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REPRESENTATIONS OF IDEALS IN POLISH GROUPS
AND IN BANACH SPACES

PIOTR BORODULIN–NADZIEJA, BARNABÁS FARKAS, AND GRZEGORZ PLEBANEK

Abstract. We investigate ideals of the form {A ⊆ � : ∑n∈A xn is unconditionally convergent} where
(xn)n∈� is a sequence in a Polish group or in a Banach space. If an ideal on � can be seen in this form for
some sequence in X , then we say that it is representable in X .
After numerous examples we show the following theorems: (1) An ideal is representable in a Polish

Abelian group iff it is an analytic P-ideal. (2) An ideal is representable in a Banach space iff it is a
nonpathological analytic P-ideal.
We focus on the family of ideals representable in c0. We characterize this property via the defining

sequence of measures. We prove that the trace of the null ideal, Farah’s ideal, and Tsirelson ideals are not
representable in c0, and that a tall F� P-ideal is representable in c0 iff it is a summable ideal. Also, we
provide an example of a peculiar ideal which is representable in �1 but not in R.
Finally, we summarize some open problems of this topic.

§1. Introduction. Recall that an ideal I on � is summable if it is defined by a
measure, i.e., there is a (mass) function m : � → [0,∞) with ∑

i∈� m(i) = ∞
such that

I ∈ I ⇐⇒
∑
i∈I
m(i) <∞.

In this case, we write I = Im. Summable ideals, together with density ideals, are the
flagship examples of analytic P-ideals on �. However, this class contains also ideals
which are, from the combinatorial viewpoint, very far from summable and density
ideals (see examples in the next section).
In this article, we consider some natural generalizations of summable ideals.
Consider a space X equipped in enough structure to speak about convergence of
series, e.g. a Polish Abelian group or a Banach space. We say that an ideal J on � is
representable in X if there is a function m : � → X such that

I ∈ J ⇐⇒
∑
i∈I
m(i) converges unconditionally in X .
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If X is complete, then the family of sets defined by the right part of the formula
above is an ideal on �.
Particular examples of nonsummable ideals of this form appeared already in [4]

and [20] (so calledTsirelson ideals). We deal ratherwith the general questions:Which
ideals can be represented in (certain) Polish Abelian groups and in (certain) Banach
spaces?
In Section 2 we present a short survey on the basics of analytic P-ideals and on

the related main tools we will need.
In Section 3 we introduce the notion of representations of ideals, and present

some examples of representations of classical analytic P-ideals.
In Section 4 we prove that an ideal is representable in some Polish Abelian group

iff it is an analytic P-ideal; and an ideal is representable in a Banach space iff it is,
additionally, nonpathological.
Recall the theorem due to Solecki which says that each analytic P-ideal can be

defined by using a lower semicontinuous submeasure. Morally, this result says that
each analytic P-ideal is in a sense similar to the density ideals. Indeed, many facts
about the density ideals can be generalized almost automatically by considering
arbitrary submeasures instead of those given by the density functions.
Partially, our research has a similar motivation.We investigate howmuch analytic

P-ideals resemble the summable ideal. Although our results can be interpreted as
an indication that “in a sense” each analytic P-ideal (especially nonpathological)
is summable, one should not expect here as strong consequences as in the case
of Solecki theorem. One of the main reason is that there is no general theory of
summable ideals. However, we believe that

(i) our approach reveals some “geometric” properties of nonpathological ideals
and therefore it can be helpful in their classification;

(ii) these methods can be useful in providing new interesting examples of
nonpathological analytic P-ideals;

(iii) representability of certain ideals in Banach spaces can be seen as a combi-
natorial property of the space itself and this may lead us to develop new
methods in the theory of Banach spaces.

A few more words on (iii). For example, one can ask which ideals are represented
in concrete Banach spaces. It seems that the characterization of representability in c0
is one of the most interesting questions here. We have not been able to characterize
fully the ideals representable in c0 but in Section 5 we prove that tall F� ideals are
not representable in c0 (if we exclude the “trivial” case of summable ideals). We also
show that the trace of the null ideal is not representable in c0. These results suggest
that ideals representable in c0 are more connected to density (like) ideals.
In contrast, the ideals represented in �1 should be more close to summable ideals.

Actually, ideals representable in �+1 are exactly the summable ideals. In Section 6 we
show that this is no longer true for �1: we present an F� ideal which is representable
in �1 but which is not summable.
In Section 7 we list some of our related open questions with additional

explanations.
Note that recently a different approach to representations of ideals has been

studied (in a topological setting, see [13]).
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§2. Preliminaries. Denote by Fin the ideal of finite subsets of �, Fin = [�]<� .
If I is an ideal on�, then we always assume that it is proper, i.e., � /∈ I, and Fin ⊆ I.
Write I+ = P(�)\I for the family of I-positive sets and I∗ = {� \X : X ∈ I} for the
dual filter of I. If X ∈ I+ then the restriction of I to X is I � X = {A ∈ I : A ⊆ X}.
An ideal I on � is F� , Borel, analytic if I ⊆ P(�) � 2� is an F� , Borel, analytic set
in the usual product topology of the Cantor-set.
I is a P-ideal if for each countable C ⊆ I there is an A ∈ I such that C ⊆∗ A for
each C ∈ C (where C ⊆∗ A iff C \ A is finite). In other words, I is a P-ideal iff the
preordered set (I,⊆∗) is �-directed.
I is tall (or dense) if each infinite subset of � contains an infinite element of I.
If A ⊆ P(�) then the ideal generated by A is

id(A) =
{
X ⊆ � : ∃ A′ ∈ [A]<� X ⊆∗ ⋃

A′
}
.

In our investigations Borel P-ideals play the most important role. We show some
classical examples of these ideals (for more see [11] or [14]):
The mentioned above summable ideal:

I1/n =

{
A ⊆ � :

∑
n∈A

1
n + 1

<∞
}
.

I1/n is a tall F� P-ideal. In general, if h : � → [0,∞) is such that∑n∈� h(n) = ∞
then the summable ideal associated to h is Ih =

{
A ⊆ � : ∑n∈A h(n) < ∞}

. It is
also an F� P-ideal which is tall iff h(n)→ 0.
The density zero ideal:

Z =
{
A ⊆ � : lim

n→∞
|A ∩ n|
n

= 0
}
=

{
A ⊆ � : lim

n→∞
|A ∩ [2n, 2n+1)|

2n
= 0

}
.

Z is a tall F�� P-ideal. In general, if �� = (�n)n∈� is a sequence of measures on �
with pairwise disjoint finite supports and lim supn→∞ �n(�) > 0, then the density
ideal associated to �� is Z�� =

{
A ⊆ � : �n(A) → 0

}
. It is always an F�� P-ideal

which is tall iff max{�n({k}) : k ∈ �} n→∞−−−→ 0.
Generalized density ideals: If �ϕ = (ϕn)n∈� is a sequence of submeasures on �
(see below for the definition of a submeasure) with pairwise disjoint finite supports
and lim supn→∞ ϕn(�) > 0, then the generalized density ideal associated to �ϕ is
Z�ϕ =

{
A ⊆ � : ϕn(A) → 0

}
. Z�ϕ is an F�� P-ideal which is tall iff max{ϕn({k}):

k ∈ �} n→∞−−−→ 0.
The Fubini-product of {∅} and Fin:

{∅} ⊗ Fin = {
A ⊆ � × � : ∀ n ∈ � |(A)n | < �

}
,

where (A)n = {m : (n,m) ∈ A}. It is a nontallF�� P-ideal.Observe that {∅}⊗Fin is a
density ideal: for n,m ∈ � let supp(�n,m) = {(n,m)} and let �n,m({(n,m)}) = 1

n+1 .
It is easy to see that if �� = (�n,m)n,m∈� then {∅} ⊗ Fin = Z��.
Farah’s ideal: The following ideal is the simplest known example of an F� P-ideal
which is not a summable ideal (see [5, Section 1.11]):

JF =

{
A ⊆ � :

∑
n∈�

min{n, |A ∩ [2n, 2n+1)|}
n2

<∞
}
.
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The trace of the null ideal : Let N be the �-ideal of subsets of 2� with measure
zero (with respect to the usual product measure). The G�-closure of a set A ⊆ 2<�
is [A] =

{
x ∈ 2� : ∃∞ n x �n ∈ A}, a G� subset of 2� . The trace of N is defined by

tr(N) =
{
A ⊆ 2<� : [A] ∈ N

}
.

