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Dynamic wetting failure in shear-thinning and shear-thickening liquids is examined
in this paper. Flow visualization experiments using a curtain-coating geometry
suggest that shear thinning postpones the onset of wetting failure and the resulting
air entrainment. To advance the fundamental understanding of the underlying
physical mechanisms, a hydrodynamic model consisting of liquid displacing air in
a rectangular channel in the absence of inertia is developed. Both shear thinning
and shear thickening are considered by using Carreau-type models to describe
the liquid rheology. Steady-state solutions are calculated using the Galerkin finite-
element method and the critical capillary number where wetting failure occurs
is identified. Shear thinning is found to postpone the onset of wetting failure
whereas shear thickening is found to promote it. The underlying mechanism involves
thickening/thinning of the air film as a consequence of shear thinning/thickening of
the liquid and the tangential stress balance. The results can be interpreted in terms
of an effective viscosity, and demonstrate that similar physical mechanisms govern
dynamic wetting failure in Newtonian, shear-thinning and shear-thickening liquids.

Key words: contact lines, coating, rheology

1. Introduction
Dynamic wetting refers to the displacement of one immiscible fluid by another

on a solid substrate. This phenomenon is ubiquitous in applications such as oil
recovery (Gerritsen & Durlofsky 2005), microfluidics (Stone, Stroock & Ajdari 2004)
and coating processes (Weinstein & Ruschak 2004). In coating processes, steady
dynamic wetting occurs when a liquid is deposited on a solid substrate that moves
at a speed U. However, at a critical substrate speed Ucrit, the liquid is no longer
uniformly deposited on the substrate and the flow transitions from steady to unsteady
and from two-dimensional (2-D) to three-dimensional (3-D). This critical substrate
speed corresponds to a critical capillary number Cacrit

=µUcrit/σ , where µ and σ are
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the viscosity and surface tension of the liquid, respectively. When the displaced fluid
is air, dynamic wetting failure leads to air entrainment: a sawtooth-shaped meniscus
appears at the contact line that serves as a visual marker of Cacrit (Wilkinson 1975;
Burley & Kennedy 1976; Blake & Ruschak 1979; Vandre, Carvalho & Kumar 2014;
Liu, Carvalho & Kumar 2017; He & Nagel 2019). Air bubbles break off the tip of
the sawteeth and are entrained in the liquid. Since this phenomenon is detrimental
to the final quality of the coating, understanding the underlying mechanisms is of
considerable industrial importance.

Vandre, Carvalho & Kumar (2013) proposed a mechanism for the onset of air
entrainment by considering the displacement of air by a Newtonian liquid between
two parallel plates, one of which is stationary while the other moves horizontally
at a constant speed. Their two-dimensional finite-element calculations showed that
as long as the capillary-stress gradients are larger than the air-pressure gradients
in the vicinity of the contact line, steady dynamic wetting can be sustained. In
this case, the capillary-stress gradients act to pump air away from the contact-line
region, thereby allowing the liquid to displace the air. However, when the capillary
number (dimensionless plate speed) reaches a critical value, the air-pressure gradients
become equal to the capillary-stress gradients, and the air cannot be pumped away
fast enough to sustain a steady state at speeds above this critical value. This provides
a way to determine Cacrit from the calculations, and the model predictions for
physically reasonable slip lengths agree well with values of Cacrit obtained from
flow visualization experiments (Vandre, Carvalho & Kumar 2012; Vandre et al. 2013,
2014; Liu et al. 2016b, 2017).

Although the fundamental understanding of dynamic wetting failure in Newtonian
liquids has been significantly advanced by these studies, dynamic wetting failure
in non-Newtonian liquids remains poorly understood. Wetting failure is a common
problem in the liquid-applied coatings industry, where non-Newtonian liquids are
widely used. In practice, coating liquids can exhibit multiple types of non-Newtonian
rheological behaviour including shear thinning, shear thickening and viscoelasticity.

