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The two-phase mixing layer formed between parallel gas and liquid streams is an
important fundamental problem in turbulent multiphase flows. The problem is relevant
to many industrial applications and natural phenomena, such as air-blast atomizers
in fuel injection systems and breaking waves in the ocean. The velocity difference
between the gas and liquid streams triggers an interfacial instability which can be
convective or absolute depending on the stream properties and injection parameters.
In the present study, a direct numerical simulation of a two-phase gas–liquid mixing
layer that lie in the absolute instability regime is conducted. A dominant frequency
is observed in the simulation and the numerical result agrees well with the prediction
from viscous stability theory. As the interfacial wave plays a critical role in turbulence
transition and development, the temporal evolution of turbulent fluctuations (such as
the enstrophy) also exhibits a similar frequency. To investigate the statistical response
of the multiphase turbulence flow, the simulation has been run for a long physical
time so that time-averaging can be performed to yield the statistically converged
results for Reynolds stresses and the turbulent kinetic energy (TKE) budget. An
extensive mesh refinement study using from 8 million to about 4 billions cells has
been performed. The turbulent dissipation is shown to be highly demanding on mesh
resolution compared with other terms in TKE budget. The results obtained with the
finest mesh are shown to be close to converged results of turbulent dissipation which
allow us to obtain estimations of the Kolmogorov and Hinze scales. The estimated
Kolmogorov scale is found to be similar to the cell size of the finest mesh used here.
The computed Hinze scale is significantly larger than the size of droplets observed
and does not seem to be a relevant length scale to describe the smallest size of
droplets formed in atomization.
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1. Introduction
Mixing layers formed between parallel gas and liquid streams are commonly seen

in nature and industrial applications, e.g., breaking ocean waves and injection of liquid
fuels into engines. Typically a velocity difference exists between the two streams,
which triggers a shear instability on the gas–liquid interface. The interfacial instability
grows and eventually causes the bulk liquid to break into small droplets, forming a
two-phase mixing layer between the two streams. At the continuum level, the gas
and liquid streams are immiscible, so the ‘mixing’ layer here indeed refers to a layer
consisting of a mixture of gas and a dispersion of droplets generated from the bulk
liquid disintegration. The process where the bulk liquid stream breaks into a large
number of small droplets is often referred to as ‘atomization’ and the resulting gas–
droplets mixture as a spray. Since the breakup of the liquid stream can be significantly
enhanced by the parallel fast gas stream, this co-flowing configuration (also known as
air-blast atomization) is widely used in fuel injectors (Lefebvre & McDonell 2017).

1.1. Problem description
In the present study we focus on modelling the wall-bounded two-phase mixing layer
experiment by Matas, Marty & Cartellier (2011), which is illustrated in figure 1 by a
snapshot of present simulation results (details of simulation are to be presented later).
The grey surface is the liquid–gas interface and the background is the z-component
(in spanwise direction) of vorticity. The parallel gas and liquid streams, separated by
a small separator plate, enter the domain from the left. The thicknesses of the two
streams at the inlet are the same. A mixing layer is formed between the gas stream
and the stagnant gas, as indicated by purple dashed lines. Similarly, a two-phase
mixing layer is formed between the gas and liquid streams, between the two green
dashed lines. The two-phase mixing layer near the inlet is simply a downstream
propagating interfacial wave, strictly speaking there is no ‘mixing’. The mixing
between the two immiscible phases only occur further downstream when the liquid
stream breaks up, forming a mixture of gas and droplets.

As indicated in this figure, the two-phase mixing layer is a phenomenon of
enormous complexity that involves interfacial instability, two-phase turbulence and
topological changes owing to liquid breakups occurring at a wide variety of spatial and
temporal scales. Owing to its important application to fuel injection, the problem has
attracted increasing attention in recent years and extensive theoretical, experimental
and numerical investigations have be performed. Some of the important previous
works in the literature are discussed in the next sections.

1.2. Shear-induced interfacial instability
The destabilization of the liquid stream in the present problem is initiated by the
instability at the gas–liquid interface, which is in turn induced by the velocity
difference between parallel streams and the resulting shear on the interface near
the nozzle (Taylor 1963; Renardy 1985; Rangel & Sirignano 1988; Lasheras,
Villermaux & Hopfinger 1998; Lasheras & Hopfinger 2000; Matas et al. 2011;
Matas 2015). Different mechanisms that drive the interfacial instability, including the
classic Kelvin–Helmholtz instability (Helmholtz 1868; Thomson 1871), the instability
owing to viscosity contrast (Yih 1967), the inviscid Rayleigh (inflection-point) and
viscous Tollmien–Schlichting mechanisms, have been addressed in previous works
(Ozgen, Degrez & Sarma 1998; Otto, Rossi & Boeck 2013). Stability analysis at
the interface between two immiscible fluids of different densities and viscosities has
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FIGURE 1. (Colour online) A two-phase mixing layer between parallel gas and liquid
streams. The grey surface is the liquid–gas interface and the background is the
z-component of vorticity.

been conducted for both planar (Renardy 1985; Rangel & Sirignano 1988, 1991;
Matas et al. 2011) and cylindrical geometries (Raynal 1997; Lasheras et al. 1998;
Marmottant & Villermaux 2004).

Conventionally, the development of the interfacial wave is investigated through
a linear analysis of small perturbations of the two-dimensional base flow (with
no variation in the transverse direction) and studies focus on predicting the most
unstable wavelength and frequency. The linear instability studies that yield theoretical
prediction of the most unstable frequency were first carried out assuming inviscid
flows (Marmottant & Villermaux 2004; Eggers & Villermaux 2008; Matas et al.
2011), and extensions to viscous regime have been made in recent years (Boeck &
Zaleski 2005; Sahu et al. 2007; Fuster et al. 2013; Otto et al. 2013; O’Naraigh, Spelt
& Shaw 2013; O’Naraigh et al. 2014; Matas et al. 2015). Research efforts have also
been made to investigate the effect of confinement on the instability of mixing layers
(Juniper & Candel 2003; Juniper 2006; Juniper, Tammisola & Lundell 2011; Matas
2015).

While the inviscid stability theory has been shown to well predict the scaling
relation of the most unstable wavelength and frequencies (Rangel & Sirignano 1988,
1991; Raynal 1997; Marmottant & Villermaux 2004; Eggers & Villermaux 2008), the
viscous stability analysis is required in general to yield accurate prediction of the
magnitudes of the most unstable frequency and wavelength (Fuster et al. 2013; Otto
et al. 2013; O’Naraigh et al. 2013; Matas et al. 2015). The linear stability analysis
in both inviscid and viscous regime confirms that the vorticity layer thickness of the
gas stream at the inlet, denoted by δg, is the characteristic length scale that controls
the selection of the most unstable wavelength.

It is clearly shown by previous works (Raynal 1997; Hoepffner, Blumenthal &
Zaleski 2011; Ling et al. 2017) that the propagation speed of the interfacial wave
is well predicted by the Dimotakis speed. The Dimotakis speed UD is defined as
(Dimotakis 1986)

UD =

√
ρlUl +

√
ρgUg

√
ρl +
√
ρg

, (1.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.825


A two-phase mixing layer between parallel gas and liquid streams 271

where ρl and ρg are the liquid and gas densities and the subscripts g and l represent
the gas and liquid phases, respectively. The velocities of the liquid and gas stream at
the inlet are denoted by Ul and Ug, and UD is obtained through a phenomenological
approach, assuming the gas and liquid dynamic pressures are in a balance in the
reference frame moving with the wave speed. With the Dimotakis speed, the frequency
and wavelength of the most unstable wave can then be related to each other as f =
UD/λ.

Recently, through viscous spatial–temporal analysis, Fuster et al. (2013) and Otto
et al. (2013) showed that the interfacial instability can be absolute or convective,
depending mainly on the dynamic pressure ratios between the two phases, M, defined
as

M =
ρgU2

g

ρlU2
l
. (1.2)

When M is large, the interfacial instability is absolute and the wave frequency
predicted by stability analysis was found to agree well with experiments and
simulations (Fuster et al. 2013; Agbaglah, Chiodi & Desjardins 2017).

Studies of interfacial instability eventually aim to shed light on understanding the
behaviour of liquid breakups occurring further downstream. Nevertheless, connections
between the upstream interfacial instability and the downstream turbulence and spray
characteristics have not been investigated thoroughly in previous studies. A possible
reason is that a three-dimensional simulation that can resolve both the interfacial
instability and the resulting turbulent spray is too expensive. In this study we only
consider one specific case of two-phase mixing layer which clearly lies in the absolute
instability regime. As a result, there is a dominant interfacial stability frequency and
we will compare the numerical results with the spatial viscous stability theory of
Otto et al. (2013).

1.3. Two-phase turbulent coherent structures
As the interfacial wave is formed, turbulent coherent structures simultaneously appear
in the gas stream near the interface (Bernal & Roshko 1986). Owing to the significant
difference in velocities and viscosities between the gas and liquid streams, the gas–
liquid interface acts like a deforming wavy ‘wall’ to the gas stream. The resulting
turbulent vortical structures are similar to those in boundary layers (Wu & Moin 2009;
Jodai & Elsinga 2016). The growing interfacial waves significantly perturb the gas
stream and play a significant role in the transition to turbulence. When the amplitude
of the interfacial wave is large compared with the thickness of the gas stream, it
appears as an obstacle to the gas flow, causing the latter to separate downstream
of the wave. As discussed above, the frequency of wave formation will correspond
to the fastest growing mode if the instability is absolute. Therefore, the turbulence
production will also be related to the wave frequency. Not only can the interfacial
wave development modulate the gas flow, the vortices in the gas flow also influence
the wave evolution and the subsequent breakup (Jarrahbashi et al. 2016). The liquid
stream eventually disintegrates into a large number of droplets with a wide range
of sizes. These droplets are dispersed in the turbulent flow. Secondary breakup or
coalescence may also occur. The present study aims to provide rigorous statistics of
multiphase turbulence in the mixing layer.

