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How long are tidal channels?
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Do tidal channels have a characteristic length? Given the sediment characteristics,
the inlet conditions and the degree of channel convergence, can we predict it? And
how is this length affected by the presence of tidal flats adjacent to the channel? We
answer the above questions on the basis of a fully analytical treatment, appropriate
for the short channels typically observed in coastal wetlands. The equilibrium length
of non-convergent tidal channels is found to be proportional to the critical flow speed
for channel erosion. Channel convergence causes concavity of the bed profile. Tidal
flats shorten equilibrium channels significantly. Laboratory and field observations
substantiate our findings.
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1. Introduction
We are concerned with tidal channels which typically form networks issuing from

tidal inlets of back-barrier lagoons (figure 1a). In these settings, proceeding in the
landward direction, channel width, channel depth and grain size decrease, while the
tide is allowed to expand into shallow regions (tidal flats) adjacent to the channel,
which eventually merge into vegetated salt marshes, submerged during part of the
tidal cycle only.

The issue of long-term equilibrium of tidal patterns is a delicate one. Let us focus on
the simplest case of a tidal channel connected to the sea through a tidal inlet and let
us define ‘morphodynamic equilibrium’ as a state characterized by the condition that
the bed elevation undergoes no net variation in a tidal cycle. Then, the first necessary
condition for equilibrium is that no net import of sediments from (or export to) the sea
must occur in a tidal cycle. Provided this condition is satisfied, tidal channels achieve
equilibrium adjusting their bed profiles and lengths to the asymptotic condition that
the net sediment flux in a tidal cycle must eventually vanish everywhere: this will
be called a condition of static equilibrium. And, indeed, the laboratory experiments
of Tambroni, Bolla & Seminara (2005) and the numerical simulations of Lanzoni &
Seminara (2002) and Todeschini, Toffolon & Tubino (2008) do suggest that static
equilibrium is eventually reached under the conditions stated above. Moreover, field

† Email address for correspondence: nicoletta.tambroni@unige.it

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

23
08

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992308


480 G. Seminara, S. Lanzoni, N. Tambroni and M. Toffolon

(a)
(b)

BT
* in

BT
*

BT
*

Ds
*

B*

D*

x*

Ds
*

l*

0

B*
in B*

y*

Figure 1. (a) Tidal channels with adjacent tidal flats in Venice lagoon; (b) sketch of a tidal
convergent channel with adjacent shoals.

data (D’Alpaos et al. 2009) support the idea that channel networks of back-barrier
lagoons do approach equilibrium. Viewed on a larger time scale the problem is
even more delicate as sea level rise and subsidence also play a role. In these tidal
environments, suggestions have been made that accretion often balances relative sea
level rise (Nichols & Boon 1994) and an essentially stable configuration is attained by
dead end tidal creeks dissecting salt marshes as well as by channels departing from
the barrier inlets and innervating the adjacent tidal flats.

A different notion of equilibrium, that we will call dynamic equilibrium, has been
investigated by Pritchard & Hogg (2003) who considered intertidal mud flats located
along sheltered portions of coasts and estuaries. In these tidal settings the flats
typically prograde (or retreat) as a consequence of a net import of sediments from
(or export to) the offshore region. This migration process occurs very slowly (on
a time scale of the order of thousands of tidal cycles) implying that the residual
fluxes associated with advance (retreat) are much smaller than the instantaneous flux.
A dynamic equilibrium profile is then attained with a sediment flux approximately
constant throughout the flat, i.e. with a peak shear stress uniformly distributed along
the flat (Friedrichs & Aubrey 1996; Pritchard & Hogg 2003).

In the present paper we focus on static equilibrium of tidal channels. A number of
ingredients affect this equilibrium state. The nature of sediments (cohesionless versus
cohesive) controls bed erodibility. Channel convergence, the characteristics of the
forcing oscillation and the presence of tidal flats, exchanging water and sediments
with the channel, control the hydrodynamics. Inlet geometry affects the ability of
the water body feeding the channel to exchange sediments through the inlet. Finally,
channel curvature is known to affect the lateral bottom equilibrium (Solari et al.
2002), while tidal bedforms (Seminara & Tubino 2001) likely play a minor role,
which is disregarded below. The subject has been recently reviewed by de Swart &
Zimmermann (2009). The general picture of the process whereby equilibrium is
established, arising from theory, computations and laboratory observations, is as
follows: starting from an initially horizontal bed profile, a sediment wave propagates
landwards in the channel leading to bed emergence and shore development inwards.

A natural yet fundamental question then arises: can we predict the length of tidal
channels? In other words, given the sediment characteristics, the inlet conditions and
the degree of channel convergence, can we predict the channel length? And what is
the role of tidal flats?
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We show below that answers to the above questions can indeed be given on the
basis of a fully analytical treatment, appropriate for channels and flats sufficiently
short relative to the length of the tidal wave (§ 2), a condition first employed by
Schuttelaars & de Swart (1996), which justifies a perturbative solution of the governing
equations (§ 3). The novel feature of the present approach is that our inner boundary
condition allows for the existence of a dry and wet region, which is treated as an
inner layer in the language of matched asymptotics. We are then able to determine
a fully analytical solution valid throughout the channel and impose the condition of
morphodynamic equilibrium to determine the shape and length of the equilibrium
profile (§ 4). Finally, we investigate the role of tidal flats (§ 5), modelled as rectangular
and aligned with the channel, accounting for their storage effect and ignoring their
dynamic effect: tidal flats are thus found to enhance the flow speed in the channel,
reduce its equilibrium length and enhance its concavity.