Experimental studies suggest shear thinning can increase the maximum speed
at which a coating process can operate before defects occur. Ning, Tsai & Liu
(1996) and Yang, Wong & Liu (2004) conducted slot-coating experiments using a
Newtonian base of glycerol–water solutions and added either polyacrylamide powder
or carboxymethylcellulose powder to create shear-thinning solutions. They showed
that there exists an optimal concentration for each polymer additive at which the
maximum coating speed is increased when compared to that of the Newtonian
base solution. Bhamidipati et al. (2011) also conducted slot-coating experiments but
used blackstrap molasses as a shear-thinning liquid. In addition, they performed
volume-of-fluid simulations using a power-law model to describe the liquid rheology.
Their simulations revealed that the maximum coating speed was increased for liquids
with a lower power-law index, which corresponds to more pronounced shear thinning.
In the experiments, only one liquid was used, and the maximum speed observed
agreed well with the simulation prediction. A later study using the same liquid and
simulation method also reported good agreement (Didari et al. 2014). Apart from
published papers, the patent literature suggests that shear thinning helps postpone air
entrainment to higher speeds (Blake et al. 1995).

In contrast, other experiments suggest that shear thickening can decrease the
maximum speed at which a coating process can operate before defects occur.
Khandavalli & Rothstein (2016) investigated the effect of shear thickening on the
stability of slot coating. They controlled the extent of shear thickening by changing
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the concentration of fumed silica nanoparticles in polypropylene glycol. Their results
show that, for liquids with more pronounced shear thickening, the maximum coating
speed is decreased. The influence of viscoelasticity on air entrainment has also been
investigated, via experiments in which a substrate is plunged into a liquid (Cohu
& Benkreira 1998; Wei et al. 2009b). The results of these experiments suggest
that viscoelasticity itself may have little influence on the critical speed needed for air
entrainment, whereas changes in the liquid viscosity may play a much more important
role.

Notably, liquid-plunging experiments with shear-thinning liquids at speeds low
enough to avoid air entrainment indicate that shear thinning reduces the viscous
bending of the liquid–air interface near the contact line (Seevaratnam et al. 2007;
Wei, Garoff & Walker 2009a). This leads to a lower dynamic contact angle at a
given substrate speed, suggesting that air entrainment (which occurs as the dynamic
contact angle approaches 180◦) would be delayed in shear-thinning liquids.

It should be noted that in the slot-coating experiments described above (Ning et al.
1996; Yang et al. 2004; Bhamidipati et al. 2011; Khandavalli & Rothstein 2016),
no vacuum was applied at the upstream meniscus. As a consequence, the upstream
meniscus can get dragged toward the feed slot as the coating speed increases. This
causes the coating bead to become three-dimensional, leading to defects that can
appear as entrained air (Romero et al. 2004). In this work, we make a distinction
between such defects and actual wetting failure, which is associated with the inability
to remove air quickly enough from the contact-line region in the absence of any
other instability of the coating bead.

While the above experiments (Ning et al. 1996; Yang et al. 2004; Bhamidipati
et al. 2011; Khandavalli & Rothstein 2016) suggest that shear thinning may be
beneficial for reducing coating defects, several outstanding issues need to be resolved
to establish whether shear thinning can delay the onset of dynamic wetting failure
and the resulting air entrainment. First, as already noted, the above experiments were
conducted in complicated coating geometries where other types of defects such as
ribbing and bead breakup can occur. Thus, it is not apparent whether the observed
increase in the maximum coating speed corresponds to a suppression of these defects
by shear thinning or to a true delay of wetting failure itself. Such a delay would
correspond to an enhancement in the ability of the liquid to displace air from the
contact line (Vandre et al. 2012, 2013, 2014; Liu et al. 2016a,b, 2017; Liu, Carvalho
& Kumar 2019). Second, it is not clear whether the increase in the maximum coating
speed is due to shear thinning itself or to changes in the zero-shear viscosity. Finally,
there has not been a systematic theoretical investigation of the role of shear thinning
and the underlying physical mechanisms, especially for a simpler geometry in which
complicated features present in real coating flows (e.g. feed flows, film formation)
are absent.