1.4. Direct numerical simulation of chaotic liquid breakups and topology changes
Thanks to the rapid development of computer power and numerical methodology,
direct numerical simulations (DNS) of atomization have become viable in the past
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decade and recent simulations have provided high-resolution details of atomization,
including interfacial instability development, interaction between the interfacial
wave and the turbulent gas stream, and formation of liquid sheets, ligaments and
droplets (Ménard, Tanguy & Berlemont 2007; Shinjo & Umemura 2010; Rana &
Herrmann 2011; Le Chenadec & Pitsch 2013; Jarrahbashi et al. 2016; Ling et al.
2017; Agbaglah et al. 2017). In particular, different droplets formation mechanisms
have been observed. When the interfacial waves roll up and develop into liquid
sheets, Taylor–Culick rims form at the edges of liquid sheets. Rayleigh–Taylor (RT) or
Rayleigh–Plateau (RP) instabilities in the transverse direction then develop at the rims,
generating liquid fingers and filaments (Marmottant & Villermaux 2004; Roisman,
Horvat & Tropea 2006; Agbaglah, Josserand & Zaleski 2013). These filaments finally
break into a distribution of small droplets. In addition to this well-known finger
mechanism, simulation results also reveal a less-established mechanism, i.e., holes
form in liquid sheets and the spontaneous expansion of these holes causes liquid
sheets to rupture violently, producing numerous filaments and droplets of different
sizes (Shinjo & Umemura 2010; Jarrahbashi et al. 2016; Ling et al. 2017; Zandian,
Sirignano & Hussain 2017, 2018). The hole-induced breakup of a thin liquid sheet
is also observed in the bag breakup of a drop in secondary atomization (Opfer
et al. 2014) and splashes (Marston et al. 2016). The mechanisms that cause sheet
deformation and hole formation have been investigated recently via vortex dynamics
by Zandian et al. (2018). In current interface-resolved simulations, disjoining pressure
is generally ignored as the affordable minimum mesh size is still far larger than the
sheet thickness where molecular forces are active in collapsing a liquid sheet. The
holes observed in the simulations are thus an outcome of the numerical cut-off length
scale, i.e., the cell size (typically in micrometres or sub-micrometres). Nevertheless,
recent experiments in splash and secondary breakup interestingly show that holes
indeed form in liquid sheets when the thickness is around micrometres (Opfer et al.
2014; Marston et al. 2016). The reasons for holes arising in a thicker sheet are
not fully understood, but experiments seem to indicate that the holes observed in
atomization simulations are not far from what is observed in reality.

1.5. Modelling of turbulent atomization
An important future direction of atomization simulations is the development of
sub-grid models like large-eddy simulation (LES) for turbulent single-phase flow
(Pope 2000). Spatial scales involved in atomization processes, varying from the size
of the injector to the diameter of the smallest droplet, can easily go beyond three
or four orders of magnitudes. If one has to fully resolve all the scales to guarantee
reasonably accurate macro-scale features, the impact of numerical simulations to
practical atomization applications will be limited by their extreme costs.

Attempts to combining interface-capturing schemes and Lagrangian point-particle
models have been proposed in recent years (Herrmann 2010; Tomar et al. 2010;
Ling, Zaleski & Scardovelli 2015; Zuzio, Estivalezes & DiPierro 2017). In these
combined approaches, the interfaces of the small droplets are not resolved as for the
macro-scale interfaces; instead, the droplets are treated as point masses. Since the
droplet-scale flows are not resolved, closure models of the force and heat transfer
between the droplets and the surrounding flow are needed. As the Weber numbers
of these droplets/bubbles are typically small, they are not much different from solid
particles. Thus, modelling efforts on force and heat transfer for dispersed multiphase
flows or particle-laden flows are directly applicable (Magnaudet & Eames 2000;
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Balachandar & Eaton 2010; Ling, Parmar & Balachandar 2013; Ling, Balachandar
& Parmar 2016). However, the above modelling efforts have not yet been able to
resolve the fundamental challenge of sub-grid modelling of atomization, i.e., how to
accurately represent the under-resolved formation of sub-scale droplets. It is expected
that statistics of droplets from different formation mechanisms will vary significantly.
The size distribution of droplets generated in ligament breakup owing to RP instability
will, for example, be different from that for droplets produced in a secondary breakup.

In the literature, there are also simulations which combine interface-capturing
methods and LES filtering to the turbulent gas flows (Labourasse et al. 2007;
Larocque et al. 2010; Lakehal, Labois & Narayanan 2012; Aniszewski 2016). These
modelling efforts are mainly focused on the sub-scale surface tension effect since the
small-scale variation of curvature is under-resolved. The robustness and accuracy of
these models in capturing flows with significant topological changes are still to be
explored. We believe that a viable sub-grid modelling approach will need to be event
based. In other words, the model has to be able to identify the droplet formation
event and the corresponding breakup mechanism based on topological configurations
of the macro-scale liquid structures. To develop sub-grid models like this, rigorous
data of the droplets statistics covering a sufficiently large number of events has to be
collected from fully resolved simulations.

1.6. Effect of mesh resolution
While simulations of bubbles and drops retaining their identities have been shown to
produce fully converged solutions (Lu & Tryggvason 2013; Dodd & Ferrante 2016),
liquid–gas multiphase flow simulations where the topology changes through breakup
and coalescence generally result in spontaneously generated small-scale features that
are difficult to resolve. This is particularly true for almost all simulations of large-scale
atomization (Shinjo & Umemura 2010; Le Chenadec & Pitsch 2013; Jarrahbashi
et al. 2016; Agbaglah et al. 2017; Ling et al. 2017). The general consensus among
researchers has been that while the small-scale physics are under-resolved, the
large-scale flow remains correct. Since small droplets and filaments contain little
mass, leaving them unresolved should have only minor impact on the overall results.
We have recently started to examine this assumption in more detail, by extensive
grid refinement studies varying from 8 million to 4 billion cells (number of cells to
resolve the initial liquid stream thickness varying from 32 to 256) (Ling et al. 2017).
While the results show that some of the large-scale statistics converge, considerable
sensitivity on the resolution has also been observed, such as for the droplet size
distribution. In particular, small-scale instabilities can generate drops larger than the
most-unstable wave length and the error resulting from not resolving the smallest
scales fully thus manifests itself at much larger scales.

1.7. Goals of this study
The purpose of the present study is to answer the following important questions for
simulations of spray formation in a two-phase mixing layer between parallel gas and
liquid streams.

(i) What are the Kolmogorov and Hinze scales in the present two-phase mixing layer
and do they effectively represent the flow physics in atomization?

(ii) What is the mesh requirement to fully resolve turbulent atomization?
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(iii) Will the large-scale multiphase turbulence statistics be affected if the small scale
versions are under-resolved?

(iv) How does the interfacial instability affect the multiphase turbulence development?

Particular attention will be focused on obtaining the statistics of multiphase
turbulence and on the impact of the upstream interfacial instability on the turbulence.
As an extension to our previous work (Ling et al. 2017), the simulation for the most
refined mesh (M3) has been run for about twice as long, so that the statistically
converged multiphase turbulence statistics, in particular those of higher order, can be
obtained.

2. Methodology
2.1. Governing equations

The one-fluid approach is employed to resolve the two-phase flow, where the liquid
and gas phases are treated as one fluid with material properties (such as density and
viscosity) that change abruptly across the interface. The incompressible two-phase
flows are governed by the Navier–Stokes equations with surface tension,

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=−

∂p
∂xi
+

∂

∂xj

[
µ

(
∂ui

∂xj
+
∂uj

∂xi

)]
+ fs,i, (2.1)

∂ui

∂xi
= 0, (2.2)

where ρ and µ are the fluid density and viscosity, u and p the velocity and pressure
fields. The surface tension term is expressed as

fs,i = σκδsni, (2.3)

where σ is the surface tension coefficient (assumed to be constant here), and κ and
ni are the local curvature and unit normal of the interface. The surface tension is a
singular term, with a Dirac distribution function δs localized on the interface.

The volume fraction c is introduced to distinguish between the two different phases.
Here, c= 1 in computational cells with only the liquid phase, and its time evolution
satisfies the advection equation (Hirt & Nichols 1981)

∂c
∂t
+ ui

∂c
∂xi
= 0. (2.4)

The fluid density and viscosity are calculated based on the arithmetic mean as

ρ = cρl + (1− c)ρg, (2.5)
µ= cµl + (1− c)µg. (2.6)

Detailed discussion about using arithmetic or harmonic means for viscosity has been
given by Boeck et al. (2007). It is shown that both viscosity methods yield similar
results for sufficiently high mesh resolution.

2.2. Numerical methods
The governing equations are solved by the open source code PARIS-Simulator. The
details of the numerical methods implemented in PARIS-Simulator can be found
in previous works (Tryggvason, Scardovelli & Zaleski 2011; Ling et al. 2015; Bnà
et al. 2016; Ling et al. 2017) and the code webpage. (The PARIS-Simulator Code,
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available from http://www.ida.upmc.fr/∼zaleski/paris.) Only the numerical aspects that
are relevant to the present study are summarized here.

The Navier–Stokes equations (2.1)–(2.2), are solved by the finite volume method
on a staggered grid. The fields are discretized using a fixed regular cubic grid (with
cell size ∆) and we use a projection method for the time stepping to incorporate
the incompressibility condition (Chorin 1968). The temporal integration is done
by a second-order predictor–corrector method. The interface is tracked using a
volume-of-fluid (VOF) method with the mixed Young’s-centred implementation of
Aulisa et al. (2007) to determine the normal vector and the Lagrangian-explicit
scheme of Li (1995) for the VOF advection (Scardovelli & Zaleski 2003). The
advection of momentum near the interface is implemented in a manner consistent
with the VOF advection, similar to the methods of Rudman (1998) and Vaudor et al.
(2017). The superbee limiter is applied in the flux calculation (Roe 1986). The viscous
term is treated explicitly with a second-order centered difference scheme. Curvature
is computed using the height-function method of Popinet (2009). Surface tension is
computed from the curvature by a balanced continuous-surface-force method (Renardy
& Renardy 2002; Francois et al. 2006; Popinet 2009). To capture the dynamics of
under-resolved droplets less erroneously than by just quasi-fragment VOF patches,
droplets of size smaller than four cells are converted into Lagrangian point-particles
and are traced under the one-way coupling approximation, following the approach of
Ling et al. (2015).