It is a tall F�� P-ideal.

Remark 2.1. Observe that in some sense I1/n ⊆ tr(N) ⊆ Z: let Itree be the “tree
version” of the summable ideal, that is,

Itree =
{
A ⊆ 2<� :

∑
s∈A
2−|s| <∞

}
.

Then clearly I1/n and Itree are isomorphic (by themost natural enumeration of 2<�),
and Itree ⊆ tr(N). Furthermore, if Ztree is the tree version of the density zero ideal,

Ztree =
{
A ⊆ 2<� : lim

n→∞
|A ∩ 2n|
2n

= 0
}
,

then it is isomorphic to Z and tr(N) ⊆ Ztree.

Wewill apply Solecki’s representation of analytic P-ideals. A functionϕ : P(�)→
[0,∞] is a submeasure (on �) if ϕ(∅) = 0; if X,Y ⊆ � then ϕ(X ) ≤ ϕ(X ∪ Y ) ≤
ϕ(X ) +ϕ(Y ); and ϕ({n}) <∞ for n ∈ �. ϕ is lower semicontinuous (lsc, in short)
if ϕ(X ) = limn→∞ ϕ(X ∩ n) for each X ⊆ �.
If ϕ is an lsc submeasure then for X ⊆ � let ‖X‖ϕ = limn→∞ ϕ(X \ n); and let

Exh(ϕ) =
{
X ⊆ � : ‖X‖ϕ = 0

}
,

Fin(ϕ) =
{
X ⊆ � : ϕ(X ) <∞}

.

It is easy to see that if Exh(ϕ) �= P(�), then it is an F�� P-ideal, which is tall
iff ϕ({n}) → 0. Similarly, if Fin(ϕ) �= P(�) then it is an F� ideal. Clearly,
Iϕ({·}) ⊆ Exh(ϕ) ⊆ Fin(ϕ) always holds, where Iϕ({·}) stands for the summable
ideal generated by the sequence ϕ({n}).
The next theorem provides one of the most important tools in the theory of

analytic P-ideals.

Theorem 2.2 (see [17, Theorem. 3.1. and remarks on page 343]). Let J be an
ideal on �. Then the following are equivalent:

(i) J is an analytic P-ideal;
(ii) J = Exh(ϕ) for some (finite) lsc submeasure ϕ;
(iii) J is Polishable, that is, there is a Polish group topology on J with respect to the

usual group operation such that the Borel structure of this topology coincides
with the Borel structure inherited from P(�).

Furthermore, J is an F� P-ideal iff J = Exh(ϕ) = Fin(ϕ) for some lsc submeasure ϕ.

In particular, analytic P-ideals are F��.
The implication (ii)⇒(iii) is not difficult: for A,B ∈ Exh(ϕ) let dϕ(A,B) =

ϕ(A�B). Then it is easy to see that dϕ is a (translation) invariant complete metric
(we can assume that ϕ({n}) > 0 for every n), the generated topology is finer than
the subspace topology, and Borel(Exh(ϕ), dϕ) = Borel(P(�)) � Exh(ϕ).

https://doi.org/10.1017/jsl.2014.63 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.63


1272 P. BORODULIN–NADZIEJA, B. FARKAS, AND G. PLEBANEK

If we refer to Exh(ϕ) as complete metric group, then we mean that it is equipped
with dϕ .

Remark 2.3. Notice that the Polish topology on Exh(ϕ) does not depend on the
choice of ϕ. It follows from the fact that Exh(ϕ) = Exh(	) if, and only if for every
sequence (An)n∈� of pairwise disjoint finite sets (ϕ(An)→ 0 ⇐⇒ 	(An)→ 0).
The summable and (generalized) density ideals can be written of the formExh(ϕ)
very easily.
Thedefinition ofFarah’s ideal explicitly contains the definition of a submeasureϕ,
and clearly JF = Exh(ϕ) = Fin(ϕ).
We also show the standard presentation of tr(N) of the form Exh(ϕ). For every
nonempty A ⊆ 2<� let

ϕ(A) = sup
{∑
s∈B
2−|s| : B ⊆ A is an antichain

}
.

Notice that actually this supremum is maximum: for each A ⊆ 2<� let BA be
the antichain of the ⊆-minimal elements of A, then ϕ(A) = ∑

s∈BA 2
−|s|. Then

tr(N) = Exh(ϕ).

§3. Generalization of summable ideals. Let G be a nontrivial Hausdorff topo-
logical Abelian group (with the additive notation). We will use the following basic
notions from the theory of topological Abelian groups:
• A net (ai)i∈I inG is a sequence inG indexed by the underlying set of a directed
poset (I,≤).

• The net (ai)i∈I converges to b ∈ G if for every neighborhoodU of b there is an
i0 ∈ I such that ai ∈ U for every i ≥ i0. Clearly, a net has at most one limit.

• A net (ai)i∈I is a Cauchy-net if for every neighborhood V of 0 ∈ G , there
is a j0 ∈ I such that aj − aj0 ∈ V for every j ≥ j0 (this is a simplified but
equivalent definition of Cauchy nets).

• G is complete if every Cauchy-nets converge (the reverse implication always
holds).
Recall (see [12]) that if G is metrizable and complete, then there is a compatible
invariant (and hence complete) metric on G .
Using nets, we can define the unconditional convergence of infinite series in G : let
h : � → G be a sequence in G . Then we write∑n∈� h(n) = a ∈ G if the net∑

h =
(
sh(F ) =

∑
n∈F
h(n) : F ∈ [�]<�

)
ordered by ⊆ on [�]<�

converges to a; in other words:

∀ open U � a∃F ∈ [�]<�∀E ∈ [�]<�(F ⊆ E ⇒ sh(E) ∈ U
)
.

It is easy to see that
∑
n∈� h(n) = a iff h(
(0)) + h(
(1)) + · · ·+ h(
(n)) n→∞−−−→ a

for every permutation 
 of �.
Similarly, the series associated to h is unconditionally Cauchy if the net

∑
h is

Cauchy, i.e.,

∀ open V � 0∃F ∈ [�]<�∀E ∈ [� \ F ]<�sh(E) ∈ V.
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Now we are finally ready to introduce the main definition of the article. Assume
that

∑
n∈� h(n) does not exist. Then the (generalized) summable ideal associated to

h, IGh is the ideal generated by

SGh =
{
A ⊆ � :

∑
n∈A
h(n) exists in G

}

=
{
A ⊆ � : A is finite or

∑
h �A is convergent in G

}
.

Of course, SGh is not necessarily an ideal. It is always closed for taking unions but
not necessary for taking subsets, see e.g. G = Q (with the usual addition) and let
h : � → Q, h(n) = 1

n+1 . However, it is easy to see the following.

Fact 3.1. If G is complete, then IGh = SGh . If G is complete and metrizable, then
IGh is tall iff h(n)→ 0 ∈ G .
Definition 3.2. We say that an ideal J on � is representable in G if there is an

h : � → G such that J = IGh . If C is a class of topological Abelian groups then J is
C-representable if it is representable in a G ∈ C.
For example, we can talk about Polish- or Banach-representable ideals. Notice

that we can always assume thatG is separable because essentially we are working in
〈ran(h)〉 (where 〈H 〉 denotes the subgroup ofG generated byH ), this clearly holds
true for Banach spaces too because span(ran(h)) is separable.
Let us see some examples:

Example 3.3. Summable ideals are exactly those ideals which are representable
in R. For any h : � → R the sum

∑
n∈A h(n) exists (in the unconditional sense)

iff
∑
n∈A |h(n)| < ∞, and hence IRh = IR|h| = I|h|. Similarly, J is summable iff it is

representable in Rn.