The principal objective of this work is to carry out a theoretical investigation
using the parallel-plate geometry employed in our prior work (Vandre et al. 2012,
2013, 2014; Liu et al. 2016b, 2017). In addition to examining the effect of shear
thinning, we will also explore the role of shear thickening. To further clarify the
influence shear thinning can have on dynamic wetting failure and air entrainment,
some brief motivating experiments are presented in § 2. The mathematical model and
solution method are discussed in § 3, followed by a presentation of results in § 4
and a discussion of physical mechanisms in § 5. In § 6, we comment on the possible
implications of our results for developing models of low-speed dynamic wetting in
non-Newtonian liquids, which is important for understanding phenomena such as
droplet spreading. Finally, concluding remarks are given in § 7.
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2. Motivating experiments

As noted in § 1, it is not clear from previous studies whether any delay in dynamic
wetting failure observed in shear-thinning liquids is due to shear thinning itself or to
changes in the zero-shear viscosity. One simple way to address this issue is to perform
experiments with a shear-thinning liquid and with a Newtonian liquid having a similar
zero-shear viscosity and surface tension.

We present here the results of such experiments using a curtain-coating geometry.
Although curtain coating is complex geometrically and dynamically due the presence
of a feed flow and two liquid–air interfaces, wetting failure and air entrainment can
more readily be identified compared to slot coating, where bead breakup can occur
at high enough coating speeds (Romero et al. 2004). It should be noted that we also
tried experiments similar to those in our prior work with Newtonian liquids where a
rotating cylindrical roll or a tape-like substrate is plunged into a liquid bath (Vandre
et al. 2012, 2014; Liu et al. 2017). However, we found that the shear-thinning liquid
we used quickly became turbid, making it difficult to conduct flow visualization
experiments. Thus, we focus on curtain coating in these brief motivating experiments.
We emphasize that these experiments are intended simply to provide a qualitative
illustration rather than a comprehensive quantitative study.

2.1. Experimental set-up
The experimental apparatus is shown in figure 1. The system consists of a hollow,
custom-made rotating glass roll exposed to air, measuring 15 cm in diameter and 17
cm in length. A custom-made coating die is positioned above the glass roll at a height
of 10 cm. Liquid is pumped out of a reservoir with the use of a gear pump (Zenith)
and flows through a Coriolis-type mass flow meter (KROHNE), which measures the
mass flow rate Q. The flow rate is controlled by the pump motor speed controller.
The liquid flows through the coating die and falls vertically to form a liquid curtain,
guided by two stainless steel edge guides, until it impinges on the rotating glass roll
and forms a liquid film. A squeegee is installed to remove liquid from the glass roll,
and the removed liquid is recycled back to the reservoir. A mirror is placed inside the
hollow roll at such an angle as to reflect the contact-line image. A camera is focused
at the mirror to allow for flow visualization of the reflected contact line. The camera is
connected to a computer and display where real-time video is projected and recorded.

A Newtonian solution of aqueous glycerol (Brenntag) and a shear-thinning solution
of aqueous glycerol mixed with xanthan gum (Nature’s Oil) were used in the
experiments. The properties of the two solutions are shown in table 1. The surface
tension σ was measured with a Krüss digital tensiometer (K10ST). The viscosity
µ of the two liquids was measured as a function of the shear rate γ̇ using a
concentric-cylinder rheometer (TA Instruments), and is shown in figure 2. Note that
the two liquids have similar viscosities µ0 for low γ̇ , but as γ̇ increases, the viscosity
of the shear-thinning liquid decreases.