2.3. Simulation set-up
2.3.1. Computational domain

As shown in figure 1 the computational domain is a rectangular cuboid. The
domain is initially filled with stationary gas (at t= 0) and then liquid and gas streams
progressively enter it. The x-coordinate is aligned with the stream velocity, whereas
y and z are along the height and width of the stream. The thicknesses of the liquid
and gas streams at the inlet are represented by Hl and Hg, respectively. Here, Hl is
chosen to be the characteristic length scale. Then the length (x), height (y) and width
(z) of the domain are taken to be Lx= 16Hl, Ly= 8Hl and Lz= 2Hl, respectively. The
thickness and the length of the separator plate are denoted as ly and lx. The separator
plate is included to mimic the effect of the fuel injection nozzle and the need for
such a plate to accurately capture interfacial instability and wave breakups has been
addressed by Fuster et al. (2013) and will also be discussed later.

To reduce the computational cost, a relatively small domain width Lz is used,
compared with Lx and Ly. The characteristic length scale for the interfacial instability
development is the vorticity layer thickness δg. The current domain width is
significantly larger than δg, i.e., Lz/δg = 16, and therefore is sufficient to capture
the development of interfacial stability and wave formation. When the transverse
instability develops at the rim further downstream, the domain width used here may
not be sufficient to resolve the large wavelengths. The effect of the domain width Lz

to the simulation results are discussed in the appendix C, in which we have shown
results with a domain four times wider than the present one (namely Lz = 8Hl). The
results of the present and the wider domains for both low- and high-order two-phase
turbulence statistics (mean velocity and dissipation) agree with the results of the
present domain in general, suggesting that the important conclusions made in the
present study remain valid. The discrepancy mainly lies at the unbroken liquid stream
near the bottom of the domain, which indicates the constraint of the domain width
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indeed influences the transverse instability development and interfacial wave breakup
downstream in some extent. A high-resolution simulation using a wider domain is
computationally expensive and will be relegated to future work.

2.3.2. Boundary conditions
An inflow boundary condition is applied to the left of the domain (x= 0), with the

velocity specified as

ux=0 =



Ul erf
(Hl − y)
δl

, 0 6 y<Hl,

0, Hl 6 y<Hl + ly,

Ug erf
[y− (Hl + ly)]

δg
erf
[(Hl + ly +Hg)− y]

δg
, Hl + ly 6 y<Hl + ly +Hg,

0, otherwise.

(2.7)

The separator plate is located at Hl 6 y<Hl + ly. The error function, defined as

erf(y)=
2
√

π

∫ y

0
exp(−χ 2) dχ, (2.8)

is known to be the exact solution of the first Stokes problem and is employed to
represent the vorticity layers on the top and bottom boundaries of the gas stream and
the top of the liquid stream, following the previous works (Otto et al. 2013; Fuster
et al. 2013). The thickness of the vorticity layers at the top and bottom boundaries
of the gas stream is denoted by δg and that for the vorticity (boundary) layer at the
top of the liquid stream by δl. (There is no vorticity layer at the bottom of the liquid
stream since the domain bottom is considered to be a slip wall.) For the velocity
profile defined here, the displacement boundary layer thickness is δ/

√
π and the

boundary layer thickness corresponding to u= 0.99Ug is about 2δ (Ling et al. 2017).
The volume fraction function at the inlet is specified as

cx=0 =

{
1, 0 6 y<Hl,

0, otherwise. (2.9)

The bottom of the domain (y= 0) is taken to be a slip wall and periodic boundary
conditions are used at the back and front boundaries (z= 0 and z= Lz).

To minimize the effect of the finite size of the domain, additional attention is
required for the boundary conditions at the top (y= Ly) and the right of the domain
(x = Lx). In general, there are two options for the top boundary: (1) symmetric
boundary (or slip wall) (Fuster et al. 2013; Agbaglah et al. 2017); and (2) free
boundary that allows the gas to freely enter or leave the boundary (Taub et al. 2013;
Ling et al. 2015, 2017; Almagro, Garcia-Villalba & Flores 2017). If the former
condition is used, a recirculating flow will form on top of the parallel streams
(Agbaglah et al. 2017). The recirculation is less favorable since obviously it may
influence the physics of interest, such as carrying coherent structures downstream
back to the inlet, unless the domain is so large that the effect of the recirculation
becomes negligibly weak (Fuster et al. 2013). Owing to high computational cost, a
relatively small domain is used in the present study, although Ly and Lx are already 8
and 16 times of the initial liquid stream thickness and are large enough to capture the
physics near the parallel streams. Therefore, the free boundary conditions is chosen
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ρl ρg µl µg σ Ul Ug Hl δg ly

(kg m−3) (kg m−3) (Pa s) (Pa s) (N m−1) (m s−1) (m s−1) (m) (m) (m)

1000 50 10−3 5× 10−5 0.05 0.5 10 8× 10−4 1× 10−4 2.5× 10−5

TABLE 1. Physical parameters.

for the top boundary in the present set-up to minimize the effect of recirculation.
Since we have used the free boundary condition on the top, the outlet condition on
the right surface of the domain requires the convective velocity to be specified. (If
a pressure outflow boundary condition is invoked, then the flow is under constrained
and may exit at the top boundary, breaking the parallelism of the two streams.) The
outflow velocity profile imposed at the right of the domain will affect the mean flow.
To mimic the development of the gas stream, we specify the outflow velocity based
on the average velocity of a planar turbulent jet (Pope 2000),

ux=Lx =

{
Uc sech2(αξ), if y>Hl + 1/2Hg,
Uc, otherwise, (2.10)

where ξ = y/y1/2, and y1/2 is the half-width of the turbulent jet. The convective velocity
Uc is determined by mass balance so that the flux into the domain given in (2.7) is
equal to that leaving the domain. The variation y1/2 in x is found to be linear, namely,
dy1/2/dx= S. The parameters S and α are constant, the values of which are given as
0.10 and 0.88, respectively (Pope 2000). A Neumann boundary condition ∂c/∂x = 0
is applied for the volume fraction function at the right boundary.

It is noted that the outflow velocity profile used here does not represent the
exact condition at the outlet of the domain, since the flow is turbulent and time
dependent. Equation (2.10) is thus only an approximation to the mean flow at the
outlet. It is expected that the overall mean flow can be affected to a certain extent
by the outflow velocity profile, in particular, a small region near the outlet will be
influenced. Nevertheless, it is shown from simulation results that the overall boundary
conditions applied here can effectively minimize the recirculation on the top of the
parallel streams (see figure 1) and also convect the vortices and droplets out of the
domain.

To thoroughly examine the effect of the present boundary conditions on the
simulation results, we have performed simulations with a larger domain (Lx and Ly

are 1.5 times those of the current set-up) on a coarser mesh. The details of the tests
for different domain sizes are given in the appendix C. The results show that the key
conclusions made in the present study are not influenced by the boundary conditions
and the domain size.

2.3.3. Physical parameters
The material properties of the two fluids (ρl, ρg, µl, µg, σ ) and the injection

conditions of the two streams (Ul, Ug, Hl, Hg, δl, δg), values given in table 1,
fully characterize the resulting multiphase flow. To simplify the analysis, we take
Hl = Hg + ly and δl = δg. Following the Buckingham π theorem, the dimensional
physical parameters in table 1 are expressed in dimensionless form as shown in
table 2.
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M r m Reg,δ Weg,δ Reg,H

ρgU2
g/(ρlU2

l ) ρl/ρg µl/µg ρgUgδg/µg ρgU2
gδg/σ ρgUgHg/µg

20 20 20 1000 10 7750

TABLE 2. Key dimensionless parameters.

The liquid properties used here are the same as those of water. The gas is similar
but not identical to pressurized air. Instead of using exact air properties in experiments
(Matas et al. 2011; Fuster et al. 2013), we consider a case of moderate density ratio
(Ling et al. 2017) that is less expensive for numerical simulation. (As will be shown
later, even for this ‘easier’ case, we barely reach fully resolved results, and thus a
DNS at the exact experiment condition will be exceedingly expensive for currently
available computer power.) Therefore, the fluid properties and injection conditions
here are not chosen to match any realistic fuel injection condition. A larger gas
density is adopted here so that the liquid-to-gas density ratio is equal to 20. The
gas viscosity is chosen here so that kinematic viscosity for the two phases are the
same. The dynamic pressure ratio M has been shown to be the primary parameter
determining the macroscale behaviour of a two-phase mixing layer (Lasheras &
Hopfinger 2000) and whether the interfacial instability is absolute or convective (Otto
et al. 2013; Fuster et al. 2013). To place the interfacial instability in the absolute
instability regime, a large gas-to-liquid dynamic pressure ratio is needed, and in the
present study M is taken to be 20. Since the liquid-to-gas density ratio r and viscosity
ratio m are all equal to 20, we referred to this case of atomization in a two-phase
mixing layer as the ‘A20’ case.

The gas vorticity layer thickness δg is the characteristic length scale for the
interfacial instability (Eggers & Villermaux 2008; Matas et al. 2011). The vorticity
layer thickness δg varies with gas properties and injection conditions, and thus a
precise value of δg is generally unknown a priori. In the experiment by Fuster et al.
(2013), the injected air is at standard condition and an empirical correlation of δg
was given as a function of the Reynolds number of the gas stream, Reg,H , which is
defined as

Reg,H =
ρgUgHg

µg
. (2.11)

For the present simulation, the gas properties and injection condition are different;
therefore, the empirical correlation of Fuster et al. (2013) is not applicable. The
vorticity layer thickness in the present simulation is an independent parameter and
the value used in the present stimulation is chosen as δg/Hl = 1/8 (or δg/ly = 4).

The effect of δg (and δl) on the development of interfacial instability has been
discussed extensively by Fuster et al. (2013) through 2D simulations. To investigate
the influence of δg on the interfacial wave breakup and the multiphase turbulence,
simulations have to be extended to three dimensions. A parametric study of δg with
3D simulations is interesting yet out of the scope of the present work.