Note that the short channel assumption is quite well satisfied throughout the
networks of most coastal wetlands. On the contrary, long estuaries are excluded from
the present analysis though, as discussed in § 6, the ideas developed herein may be
found of some relevance also for estuarine environments.

2. Mathematical formulation of the problem
We consider a straight tidal channel of length l∗ (hereafter a star superscript

will denote dimensional quantities), rectangular cross-section and width B∗ varying
exponentially landwards as typical of tidal environments (Friedrichs & Aubrey 1994):

B∗ = B∗
in exp(−x∗/l∗

b). (2.1)

Here l∗
b is the convergence length, B∗

in the inlet width and x∗ a longitudinal coordin-
ate pointing landwards with origin at the inlet (figure 1b). In the context of a one-
dimensional model the motion of the fluid phase is governed by the classical continuity
and de Saint Venant equations, which express the principles of mass and momentum
conservation. It is convenient herein to set the latter equations in dimensionless form.
Below, t∗ denotes time, D∗ and U ∗ are the cross-sectionally averaged flow depth and
flow speed respectively, H ∗ is the water surface elevation relative to the mean sea
level and g is gravity. The relevant variables are scaled as follows:

x∗ = l∗x, t∗ = ω∗−1
0 t, (2.2)

H ∗ = a∗
0H, D∗ = D∗

0 D, U ∗ = U∗
0 U. (2.3)

In (2.2), (2.3) ω∗
0 and a∗

0 are angular frequency and amplitude of the forcing tide,

D∗
0 is a typical depth, taken equal to the inlet depth scale and U∗

0( = ε
√

gD∗
0) is a

characteristic speed, with ε relative tidal amplitude (ε = a∗
0/D∗

0). The above scaling is
appropriate everywhere along the channel, except in the landward region where the
bed emerges during part of the tidal cycle, hence the flow depth approaches zero.
Here, the flow depth scales with the tidal amplitude a∗

0: indeed, this inner region
behaves as a boundary layer where rescaling will be necessary.

At this stage, we ignore tidal flats, an assumption that will be relaxed in § 5.
Moreover, we neglect dissipative effects. In § 6 we will discuss how severe is this
assumption in practice. With the above notations the governing equations read:

λ
∂D

∂t
+ ε

∂(UD)

∂x
− ελb(UD) = 0, (2.4)
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λ
∂U

∂t
+ εU

∂U

∂x
+

∂H

∂x
= 0 (2.5)

with λ the ratio between channel length and inviscid wavelength of a small-amplitude
tidal wave and λb weighing the relative effect of channel convergence:

λ =
l∗ω∗

0√
gD∗

0

, λb =
l∗

l∗
b

. (2.6)

Equations (2.4) and (2.5) must be supplemented by appropriate boundary
conditions. At the channel mouth we set

D|x=0 = 1 + εH (x, t)|x=0 = 1 + εf (t). (2.7)

The landward boundary condition requires more care: in fact, the shoreline, located
at x∗

sh(t
∗), is a moving boundary through which no relative flux may occur, hence:

U |x=xsh
=

λ

ε
ẋsh, D|x=xsh

= 0. (2.8)

In a channel with erodible bed, flow depth and free surface elevation are independent
variables. Hence, in order to close the mathematical formulation we need to
couple hydrodynamics to morphodynamics through the one-dimensional form of
the evolution equation of the bed interface, expressing mass conservation of the solid
phase (Exner 1925), which reads

B∗ ∂(c̄D∗)

∂t∗ + (1 − p)B∗ ∂η∗

∂t∗ +
∂(B∗q∗

s )

∂x∗ = 0, (2.9)

where η∗ is the local and instantaneous value of the laterally averaged bed elevation, c̄
is the sediment concentration averaged over the cross-section, p is sediment porosity,
q∗

s is the total sediment flux per unit width (transported as both bedload and
suspended load). At static equilibrium, each property of both the flow field and the
sediment motion cannot exhibit net variations in a tidal cycle. This applies in particular
to bed elevation (hence to the position of the shoreline), sediment concentration and
flow depth. Integrating (2.9) in a tidal period, one finds

∫ t∗+T ∗

t∗

∂(B∗q∗
s )

∂x∗ dt∗ =

∂

(
B∗

∫ t∗+T ∗

t∗
q∗

s dt∗

)

∂x∗ = 0. (2.10)

Hence, the net sediment flux in a tidal cycle must be constant throughout the
channel and the constant must vanish in order to satisfy the landward boundary
condition.