The experimental procedure involves several steps. First, the flow rate Q is set
to a certain value through the flow controller. Second, the roller speed is gradually
increased and the system is allowed to reach steady state. Third, air entrainment is
observed on the display and the critical speed Ucrit at which it occurs is recorded.
Finally, the flow rate is changed to another value and the procedure is repeated. These
steps were followed for both liquids, and the second and third steps were repeated
to obtain at least three sets of data for every flow rate Q.
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FIGURE 1. Schematic of the experimental apparatus.
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FIGURE 2. Viscosity µ as a function of the shear rate γ̇ .

Liquid µ0 (cP) σ (mN m−1)

Aqueous glycerol (81 % w/w glycerol) 72± 1 66.4± 1
Aqueous glycerol (67 % w/w glycerol)-xanthan gum (0.01 % w/w) 73± 1 66.6± 1

TABLE 1. Physical properties of the liquids used in the experiments.

2.2. Experimental results
In figure 3, the flow rate Q is plotted against the corresponding critical speed of the
roll Ucrit at which the onset of air entrainment occurs. The blue line represents pairs
of (Ucrit, Q) obtained for the Newtonian liquid. Error bars on the x-axis represent
uncertainty of the flow-rate measurements. On the y-axis, error bars are the standard
error of at least three measurements.

As the flow rate increases, so does the critical speed (figure 3); it is assumed that
air entrainment is still present for U >Ucrit. This behaviour reflects the phenomenon
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FIGURE 3. Onset of air entrainment for the Newtonian liquid. The blue line corresponds
to the critical operating conditions after which air entrainment occurs (shaded area). Air
entrainment was not observed for the shear-thinning liquid.

of ‘hydrodynamic assist’ (Blake, Clarke & Ruschak 1994), where the hydrodynamic
pressure generated by the inertia of the impinging curtain creates larger gradients
in interface curvature near the dynamic contact line (Liu et al. 2016a, 2019). This
effect is most prominent when the curtain flow rate is such that the contact line is
directly under the the liquid curtain. These larger interface curvature gradients produce
stronger capillary-stress gradients that are more effective at pumping air away from the
contact-line region, resulting in larger values of Ucrit.

Although experiments were conducted with the shear-thinning liquid as well, air
entrainment could not be observed for the same flow-rate range even at the maximum
speed of the roll. As a result, pairs of (Ucrit,Q) could not be obtained.

Flow visualization images of the contact line for both liquids are shown in figure 4.
For a given flow rate Q, the formation of a sawtooth-shaped meniscus leading to air
entrainment is clearly observed for the Newtonian liquid (figure 4a). However, the
contact line for the shear-thinning liquid remains straight even when the roll speed
is set to its maximum value (figure 4b). Note that although multiple sawtooth shapes
are observed along the contact line for the Newtonian liquid, we have shown only
one in this image. For both liquids, the dynamic contact line is directly underneath
the liquid curtain and no heel-formation or bead-pulling phenomena (Liu et al. 2016a,
2019) were observed. This indicates that the effects of hydrodynamic assist are similar
for both liquids and that the observed difference in maximum speeds is principally
due to shear thinning. For Newtonian liquids, decreasing the liquid viscosity generally
produces higher critical speeds (Blake, Bracke & Shikhmurzaev 1999; Vandre et al.
2014; Liu et al. 2017). Our results thus suggest that shear thinning may lead to a
lower effective viscosity, an idea we explore later in this paper.

Although a comprehensive experimental study is beyond the scope of the present
work, the above results support the idea that shear thinning is beneficial for postponing
dynamic wetting failure and air entrainment. They thus serve to motivate development
of a mathematical model in a parallel-plate geometry, where we can isolate the role
of shear thinning from the complex geometric and dynamic features present in curtain
coating.
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(a) (b)

U U

FIGURE 4. Flow visualization of the contact line for the (a) Newtonian liquid and
(b) shear-thinning liquid. The contact line for both liquids is shown with a white dashed
line. The flow rate is Q = 28.2 ± 0.2 g s−1 in both cases but the speed is (a) U =
1.79± 0.03 m s−1 and (b) U = 1.91± 0.01 m s−1 (maximum roll speed). The scale bar
is 4.25 mm.