We will frequently use the classical (real) sequence spaces �1, �∞, and c0. We
assume that the reader is familiar with their basic properties.

Example 3.4. The ideal Z is representable in c0. Let h(0) = 0 and h(n) = 2−kek
iff n ∈ [2k, 2k+1) where ek = (�k,m)m∈� . Then Z = Ic0h .

Example 3.5. If (Gk)k∈� is a sequence of nontrivial discrete Abelian groups,
then J is representable in

∏
k∈� Gk iff there is a countable (not necessarily infinite)

family {Xk : k ∈ �} ⊆ [�]� such that
J =

{
A ⊆ � : ∀ k ∈ � |A ∩ Xk | < �

}
.

For example, {∅} ⊗ Fin has this property.
Hint: if there is such a sequence {Xk : k ∈ �}, then J is representable in G = Z�2

(where Z2 = {0, 1} with mod 2 addition) by letting h(n)(k) = 1 iff n ∈ Xk .
Conversely, if J = IGh where G =

∏
k∈� Gk , then let Xk = {n ∈ � : h(n)(k) �= 0}.

Example 3.6. Tsirelson ideals (see [4] and [20]) T have the following form

A ∈ T iff
∑
n∈A
αnen is unconditionally convergent in T,
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where (en)n∈� is the standard basic sequence in �1, (αn)n∈� ∈ c0 \ �1 is fixed, and
T is a Tsirelson space. Note that here T can be understood either as the original
Tsirelson space or as its dual. Of course every Tsirelson ideal is representable in a
Tsirelson space.

Example 3.7. Let T be the group R/Z. Notice that an ideal is representable in
T (or in Tn) iff it is a summable ideal. Indeed, if Ih is a summable ideal where
h : � → [0,∞), then we can assume that h ≤ 1/2 because Ih = Ih′ where h′(n) =
min{h(n), 1/2}. It is easy to see that considering h as a sequence in T, we obtain
the same ideal.
If h : � → T = [0, 1), then it is not difficult to show that ITh = Ig where g(n) =
h(n) if h(n) ≤ 1/2 and g(n) = 1− h(n) else.
Example 3.8. An ideal is representable in R� iff it is an intersection of countable
many summable ideals. Indeed, assume that h : � → R� , h(n) = (xnk )k∈� , and
define hk : � → R, hk(n) = xnk for k, n ∈ �. Then IR�h =

⋂
k∈� Ihk , and of course,

the same idea works in the reverse direction too.
There are nonF� (and hence non summable) ideals which are representable inR� .
Let {Xk : k ∈ �} be a partition of � into infinite sets, such that∑n∈Xk

1
n+1 = ∞,

and let

J0 =
{
A ⊆ � : ∀ k

∑
n∈A∩Xk

1
n + 1

<∞
}
.

Then J0 =
⋂
k∈� Ihk where hk(n) =

�Xk (n)
n+1 , and hence it is representable in R� .

J0 is not F� e.g. because the almost disjointness number of J0, a(I0) = � (simply
{Xk : k ∈ �} is an J0-MAD family), and we know that a(J) > � for every F� ideal
J (formore details see e.g. [7]). Wewill come back to the question of representability
in R� later (see Question 5.15).

Proposition 3.9.

(a) Every ideal J on � is representable in a normed space.
(b) There is a normed spaceX with dim(X ) = 2c such that every J is representable
in X .

(c) Every ideal J is representable in a group satisfying g + g = 0.
Proof.

(a) Let XJ be the linear subspace of �∞ (or �1 or c0) generated by{(
�A(n)
n2

)
n∈�
: A ∈ J

}
where �A is the characteristic function of A, en = (�n,k)k∈� . Let h : � → X ,
h(n) = n−2en .
Weclaim thatJ = I

XJ

h . ClearlyJ ⊆ I
XJ

h . Conversely, ifB /∈ JandA0, . . . , Ak−1 ∈ J

then we can pick an m ∈ B \ (A0 ∪ · · · ∪ Ak−1) and hence∥∥∥∑
n∈B
h(n)− α0

∑
n∈A0
h(n)− · · · − αk−1

∑
n∈Ak−1

h(n)
∥∥∥ ≥ 1

m2

for any α0, . . . , αk−1 ∈ R which yields that
∑
n∈B h(n) =

( �B (n)
n2

)
n∈� /∈ XJ.

https://doi.org/10.1017/jsl.2014.63 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.63


REPRESENTATIONS OF IDEALS IN POLISH GROUPS AND IN BANACH SPACES 1275

(b) Let ID be the family of all ideals on � (we know that |ID| = 2c) and let X
be the finite support product of XJ’s:

X =
⊕
J∈ID
XJ =

{
x ∈

∏
J∈ID
XJ :

{‖x(J)‖ �= 0 : J ∈ ID} is finite}

with the norm ‖x‖ = sup{‖x(J)‖ : J ∈ ID}. Clearly, if J �= Fin then
dim(XJ) = c and hence dim(X ) = 2c.

(c) Equip J with the subspace topology inherited from P(�) and with the usual
group operation (symmetric difference). Then it is easy to see that J = IJh
where h(n) = {n}. �

Question 3.10. Does there exist a normed space X such that all ideals on � are
representable in X but dim(X ) < 2c? (If 2c = c+n for some n ∈ �, then the answer is
NO because in this case |X |� < 2c.)

§4. Characterization of Polish- and Banach-representability.
Theorem 4.1. An ideal J is Polish-representable if and only if J is an analytic

P-ideal.

Proof. Wepresent two proofs for the “only if” part. In the first one, we show that
Polish-representable ideals are F�� P-ideals by a direct calculation. In the second
proof we show that all Polish-representable ideals are of the form Exh(ϕ) for some
lsc submeasure ϕ.
First proof (sketch): Let G be a Polish Abelian group, d be a complete and

translation invariant (compatible) metric on G , and assume that h : � → G such
that

∑
n∈� h(n) does not exist. Then

IGh =
{
A ⊆ � : the net

∑
h �A is Cauchy

}
=

⋂
ε>0

⋃
F∈[�]<�

⋂
E∈[�\F ]<�

{
A ⊆ � : d(0, sh(A ∩ E)) < ε}

and the last set is clearly clopen, hence IGh is F�� .
Next, we show that IGh is a P-ideal. Let (Ak)k∈� be a sequence of pairwise disjoint

elements of IGh ,
∑
n∈Ak h(n) = ak . For every k we can choose an Nk ∈ � such

that if E ∈ [Ak \Nk ]<� , then d (0, sh(E)) < 2−k . Clearly, bk :=
∑
n∈Ak\Nk h(n) =

ak−sh(A∩Nk) and d (0, bk) ≤ 2−k . It is not difficult to see thatA =
⋃
k∈� Ak\Nk ∈

IGh and of course Ak ⊆∗ A for every k. The only additional property of d we
need to use here is the following easy consequence of the translation invariance:
d (0, g0 + g1 + · · · + gn−1) ≤ d (0, g0) + d (0, g1) + · · · + d (0, gn−1) for g0, g1, . . . ,
gn−1 ∈ G .
Second proof: We show that if G is a Polish Abelian group and h : � → G , then

there is an lsc submeasure ϕ such that IGh = Exh(ϕ). Let ϕ be defined by ϕ(∅) = 0
and if A �= ∅ then

ϕ(A) = sup
{
d
(
0, sh(F )

)
: ∅ �= F ∈ [A]<�},
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where d is a complete and translation invariant metric on G . Applying translation
invariance of d (see above), it is easy to see that ϕ is an lsc submeasure.
IGh ⊆ Exh(ϕ): Assume that A ∈ IGh , i.e., that

∑
h �A is Cauchy, that is, for every

ε > 0 there is an N ∈ � such that d (0, sh(E)) < ε for every E ∈ [A \N ]<� . Then
ϕ(A \N) ≤ ε so limN→∞ ϕ(A \N) = 0.
Exh(ϕ) ⊆ IGh : Assume that A ∈ Exh(ϕ), that is, ϕ(A \ N) → 0 if N → ∞.
Assume that ϕ(A \N) < ε. If E ∈ [A \ N ]<� then d (0, sh(E)) ≤ ϕ(A \N) < ε.
It yields that

∑
h �A is Cauchy, i.e., A ∈ IGh .