The separator plate thickness ly can have a significant impact on the interfacial
instability if it is larger than or comparable with δg (Fuster et al. 2013). When ly/δg is
sufficiently small, then the effect of ly/δg becomes negligible. Here, we chose ly/δg=

1/4, which is significantly smaller than the threshold value of ly/δg=1 given by Fuster
et al. (2013) and thus the specific value of ly is immaterial to the results presented
here.
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Run ∆ (µm) Hl/∆ No. of cells No. of cores Total core-hrs

M0 25 32 8.39× 106 32 ∼ 3× 103

M1 12.5 64 6.71× 107 256 ∼ 5× 104

M2 6.25 128 5.37× 108 2048 ∼ 1× 106

M3 3.125 256 4.29× 109 16384 ∼ 14× 106

TABLE 3. Summary of simulation runs.

The Reynolds and Weber numbers of the gas stream based on the vorticity layer
thickness at the inlet δg, namely,

Reg,δ =
ρgUgδg

µg
, (2.12)

Weg,δ =
ρgU2

gδg

σ
, (2.13)

are also key dimensionless parameters for the interfacial instability (Otto et al. 2013).

2.3.4. Mesh resolution and time step
The fields are discretized using a fixed regular cubic grid (with cell size ∆).

Simulations are performed on four meshes referred to as M0, M1, M2 and M3, so
that Mn has Hl/∆ = 32 × 2n points in the liquid stream layer Hl; see table 3. The
time step in the simulation for each mesh is computed based on time step restrictions
for the convection term (the Courant–Friedrichs–Lewy (CFL) condition), the diffusion
term and the surface tension term,

1t 61tconv =
θ∆

umax
, (2.14)

1t 61tvisc =
∆2

6ν
, (2.15)

1t 61tsurf =

√
(ρg + ρl)∆3

πσ
, (2.16)

where θ is the CFL number.
For the M3 mesh, ∆= 3.15× 10−6 m, 1tconv= 1.27× 10−7 s (assuming umax=Ug=

10 m s−1 and θ =0.4), 1tvisc=1.63×10−6, and 1tsurf =4.52×10−7 s. As can be seen
here the convection time step restriction is the most demanding and as a result dictates
the time step in the simulation. The small time step given by the CFL condition is
due to the large gas injection velocity. In the simulation, the CFL number θ is taken
to be 0.4 in general. To confirm the simulation results are independent of time step,
smaller θ such as 0.2 has also been used and it is confirmed that the time step is
sufficiently small.

The domain is initially filled with stationary gas (at t= 0) and then liquid and gas
streams progressively enter it. It takes a time period of about tUg/Hl ≈ 200 for the
flow to reach a statistically steady state. The transient process has been shown in
previous works (Ling et al. 2017). For the M0, M1 and M2 meshes, the simulations
all start from t= 0 and end at about tUg/Hl= 1000, 880 and 650, respectively. For the
M3 mesh, the simulation was performed using 4.29× 109 cells and 16 384 processors.
Owing to the high computational cost for the M3 simulation, the simulation starts
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from a checkpoint of the M2 simulation at about tUg/Hl= 200, and is continued only
up to about tUg/Hl = 450.

The M3 simulations are split into multiple runs, which are conducted on
the supercomputers CINECA-FERMI in Italy, LRZ-superMUC in Germany and
TGCC-CURIE in France. The M0, M1 and M2 simulations are all performed on
TGCC-CURIE. The total simulation time for all four meshes is over 15 × 106 CPU
core-hours. The results presented correspond to the M3 mesh, unless stated otherwise.

The results of grid and statistical convergence studies, namely evaluating the effects
of the mesh resolution and the averaging time on the present results, are shown in the
appendices A and B.

3. Results
3.1. General behaviour

When the two streams are injected into the domain, both of them are laminar and
the gas–liquid interface is perfectly flat. As the two streams meet at the downstream
end of the separator plate, the velocity difference between the two streams introduces
a shear on the interface, which then triggers a Kelvin–Helmholtz instability. As a
response of this shear-induced instability, an interfacial wave is formed as shown
in the right column of figure 2. The shape of the wave at early stage is mainly
influenced by the density ratio, as explained by Hoepffner et al. (2011). The wave
propagates downstream with the Dimotakis velocity (1.1), which is in between the gas
and liquid injection velocities (see the right column of figure 2). This is consistent
with experiments by Raynal (1997), Hoepffner et al. (2011) and Jerome et al. (2013).
The amplitude of the wave grows in time. At a certain stage the wave amplitude
becomes comparable with the gas stream thickness, and the interaction between the
interfacial wave and the gas stream becomes strong. The interaction causes the liquid
sheet pulled from the wave crest to roll and to flap and eventually the liquid sheet
breaks violently.

At the same time, instability also develops at the gas stream vorticity layer near
the interface due to the shear. Owing to the lower velocity of the liquid stream,
the gas–liquid interface is seen as a deformable and wavy wall by the gas stream.
The evolution of vortical structures near the interface is visualized by the λ2 criterion
(Jeong & Hussain 1995). To distinguish the vortex rotation direction, the λ2 iso-surface
is coloured by the z-component of the vorticity. As a result, the red and blue
vortices are aligned with the z direction and rotate counter-clockwise and clockwise,
respectively. On the other hand, vortices with green colour are aligned with the
stream direction. A 3D snapshot of the vortical structure is shown in figure 3. It
can be observed that the vortical structures upstream of the interfacial wave are
quite similar to those in a turbulent boundary layer (Wu & Moin 2009). The laminar
vorticity layer transitions to turbulence and hairpin vortices are clearly seen near the
transition region. As the amplitude of the interfacial wave becomes large and acts as
an obstacle to the gas flow, the flow separates at the downstream face of the wave,
forming a turbulent wake. As a result, the interfacial wave is immersed in these
complex turbulent vortices and the stretching and breaking of the wave take place in
a fully 3D chaotic manner.

3.2. Statistics of multiphase turbulence
3.2.1. Reynolds averaging and the mean flow

The mean flow for the present problem is 2D (x–y), so averaging of quantities
obtained from the DNS is conducted both temporally and spatially in the z direction.
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5.0
2.5
0
-2.5
-5.0

(÷ 104)
Var: vorticity-z

t

2D vortex tubes
in gas–gas mixing layer

Interfacial wave
breaking

x ¬

y

z

tUg/Hl = 345

tUg/Hl = 342.5

tUg/Hl = 340

tUg/Hl = 337.5

x ¡ Ult x ¡ UD t x ¡ Ugt

tUg/Hl = 335

tUg/Hl = 332.5

tUg/Hl = 330

FIGURE 2. (Colour online) Development of interfacial waves and coherent vortical
structures. (See the supplementary movie available at https://doi.org/10.1017/jfm.2018.825.)

The time and spatial (in z direction) averaging operator () is defined as

u(x, y)≡
1

t1 − t0

1
Lz

∫ t1

t0

∫ Lz

0
u(x, y, z, t) dz dt, (3.1)

where t0 and t1 are the starting and ending time for averaging. In the present study,
t0Ug/Hl = 200 when the statistically steady state is reached, and t1 is the end time
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Turbulent
wake

Turbulent
boundary

layer

Hairpin
vortices

Wave-vortex
interaction

Pseudocolour
Var: vorticity-z

5.0

2.5

0

-2.5

-5.0
Max: 1.1610 ÷ 106

Min: -2.077 ÷ 106

(÷ 104)

FIGURE 3. (Colour online) A snapshot of the vortical structures near the interface.
Vortices are visualized by the λ2 criterion. The colour on the λ2 iso-surfaces represents
the z-component of vorticity.

of the computation. The mean quantities are time-independent if t1 is sufficiently
large.

The average liquid volume fraction and the streamwise velocity are shown in
figure 4. The contour line in figure 4 corresponds to c = 0.5, which can be viewed
as the ‘average’ boundary of the unbroken liquid stream. The streamwise evolutions
of the profiles of c and u are shown in figure 5.

The fluctuation deviating from the average quantity is given as

u′ = u− u, (3.2)
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FIGURE 4. (Colour online) Average (a) liquid volume fraction and (b) u-velocity. The
black curve corresponds to c = 0.5. The orange rectangle near the inlet represents the
separator plate.
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FIGURE 5. (Colour online) Mean flow profiles for (a) c and (b) u at different streamwise
locations.

which is denoted by a prime ′. Conventionally, the Reynolds stress tensor divided by
density (or often simply referred to as Reynolds stress (Pope 2000)) is expressed as
the velocity covariances,

τRA/ρ = u′iu′j, (3.3)

where the subscript RA represent Reynolds averaging. The results for u′iu′j are shown
in figure 6. It can be observed that the maximum magnitude of u′u′/U2

g is about 0.12,
which is much larger than those of other components.

It should be noted that, the Reynolds stress tensor expression given in (3.3) is
strictly valid only for single-phase incompressible flows. For the present problem that
involves two fluids of different density, the Reynolds stress tensor based on Favre
averaging will better characterize the turbulent two-phase flows, discussed in the
following section.

3.2.2. Favre averaging and averaged momentum equation
For the present problem, the density at a given location may exhibit temporal

fluctuations, although the density in each phase remains constant. The density

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.825


284 Y. Ling, D. Fuster, G. Tryggvason and S. Zaleski

y/
H

l

2 4 6 8 10
x/Hl

12 14

7
6
5
4
3
2
1

2 4 6 8 10
x/Hl

12 14

7
6
5
4
3
2
1

y/
H

l

2 4 6 8 10 12 14

u�u�/U2
g7

6
5
4
3
2
1

2 4 6 8 10 12 14

7
6
5
4
3
2
1

(a) (b)

(c) (d) 0.03000
0.01500

0

-0.01500

-0.03000

0.06000
0.04500

0.03000

0.01500

0

0.12000
0.09000

0.06000

0.03000

0

0.020000
0.015000

0.010000

0.005000

0

w�w�/U2
g

√�√�/U2
g

u�√�/U2
g

FIGURE 6. (Colour online) Reynolds stresses (divided by density) for Reynolds averaging.
The black curve corresponds to c= 0.5. The orange rectangle near the inlet represents the
separator plate.

fluctuations are due to the unsteady motion of the gas–liquid interface and, thus, are
generally strong near the gas–liquid interface. As a result, the average density ρ varies
spatially. For turbulent flows with variable density, such as compressible turbulent
flows (Huang, Coleman & Bradshaw 1995), the Favre-averaging (density-weighted-
averaging) technique is commonly employed to develop the averaged equations. The
Favre averaging or decomposition have also been applied to gas–liquid flow for
turbulence statistics analysis and model development (Vallet, Burluka & Borghi 2001;
Demoulin et al. 2007; Mortazavi et al. 2016).