3. An analytical solution for short channels
We now set

λ = Λε, λb ∼ O(1) (3.1)

with Λ an O(1) quantity. These assumptions are appropriate for typical channels
of Venice lagoon with lengths <10 km, inlet depth D∗

in < 10 m and tidal amplitude
a0 = 0.4 m.

With the help of (3.1), the governing equations (2.4), (2.5) take the form

Λ
∂D

∂t
+

∂(UD)

∂x
− λb(UD) = 0, (3.2)
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Λ
∂U

∂t
+ U

∂U

∂x
+

1

ε

∂H

∂x
= 0. (3.3)

We now distinguish between an outer region where (x − 1) ∼ O(1) and an inner
region where (x − 1) ∼ O(ε), solve the problem distinctly in the two regions and then
match the inner and outer solutions following the method of matched asymptotic
expansions (Nayfeh 1973).

3.1. The solution in the outer region: (x − 1) ∼ O(1), D ∼ O(1)

An order of magnitude analysis of the fundamental equations suggests the following
expansions:

D = D0(x) + εD1(x) + εH (x, t) + O(ε2), (3.4)

(H, U/ε) = [H1(x, t), U1(x, t)] + ε[H2(x, t), U2(x, t)] + O(ε2). (3.5)

Substituting from the latter expansions into the governing equations (3.2), (3.3) at
leading order we find:

∂H1

∂x
= 0,

∂(D0U1)

∂x
− λb(D0U1) = −Λ

∂H1

∂t
(3.6)

to be solved with the boundary condition

H1|x=0 = f (t) (3.7)

along with a matching condition at the inner boundary. The latter problem is readily
solved in the form

H1 = f (t), U1 =
Λḟ

λbD0

+ g1(t)
exp(λbx)

D0

(3.8)

with g1(t) an arbitrary function of time to be determined through matching.
Similarly, at the next order, one finds

H2 = H2|x=0 = 0, U2 = − (f + D1)U1

D0

+
g2(t) exp(λbx)

D0

(3.9)

with g2(t) a second arbitrary function of time which will also be determined through
matching.

3.2. The solution in the inner region: (x − 1) ∼ O(ε), D ∼ O(ε)

Let us next define an inner independent variable ξ as follows:

ξ =
x − 1

ε
, (3.10)

and denote the dependent variables U , H , D in the inner region by u, h, d , respectively.
The governing equations, written in terms of the inner variables, read

Λ
∂d

∂t
+

1

ε

∂(ud)

∂ξ
− λb(ud) = 0, (3.11)

Λε
∂u

∂t
+ u

∂u

∂ξ
+

1

ε

∂h

∂ξ
= 0. (3.12)

These equations must be solved with the boundary condition (2.8) at the moving
boundary (the shoreline), which is readily expressed in inner variables as follows:

u|ξ=ξsh
= Λεξ̇sh. (3.13)
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We then expand the inner solution in the form

[h, u/ε, d/ε] = [h1(ξ, t), u1(ξ, t), d1(ξ ) + h1(ξ, t)] + ε[h2(ξ, t), u2(ξ, t), d2(ξ )

+ h2(ξ, t)] + O(ε2), (3.14)

ξsh = ξsh0(t) + εξsh1(t) + O(ε2), (3.15)

where ξsh0(t) and ξsh1(t) are defined by the condition that the flow depth at the front
must vanish, i.e. d|ξ = ξsh

=[ε(d1 + h1) + ε2(d2 + h2) + O(ε3)]ξ = ξsh
= 0. Hence,

d1|ξsh0
= −h1|ξsh0

, (3.16a)

d2|ξsh0
= −h2|ξsh0

− ξsh1

d(d1)

dξ

∣∣∣∣
ξsh0

− ξsh1

∂(h1)

∂ξ

∣∣∣∣
ξsh0

. (3.16b)

Let us now substitute from (3.14) into (3.12). At O(1/ε) one readily finds

∂h1

∂ξ
= 0 ⇒ h1 = H1 = f (t) (3.17)

having already imposed matching. Equation (3.11) at O(ε) gives

∂(u1(f + d1))

∂ξ
= −Λḣ1 ⇒ u1 =

γ1(t) − Λḟ ξ

f + d1

. (3.18)

Recalling the condition (3.16a), we remove the singularity at the front by setting

γ1(t) = Λξsh0ḟ (3.19)

and the leading order component of the inner solution becomes

u1 = Λḟ
ξsh0 − ξ

f + d1

. (3.20)

The boundary condition (3.13) is readily shown to be satisfied noting that one can
write

ξ̇sh =
dξsh

df
ḟ (3.21)

and

dξsh

df
= −

(
d(d1)

dξ
+ ε

d(d2)

dξ

)−1
∣∣∣∣∣
ξsh

. (3.22)

At O(ε) one then finds

dξsh0

df
= −

(
d(d1)

dξ

)−1
∣∣∣∣∣
ξsh0

, lim
ξ→ξsh0

ξsh0 − ξ

f + d1

= −
(

d(d1)

dξ

)−1
∣∣∣∣∣
ξsh0

. (3.23)