Proof of the “if” part: Let J = Exh(ϕ) be an analytic P-ideal. We show that J =
I
Exh(ϕ)
h where h : � → Exh(ϕ), h(n) = {n}. First assume thatA ∈ J. Ifϕ(A\n) < ε,
then dϕ(A,E) < ε whenever A ∩ n ⊆ E ∈ [A]<� (of course, sh(E) = E) hence∑
n∈A h(n) = A ∈ I

Exh(ϕ)
h . If B /∈ J, A ∈ J, and n0 ∈ B \ A, then dϕ(A,E) ≥

ϕ({n0}) for every E ∈ [B]<� with n0 ∈ E, in other words ∑n∈B h(n) �= A,
and so B /∈ I

Exh(ϕ)
h . �

To characterize Banach-representability, we need the following notion:
An lsc submeasure ϕ is nonpathological if it is the (pointwise) supremum of
measures dominated by ϕ, i.e., for every A ⊆ �
ϕ(A) = sup

{
�(A) : � is a measure on P(�), and ∀ B ⊆ � �(B) ≤ ϕ(B)}.

Because of the lower semicontinuity, it is enough to check that this equality holds
for every A ∈ Fin (for more details and characterizations of nonpathological
submeasures see [11, Cor. 5.26]).
An analytic P-ideal J is nonpathological iff J = Exh(ϕ) for some nonpathological
lsc submeasureϕ. For example, summable ideals, density ideals, Farah’s ideal, tr(N),
and Tsirelson ideals are nonpathological. In general, constructions of pathological
ideals, even pathological lsc submeasures are nontrivial (see [16] for an example of
such a construction and [5] for further references).

Example 4.2. Let Z�ϕ be a generalized density ideal where �ϕ = (ϕk)k∈� and
supp(ϕk) = Pk ∈ [�]<� ; and assume that the generating submeasure, that is,
	(A) = sup{ϕk(A) : k ∈ �} is nonpathological (clearly, Z�ϕ = Exh(	)). We show
that Z�ϕ is representable in c0 (it is a generalization of Example 3.4).
For every k there is a sequence (�km)m∈� of measures on Pk such that �

k
m ≤ ϕk

and ϕk(A) = sup{�km(A) : m ∈ �} for every A ⊆ Pn. For each A ⊆ Pn fix an
mA ∈ � such that ϕk(A) − �kmA(A) < 2−k . Let Ω = {(k,A) : k ∈ �,A ⊆ Pk}.
Since Ω is countable, we can work with c0(Ω) (sequences of real numbers indexed
by elements of Ω) instead of c0. Now define

h(n)(k,A) =
{

0, if n /∈ Pk ;
�kmA({n}), if n ∈ Pk.

It is easy to see that Z�ϕ = Ic0h .

If h is a function from � to a classical sequence space, then we will write
h = (xnk )n,k∈� if h(n) = (x

n
k )k∈� . If x

n
k ≥ 0 for all n, k, then we write h ≥ 0.

Lemma 4.3. Assume that h = (xnk )n,k∈� : � → �∞ is such that
∑
h does not

converge. If h′ = (|xnk |)n,k∈� then I�∞h = I�∞h′ .
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Proof. I�∞h′ ⊆ I�∞h : Trivial because ‖sh(F )‖ ≤ ‖sh′(F )‖ for every finite F ⊆ �.
I�∞h ⊆ I�∞h′ : Assume

∑
h′ �A is not convergent, i.e., not Cauchy. It means that for

some ε > 0 for all N ∈ � there is an FN ∈ [A \ N ]<� such that ‖sh′(FN )‖ ≥ ε.
We show that neither

∑
h �A is Cauchy and that ε4 witnesses it. Indeed, let N be

arbitrary and fix a k such that∣∣ ∑
n∈FN

|xnk |
∣∣ = ∑

n∈FN
|xnk | >

ε

2
.

Let FN = F 0N ∪ F 1N be a partition such that k ∈ F 0N iff xnk < 0. Then

‖sh(F 0N )‖ = |
∑
n∈F 0N

xnk | >
ε

4
or ‖sh(F 1N )‖ = |

∑
n∈F 1N

xnk | >
ε

4
. �

Theorem 4.4. An analytic P-ideal J is Banach-representable iff it is nonpatholog-
ical.

Proof. Proof of the “if” part: Let J = Exh(ϕ) for some nonpathological ϕ.
For every F ∈ [�]<� we can fix a sequence (�Fn )n∈� of measures on � such that
�Fn ≤ ϕ for every n and ϕ(F ) = sup{�Fn (F ) : n ∈ �}. Let (�k)k∈� be an enumera-
tion of the set {�Fn : F ∈ [�]<�, n ∈ �}. Notice that ϕ(A) = sup{�k(A) : k ∈ �}
holds for every A ⊆ �. Indeed
ϕ(A) = sup

{
ϕ(F ) : F ∈ [A]<�} = sup

F∈[A]<�
sup
k∈�
�k(F ) = sup

k∈�
sup
F∈[A]<�

�k(F )

= sup
k∈�
�k(A).

Let h : � → �∞ be defined by h = (�k({n}))n,k∈�, i.e.,
h(n) =

(
�0({n}), �1({n}), �2({n}), . . .

)
(confront Example 3.4). Clearly, if F ∈ [�]<� then sh(F ) =

(
�0(F ), �1(F ), . . . )

and hence ‖sh(F )‖ = ϕ(F ). It implies that h is as required because
A ∈ I�∞h iff

∑
h �A is convergent (i.e. Cauchy)

iff ∀ ε > 0 ∃ N ∀ F ∈ [A \N ]<� ‖sh(F )‖ = ϕ(F ) ≤ ε
iff ∀ ε > 0 ∃ N ϕ(A \N) ≤ ε (i.e., lim

n→∞ϕ(A \ n) = 0)
iff A ∈ Exh(ϕ).

Proof of the “only if” part: Assume J = IXh for some Banach space X and
h : � → X . We can assume that X = �∞ because �∞ contains isometric copies
of all separable Banach spaces. Indeed, by Banach–Mazur theorem each separable
Banach space is isometrically isomorphic to a closed subspace of C [0, 1] (see [1]).
Now, C [0, 1] can be isometrically embedded in �∞ (e.g. by the function T (f)(n) =
f(dn), where {dn : n ∈ �} = Q ∩ [0, 1]). Applying Lemma 4.3, we can also assume
that h ≥ 0. For k ∈ � and A ⊆ � let �k(A) =

∑
n∈A h(n)k (so �k is a measure

on �), and let ϕ = sup{�k : k ∈ �}. Just like in the proof of the “if” part, we
have ‖sh(F )‖ = ϕ(F ) and, by the same argument as above, one can prove that
I�∞h = Exh(ϕ). �
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Remark 4.5. We would like to present an alternative proof for the “only if” part
where we do not need to use �∞ (and Lemma 4.3). Assume that Exh(ϕ) = IXh for
some Banach space X and h : � → X . We will construct a nonpathological lsc
submeasure 	 such that Exh(ϕ) = Exh(	).
Let ϕ̃ : P(�)→ [0,∞] be defined by ϕ̃(∅) = 0 and for A �= ∅

ϕ̃(A) = sup
{‖sh(F )‖ : ∅ �= F ∈ [A]<�}.