The Favre-averaging operator (̃) is defined as

ũ= ρu/ρ, (3.4)

and the fluctuation away from the Favre-averaged quantity can be expressed as

u′′ = u− ũ, (3.5)

which is denoted by a double prime ′′. It can be easily shown that ũ= ũ and u′′=u− ũ.
The two-dimensional averaged momentum equation can be written as

∂ρũiũj

∂xj
=−

∂p
∂xi
+

∂

∂xj

[
µ

(
∂ui

∂xj
+
∂uj

∂xi

)]
+ fs,i +

∂τij

∂xj
, (3.6)

where τij is the Reynolds stress tensor

τij =−ρũ′′i u′′j . (3.7)

In two-phase flows with a sharp interface, the viscosity can be expressed in terms
of the Heaviside function as

µ=µlH +µg(1−H), (3.8)
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where H= 1 and 0 in liquid and gas, respectively. The volume fraction function c in
VOF methods is identical to H in cells with either liquid or gas; while for cells with
an interface, c is the integral of H divided by the cell volume. The viscosity computed
by (2.6) is exact in cells with only liquid or gas and is a numerical approximation in
cells with an interface. As a result, the average viscosity µ can be related to c as

µ= (µl −µg)c+µg, (3.9)

and it can be easily shown that

µu
µ
=
(µl/µg − 1)cu+ u
(µl/µg − 1)c+ 1

. (3.10)

Similarly, for the average density, we have

ρ = (ρl − ρg)c+ ρg, (3.11)
ρu
ρ
=
(ρl/ρg − 1)cu+ u
(ρl/ρg − 1)c+ 1

. (3.12)

In the present study, ρl/ρg =µl/µg, thus

µu
µ
=
ρu
ρ
≡ ũ, (3.13)

and (3.6) can be simplified as

∂ρũiũj

∂xj
=−

∂p
∂xi
+

∂

∂xj

[
µ

(
∂̃ui

∂xj
+
∂̃uj

∂xi

)]
+ f s,i +

∂τij

∂xj
. (3.14)

The Reynolds stress tensor can be computed by

ρũ′′i u′′j = ρuiuj − ρũiũj, (3.15)

which involves third-order statistics.
It can be observed from the comparison between figures 6 and 7 that, all the four

components of Reynolds stress tensors from Favre averaging, ũ′′i u′′j , are quite similar
to those from Reynolds averaging, u′iu′j. The discrepancy between the Reynolds- and
Favre-averaged quantities is mainly located in the gas–liquid mixing layer (y/Hl ∼ 1),
particularly in the region where the interfacial waves form and grow (4< x/Hl < 8).
Above the contour line of c=0.5, the magnitudes of ũ′′i u′′j are shown to be much lower
than those of u′iu′j. The unsteady motion of the gas–liquid interface and the substantial
difference in turbulence intensity in the gas and liquid streams (the liquid stream
remains laminar) have a strong impact on Reynolds stresses near the interface. As in
the present problem, the liquid density is significantly larger than the gas density, the
mass-weighted (Favre-)averaged properties (such as Reynolds stresses) are weighted
toward the liquid properties. Since the velocity fluctuations in the liquid stream are
much weaker than those in the gas flow, the magnitudes of ũ′′i u′′j become smaller than
u′iu′j in the gas–liquid mixing layer. As there is no density fluctuations in the gas–gas
mixing layer in general (except when the interfacial wave occasionally invades into
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FIGURE 7. (Colour online) Reynolds stresses (divided by density) for Favre averaging.
The black curve corresponds to c= 0.5. The orange rectangle near the inlet represents the
separator plate.

the gas–gas mixing layer), the difference between the results from Reynolds and Favre
averaging is generally small.

As shown in (3.6) that the Favre-averaging technique allows one to write the mean
flow momentum equation without including density fluctuations. This is an important
useful feature for two-phase turbulence modelling as already shown by Vallet et al.
(2001). A more detailed analysis and modelling of Favre-averaged Reynolds stress
tensor are of interest, yet which is out of the scope of the present work.

3.2.3. Turbulent kinetic energy budget
The equation for the kinetic energy of the instantaneous flow can be obtained by

multiplying the momentum equation (2.1) by ui, giving

∂ρ 1
2 uiui

∂t
+
∂ρuj

1
2 uiui

∂xj
= −

∂p
∂xi

ui +
∂

∂xj

[
µui

(
∂ui

∂xj
+
∂uj

∂xi

)]
−µ

(
∂ui

∂xj
+
∂uj

∂xi

)
∂ui

∂xj
+ fs,iui, (3.16)

where uiui/2 is the kinetic energy per unit mass. (Hereafter, we simply refer kinetic
energy per unit mass as ‘kinetic energy’ unless otherwise specified.)

Similarly, we can obtain the equation for the kinetic energy of the mean flow by
multiplying the mean momentum equation (3.6) by ũi,

∂ρũj
1
2 ũiũi

∂xj
= −

∂p
∂xi

ũi +
∂

∂xj

[
µũi

(
∂ ũi

∂xj
+
∂ ũj

∂xi

)]
−µ

(
∂ ũi

∂xj
+
∂ ũj

∂xi

)
∂ ũi

∂xj
+ f s,iũi +

∂τijũi

∂xj
− τij

∂ ũi

∂xj
. (3.17)
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The turbulent kinetic energy (TKE), k, is defined as

k= ũ′′i u′′i /2 (3.18)

and is equal to the trace of the tensor ũ′′i u′′j , the components of which are already
shown in figure 7.

The equation for TKE can be obtained by subtracting (3.17) from the averaged
(3.16),

0 = −
∂ρũjk
∂xj
−
∂p′

∂xi
u′′i −

∂ 1
2ρ

˜(u′′j u′′i u′′i )
∂xj

+
∂

∂xj

µu′′i

(
∂u′′i
∂xj
+
∂u′′j
∂xi

):
−µ

(
∂u′′i
∂xj
+
∂u′′j
∂xi

)
∂u′′i
∂xj

:
− τij

∂ ũi

∂xj
+ f ′s,iu′′i . (3.19)

Similar TKE equations have also been presented by Vallet et al. (2001) and Mortazavi
et al. (2016). The terms on the right-hand side are advection, pressure diffusion,
turbulent diffusion, viscous diffusion, dissipation, production and surface-tension-
induced diffusion, respectively. The profiles of these terms at different streamwise
locations are shown in figure 8. The magnitudes of all the terms generally decrease
when the sampling location moves downstream. The downstream results are more
noisy (which may be due to the fact that the averaging time is still not long enough),
but their contribution to the overall turbulence statistics is relatively small.

The TKE budget terms can be further averaged over the domain height Ly to obtain
a 1D distribution of TKE budget along the streamwise direction as shown in figure 9.
Owing to the existence of a large number of droplets, the term due to surface tension
is generally very noisy, in particular in the downstream region where interfacial waves
break into droplets, see figure 9(b). The pressure-diffusion term in (3.19) includes
two contributions: the pressure fluctuations due to turbulent motion and those due to
surface tension at the interface. Similar to the surface-tension term in TKE budget,
the pressure diffusion also exhibits significant fluctuations (similar magnitude but with
an opposite sign) downstream. Note that these fluctuations are mainly induced by the
Laplace pressure at droplet interfaces instead of turbulence. To identify the pressure
diffusion of TKE only related to turbulent flow motion, we plot the pressure diffusion
without the contribution of surface tension (namely taking away the Laplace pressure
from the total pressure), as shown in figure 9(a), the profile of which is seen to be
much smoother. Furthermore, since the pressure fluctuation due to the contribution of
Laplace pressure is present as long as there are interfaces. Even in the region with
smooth interfaces without droplets (such as, e.g., 3< x/Hl < 6), the reduction of the
magnitude of the pressure diffusion by removing the contribution of Laplace pressure
is also profound.

As the TKE budget terms involve high-order statistics, it is more difficult to obtain
converged solutions. Results for the 1D TKE budget obtained from different meshes
are shown figure 9(c). The magnitudes of the advection and the production terms
are generally significantly larger than the other three terms, so three separate figures
(see figure 9d–f ) are plotted to show the effect of mesh resolution on the dissipation,
the pressure diffusion and the turbulent diffusion terms. It can be observed that the
dissipation and the pressure terms are more sensitive to the mesh resolution than
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FIGURE 8. (Colour online) TKE budget at different streamwise locations. The TKE
terms in (3.19) are normalized by ρgU3

g/Hl.

other terms. In particular, minimum dissipation decreases from about −0.0005 to
−0.0016 when the mesh is refined from M0 to M2. The M2 and M3 results for
the dissipation agree quite well. Similar observation can be made for the pressure
term. While the cell size decreases from M0 to M2, the pressure diffusion increases
substantially. The results of the M2 and M3 are similar, although due to the noise
in the M3 results the agreement is not as good as for the dissipation. The generally
good agreement between the M2 and M3 results of high-order turbulence statistics
indicates that the M3 mesh is adequate to resolve the turbulence in the present
problem. (Further evidence for this conclusion is to be given later based on the
enstrophy calculation and the estimated Kolmogorov scale.)