We then proceed to the next order following similar steps, to find

h2 = H2 = 0, (3.24)

u2 = −Λḟ
ξsh0 − ξ

f + d1

d2

f + d1

+
Λλbḟ

f + d1

[
ξsh0ξ − ξ 2

2

]
+

γ2(t)

f + d1

(3.25)

with γ2(t) arbitrary function to be determined by imposing the boundary condition
at the shoreline at O(ε2). The latter reads

u2

∣∣∣∣ξsh0
+ ξsh1

∂u1

∂ξ

∣∣∣∣
ξsh0

= Λξ̇sh1. (3.26)
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Expanding (3.21) and (3.22), at O(ε2) one finds

ξ̇sh1 =

[(
d(d2)

dξ
+

d2(d1)

dξ 2
ξsh1

) / (
d(d1)

2

dξ

)]∣∣∣∣
ξsh0

ḟ . (3.27)

Substituting from the latter expression into (3.26) and expanding the left-hand side
in powers of (ξ − ξsh0) in a neighbourhood of the front, some tedious algebra shows
that the landward boundary condition is indeed satisfied provided the function γ2(t)
takes the form

γ2(t) = Λḟ

(
ξsh1 − λb

ξ 2
sh0

2

)
. (3.28)

Equations (3.20) and (3.25) determine the velocity distribution in the inner layer up
to second order, in terms of the as yet unknown quantities ξsh0, ξsh1 which (recall the
condition (3.16a,b)) will be known once the shape of the equilibrium bed profile will
have been determined.

3.3. Matching the inner and outer solutions

We now let x → 1 in the outer solution, rewrite the resulting expression in terms of
the inner variables and match it with the expression obtained letting ξ → − ∞ in the
inner solution.

In particular, we expand the functions D0(x) and D1(x) in a neighbourhood of the
shoreline as follows:

D0 = 	0(1 − x) + k0(1 − x)2 + O(1 − x)3, D1 = 	1(1 − x) + O(1 − x)2 (3.29)

or, in inner variables,

d1 = −	0ξ, d2 = k0ξ
2 − 	1ξ. (3.30)

At O(ε) matching allows us to determine the unknown function g1(t), which reads.

g1(t) = − Λḟ

λb exp(λb)
. (3.31)

Similarly, at O(ε2), matching determines the function g2(t)

g2(t) = Λḟ exp(−λb)ξsh0. (3.32)

The outer solution then takes the following form

U1 =
Λḟ

λb

[1 − exp(λb(x − 1))]

D0

, (3.33)

U2 = Λḟ ξsh0

exp(λb(x − 1))

D0

− Λḟ

λb

f + D1

D0

[1 − exp(λb(x − 1))]

D0

. (3.34)

The latter equations define the outer solution in terms of the as yet unknown shape
of the equilibrium bed profile. This will be determined in the next section.

4. Bottom equilibrium profile and channel length
Let us now clarify the implications of equilibrium. We recall that any sediment

transport law, either for bedload or for suspended load or both (e.g. Engelund &
Hansen 1967), establishes a nonlinear relationship between the sediment flux and the
averaged flow speed. In nature, although the forcing tide usually exhibits a dominant
harmonic, further harmonic constituents concur to determine the actual form of the
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tidal signal. The structure of the solution (3.33)–(3.34) then implies that, except for
ad hoc, highly unlikely, combinations of the various harmonics composing the forcing
tide, the only possible condition ensuring a null tidally averaged sediment flux is that
the instantaneous flux must also vanish throughout the tidal cycle. In the real world
various mechanisms cause departure from this ideal condition. Firstly, the forcing
is not constant but usually varies due to astronomical, atmospheric and climatic
reasons. Secondly, equilibrium is asymptotically reached and the time necessary
to reach it is extremely large, being controlled by the residual component of the
sediment flux which tends to vanish as equilibrium is approached: this is also readily
verified from the numerical solution of the transient process whereby equilibrium is
obtained (Lanzoni & Seminara 2002; Todeschini et al. 2008). Thirdly, in a real lagoon,
channels may not be in equilibrium because flats are not in equilibrium and exchange
sediments with the channels: this is the case of Venice lagoon, where dredging
is periodically necessary. In other words, ideal equilibrium is never achieved in
practice.

As mentioned in § 1, previous work on channel equilibrium (Friedrichs 1995)
concentrated on the less stringent condition of dynamic equilibrium, whereby the
maximum velocity attained in a tidal cycle is found to be spatially constant throughout
the channel with values close to the critical velocity for sediment motion. This
condition was also employed in a related set of models of cross-shore tidal flow
allowing for a net import (export) of sediment leading to progradation (retreat) of
the flat. In particular, Friedrichs & Aubrey (1996) obtained ‘equilibrium’ profiles for
intertidal and subtidal flats by assuming that the maximum velocity in a tidal cycle
was constant in space across them. This hypothesis has also found support in the
numerical models of Pritchard, Hogg & Roberts (2002) and of Waeles, Le Hir &
Jacinto (2004), who found that typical characteristic shear stresses at equilibrium were
close to, but a little larger than, the critical shear stress for erosion.