U U
Substrate

Fixed boundary

Substrate

Inflection point (IP)

H

œmic,T

œmic,B
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œM hf
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x
h

sy µrec

µad√

L(a) (b)

FIGURE 5. (a) Schematic of the model geometry. (b) Enlarged view of the contact-line
region near the bottom substrate. The inflection point occurs where θM is maximum along
the interface and is characterized by height hf and radial distance rf from the contact line.
Figure adapted from Liu et al. (2016b).

3. Mathematical model
3.1. Governing equations and boundary conditions

We develop a hydrodynamic model describing the displacement of a receding fluid by
an advancing fluid within two parallel boundaries separated by a distance H, as shown
in figure 5(a). The top boundary remains stationary while the bottom boundary moves
at a speed U. Symbols x and y represent the Cartesian coordinates and we take s to
be the arclength along the fluid interface, measured from the contact line at the top
boundary to the point where y= h. The projection of the interface in the x-direction
is denoted by L. The viscosities of the advancing and receding fluids are denoted by
µrec and µadv, respectively. Because our principal focus is on air entrainment, we take
the receding phase to be air and the advancing phase to be a liquid.

Two types of contact angle are used to describe the interface shape and are
displayed in figure 5(b). The microscopic contact angle θmic arises where the interface
contacts the substrate, whereas the macroscopic or apparent contact angle θM is a
result of the deformation of the interface and is measured at some distance away
from the dynamic contact line. The microscopic contact angle for the top substrate is
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θmic,T and that for the bottom substrate is θmic,B. In this work, we take θM to be the
maximum surface angle along the interface, so the position it occurs at corresponds
to the interface inflection point (IP). The inflection point is characterized by a height
hf and a radial distance rf from the bottom contact line.

The dimensionless momentum and mass conservation equations for the advancing
phase are

Re
(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · τττ + Stg, (3.1)

∇ · u= 0. (3.2)

Here, lengths, velocities, stresses and time have been scaled by H, U, µ0U/H and
H/U, respectively, where µ0 is the zero-shear viscosity of the advancing phase.
The two dimensionless parameters that appear in (3.1) are the Reynolds number,
Re = ρUH/µ0, which measures the relative importance of inertial to viscous forces,
and the Stokes number, St = ρgH2/µ0U, which measures the relative importance
of gravitational to viscous forces. Both Re and St contain the density ρ and the
zero-shear viscosity µ0 of the advancing phase. The velocity vector is denoted by
u, the pressure by p, the viscous-stress tensor by τττ = µadv(γ̇ )[∇u + (∇u)T] and the
gravitational acceleration vector by g. The viscosity is assumed to depend on a scalar
measure of the deformation rate, γ̇ .

To isolate the influence of non-Newtonian rheology, we neglect inertial and
gravitational effects by setting Re= St= 0. Thus, equation (3.1) simplifies to

∇p=∇ · τττ . (3.3)

The dimensionless boundary conditions applied to the fluid interface are

u|rec = u|adv, (3.4)
n · u= 0, (3.5)

n · T · t|adv = n · T · t|rec, (3.6)
κ =Ca[n · T · n|adv − n · T · n|rec]. (3.7)

Here, Ca = µ0U/σ is the capillary number, which is a ratio of viscous to
surface-tension forces, where σ is the surface tension between the advancing and
receding phases. Equations (3.4) and (3.5) are the no-slip and no-penetration boundary
conditions and equations (3.6) and (3.7) are the tangential and normal stress balances
at the interface. Subscripts rec and adv correspond to the receding and advancing
phases. With n and t we denote the unit vectors that are normal (pointing toward
the receding phase) and tangent to the interface. The curvature of the interface at
each point is denoted by κ , and T is the total-stress tensor. For the advancing phase,
T = −pI + τττ . For the receding phase, we take T = −precI + µrec[∇urec + (∇urec)

T
],

where µrec is taken to be constant, and prec and urec are the pressure and velocity
vector in the receding phase.