It can be observed from figure 8(a) that, near the inlet at x/Hl= 4, TKE production
in the gas–liquid mixing layer is much stronger than the gas–gas counterpart. This
is consistent with previous observations in figure 2 that the two-phase mixing layer
is more unstable and transits to turbulence earlier. When moving downstream, the
interfacial wave grows and vortices generated on the wave interact with the gas–gas
mixing layer, accelerating its transition to turbulence. At x/Hl= 6, the gas–gas mixing
layer produces TKE comparable with the gas–liquid counterpart. The TKE for both
mixing layers are diffused effectively and at x/Hl = 8, the two mixing layers merge
together although the results are somehow noisy. A smoother representation of the
TKE budget at the downstream region would require a long averaging time, which
in turn can be achieved by running the simulation for a much longer time. A longer
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FIGURE 9. (Colour online) One-dimensional TKE budget along the streamwise direction.
The TKE terms in (3.19) are normalized by ρgU3

g/Hl and averaged over domain height
Ly. (a,b) TKE budget with and without the Laplace pressure contribution subtracted from
the pressure diffusion term, respectively. (c) TKE budget computed with different mesh
resolutions. (d–f ) Closeups of the dissipation, pressure, and turbulent diffusion terms
shown in (c).

simulation with M3 mesh is beyond the current resources available to us and will be
relegated to future works.

3.2.4. Turbulence dissipation
The distribution of the turbulence dissipation, denoted as ε, for the different

meshes is shown in figure 10. The results for different mesh resolutions are plotted
with the same legend. (Further results of grid refinement studies can be found in
the appendix A, see figure 19d.) It is clear that a fine mesh is required to capture
the dissipation. While the M0 and M1 meshes underpredict turbulence dissipation,
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FIGURE 10. (Colour online) Distribution of TKE dissipation for different mesh resolutions.
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FIGURE 11. (Colour online) Profiles of TKE dissipation along the lines (a) y/Hl= 1 and
(b) x/Hl = 4, 6, 8 and 10.

the M2 and M3 meshes yield similar results. The turbulence dissipation is generally
located at the gas–liquid mixing layer. In the region of where the dissipation is larger
(i.e., 4< x/Hl< 6), there remains a small discrepancy between the M2 and M3 results.
More results for grid-refinement studies are shown in figure 19 in appendix A. The
difference between the M2 and M3 results are obviously much smaller than that
between the M1 and M2 results. Therefore, although it would require a mesh finer
than M3 (such as M4) to fully confirm grid independence, we believe the M3 results
of dissipation presented in figure 10(a) are not far from the grid-converged solution.

The profiles of ε along the lines y/Hl = 1 and x/Hl = 4, 6 and 8 are plotted
in figure 11. As shown in figure 11(a) the magnitude of turbulence dissipation
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starts to increase at about x/Hl = 2 where the interfacial wave starts to develop
and the laminar vorticity layer transits to turbulence. The dissipation grows along
x as turbulence develops and reaches a maximum of about εmax/(ρgU3

g/Hl) = −0.01
at about x/Hl = 5.5. After that, ε decreases gradually. Near the outlet x/Hl = 14.5,
ε/(ρgU3

g/Hl) = −0.002. From figure 11(b) it is seen that the distribution of ε is
initially similar to a Gaussian profile and symmetric about the line y/Hl = 1. As the
gas–liquid mixing layer develops, the profile of ε expands in the y direction and
loses its symmetry owing to the influence of the bottom wall. The bottom boundary
of the non-zero ε region is aligned with the contour line c= 0.5. The top boundary,
e.g. defined as ε= 20 %εmax, is about a straight line with the slope dy/dx= 0.25. This
expansion with a constant slope ends at about x/Hl = 8, where the interfacial wave
amplitude becomes comparable with the stream thickness and the two mixing layers
merge. Then the distribution of ε becomes more uniform within the two merged
mixing layers (0< y/Hl < 2) as shown in figures 10(a) and 11(b).

When details of the turbulent flow are unknown, a simple estimate of ε is often
made based on the integral velocity U0 and length scale l0 as

|ε|

ρg
≈

U3
0

l0
. (3.20)

If we take U0 = UD and l0 = Hl, then |ε|/(ρgU3
g/Hl) ≈ U3

D/U
3
g . For the current

problem with larger M and ρl/ρg, the Dimotakis speed can be approximated as
UD ≈ Ug

√
(ρg/ρl), then |ε|/(ρgU3

g/Hl) ≈ U3
D/U

3
g ≈ (ρg/ρl)

3/2
= 0.011, which is close

to the maximum magnitude of dissipation obtained in simulation (see figure 11). It
can be also proved that, if the gas inflow velocity Ug is used as U0, the ε will be
significantly overestimated if Hl remains to be used as the length scale. This seems
to indicate that the interfacial wave advection speed UD is better than the inflow gas
stream velocity Ug in characterizing the integral scale of the turbulent flow motion.

3.2.5. Estimates of Kolmogorov and Hinze scales
With ε obtained above, we can estimate the Kolmogorov length scale in the gas–

liquid mixing layer. The expression of the Kolmogorov length scale is given as

η=

(
ν3

g

ε/ρg

)1/4

. (3.21)

It is shown in figure 11(a) that the maximum value of ε/(ρgU3
g/Hl) is about 0.01.

Then the corresponding Kolmogorov length scale is about 3.0 µm (η/Hl = 0.0038).
In the downstream region of the gas–liquid mixing layer, ε/(ρgU3

g/Hl) decreases to
about 0.002, for which η≈ 4.5 µm (η/Hl= 0.0056). According to the DNS resolution
criterion given by Pope (2000), the smallest turbulent scales will be well resolved if

∆

η
. 2.1. (3.22)

The cell size for the M3 mesh, ∆M3 = 3.125 µm, clearly satisfies the criterion. Even
the M2 mesh cell size is close to the required resolution. This is consistent with
the observation that the M2 and M3 meshes yield similar results for dissipation
(see figure 19d) and confirms that the M3 mesh is adequate to provide a resolved
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simulation of the present problem and the multiphase turbulence statistics presented
above are grid-independent.

Based on a scaling argument focusing on the balance between the inertia force due
to turbulent motion and the surface tension, the maximum stable droplet diameter for
the droplet size was proposed by Kolmogorov (1949) and Hinze (1955) as

ηH =C
(
σ

ρg

)3/5 (
ε

ρg

)−2/5

, (3.23)

where C ≈ 0.725 is a constant and ηH is often referred to as the Hinze scale. For
droplets/bubbles larger than ηH , the surface tension will not be sufficient to balance the
dynamic pressure fluctuations and these droplet/bubbles will break into smaller ones.
Therefore, the Hinze scale indicates the smallest droplet size which can exist in a
turbulent flow.

Similar to the Kolmogorov scale, we can also estimate the Hinze scale in the present
problem with the turbulence dissipation obtained in simulation. For ε/(ρgU3

g/Hl) =

0.01, ηH ≈ 264 µm; for ε/(ρgU3
g/Hl)= 0.002 at the downstream mixing layer, ηH ≈

502 µm.
The size distribution of droplets has been shown in our previous studies (Ling et al.

2017) and it was found that the majority of droplets generated in the mixing layer
are significantly smaller than ηH obtained above. (The measured mean volume-based
diameter is about 50 µm, see figure 13(c) in the work by Ling et al. (2017).)
Therefore, the Hinze scale does not well represent the size of droplets formed in the
present problem.

The maximum stable droplet diameter from the Kolmogorov–Hinze theory assumes
that the breakup of a large droplet is mainly dictated by the turbulent velocity
fluctuation over a length comparable with the droplet diameter. Therefore, it is a good
estimate of the droplet size when turbulence is responsible for breaking bulk liquids
into small droplets. The disagreement between the Hinze scale and the droplet size
in the present problem seems to indicate that, although the breakups of liquid sheets
and ligaments are surrounded by turbulent vortices, the turbulent velocity fluctuations
are not the dominant breakup mechanism and do not dictate the size of the droplets
formed. During the disintegration of a ligament or a liquid sheet, droplets much
smaller than the smallest wave length are observed. The satellite droplets generated
from a ligament breakup, for example, are significantly smaller than the main droplets
which are of the scale of the ligament diameter. If the generated small droplets were
contained in a finite region and would coalesce, the size may experience a reverse
cascade back to the Hinze scale. Nevertheless, in the present problem, the droplets
are rapidly convected and dispersed downstream and coalescence is rarely observed.
Therefore, the Hinze scale is not a relevant length scale in describing the smallest
droplet size formed in the two-phase mixing layer.

3.2.6. Energy spectra
The temporal velocity spectra at different streamwise locations of the gas–liquid

mixing layer are shown in figure 12. The purpose of showing the velocity spectra
is to examine whether the inertial subrange can be identified, which in turn can show
whether the turbulence at different streamwise locations is in equilibrium. The spectra
of the u′ and v′ fluctuations do not show a clear range with the −5/3 slope. The −5/3
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FIGURE 13. (Colour online) Velocity spectra at different streamwise locations.

slope can be better discerned from the spectrum of w′, namely the velocity fluctuations
in the homogeneous direction. The difficulty in identifying the inertial subrange is
most likely due to the moderate Reynolds number in the present problem, for which
the width of the inertial range is not very large. Further than that, the results shown
in figure 12 are from temporal data for a given spatial location and are, thus, quite
noisy, making the identification of the inertial subrange somewhat tentative.

To better show the velocity spectra, we plot the spatial velocity spectra in the
z direction at different streamwise locations in figure 13. To reduce the noise, the
spectra are averaged in time. Then the inertial subrange with a −5/3 power law
is more clearly revealed in all three velocity components between k/Hl = 0 and
1. The lower bound wavenumber is dictated by the domain width Lz/Hl = 2. The
inertial subrange seems to be more clear and wider when the sampling location
moves downstream. This seems to indicate that the turbulence at the upstream
location (x/Hl = 4) is out of equilibrium, which in turn is due to the strong
wave–turbulence interaction in the upstream region as shown in figure 2. After the
wave breaks downstream, the turbulence equilibrates and the inertial subrange is better
established.

3.3. Interfacial instability regime and dominant frequency

Following the analysis of Otto et al. (2013), we solve the Orr–Sommerfeld equations
to investigate the viscous spatio-temporal instability of the two-phase mixing layer.
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The details of the approach can be found in their paper (Otto et al. 2013) and thus
are not repeated. Here only the essential steps are briefly summarized for clarity.