In Theorem 4.1 we already proved that ϕ̃ is an lsc submeasure and Exh(ϕ̃) =
IXh = Exh(ϕ). How to construct 	? Fix an F ∈ [�]<� and let F ′ ⊆ F such that
ϕ̃(F ) = ‖sh(F ′)‖. Applying the Hahn–Banach theorem, there is an x∗F ∈ X ∗ with
‖x∗F ‖ = 1 such that x∗F

(
sh(F ′)

)
= ‖sh(F ′)‖. Then the function �F : P(�)→ [0,∞]

�F (B) = x∗F
(
sh(F ′ ∩ B)) = ∑

n∈F ′∩B
x∗a (h(n))

defines a signedmeasurewith supportF ′. If �F = �+F −�−F where �+F , �−F aremeasures
and �+F ⊥ �−F , then let �F = �+F + �−F . (In other words, the measure �F is uniquely
determined by �F ({n}) = |�F ({n})|.) Finally let 	 = sup{�F : F ∈ [�]<�}, a
nonpathological lsc submeasure.
We claim that ϕ̃ ≤ 	 ≤ 2ϕ̃ and hence Exh(	) = Exh(ϕ̃) = Exh(ϕ).
ϕ̃ ≤ 	: ϕ̃(F ) = ‖sh(F ′)‖ = x∗F (sh(F ′)) = �F (F ′) = �F (F ) ≤ �F (F ) ≤ 	(F ).
	 ≤ 2ϕ̃: for every finite F and E if P = supp(�+F ) = {k ∈ F ′ : x∗F (h(k)) > 0}
then

�F (E) = �F (F ′ ∩ E) = �+F (F ′ ∩ E) + �−F (F ′ ∩ E)
=

∣∣x∗F (sh(F ′ ∩ E ∩ P))∣∣+ ∣∣x∗F (sh(F ′ ∩ E \ P))∣∣
≤ ∥∥sh(F ′ ∩ E ∩ P)∥∥+ ∥∥sh(F ′ ∩ E \ P)∥∥
≤ ϕ̃(E) + ϕ̃(E),

where we used that |x∗F (y)| ≤ ‖y‖ for every y ∈ X because ‖x∗F ‖ = 1.

§5. Representability in c0. We will need the following notions (see [19] and [15]):
An lsc submeasure ϕ is density-like if for every ε > 0 there is a � > 0 such that
if An ∈ [�]<� is a sequence of pairwise disjoint finite sets with ϕ(An) < �, then
there is an X ∈ [�]� such that ϕ(⋃n∈X An) < ε. An analytic P-ideal J is density-
like if there is a density-like submeasure ϕ such that J = Exh(ϕ). Generalized
density ideals are density-like: consider the natural submeasure associated to �ϕ =
(ϕk)k∈� (see Example 4.2), pick any � < ε, and let (An)n∈X be a subsequence
such that the sets {k : supp(ϕk) ∩ An �= ∅} are pairwise disjoint for distinct n’s
from X . At this moment we do not have any other examples of density-like ideals
(see Question 5.11).
An lsc submeasure ϕ is summable-like if there is an ε > 0 such that for every
� > 0 there is a sequence An ∈ [�]<� of pairwise disjoint finite sets with ϕ(An) < �
and there is a k ∈ � such that ϕ(⋃n∈Y An) ≥ ε for every Y ∈ [�]k . An analytic
P-ideal J is summable-like if there is a summable-like submeasure ϕ such that
J = Exh(ϕ). For example, summable ideals which are not trivial modifications
of Fin (i.e., �= {A ⊆ � : |A ∩ X | < �} for some X ⊆ �) and Farah’s ideal are
summable-like.
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Applying Remark 2.3, it is not difficult to see that if Exh(ϕ) = Exh(	) and ϕ is
summable- / density-like, then 	 is also summable- / density-like.
Clearly, an ideal cannot be both density- and summable-like. The following fact

is proved (in a different language) in [18, Proposition 6.8(ii)].

Fact 5.1. Tall F� P-ideals are not density-like.

Proof. Let J = Fin(ϕ) = Exh(ϕ) be a tall F� P-ideal, and let 0 < � < ‖�‖ϕ.
We can pick a sequence (An)n∈� of finite sets such that max(An) < min(An+1)
for every n and �/2 < ϕ(An) < �. We can do it inductively using tallness (i.e.,

ϕ({k}) k→∞−−−→ 0). Having An, work in the co-finite set {k : ϕ({k}) < �/2} and pick
elements from this set in the increasing order. After finitely many points we must
obtain a set with a measure bigger than �/2 because ‖�‖ϕ > �/2 and because ϕ
is lower semicontinuous. At the first stage we have such a finite set, it must have
measure less than � because of subadditivity of ϕ.
Clearly, for every X ∈ [�]� , limk∈� ϕ((

⋃
n∈X An) \ k) ≥ �/2, and hence⋃

n∈X An /∈ Exh(ϕ) = Fin(ϕ), so ϕ(
⋃
n∈X An) =∞. �

In [15]Mátrai constructed an F� P-ideal which is neither of them. Sławek Solecki
remarked (in personal communication) that the Tsirelson ideal defined through the
classical Tsirelson space (not its dual) is another example of F� P-ideal which is
neither summable- nor density-like (and is clearly nonpathological).
A less obvious example of summable-like ideal is tr(N) (see below) which is

interesting because in some sense it is as far from being a real summable ideal as
it is possible: in [10] is was proved that tr(N) and Z are totally bounded, that is, ϕ
must be finite (i.e., ϕ(�) < ∞) whenever tr(N) = Exh(ϕ) (or Z = Exh(ϕ)). The
authors of [10] observed that if the splitting number, s(J) of an analytic P-ideal J is
� then it must be totally bounded.

Proposition 5.2. tr(N) is summable-like.

Proof. We know that tr(N) = Exh(ϕ) where

ϕ(A) = sup
{∑
s∈B
2−|s| : B ⊆ A is an antichain

}
.

Let ε = 1
2 and � > 0 be arbitrary. Fix an m ∈ � such that 2−m < �, and for

every n let

An =
{
s ∈ 2nm+m : s � [nm, nm +m) ≡ 0}.

It is easy to see that An is a finite antichain and that the measure of the associated
clopen set Ãn =

⋃
s∈An [s] is ϕ(An) = 2

−m < � where [s] = {x ∈ 2� : s ⊆ x}.
Clearly, ϕ(A) = �(Ã) where � is the usual product probability measure on 2�.
The family {Ãn : n ∈ �} forms an independent system: if n0 < n1 < · · · < nk−1,

then

Ãn0 ∩ Ãn1 ∩ · · · ∩ Ãnk−1 =
{
x ∈ 2� : ∀i < k x � [nim, (ni + 1)m) ≡ 0

}
and hence �

(⋂
i<k Ãni

)
= 2−mk = (2−m)k .
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Applying independence, if Y ∈ [�]2m then

ϕ

( ⋃
n∈Y
An

)
= �

( ⋃
n∈Y
Ãn

)
=
2m∑
k=1

(−1)k+1
(
2m

k

)(
2−m

)k
= 1− (1− 2−m)2m m→∞−−−−→ 1− 1

e

therefore if m is large enough, then ϕ
(⋃

n∈Y An
)
> 1
2 = ε. �

Representability in c0 can be characterized by combinatorics of the defining
submeasure. This approach will help us showing that several classical ideals are not
representable in c0.

Proposition 5.3. An ideal J is representable in c0 iff there is a lsc submeasureϕ and
a sequence (�k)k∈� of measures on � such that J = Exh(ϕ), ϕ = sup{�k : k ∈ �},
and {k : m ∈ supp(�k)} is finite for every m ∈ �.
Proof. If J = Exh(ϕ) for some submeasure ϕ = sup{�k : k ∈ �} as in the
statement. Then the basic representation of Exh(ϕ) in �∞ (see Theorem 4.4) is
actually a representation in c0.
Now assume that h = (xnk ) : � → c0, h ≥ 0, and J = Ic0h . We will modify h.
To every n fix a kn such that |xnk | < 2−n for every k ≥ kn, and let h′ = (ynk ) : � → c0
where ynk = x

n
k if k < kn (otherwise y

n
k = 0). It is easy to see that I

c0
h′ = J

and therefore we can use the proof of Theorem 4.4 again to obtain the measures
{�k : k ∈ �} such that J = Ic0h′ = Exh(	) where 	 = sup{�k : k ∈ �}. Clearly, 	
is as desired. �
Proposition 5.4. Let (�k)k∈� be a sequence of measures on � such that {k : m ∈
supp(�k)} is finite for every m ∈ �. Let ϕ = sup{�k : k ∈ �} and J = Exh(ϕ).
If �k is bounded for every k, then J is a generalized density ideal.