Below, we concentrate on the problem of channel equilibrium under the condition of
no sediment supply to the channel, hence we impose the static equilibrium constraint.
The search for this ideal equilibrium state, besides defining a well posed problem from
both the morphological and the mathematical points of view, is in fact a fundamental
step to understand the response of natural systems to perturbations of the external
forcing. Whether or not the system will be able to reach the asymptotic state, its
trend will be to move towards a new equilibrium, the knowledge of which is then
significant.

Let us then force the constraint that the maximum speed in a tidal cycle max|U |
should not exceed its critical value Ucr ( = U ∗

cr/U∗
0), with U ∗

cr the critical speed for
sediment motion. Note that the critical speed for the motion of cohesionless sediments
depends on grain size. One may then wonder whether applying the critical constraint
to the average grain size might not ensure equilibrium for the whole range of grain
sizes. However, this is not a major concern as the grain size distribution of sandy
bottoms typical of the outer portions of lagoon settings is fairly uniform, while the
sediment becomes cohesive in the inner portions. It should also be kept in mind that,
even for poorly sorted sediment mixtures, the critical stress (hence the critical speed)
is only weakly dependent on grain size, due to the well-known ‘hiding effect’ which
makes different grain sizes nearly ‘equally mobile’, as conclusively demonstrated by
Parker, Klingeman & McLean (1982). The landward reduction of the average grain
size is indeed an additional effect which is disregarded herein: it is likely to induce
an additional contribution to bottom concavity, driven by the slow variation of the
critical speed associated with sediment fining in the landward direction.
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We then expand the equilibrium length l∗
eq (hence the parameters Λ and λb at

equilibrium) in powers of ε as follows:

(l∗
eq, Λ, λb) = (l∗

eq0, Λ0, λb0) + (l∗
eq1, Λ1, λb1)ε + O(ε2) (4.1)

and set

ε U |tM = Ucr, (4.2)

where tM is the time when |U | is maximum. More specifically, tM = tM1+εtM2, where tM1

is the time when |U1| is maximum and tM2 is the second-order correction. Therefore,
it follows that

U |tM = U1|Λ0,λb0,tM1
+ ε

[
∂U1

∂Λ

∣∣∣∣
Λ0,λb0,tM1

Λ1 +
∂U1

∂λb

∣∣∣∣
Λ0,λb0,tM1

λb1

+
∂U1

∂t

∣∣∣∣
Λ0,λb0,tM1

tM2 + U2|Λ0,λb0,tM1

]
+ O(ε2) (4.3)

and set

ε U1|Λ0,λb0,tM1
= Ucr . (4.4)

Then, since ∂U1/∂t |tM1
= 0 by definition of maximum, the correction D1(x) is derived

from the condition

∂U1

∂Λ

∣∣∣∣
Λ0,λb0,tM1

Λ1 +
∂U1

∂λb

∣∣∣∣
Λ0,λb0,tM1

λb1 + U2|Λ0,λb0,tM1
= 0 . (4.5)

Recalling (3.33) it follows that the maximum value of |U1| is attained at the instant
tM1 when |ḟ | attains its maximum. Substituting from (3.33), into (4.4), one then derives
the following solution for the equilibrium bottom profile at leading order:

D0(x) =
l∗
b

l∗
∞

[
1 − exp

[
l∗
eq0

l∗
b

(x − 1)

]]
, l∗

∞ =
U ∗

crD∗
0

a∗
0ω

∗
0|ḟmax |

(4.6)

with l∗
∞ equilibrium length of a non-converging channel. For fixed values of the

remaining parameters appearing in (4.6b), the value of l∗
∞ increases as the relative

tidal amplitude (ε = a∗
0/D∗

0) decreases.
Also note that the bed profile (4.6a) is a straight line in the limit l∗

b → ∞ and
becomes increasingly concave as l∗

b decreases.
Finally, setting D0|x = 0 = 1 in (4.6a), we derive the leading order solution l∗

eq0 for the
equilibrium length of the channel, which then allows us to determine the geometric
parameters 	0, k0:

l∗
eq0 = −l∗

b ln

[
1 − l∗

∞
l∗
b

]
, 	0 =

l∗
eq0

l∗
∞

, k0 = −
[
l∗
eq0

l∗
b

]2
l∗
b

2l∗
∞

. (4.7)

The first of these relations is plotted in figure 2(a) and shows that the equilibrium
channel shortens as the convergence length l∗

b increases and the equilibrium length of
the corresponding non-converging channel, l∗

∞, decreases (figure 2b). The latter feature
describes the behaviour observed when, all the other parameters being constant, the
tidal amplitude (i.e. ε) grows or U ∗

cr decrease (see (4.6b)). Note that in the limit of
l∗
b approaching l∗

∞, then figure 2(a) shows that l∗
∞/l∗

eq0 tends to zero, hence l∗
b � l∗

eq0.
However, this limit falls outside the range of validity of the present theory, constrained
by the condition (3.1) whereby the parameter λb must be an O(1) quantity. We do
not think that this fact suggests that there is a difficulty attaining static equilibrium
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Channel D∗
in(m) l∗(m) l∗

b (m) D∗
avg(m) rs in l∗

bT (m) U ∗
cr (m s−1)