The base flow is 2D and the streamwise velocity profile is taken as

ug(y−Hl)=−Ul erf
(

y−Hl

δl

)
+Us

[
1+ erf

(
y−Hl

δd

)]
, y<Hl, (3.24)

ul(y−Hl)=−Ug erf
(

y−Hl

δg

)
+Us

[
1− erf

(
y−Hl

δd

)]
, y>Hl, (3.25)

where Us is the interface velocity obtained from continuity of shear stresses across
the interface as

Us

Ua
=
δl/δg(1+M)+m(1−M)

1+m
δd

δg
, (3.26)

where M = (Ug − Ul)/(Ug + Ul), m = µl/µg and Ua = (Ug + Ul)/2. The parameter
δd is an adjusting parameter to mimic the velocity deficit behind the separator plate.
Numerical simulations and experimental data reported by Fuster et al. (2013) have
confirmed that this velocity deficit is important to capture the correct transition from
convective to absolute instability.

The model base flow profiles used in stability analysis for different δd are shown
in figure 14, which also includes the mean streamwise velocity profile at x/Hl= 0.75
in the present simulation for comparison.

The perturbation about the base flow is given in the form of streamfunction ψ and
takes the form of normal modes

ψg,l(x, y, t)= φ(y)g,l exp(iαx−ωt). (3.27)
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Then the Orr–Sommerfeld equations for the φg(y) and φl(y) are expressed as[
(−iω̌+ iα̌Ǔl)

(
∂2

∂ y̌2
− α̌2

)
−

m
r Rea,δ

(
∂2

∂ y̌2
− α̌2

)2

− iα̌Ǔ′′l

]
φ̌l = 0, y<Hl, (3.28)[

(−iω̌+ iα̌Ǔg)

(
∂2

∂ y̌2
− α̌2

)
−

1
Rea,δ

(
∂2

∂ y̌2
− α̌2

)2

− iα̌Ǔ′′g

]
φ̌g = 0, y>Hl, (3.29)

where (̌) denote non-dimensional variables with Ua and δg as typical velocity and
length scales.

The branches of the imaginary part of the complex growth rate ωi are shown in
the complex spatial wavenumber plane (αr–αi plane) in figure 14(b). The method of
Bers (1983) is used to determine the transition from convective to absolute instability.
It is observed that the two branches for ωiδg/Ua = 0.04 reconnect at a saddle point
(αrδg = 0.5 and αiδg = −0.3). The value of ωr corresponding to the saddle point is
the dominant angular frequency emerging in the flow field. The dominant frequency,
f0, can be calculated as f0 = ωr/2π. The values obtained from the theory range from
ωrδg/Ua≈ 0.09 to 0.1 ( f0Hl/Ug≈ 0.06 to 0.067) for δd/δg= 0.1 to 0.5. Similarly, the
value of −αiδg ≈ 0.3 is the dominant spatial growth rate. The theoretical predictions
of dominant spatial growth rate and frequency are compared with simulation results
in figure 15.

In the simulations, the mixing layer thickness here is estimated as Hl − yc, where
yc is the mean interfacial height corresponding to c = 0.5. The spatial growth of
the mixing layer thickness is shown in figure 15(a) for different meshes. It should
be noted that along the streamwise direction, Hl − yc is first negative and then
becomes positive (see figure 4a). Since Hl − yc is plotted on a logarithmic scale in
figure 15(a), the results for negative Hl − yc (for (x− lx)/δg . 9) will not be shown.
Strictly speaking, Hl − yc serves as a good measure of the mixing layer thickness
only when the value is not too small, i.e., log[(Hl − yc)/δg]>−2. The rapid growth
in the region 8 . (x − lx)/δg . 11 is due to the artefact that Hl − yc transits from
negative to positive values.

It is observed that all the M1 to M3 curves superpose for (x − lx)/δg & 12. An
exponential spatial growth can be identified in the region 11< (x− lx)/δg < 16. The
exponential growth rates for the M1 to M3 meshes are quite similar. These rates agree
very well with the theoretical predicted value −αi = 0.3/δg. The exponential growth
region for the M2 mesh is wider than that for the M3 mesh, which may be due to
the fact that the M3 simulation has only been run for a relatively short time and
there remain spatial fluctuations in yc (see figure 4). After that region, a more gradual
nonlinear growth is seen. The linear stability theory is valid only when the amplitude
of the interfacial wave and the perturbation caused by the wave to the gas stream
remain small. As the interfacial wave grows and propagates downstream, the nonlinear
effect will eventually become important (such as for log[(Hl− yc)/δg]&−0.5) and the
simulation results will deviate from the linear theory. The fact that the exponential
growth appears only in an intermediate region has also been observed in experiments
(Matas et al. 2011) and simulations (Agbaglah et al. 2017).

In the simulations, the dominant frequency for the wave formation is measured
through the spectra of the interfacial height, as shown in figure 15(c). Here the
interfacial height is measured near the nozzle exit (at x/Hl = 0.75) when the wave
amplitude remains small, and A denotes the Fourier transform of the interfacial height.
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FIGURE 15. (Colour online) (a) Spatial growth of the mixing layer thickness measured in
simulations, compared with the exponential growth predicted using the maximum spatial
growth rate. The dominant frequency indicated by the numerical results of (b) the spectra
of the liquid and gas enstrophy over the whole domain and (c) the spectra of the
interfacial height at x/Hl = 0.75, compared with the predicted value by stability analysis.

The dominant frequency is found to be about f0Hl/Ug ≈ 0.05, which is quite close
to the theoretical prediction ( f0Hl/Ug ≈ 0.06 to 0.067). The discrepancy between the
stability theory and simulation results may be due to the fact that the effect of finite
stream thickness has not been considered in the stability analysis, see Matas (2015).
Since the interfacial wave propagates with UD, the wavelength can be estimated as
λ= UD/f0 ≈ 4.5Hl. The wavelength estimated here is consistent with the observation
in figure 2. The most unstable wavelength λ is significantly larger than the liquid
stream thickness at the inlet Hl.

The dominant frequency (or period) is also observed in the temporal evolution and
spectra of the liquid and gas enstrophy, see figures 16 and 15(b). The liquid and gas
enstrophy are computed by integration over the whole domain as

Ωl =
1
2

∫ Lx

0

∫ Ly

0

∫ Lz

0
cζiζi dx dy dz, (3.30)

Ωg =
1
2

∫ Lx

0

∫ Ly

0

∫ Lz

0
(1− c)ζiζi dx dy dz, (3.31)

where ζi is the vorticity. The dominant wave period is about 27Hl/Ug and is the
inverse of the dominant frequency obtained from figure 15, which is about fHl/Ug ≈

0.04. The dominant frequency in enstrophy spectra is quite close to the dominant
wave frequency measured in the simulations and is slightly lower than the theoretical
prediction.

Figure 16(a) also shows the enstrophy evolution for different mesh resolutions. The
observed oscillations in the enstrophy are due to the periodic formation and breakup
of interfacial waves. Both the mean value and the oscillation amplitude increase when
the mesh is refined from M0 to M3, while the dominant oscillation frequencies for
different mesh resolutions are similar. The coarse meshes M0 and M1 significantly
underpredict the enstrophy magnitude. The time-averaged enstrophy is plotted as a
function of grid size in figure 16(b). The average enstrophy increases with number of
cells used to resolve the initial liquid stream thickness, i.e., Hl/∆, until it saturates
at the M3 mesh (Hl/∆ = 256). This again indicates that the finest mesh, M3, is
necessary and close to fully resolving the multiphase turbulence. We need to admit
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FIGURE 16. (Colour online) (a) Temporal evolution of gas enstrophy of the whole domain
and (b) time-averaged liquid and gas enstrophy for different mesh resolutions.

that the average enstrophy still increases about 10 % from the M2 to the M3 mesh.
The discrepancy is consistent to the observation in figure 10. To fully confirm the
grid-independence of the M3 results, a simulation with an even finer mesh is required,
but this will be relegated to future work.

The dominant frequency in the enstrophy spectra as shown in figure 15(b) is an
important observation, since it clearly indicates that the turbulence production follows
the same frequency as the interfacial instability. This is due to the fact that the
formation and growth of the interfacial wave has a strong impact on the turbulence
transition and development, see figures 2 and 3. The interfacial wave behaves as an
obstacle to the gas stream and its interaction with the gas flow generates a large
number of turbulent vortices both upstream and downstream of the interfacial wave.
Therefore, the growth of the interfacial wave enables the kinetic energy transfer from
the gas mean flow to the turbulent fluctuations. On the other hand, the flow remains
laminar within the liquid stream. As a result there is a strong intermittency in the
two-phase mixing layer.

To better illustrate the impact of interfacial wave on turbulence, we plot the
temporal evolution of the root mean square (RMS) of velocity fluctuations along the
z direction for different streamwise locations in figure 17. The averaging operator
over the domain width (Lz) is denoted by (̂), defined as

û(x, y, t)≡
1
Lz

∫ Lz

0
u(x, y, z, t) dz (3.32)

and the fluctuation away from the mean value is given as

u∗ = u− û. (3.33)

Low-frequency fluctuations can be seen in the temporal evolution of (û∗u∗)1/2
measured upstream (x/Hl= 4), see figure 17(a), which are clearly due to the passage
of the interfacial wave. The average liquid volume fraction ĉ is equal to zero most
of the time, except when the interfacial wave passes the sampling location, ĉ jumps
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FIGURE 17. (Colour online) Temporal evolution of (û∗u∗)1/2 (purple solid lines) and c
(green dashed lines) at different streamwise locations.

up to about unity, (ĉ = 1 indicates that the interfacial wave spans over Lz). The
occurrence of spikes in ĉ follows the period of wave formation and agree well with
the dominant frequency predicted by instability theory. During the passage of the
interfacial wave (within the spike), (û∗u∗)1/2 drops to zero; but it jumps up to a large
value after the wave passes. This is due to the turbulent flows developing on the
upstream side of the interfacial wave, see figure 3. Then (û∗u∗)1/2 will continue to
decrease until the arrival of the subsequent wave.