Proof. For any k we can fix an nk such that �k(� \ nk) < 2−k . Let �′k(A) =
�k(A ∩ nk). We claim that if ϕ′ = sup{�′k : k ∈ �}, then Exh(ϕ′) = Exh(ϕ).
Clearly, Exh(ϕ′) ⊇ Exh(ϕ) (because ϕ′ ≤ ϕ). So, assume that A ∈ Exh(ϕ′), i.e.,
for every ε > 0 there is an N ∈ � such that if F ∈ [A \ N ]<� , then ϕ′(F ) < ε.
We will find anM such thatϕ(F ) < 2ε for every F ∈ [A\M ]<� . LetK ∈ � be such
that 2−K−1 ≤ ε < 2−K . For all k ≤ K fix anmk ≥ nk such that�k(�\mk) < 2−K−1

and letM = max{N,m0, m1, . . . , mK}. It is easy to see that if F ∈ [A \M ]<� , then
ϕ(F ) < ϕ′(F ) + 2−K−1 < 2ε.
To finish the proof, we show the following general fact.

Claim. Assume that 	 = sup{�k : k ∈ �} where �k is a measure for every k,
|{k : m ∈ supp(�k)}| < � for everym, and |supp(�k)| < � for every k. Then Exh(	)
is a generalized density ideal.

Proof. We can easily find an interval partition (Pn)n∈� of � such that for every
k there is an n with supp(�k) ⊆ Pn ∪ Pn+1. Let ϕn(A) = sup{�k(A ∩ Pn) : k ∈ �}
for every n. Notice that ϕn is a submeasure concentrated on Pn . We show that if
�ϕ = (ϕn)n∈� , then Z�ϕ = Exh(	).
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Clearly supn∈� ϕn(A) ≤ supk∈� �k(A) holds for every A, in particular
ϕn(A) = ϕn(A ∩ Pn) ≤ sup

k∈�
�k(A \min(Pn)),

and thus Z�ϕ ⊇ Exh(	). Conversely, if A /∈ Exh(	) then there is an ε > 0 such
that for every m there is a km such that �km (A \ m) > ε. The set {km : m ∈ �} is
infinite because the supports of �k ’s are finite. For a fixedm, there is an nm such that
supp(�km ) ⊆ Pnm ∪ Pnm+1 and hence

ϕnm (A) ≥ ϕnm (A \m) > ε/2 or ϕnm+1(A) ≥ ϕnm+1(A \m) > ε/2.
The set {nm : m ∈ �} is also infinite because Pn ∪Pn+1 can cover only finitely many
supports of �k ’s. Therefore ϕn(A)� 0 and A /∈ Z�ϕ . �
Clearly, ϕ′ and the sequence (�′k)k satisfies the conditions of the claim, so we are

done. �
Corollary 5.5. If an analytic P-ideal is totally bounded and representable in c0,

then it is a generalized density ideal.

Corollary 5.6. tr(N) is not representable in c0.

The next result shows that among tall F� ideals the representability in c0 is
equivalent to the representability in R.

Theorem 5.7. A tall F� P-ideal I is representable in c0 iff it is a summable ideal.

Proof. (nontrivial implication.) Fix an lsc submeasureϕ such that I = Exh(ϕ) =
Fin(ϕ). Suppose that I is representable in c0, and (using Proposition 5.3) fix a
nonpathological submeasure 	 = sup{�n : n ∈ �} such that I = Exh(	) and there
is a strictly increasing function f : � → � such that �n({k}) = 0 if n ≥ f(k).
Also, assume that ϕ ≥ 	. Otherwise, we could consider ϕ +	 instead of ϕ (notice
that Exh(ϕ) = Exh(ϕ + 	) and Fin(ϕ) = Fin(ϕ + 	)). Because of tallness,
ϕ({n}), 	({n})→ 0.
Assume on the contrary that I is not summable. Let 	n = maxm≤n �m. Then

In = Exh(	n) is summable for every n (In = Ihn where hn(k) = 	n({k})) and
we have I ⊆ · · · ⊆ In+1 ⊆ In ⊆ · · · ⊆ I0. Hence, for each n we can find An ∈
In \ I. We can assume that (i) (An)n∈� are pairwise disjoint and (ii) 	n(An) < 2−n
for every n.

(i) Fix a sequence (Bk)k∈� such thatHn = {k : An = Bk} is infinite for every n.
Then by recursion we can pick finite sets Fk ⊆ Bk such that ϕ(Fk) > k and
max(Fk) < min(Fk+1). Finally let A′

n =
⋃{Fk : k ∈ Hn}. Then A′

n ⊆ An
and A′

n /∈ I.
(ii) Applying tallness, for every n there is an mn such that

	n(An \mn) ≤
∑

m∈An\mn
	n({m}) < 2−n,

hence after finite modifications (ii) holds true.

In particular,
⋃
k≥n Ak ∈ In because 	n(Ak) ≤ 	k(Ak) < 2−k (if n ≤ k) and

hence we can use �-subadditivity of 	n.
Now we will construct a set X ∈ Exh(	) \ Fin(ϕ), which will lead us to the

contradiction. First, we can fix a sequence (X ′
n)n∈� such that
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(a) X ′
0 ∈ [A0]<� and X ′

n+1 ∈
[
Af(max(X ′

n )+1)

]<�
,

(b) max(X ′
n) < min(X

′
n+1),

(c) ϕ(X ′
n) ≈ 1 for every n.

Let X ′ =
⋃
n∈� X

′
n and consider the following ideals on X

′: I � X ′ is a tall F�
P-ideal (hence not density-like), and Z�ϕ is a tall generalized density ideal (hence
density-like) where �ϕ = (ϕ � X ′

n)n∈� . Clearly, I � X ′ ⊆ Z�ϕ . Therefore there is an
X ⊆ X ′ such that ϕ(X ) =∞ (i.e., X /∈ Fin(ϕ)) but ϕ(X ∩X ′

n)→ 0. We show that
X ∈ Exh(	).
Let kn = max(X ′

n)+ 1 andXn = X ∩X ′
n. Clearly Xn+1 ⊆ Af(kn) ∩ [kn, kn+1). Fix

m,N ∈ �. We have two cases:
1. f(kN ) ≥ m. Then using N ≤ kN ≤ f(kN ) we obtain that

�m(X \ kN ) ≤ �m
( ⋃
j≥f(kN )

Aj

)
≤ 	m

( ⋃
j≥f(kN )

Aj

)
≤

∑
j≥f(kN )

2−j = 2−f(kN )+1 ≤ 2−kN+1 ≤ 2−N+1.

2. f(kN ) < m. Then there is anL ∈ � such thatm ∈ [f(kL), f(kL+1)) (L ≥ N).
We estimate �m(X \ kN ) along a partition of X \ kN :
• �m([kN , kL)) = 0 be the definition of f;
• �m

(
X ∩ [kL, kL+1)

)
= �m(XL+1) ≤ 	(XL+1) ≤ ϕ(XL+1);

• �m(X \ kL+1) ≤ �m
(⋃

j≥f(kL+1)Aj
) ≤ �m

(⋃
j≥m Aj

) ≤ 	m(⋃j≥m Aj)
≤ 2−N+1.

In both cases, �m(X \ kN ) ≤ ϕ(XL+1) + 2−N+1 for some L ≥ N . Applying that
ϕ(Xn) tends to 0, we obtain that 	(X \ kN ) = supm∈� �m(X \ kN ) N→∞−−−−→ 0, i.e.,
X ∈ Exh(	). �
Corollary 5.8. Farah’s ideal and the Tsirelson ideals are not representable in c0.

Proposition 5.9. Let I be representable in c0. Assume that there is no A ∈ [�]�
such that I � A is contained in a summable ideal. Then I is a generalized density ideal.