A Navier-slip boundary condition is applied at the bottom boundary to remove the
stress singularity caused by applying the no-slip boundary condition at the dynamic
(bottom) contact line (Huh & Scriven 1971; Dussan V. 1976; Chan et al. 2013; Sibley,
Nold & Kalliadasis 2015),

ts · (u−U)= λ[ns · T · ts]. (3.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.154


Dynamic wetting failure in non-Newtonian liquids 892 A1-9

Here, λ= lslip/H is the dimensionless slip length with lslip being the dimensional slip
length. In our previous work (Vandre et al. 2012, 2013, 2014; Liu et al. 2016b, 2017),
model predictions were found to agree well with experimental data for λ6 10−4. Thus,
λ= 10−4 is chosen here unless otherwise noted. For Newtonian liquids, increasing the
value of λ increases the values of Cacrit but does not change the qualitative features of
the results (Vandre et al. 2012). Additional calculations we have performed confirm
that this is also the case for the non-Newtonian liquids considered here, which is why
we choose a fixed value of λ. The vectors ts and ns are the unit vectors tangential and
normal (pointing upward) to the bottom substrate, and U is the velocity vector of the
bottom substrate. Equation (3.8) recovers the no-slip boundary condition for distances
greater than lslip from the dynamic contact line (Vandre et al. 2012). Additionally, the
no-penetration boundary condition (3.5) is applied to both boundaries, whereas the
no-slip boundary condition is applied only to the top substrate.

The microscopic contact angles serve as boundary conditions at the two ends of the
fluid interface. Although these angles may be speed dependent in general (Blake 2006;
Wilson et al. 2006; Shikhmurzaev 2007; Snoeijer & Andreotti 2013), here, we assume
that θmic is constant and equal to the static contact angle to isolate the influence of non-
Newtonian rheology. To eliminate the influence of surface wettability, the microscopic
contact angles are set to 90◦ for both boundaries. For Newtonian liquids, decreasing
the value of θmic,B increases the values of Cacrit (Vandre et al. 2013; Liu et al. 2016b).
We have performed additional calculations and find that this also holds true for the
non-Newtonian liquids considered here. For this reason, we consider a single value of
θmic,B when presenting results.

As noted earlier, we take the receding phase to be air to focus on the case of air
entrainment. In this case, the receding phase becomes long and thin, so lubrication
theory and the quasi-parallel (QP) approximation can be used to describe the flow
in that phase. In the QP approximation, it is assumed that the curvature gradients
along the x-coordinate are equal to those along the arclength s, i.e. dκ/dx ≈ dκ/ds
(Jacqmin 2004; Sbragaglia, Sugiyama & Biferale 2008; Qin & Gao 2018). With these
assumptions, mass and momentum conservation in the receding phase are simplified
to a set of 1-D equations

Ah+
1
2

Bh2
+

1
6

dprec

ds
h3
= 0, (3.9)

∂u
∂y

∣∣∣∣
s

= B+
dprec

ds
h, where A=

χh+ χλus −
1
2

dprec

ds
h2λ

λ+ h
, B=

−χ + A
λ

. (3.10)

Here, h is the interface height (see figure 5a), prec is the air pressure, ∂u/∂y|s is
the velocity gradient at the interface and us is the horizontal velocity evaluated at
the interface. The dimensionless slip length λ is defined in (3.8), and χ = µrec/µ0
is the viscosity ratio between the receding and advancing phases. Since we focus on
the displacement of air by a liquid, we set χ = 10−3 in this work. For Newtonian
liquids, decreasing the value of χ increases the values of Cacrit (Vandre et al. 2013;
Liu et al. 2016b). We have found that this is also the case for the non-Newtonian
liquids considered here. For simplicity, we ignore any effects due to Knudsen diffusion
(Sprittles 2015, 2017).