Further downstream (x/Hl = 8 and 12), the wave breaks and the two mixing
layers merge together, the effect of the interfacial instability frequency becomes
less profound and the amplitude of low-frequency fluctuations in (û∗u∗)1/2 becomes
smaller.

The spectra of û∗u∗ and v̂∗v∗ are shown in figure 18. For x/Hl = 4 a dominant
frequency is clearly seen at about fHl/Ug ≈ 0.03–0.04, which agrees reasonably well
with the dominant frequency in the spectra for the interfacial height and enstrophy.
When moving downstream at x/Hl = 10, the spectrum function decreases with
frequency smoothly, entering the inertial regime, but no dominant frequency is
observed.

Figure 18 clearly shows that the integral time scale is dictated by the dominant
frequency (the most unstable mode) in the interfacial instability. The interfacial wave
development is the driving force and feed energy to the resulting turbulent flows
near the interface. This is also consistent with the previous observation that using the
Dimotakis speed as the integral velocity scale in (3.20) better captures the dissipation.

Finally, the spectra drops at about fHl/Ug = 10. With the dissipation measured in
simulation, the Kolmogorov frequency can be estimated,

fη =
(
ε/ρg

νg

)1/2

. (3.34)

For ε/(ρgU3
g/Hl)= 0.01, fηHl/Ug = 8.94, which is close to the value measured above

from the spectra.

4. Conclusions

DNS of a two-phase mixing layer between parallel gas and liquid streams have
been performed. Particular attention has been focused on obtaining high-order statistics
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FIGURE 18. (Colour online) Temporal evolution of RMS of velocity fluctuations at
different streamwise locations.

for the multiphase turbulence arising in the two-phase mixing layer. Extensive grid
refinement studies have been carried out with four different meshes with the number
of cells across the liquid stream thickness varying from 32 to 256. The finest
mesh (M3) consists of about 4 billion cells and has been shown to be necessary and
adequate to resolve the multiphase turbulence, yielding converged high-order statistics.

Owing to the presence of fluids with different densities, the averaged momentum
equation and the TKE transport equation have been developed based on the
Favre-averaging technique. The results for the mean flow, Reynolds stresses and
TKE budget terms have been presented. The turbulence dissipation obtained has
been used to estimate the Kolmogorov and Hinze scales in the present problem.
The estimated Kolmogorov length scale is similar to the resolution of the finest
mesh (M3) used in the present simulation, confirming that the smallest turbulent
eddies are well captured. The Hinze scale is significantly larger than the typical size
of droplets formed in atomization. The chaotic breakups of ligaments and sheets
generate droplets that are much smaller than the most unstable wavelength and the
rapid droplets dispersion leave few opportunities for coalescence, therefore, the Hinze
scale does not seem to well represent droplet size in primary atomization.

Viscous stability analysis has also been performed on the present problem following
the previous works of Fuster et al. (2013) and Otto et al. (2013). The theory predicts
that the instability of the present two-phase mixing layer is absolute, since branches
on the complex wavenumber space reconnect at a ‘pinching’ point. The outcome of
absolute instability is that a dominant frequency will arise. The predicted value agrees
well with the dominant frequency in the spectra of interface motion. The dominant
frequencies in interfacial instability and enstrophy are similar, which indicates that
the interfacial wave development is strongly coupled with the turbulence development.
Temporal evolutions of the RMS of velocity fluctuations for different streamwise
locations are then presented. It is observed that near the inlet, there is a strong
intermittence effect, i.e., RMS of velocity fluctuations drops to zero when a interfacial
wave passes the sampling point and then rises up after the wave passage. The spectra
of velocity fluctuation RMS exhibit a dominant frequency which matches well that
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UD/Ug f0Hl/Ug λ/Hl |εmax|/(ρgU3
g/Hl) η/Hl fηHl/Ug ηH/Hl

0.22 0.05 4.5 0.01 0.0038–0.0056 4.0–8.9 0.33–0.63

TABLE 4. Summary of important results for the two-phase mixing layer.

in the spectra of interfacial motion. The most unstable mode of interfacial instability
dictates the interfacial wave period and also the integral time scale for turbulence.

Finally the important simulation results for the two-phase mixing layer are
summarized in table 4.
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Appendix A. Effect of mesh resolution

The results of grid convergence studies for the multiphase turbulence statistics are
shown in figure 19. Four mesh resolutions are considered in the present study and
the details are listed in table 3. It is seen that all four meshes used here capture the
mean flow properties, including c and u, very well. When it comes to higher-order
statistical terms, such as the Reynolds stress and the turbulence dissipation, then the
M0 and M1 meshes are shown to be insufficient. It can be seen from figure 19(d)
that when the cell size decreases from the M0 to M2 meshes, the magnitude of
the turbulent dissipation increases significantly. In other words, the M0 and M1
meshes significantly underpredict the dissipation. The results for both Reynolds stress
and turbulence dissipation for the M2 and M3 meshes generally agree very well,
indicating that the M3 mesh is adequate to resolve the multiphase turbulence in the
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FIGURE 19. (Colour online) Grid convergence studies for multiphase turbulence statistics.

present problem. The agreement between the M2 and M3 results for the Reynolds
stress component and the dissipation at y/Hl = 1 and 2 is not as good as in other
regions. The discrepancy is more profound for the downstream location (x/Hl = 10).
This is mainly due to the fluctuations in the M3 results. The fluctuations in the M3
results can be further reduced by running the simulation for a longer time. Yet owing
to the extreme computational cost, the longer run can only be left for future work.
In spite of the noise, the current results are sufficient to provide reasonable estimate
of Reynolds stress and turbulent dissipation in the two-phase mixing layer.

Appendix B. Effect of averaging time

The results of statistical convergence study for the multiphase turbulence statistics
are shown in figure 20. Here, three different time durations are used for averaging
in (3.1) where the averaging times T1, T2 and T3 are 43, 77 and 135 Hl/Ug,
respectively. The results clearly show that all three cases well capture the mean flow
properties (c and u). Nevertheless, for higher-order statistics such as the Reynolds
stress downstream and the turbulence dissipation, a longer averaging time is required.
The simulation length T3 seems to yield converged results, although the turbulence
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FIGURE 20. (Colour online) Statistical convergence studies for multiphase turbulence
statistics.

dissipation at downstream location is still somewhat noisy. All the results for the M3
mesh presented in the results section are averaged over T3.

Appendix C. Effect of the domain size

To examine the effect of the domain size, we have also considered two different
domains that are larger than the present set-up: a wider domain (Lx/Hl= 16, Ly/Hl= 8
and Lz/Hl= 8) and a longer and higher domain (Lx/Hl= 24, Ly/Hl= 12 and Lz/Hl=

2). The results of the interfacial instability and the multiphase turbulence statistics
are shown in figures 21 and 22, respectively. The tests are performed with a mesh
resolution equivalent to M1 and the results in figure 22 are plotted with the same
colour scale.

The development of the interfacial instability is characterized by the vorticity layer
thickness (δg) (Matas et al. 2011). The width of the present domain is significantly
larger than δg (Hl/δg = 16) and, thus, is sufficient to capture the dominant frequency
arising from absolute instability. Figure 21 shows the spectra of the gas enstrophy and
the interfacial height for the present and the wider domains, i.e., Lz/Hl= 2 and 8. The
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FIGURE 21. (Colour online) Effect of the domain width (in spanwise direction) on the
spectra of (a) the enstrophy of gas in the domain and (b) the interfacial height at x/Hl=

0.75. The domain width, Lz, is equal to 2Hl and 8Hl for the present and the wider
domains, respectively. The results presented here are for the M1 mesh resolution, i.e.,
Hl/∆= 64.

simulation for the wider domain was run for a shorter time, so the spectra are more
noisy; nevertheless, the results for the two domains generally agree well with each
other. A dominant frequency is observed in both cases and is in reasonable agreement
with the theoretical prediction. The dominant frequency seems to shift slightly to the
right for the wider domain.

As the interfacial wave grows as it propagates downstream, transverse instability
develops and the wave becomes fully 3D (Zandian et al. 2018). Then the domain
constraint in the transverse direction will influence the transverse instability (since the
long-wavelength instability will not be resolved) and later on wave breakup. From
figure 22(a,b) it can be observed that although the results of u and ε for the two
cases generally agree well, there exists a discrepancy in the contour line c, showing
that the unbroken liquid stream is shorter for the case with the wider domain. This
indicates that the downstream dynamics of the two-phase mixing layer would require a
wider domain to avoid any influence of boundary conditions but this is left for future
research.

To avoid generating a recirculation above the parallel streams, we apply a Neumann
boundary condition for the velocity on the top boundary to allow fluid to freely enter
or leave the domain. Accordingly a velocity Dirichlet boundary condition is applied
to the right boundary with the velocity profile specified as (2.7) and (2.10). The
outflow velocity profile given is to mimic the mean flow near the outlet and doest
not represent the exact time-dependent outflow condition. The results of the mean
liquid volume fraction (the black lines indicated c̄= 0.5), the mean velocity and the
turbulence dissipation for the present domain (Lx/Hl = 16, Ly/Hl = 8 and Lz/Hl = 2)
are compared with those for a longer and higher domain (Lx/Hl = 24, Ly/Hl = 12
and Lz/Hl= 2). It can be seen that the results of the present domain in general agree
well with those in the larger domain, except a small region near the outlet.
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FIGURE 22. (Colour online) Comparison of results for different domain size: (a) the
present domain (Lx/Hl= 16, Ly/Hl= 8 and Lz/Hl= 2), (b) the wider domain (Lx/Hl= 16,
Ly/Hl = 8 and Lz/Hl = 8) and (c) the longer and higher domain (Lx/Hl = 24, Ly/Hl = 12
and Lz/Hl= 2). The results presented here are for the M1 mesh resolution, i.e., Hl/∆= 64.
The left and right columns are the mean velocity and the turbulent dissipation, respectively.
The black curve corresponds to c= 0.5. The box with green dashed lines in (c) indicate
the present domain size. The orange rectangle near the inlet represents the separator plate.

Therefore, the important observations made in the results section are thus confirmed
to be not influenced by the domain size and the applied boundary conditions.
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