Proof. We can assume that I = Exh(ϕ), where ϕ = sup{�k : k ∈ �} is such
that {k : m ∈ supp(�k)} is finite for every m. Suppose there is k ∈ � such that
�k is unbounded. Let A = supp(�k) and notice that I � A ⊆ Exh(�k) = I�k ({·}).
Therefore, I � A is contained in a summable ideal. Hence each �k is bounded. But
then, by Proposition 5.4, I is a generalized density ideal. �
It seems that it is difficult to find a density-like ideal which is not a generalized
density ideal (seeQuestion 5.11), so it is difficult to find a (nonpathological) density-
like ideal which is not representable in c0. The above proposition shows that the
situation differs drastically with summable-like ideals: it is impossible to find an
example which is representable in c0 and which does not resemble a summable
ideal at least locally. So, representability in c0 seems to be closely connected to
density-likeness. However the question of the full characterization is still open.
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Question 5.10. How to characterize analytic P-ideals which can be represented
in c0?

It is connected to an irritating question mentioned before:

Question 5.11. Is there a density-like ideal which is not a generalized density ideal?

In the context of Proposition 5.9 there remains a question, how much ideals
contained in a summable ideal resemble summable ideals itself. Despite the fact
that summable ideals are quite small, there are nontrivial examples of ideals cov-
ered by a summable ideal which seem to be quite far from being summable itself.
A natural example of such an ideal is Farah’s ideal. Indeed, notice that JF can be
covered by summable ideals in many ways, e.g. let h(k) = 1/n if k ∈ [2n, 2n + n)
and h(k) = 0 else, then JF ⊆ Ih . There is even a density ideal covered by a
summable ideal:

Example 5.12. Let �n({k}) = 1/n, h(k) = 2−n for k ∈ [2n, 2n+1). Then Z�� ⊆ Ih
simply because if a ∈ �� and ann → 0 then∑n∈�

an
2n <∞.

On the other hand, tr(N) cannot be covered by any summable ideal.

Example 5.13. tr(N) (and hence Z) cannot be covered by a summable ideal.
Let h : 2<� → [0,∞) with∑t∈2<� h(t) = ∞. It is easy to find an branch x ∈ 2�
such that

∑
x�n⊆t h(t) =∞ for each n ∈ �. Choose a sequence of pairwise disjoint

finite sets (Fn)n∈� such that Fn ⊆ {t : x � n ⊆ t} and ∑
t∈Fn h(t) > 1. Then⋃

n∈� Fn ∈ tr(N) \ Ih .
Question 5.14. How do (analytic P-)ideals which are contained in a summable

ideal look like?

Note that [8, Theorem 3.3] contains an interesting characterization of the above
property. Namely, an ideal I cannot be extended to a summable ideal if and only if
it satisfies the following property: for every conditionally convergent series

∑
n xn

and r ∈ R ∪ {−∞,∞} there is a permutation 
 of � such that∑n x
(n) = r and
the set of fix points of 
 is in the filter dual to I. Piotr Szuca mentioned (in a private
communication) onemore property equivalent to the above. A familyA ⊆ P(�) has
the Positive Summability Property (PSP) if whenever (xn)n∈� is a sequence of reals
and

∑
n∈A xn <∞ for eachA ∈ A, then

∑
n∈� xn <∞. This notionwas considered

e.g. in [3]. It is known that an ideal has PSP if and only if it is not extendible to a
summable ideal. By the way, note that the matrix summability methods considered
in [3] (and earlier e.g. in [6]) is closely connected to the notion of representation of
an ideal in �∞, although the authors there are interested in a rather different kind
of questions.
Question 5.14 is connected also to the problem of representability inR� .Wemen-

tioned (see Example 3.8) that an ideal is representable in R� iff it is a countable
intersection of summable ideals. In particular, it has to be contained in a summable
ideal, so neither tr(N) nor Z is representable in R� .

Question 5.15. Is there any characterization of ideals representable in R�?

In the next diagram, we summarize all possible connections between properties
of ideals we investigated, and also put easy examples into every “bubble” (where we
know any).
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non-pathological analytic P-ideals (i.e. Banach-representable ideals)

??

summable-like ideals Mátrai’s land density-like ideals

tr(N)
generalized
density ideals

Fin

JF

I1/n ⊕ Z

Z

I1/n

tall
F�
ide
als

idea
ls re
pr. i
n c0

tall
Tsirelson
ideals

non-trivial
summable ideals

Explanations:

• A summable ideal is nontrivial if it is not a trivial modification of Fin.
• J0 ⊕ J1 = {A ⊆ 2× � : {n : (i, n) ∈ A} ∈ Ji , i = 0, 1}.
• “?” means that we do not know any examples in this “bubble.”

§6. Representability in �1. Notice that if an ideal is represented in �1 by a sequence
whose every coordinate is nonnegative, then it is a summable ideal. However, in
general this is not true. We present an example of an ideal I which is representable
in �1 but is not summable. The construction is motivated by the standard example
of an unconditionally convergent but not absolutely convergent sequence in �1.
We will need two interval partitions (Pn)n∈� and (Qn)n∈� of�: Let Pn = [0+1+
2 + · · · + n, 0 + 1 + 2 + · · · + n + (n + 1)), let Q0 = [0, 1) and if n > 0 then let
Qn = [1 + 2 + 4 + · · ·+ 2n−1, 1 + 2 + 4 + · · ·+ 2n). Define the following sequence
of “Rademacher-like” vectors:

• r0 = (1);
• r1 = (12 , 12 ), r2 = (12 ,− 12 );
• r3 = (14 , 14 , 14 , 14 ), r4 = (14 , 14 ,− 14 ,− 14 ), r5 = (14 ,− 14 , 14 ,− 14 );
• r6 = (18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 ), r7 = (18 , 18 , 18 , 18 ,− 18 ,− 18 ,− 18 ,− 18 ),
r8 = (18 ,

1
8 ,− 18 ,− 18 , 18 , 18 ,− 18 ,− 18 ), r9 = (18 ,− 18 , 18 ,− 18 , 18 ,− 18 , 18 ,− 18 );

and so on. In general, in the nth block we construct ri ∈ R2
n

for i ∈ Pn (notice
that 2n = |Qn|), they are the first |Pn| many “Rademacher-like” vectors in R2

n

.
Define the operation T : R2

n → L1[0, 1] by T (x) � Ik ≡ 2nxk for k < 2n where
Ik =

[
k
2n ,
k+1
2n

)
and x = (xk)k<2n . Then T is an isometric linear embedding and

{T (ri) : i ∈ Pn} is the sequence of the first n + 1 usual Rademacher functions.
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In particular the following version of Khintchine’s inequality holds true: there is
C > 0 such that for any sequence (ci)i∈Pn of real numbers∥∥∥∥ ∑

i∈Pn
ciri

∥∥∥∥
1
≤ C

( ∑
i∈Pn
c2i

)1/2
(this is an immediate corollary of [9, Theorem 3.25]).
Now, we will define a sequence x = (xi)i∈� in �1 which will represent the

Rademacher-ideal JR = I�1x . Simply “shift” the vectors (ri )i∈Pn to the interval Qn,
put zeros into every other coordinate, and divide it with n (if n > 0).More precisely,
if i ∈ Pn then let supp(xi) = Qn and

xi
(
min(Qn) + k

)
=
ri(k)
n

for k < 2n.

For X ⊆ � let AX = {n ∈ � : Pn ∩ X �= ∅}.
Theorem 6.1.

(0) JR is a tall F� ideal.
(1) If X ∈ JR then AX ∈ I1/n.
(2) If AX ∈ I1/

√
n then X ∈ JR.

(3) JR is not a summable ideal.

Proof.

(0) Tallness is trivial because ‖xi‖ = 1/n if i ∈ Pn . Let ϕ : P(�) → [0,∞) be
defined by

ϕ(A) =
∑
n∈�
max

{∥∥∥∥∑
i∈F
xi

∥∥∥∥
1
: ∅ �= F ⊆ Pn ∩ A

}
.

One can see that ϕ is a submeasure and JR = Fin(ϕ).

(1) Let
∑
i∈X xi = a and assume on the contrary that

∑
n∈AX 1/n =∞.Without

loss of generality assume that X ∩Pn = {jn} is a singleton for each n ∈ AX .
Clearly, ||xjn ||1 = 1/n for each n ∈ AX and thus ‖a‖1 =

∥∥∑
k∈X xk

∥∥
1 =∥∥∑

n∈AX xjn
∥∥
1 =

∑
n∈AX ||xjn ||1 =

∑
n∈AX 1/n =∞, a contradiction.