S. Lorenzo 5.5 5375 4025 4.0 1 4722 0.17
S. Felice 7.0 15 011 5302 5.5 1 10 604 0.18
Riga 5.0 2668 6849 4.0 1 1292 0.17
dei Bari 6.5 9826 6858 5.0 1 4572 0.18
Gaggian 5.5 4381 3070 4.6 1 2558 0.18
Scanello 4.5 1698 924 3.0 1 1155 0.17
Riga1 4.8 1744 3157 3.8 1 751 0.17
Riga2 5.2 2379 3893 4.3 1 988 0.18

Table 1. Observed geometric properties of some tidal channels in Venice Lagoon. D∗
in is the

inlet depth, l∗ is the channel length, l∗
b is the convergence length, D∗

avg is the average channel

depth, rs in is the ratio between the total (channel+shoal) and channel width at the inlet, l∗
bT is

the total convergence length, and, U ∗
cr is the threshold velocity. The characteristic values of the

amplitude a∗
0 and of the angular frequency of the tidal wave ω∗

0 within the Lagoon of Venice

are 0.4 m and 1.4 10−4 s−1, respectively. The typical flow conductance may be calculated using

the Strickler’s relationship as, ks/
√

g D
∗ 1/6
avg , with ks =35m1/3s−1.
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Figure 2. (a) The inverse of the equilibrium length of a channel l∗
eq0, scaled by its value l∗

∞
for a non-converging channel, is plotted as a function of the inverse of the convergence length
l∗
b , scaled by the same quantity. The plot shows that the equilibrium channel shortens as the
convergence length increases. (b) Contour plot of the equilibrium length l∗

eq0 of channel in the

(l∗
∞, l∗

b ) plane.

for very strongly converging channels: in fact, equilibrium was indeed achieved by
Lanzoni & Seminara (2002) on the basis of numerical simulations which were not
constrained by the assumption (3.1). On the other hand, the third and fourth columns
of table 1 do confirm that the latter assumption is typically verified in nature. This is
not surprising: indeed, convergence arises from a very simple mechanism whereby, for
bank stability, channel width must adjust to a flow depth which decreases landwards;
hence, the scale of channel convergence cannot differ significantly from the scale of
depth variation, which is precisely the channel length.

It is also worthwhile to observe that the outer bottom profile at equilibrium can be
cast in the form

D0(x) =
1 − exp[λb0(x − 1)]

1 − exp(−λb0)
. (4.8)

We now validate our model comparing our theoretical results with experimental
data (Tambroni et al. 2005) concerning the long-term equilibrium of a straight
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Figure 3. The experimental bed profile observed by Tambroni et al. (2005) after 2000 tidal
cycles in a straight, tidal channel with constant width is compared with theoretical predictions
resulting from (4.8). The relevant values of the experimental parameters are: a∗

0 = 0.024 m,

ω∗
0 = 0.035 s−1, l∗

eq = 22.9 m, U ∗
cr =0.1 m s−1, Cavg = 12.

erodible channel with constant width (l∗
b → ∞) and no tidal flat. The morphodynamic

equilibrium was approached asymptotically after about 2000 tidal cycles and was
characterized by a virtually vanishing sediment flux along the entire channel. Figure 3
shows this comparison concerning the bed profile. The agreement is quite good,
noting that in the constant width case, the first order contribution D1(x) vanishes
identically. Note that agreement has not been achieved by fitting any of the relevant
parameters, but simply adopting the values observed in the experiments and reported
in Tambroni et al. (2005). In particular, Ucr ( = C

√
τ ∗
cr/ρ/U∗

0, with ρ water density) has
been estimated using the value of the critical bed shear stress for sediment motion
τ ∗
cr obtained from the Shields diagram. As regards the dimensionless Chèzy flow

conductance C (defined as the inverse of the square root of the friction coefficient),
in figure 3 we report two profiles, the former obtained assuming a spatially constant
value ( = 12) for C, the latter allowing for depth dependence of C according to the
classical Strickler’s relationship C = C0 D

1/6
0 (x). It appears that this dependence gives

rise to a weak concavity of the bed profile which improves agreement.
The form (4.8) for the equilibrium bottom profile holds in the outer region. It