We note that this hybrid approach of a 1-D description of the receding phase and
a 2-D description of the advancing phase has been implemented in our previous work
(Liu et al. 2016a,b, 2017, 2019). Predictions of this model for the onset of dynamic
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wetting failure match the predictions of a full 2-D description of both the receding
and advancing phases over a wide range of microscopic contact angles, including 90◦
(Liu et al. 2016b).

3.2. Constitutive model
We employ a Carreau-type constitutive model (Bird 1976; Carreau, Kee & Daroux
1979) since it provides one of the simplest descriptions of shear thinning and it can
also be easily modified to describe shear thickening. For this model,

µ(γ̇ )=µ∞ + (µ0 −µ∞)[1+ (λsγ̇ )
2
]
(n−1)/2, (3.11)

where µ∞ is the infinite-shear viscosity, µ0 is the zero-shear viscosity, n is a power-
law exponent and λs is a time constant (relaxation time) that determines the onset of
shear thinning or shear thickening.

As a scalar measure of the deformation rate, we take γ̇ =
√

2IID, where IID is
the second invariant of the rate-of-deformation tensor (Morrison 2001), D = [∇u +
(∇u)T]/2. In Cartesian coordinates,

γ̇ =

[(
∂u
∂y
+
∂v

∂x

)2

+ 2
(
∂u
∂x

)2

+ 2
(
∂v

∂y

)2
]1/2

, (3.12)

where u and v are the x- and y-components of the velocity vector u, respectively.
The dimensionless form of (3.11) is

µ(γ̇ )= β + (1− β)[1+ (Deγ̇ )2](n−1)/2, (3.13)

where β = µ∞/µ0 is the ratio of the infinite-shear to the zero-shear viscosity. Note
that β is less than unity for shear-thinning liquids (β < 1), greater than unity for shear-
thickening liquids (β > 1) and equal to unity for Newtonian liquids (β = 1). Values of
β can range from 0.01 to 0.5 for shear-thinning liquids (Carreau et al. 1979; Tamjid
& Guenther 2010) and from 3 to 15 for shear-thickening liquids (Galindo-Rosales,
Rubio-Hernández & Velázquez-Navarro 2009; Galindo-Rosales, Rubio-Hernández &
Sevilla 2011). The Deborah number De= λs/(H/U) is the ratio of the relaxation time
to the characteristic flow time. As De increases, shear-thinning or shear-thickening
effects become apparent at lower deformation rates γ̇ . Also, as the power-law index
n is reduced, shear-thinning or shear-thickening effects become more pronounced, as
shown in figure 6. Typical values of n range from 0.2 to 1 (Carreau et al. 1979). For
n= 1, the constitutive model for a Newtonian liquid is recovered.

3.3. Solution method
Equations (3.2)–(3.10) are solved using a Galerkin finite-element method with elliptic
mesh generation; for more details we refer readers to our previous work (Vandre et al.
2012, 2013; Liu et al. 2016b). For a given set of dimensionless parameters, we look
for a family of steady-state solutions by increasing the capillary number Ca. The key
dimensionless parameters in our model are summarized in table 2. The steady-state
solutions include the fluid interface shape, pressure in the air phase and pressure and
velocity in the liquid phase. By post-processing the interface-shape data, we calculate
the surface angle at each point of the interface and take the maximum angle as the
macroscopic contact angle θM. We then track the macroscopic contact angle θM as a
function of the capillary number Ca until a critical capillary number Cacrit beyond
which we are unable to find 2-D steady-state solutions. We assume that the onset of
wetting failure happens when Ca=Cacrit.
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FIGURE 6. Effect of n on the viscosity of a (a) shear-thinning liquid with β = 0.1 and
(b) shear-thickening liquid with β = 3.5 described by a Carreau-type model (3.13).