(2) Suppose
∑
n∈AX 1/

√
n < ∞. This time we can assume that X ∩ Pn = Pn

for each n ∈ AX . We are going to use different (but in �1 equivalent, see
[9,Theorem3.10]) definition of unconditional convergence:

∑
(xn)n is uncon-

ditionally convergent if for any choice of signs (�n)n the series
∑
(�nxn)n is

convergent, in the classical sense, that is, the sequence of initial subsums is
convergent.

For any choice of signs (�k)k ,K0 ∈ Pn0 , andK1 ∈ Pn1 , K0 < K1, n0, n1 ∈ AX , using
Khintchine’s inequality we have∥∥∥∥ ∑
k∈X∩[K0 ,K1)

�kxk

∥∥∥∥
1
=

∥∥∥∥ ∑
i∈Pn0\K0

�ixi

∥∥∥∥
1
+

∑
n∈AX∩(n0,n1)

∥∥∥∥ ∑
i∈Pn
�ixi

∥∥∥∥
1
+

∥∥∥∥ ∑
i∈Pn1∩K1

�ixi

∥∥∥∥
1

≤ C ·
∑

n∈AX∩[n0,n1]

(
n + 1
n2

)1/2
n0,n1→∞−−−−−→ 0
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because of our assumption on AX .
Before (3), we need a general Lemma: �
Lemma 6.2. Assume that a = (an)n∈�, b = (bn)n∈�, c = (cn)n∈� ∈ c0, an, bn,
cn ≥ 0 for every n, and that Ia ⊆ Ib . Then Iac ⊆ Ibc (where ac = (ancn)n∈� and
bc = (bncn)n∈�).

Proof. Fix an X ∈ Iac . We can assume that X = � by restricting our sequences
toX . We have to show that� ∈ Ibc . For everym define Bm = {n : bn ≥ 2man}, and
let C = ‖c‖0.
Claim. There is an m such that Bm ∈ Ib .

Suppose that Bm /∈ Ib for every m. Then we can find a sequence (Fm)m∈� of
finite sets such that for every m (i) Fm ⊆ Bm , (ii) 2−m ≤ sa(Fm) < 2−m+1, and
(iii) max(Fm) < min(Fm+1). Then clearly B =

⋃
m∈� Bm ∈ Ia but sb(Fm) ≥ 1 for

every m hence B /∈ Ib , a contradiction.
Let m be such that Bm ∈ Ib . Then∑

n∈�
bncn ≤ C

∑
n∈Bm

bn +
∑
n /∈Bm

bncn

≤ C
∑
n∈Bm

bn + 2m
∑
n /∈Bm

ancn

≤ C
∑
n∈Bm

bn + 2m
∑
n∈�
ancn <∞. �

(3) The ideal I is not a summable ideal. Suppose that JR = Ih for some h : � →
[0,∞). Let d (n) = sh(Pn) and e(n) = sh(Pn)/n. According to (2) I1/√n ⊆ Id

and by the Lemma (applied for a(n) = 1/
√
n, b(n) = d (n), and c(n) = 1/n)

we have I 1
n
√
n
⊆ Ie . This just means that e ∈ �1.

For each n ∈ � pick in ∈ Pn of the smallest possible weight with respect to h.
(1) implies that the set X = {in : n ∈ �} /∈ JX (simply because AX = � /∈ I1/n).

But
∑
n∈X h(n) ≤

∑
n∈�

d(n)
n =

∑
n∈� e(n) <∞, a contradiction.

Question 6.3. Is there a nice characterization of representability in �1? Does it
imply e.g. that the ideal is F�?

§7. Some related questions. The topic of this article can be developed in many
ways, for example, by considering characterizations of representability in particular
structures. Below we list some problems which we found interesting.
Representations in C [0, 1]. The Banach space C [0, 1] of continuous real-valued
functions on the unit interval with the sup-norm is (isomorphically) universal for
the class of separable Banach spaces, i.e., it contains copies (via linear homeo-
morphisms) of all separable Banach spaces. Therefore, all nonpathological analytic
P-ideals are representable in C [0, 1].

Question 7.1. Is there any “canonical” way of representing nonpathological ana-
lytic P-ideals in C [0, 1]? Here “canonical” stands for a simple construction of a
representation of Exh(supn∈� �n) in C [0, 1] from the defining sequence (�n)n∈� of
measures on �.
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Question 7.2. Assume that all nonpathological analytic P-ideals are representable
in a Banach space X . Does it imply that X is (isomorphically) universal for the class
of all separable Banach spaces?
Weak representations. Another natural way to associate ideals to sequences in

topological Abelian groups is the following: If h : � → G then let
ĨGh =

{
A ⊆ � :

∑
h �A is Cauchy

}
.

Clearly, ĨGh is always an ideal, and I
G
h ⊆ ĨGh = IG̃h where G̃ ⊇ G is the completion

of G . Of course, if G is complete, then IGh = ĨGh .
For example, let X be a Banach space and consider X with the weak topology

w = �(X,X ∗). Then we can talk about ideals representable in the completion X̃
of (X,w). If we are interested in a special case, namely, ideals of the form ĨX,wh , i.e.

ideals of the form IX̃h where we work with sequences h : � → X ⊆ X̃ with range
in X only, then applying [2, page 44, Theorem. 6] it is easy to see that these ideals
are F� .

Question 7.3. Is there any characterization of ideals of the form ĨX,wh where
X = c0, �1, �∞?
Ideals defined by families of finite sets. It seems that numerous ideals can bewritten

in a quite special form. For a function f : � → [0,∞) and finite set F ⊆ � define
a measure in the following way: �fF (A) = sf(A ∩ F ) = ∑

k∈A∩F f(k). Now for a
family F ⊆ [�]<� we can define a submeasure ϕfF = supF∈F �

f
F .

For instance, consider 2<� instead of �, and let f(s) = 2−|s| and g(s) = |s |−2.
Then we obtain the following example:

• if F = [2<�]<� , then Exh(ϕfF) is the summable ideal;
• if F = {levels}, then Exh(ϕfF) is the density ideal;
• if F = {antichains}, then Exh(ϕfF) is tr(N);
• if F consists of finite subsets which do not have more than 2n/n elements from
n-th level, then Exh(ϕgF) is Farah’s ideal.

We hope that some families of finite sets (with an appropriate f) could give us
some interesting ideals.

Question 7.4. Is there any characterization of ideals of the form Exh(ϕfF)? Or at
least in the special cases described above (i.e., with a fixed f)?
Basic representations. Let E be the canonical basic sequence of c0. Consider a

linear space X ′ ⊆ c0 equipped with a norm || · || and let X be the completion of
(X ′, || · ||). We will say that an ideal I is basically represented in X if

A ∈ I iff
∑
n∈A
αnxn unconditionally converges in X

for some sequence (αn)n∈� from R+ and a sequence (xn)n∈� from E (where we
assume that e = xn only for finitely many n’s, for every e ∈ E).
It seems that this representations ties ideals with Banach spaces in a more evident

way than the standard representation. E.g.

• summable ideals are those basically representable in �1;
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• density ideals are those basically representable in c0;
• Tsirelson ideals are basically representable in Tsirelson space(s).
Perhaps this approach can be used to construct peculiar Banach spaces. For
example we can ask if there is a norm such that tr(N) is representable in the above
way?
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[20] Boban Veličković, A note on Tsirelson type ideals. Fundamenta Mathematicae, vol. 159 (1999),

no. 3, pp. 259–268.

INSTYTUTMATEMATYCZNY
UNIWERSYTETWROCŁAWSKI
PL. GRUNWALDZKI 2/4, 50-384 WROCŁAW
POLAND

E-mail: pborod@math.uni.wroc.pl
E-mail: barnabasfarkas@gmail.com
E-mail: grzes@math.uni.wroc.pl

Barnabás Farkas later at:
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