matches with an inner equilibrium profile which is obtained at leading order imposing
a constraint similar to (4.2) to the inner velocity (3.20). This constraint was reinforced
numerically following a trial and error procedure: an inner equilibrium profile (namely
an equilibrium form of d1(ξ )) was guessed such to match the linear profile (d1(ξ ) →
−	0ξ ) as ξ → − ∞. A related guess was then derived for the position of the front
ξsh0(t). The inner velocity u1 was then calculated. Next, the inner equilibrium profile
d1(ξ ) was corrected at each location such to satisfy the critical constraint. The new
guess for d1(ξ ) allowed us to update the position of the front ξsh0(t) which, in turn,
corrected the flow velocity requiring a new iteration. The procedure was found to
converge quite rapidly to a profile which keeps linear below the intersection ξ =0
between the mean water level and the bottom profile: in fact, in this region, though
the time dependence of the inner velocity is no longer simply proportional to ḟ ,
however the maximum speed turns out to be still attained at the time when |ḟ |
attains its maximum. However, above that point, the maximum speed is associated
with the speed of the front. In this region the bottom profile becomes convex. More
precisely, for a sinusoidal tide, the profile predicted by Friedrichs & Aubrey (1996)
was indeed confirmed as shown in the figure 4, where the presence of overtides is
also accounted for and proves to have a minor effect on the shape of the equilibrium
profile.
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Figure 4. The equilibrium profile in the inner region is plotted for various forcing tides,
showing that the equilibrium profile keeps linear below the point ξ = 0 and becomes sinusoidal
above that point, thus confirming the predictions of Friedrichs & Aubrey (1996).

Having determined the function ξsh0(t), the outer solution (3.34) is known and we
can next impose the constraint (4.5) together with the boundary condition D1(0) = 0,
to obtain

l∗
eq1 = l∗

eq0

(
f

∣∣∣∣
tM1

1 − exp(−λb0)

λb0exp(−λb0)
− ξsh0

∣∣∣∣
tM1

)
(4.9)

and hence the correction of the equilibrium profile

D1(x) = − f |tM1
[1 + (x − 1)exp(λb0x)] + ξsh0|tM1

λb0exp[λb0(x − 1)]

1 − exp(−λb0)
x . (4.10)

Note that this first-order correction is strictly null for a sinusoidal tide (f |tM1
= 0,

ξsh0|tM1
= 0, see (3.2)), while for a generic tide allows one to derive the expression

for 	1 at equilibrium (see (3.30b)). Note also that D1 depends on the inner solution
through ξsh0.

5. The role of tidal flats at equilibrium
Tidal flats have various important roles in lagoon morphodynamics: they exchange

water, sediments and nutrients with channels and salt marshes. The dynamics of tidal
flats poses a complex problem as the processes of deposition and resuspension of
possibly cohesive sediments due to the combined action of tidal currents and wind
waves in shallow embayments are as yet not wholly understood. Here, we restrict
our attention on shoals at equilibrium and concentrate on their major role: a storage
effect on tide propagation, which will be seen to drive flow acceleration in the channel
and channel shortening.

These effects can be clarified considering a simple configuration consisting of a
rectangular convergent channel bounded by two identical shoals characterized by
width varying in the longitudinal direction such that the total (channel+shoal) width
is B∗

T (figure 1b). With the assumption (2.1) for B∗, in order to account for distinct
degrees of convergence of channel and shoals, we set

B∗
T = B∗

T in exp

(
x∗

l∗
bT

)
, rs =

B∗
T

B∗ = rs in exp

[
x∗

(
1

l∗
bT

+
1

l∗
b

)]
. (5.1)

Denoting by D∗
s the scale of flow depth in the shoals, and assuming that the energy

slope J does not vary laterally, the ratio between the average speeds in the shoals
and in the channel, computed through the Gauckler–Strickler resistance relation
(i.e. U = ksD∗2/3J 1/2), turns out to be proportional to [D∗

s /D∗
0]

2/3. The ratio between
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the water fluxes typically flowing in the shoals and in the channel is thus proportional
to the product of the ratio (rs − 1) between their widths and the 5/3 power of the
ratio between their flow depths [D∗

s /D∗
0]

5/3. Provided the latter product is O(ε), then,
at least at leading order, the presence of shoals is only felt in the governing equations
through the inclusion of a factor rs in the storage term of the continuity equation
(3.2). The analysis then follows simply along the lines of our previous treatment,
provided that the boundary condition (2.8) is replaced by

U |x=xsh
= rs

λ

ε
ẋsh. (5.2)

The expression for the flow speed at leading order then results

U1 =
Λrs inḟ

λbT

exp(λbx)

D0

[exp(λbT ) − exp(λbT x)], (5.3)

where λbT is defined by (2.6b) with l∗
b replaced by l∗

bT . The equilibrium shape of the
bed profile takes the form

D0(x) = exp(λb0x)
1 − exp[λbT 0(x − 1)]

1 − exp(−λbT 0)
, (5.4)

where the index 0 stands for leading order. Finally, the channel length at equilibrium
reads

l∗
eq0 = l∗

bT
ln

[
1 +

l∗
∞

rs inl
∗
bT

]
. (5.5)

It is instructive at this stage to look at few limit cases.
The first is obtained setting rs in → 1 and, also l∗

bT → −l∗
b in (5.5): the previous

solution (no tidal flats) is immediately recovered.
The second interesting limit is l∗

bT → ∞ (i.e., non-convergent tidal flats adjacent to a
converging channel). In this case one readily finds that the equilibrium length of the
channel tends to a limit value which is a factor rs in smaller than l∗

∞; on the contrary,
the channel speed tends to a value a factor rs in larger than the value experienced by
the same channel with no tidal flats.

