0.590

TABLE 3. Table showing CPU and error measures for the interpolation methods
investigated at resolution N= 512 and T = 1.0 (top) and T = 0.8 (bottom). Note CPU time
is evaluated by 1000 executions of the interpolation subroutine. No interpolation simply
means we take the maximal collocation value. Gaussian fails after t= 0.65 and reverts to
collocation points thereafter. Here ωnum(X+(t),Y+(t), t) is evaluated in each case using PN,k
but (X+(t), Y+(t), t) found from the method indicated.

clear that the most efficient method is the P6,k quarter-section. The quarter-section
method will entail a far fewer interpolations to reach a similar accuracy than, for
example the 100 × 1000 equivalent. We find the Gaussian fit to be poor, primarily
due to it failing a t= 0.65 (see figure 13). The P4,k maximisation (root finding) is also
found to be inaccurate compared with the ‘point-search’ methods. We suspect this to
be where the Newton method converges (reaches machine precision tolerance in the
residual) at a point which is not the true maximum. It might be possible to tune this
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FIGURE 13. (Colour online) Plot of errors for a selection of interpolation methods
investigated at resolution N = 512. Black thick line, no interpolation; (blue online) thick
dashed line, P6,k quarter-section; (red online) thin dashed line, P4,k quarter-section; thin
grey line, P6,k on 102 points; (green online) circles, P4,k maximisation; (magenta online)
stars, Gaussian fit.

method by using a coarse sweep (i.e. the first quarter-section grid) before commencing
a Newton solve from a closer initial guess, however the quarter-section method proves
so fast and accurate that for our purposes we will retain it as our default interpolation.
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