The last limit is l∗
bT → − l∗

b , hence the channel has the same degree of convergence
as the adjacent tidal flats. In this case rs keeps constant and equal to rs in. As a result,
the channel length at equilibrium exhibits a dependence on its degree of convergence
similar to that found in the absence of tidal flats, though with a major difference: l∗

∞
must be replaced by l∗

∞/rs in.
We now attempt to ascertain whether the indications arising from this simple scheme

do represent, at least qualitatively, the behaviour observed in the field, being aware
of the unavoidable limits of this attempt, related to the complex geometries that tidal
flats exhibit typically in nature. Comparison has been performed for the equilibrium
bed profiles of a few channels (with adjacent flats) of Venice lagoon and is reported
in figure 5. The values of the parameters employed to perform this comparison are
reported in table 1, and have been determined from field measurements and analysis
of topographic maps.

Note also that applying the theory developed for the no flat case to the latter
data leads to unbounded values of the equilibrium lengths, suggesting that no tidal
channels with the observed characteristics could exist without tidal flats. On the
contrary, the simple theory presented above is able to provide reasonable predictions.
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Figure 5. Comparisons between the observed and the equilibrium lengths, predicted by (5.5),
of some tidal channels of Venice lagoon. Values of the parameters employed to perform the
comparison are reported in table 1.

6. Discussion and concluding remarks
We have developed a theoretical approach able to predict the equilibrium length

of a tidal channel in closed form. The present asymptotic scheme, having ignored the
role of dissipative effects, keeps uniformly valid throughout the whole flow region. It
may be of interest to analyse how wide is the region in the immediate vicinity of the
front where, the local flow depth approaching zero, the role of dissipation becomes
significant. Dissipative effects give rise to an additional term (εru|u|/c2d) in the inner
momentum equation (3.12), with c local value of the Chèzy coefficient scaled by the
reference value C0 and r an order one parameter. It is then clear that, d and u being
both of O(ε) in the inner layer, here the dissipative term balances gravity only at
O(ε3). In other words dissipation plays a minor role in the inner region, everywhere
except within a ‘small’ neighbourhood of the front. How small? Equation (3.12) again
suggests that the dissipative term balances gravity at leading order within the inner
layer in the region close to the front where d has size O(ε4). Let us make some
estimate: assuming that ε ≈ 0.1, the flow depth in this region would be of the order of
10−4D∗

0: with D∗
0 ≈ 10 m this implies that the asymptotic scheme would fail where the

flow depth does not exceed 1 mm. In this region the one-dimensional approximation
is no longer meaningful. Describing this region to remove the singularity does not
seem to the present authors an effort worth being pursued.

The present theoretical analysis shows that, in the absence of sediment exchange
with the sea, a state of ‘static’ equilibrium of the channel exists such that sediment
transport vanishes at each instant throughout the tidal cycle. The reader should note
that the present theory only provides the equilibrium length of the channel once the
inlet depth has been assigned. This approach is relevant to environments like the
Lagoon of Venice, where the inlet width has been fixed artificially by the construction
of jetties promoting inlet deepening to allow for steam navigation. The inlet depth
is then determined by an equilibrium condition (e.g., the empirical O’Brien 1969;
Jarret 1976; Marchi 1990 law). The present analysis provides some insight on a
major issue, concerning the cause of the severe degradation experienced by Venice
Lagoon salt marshes throughout the last century. The implication of our results can
be summarized by stating that (i) on one hand inlet deepening tends to lengthen
the channels; (ii) on the other hand, as the lagoon boundary imposes a constraint
on channel length, the only possible response of the system to achieve equilibrium
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is to widen tidal flats, i.e. erode the salt marsh area. A similar implication may be
envisaged with respect to the effects of sea level rise.

In unmanaged natural systems the inlet width, as well as the channel width, is
also a priori undefined. Hence, even with the help of O’Brien–Jarrett-Marchi law, the
equilibrium length of the channel is determined by the transient process whereby,
provided the initial length is larger than a threshold value, the final configuration is
determined by the emersion of the sediment front propagated landwards which builds
up a barrier for tide propagation (Todeschini et al. 2008).

Concavity of the bed profile arises from two major effects, namely channel
convergence and longitudinal variations of the relative roughness. Tidal flats affect
the hydrodynamics leading to flow acceleration in the channel and causing shortening
of the equilibrium channel length, the more so as the flats widen.

The present work opens the way to a number of interesting developments. Let us
mention two of them. The first: indications exist (Lanzoni & Seminara 2002; D’Alpaos
et al. 2009) that an O’Brien (1969), Jarret (1976) and Marchi (1990) relationship
between tidal prism P ∗ and average cross-sectional area Ω∗ of the type established
for tidal inlets, namely P ∗ ∼ Ω∗6/7, might hold at any cross-section of a tidal channel
at equilibrium. Based on the present analysis, it appears that this finding can be
given some theoretical substantiation (Tambroni & Seminara 2009). The second: the
morphodynamic equilibrium of estuaries differs from the one investigated above in
one major respect: the upstream end is open to a steady (albeit tipically small) flux
of water and sediments. How does this additional effect modify the above picture?
In other words, can the analysis be extended such to cover the case of not too long
estuaries?
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