Parameter Definition Physical meaning

χ µrec/µ0 Viscosity ratio
λ lslip/H Dimensionless slip length
Ca µ0U/σ Viscous forces/surface-tension forces
De λs/(H/U) Relaxation time/characteristic flow time
n — Power-law index
β µ∞/µ0 Infinite-shear viscosity/zero-shear viscosity

TABLE 2. Model parameters and corresponding definitions and physical meanings.

4. Effect of shear thinning and shear thickening on Cacrit

In this section we characterize the influence of shear thinning and shear thickening
on the critical capillary number Cacrit at which dynamic wetting failure is assumed to
occur. Before doing so, we briefly discuss the flow kinematics.

4.1. Kinematics

In figure 7, we plot the magnitude of the rate-of-deformation tensor ‖D‖, and the
magnitude of the vorticity tensor ‖Ω‖, for a Newtonian liquid. The magnitudes of
these tensors are defined as

‖D‖ =

√
D : DT

2
, ‖Ω‖ =

√
Ω :ΩT

2
, (4.1a,b)

where D = [∇u+ (∇u)T]/2 and Ω = [∇u− (∇u)T]/2. The rate-of-deformation tensor
D measures the deformation of fluid line elements whereas Ω quantifies the rotation
speed of fluid line elements. Contour plots of the magnitudes of the two tensors are
almost identical, meaning that, locally, the flow behaves like a simple shear flow
everywhere. This suggests that for the problem considered here, shear rheology is
likely to be more important than extensional rheology in affecting dynamic wetting
failure.
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FIGURE 7. Magnitude of the (a) rate-of-deformation tensor (b) vorticity tensor for a
Newtonian liquid. Other parameters are Ca= 0.40, χ = 10−3, λ= 10−4 and θmic,T = θmic,B=

90◦.
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FIGURE 8. (a) Steady-state solution families of shear-thinning liquids (β = 0.1) with
n = 0.5, 0.8 and n = 1 (Newtonian liquid). (b) Steady-state solution families of
shear-thickening liquids (β=3.5) with n=0.5,0.8 and n=1 (Newtonian liquid). (a) (Inset)
Solution families of (a) plotted with Caeff . (b) (Inset) Solution families of (b) plotted with
Caeff . Other parameters are χ = 10−3, λ= 10−4, θmic,T = θmic,B = 90◦ and De= 0.1.

4.2. Steady-state solution families
We now compare steady-state solution families of the macroscopic contact angle θM

as a function of the capillary number Ca for shear-thinning, shear-thickening and
Newtonian liquids. To highlight the effect of rheology on Cacrit, we use the same
zero-shear viscosity µ0 and surface tension σ for the Newtonian and non-Newtonian
liquids and vary only the power-law index n.

For a given non-Newtonian liquid, De will increase as Ca does. However, to isolate
the influence of individual parameters, it is easiest to fix De when constructing
solution families. Thus, for most of the calculations in this paper, we fix De = 0.1.
We will discuss below the influence of varying De and show examples of solution
families where we allow De to increase as Ca does.

Figure 8(a) shows the macroscopic contact angle θM as a function of the capillary
number Ca for a Newtonian liquid (n= 1) and two shear-thinning liquids at De= 0.1
with viscosity ratio β = 0.1 and power-law indices n= 0.5 and n= 0.8. For all liquids,
θM increases with increasing Ca. However, the rate at which θM increases is lower for
n= 0.5 and n= 0.8, revealing a weaker dependence of θM on Ca for shear-thinning
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liquids, consistent with experimental observations (Seevaratnam et al. 2007; Wei et al.
2009a). (For Newtonian liquids, the increase in θM with Ca is consistent with reported
experiments (Burley & Kennedy 1976)).

The macroscopic contact angle increases until a certain Ca beyond which we are
unable to find 2-D steady-state solutions. This Ca is the critical capillary number,
Cacrit, and is represented by the circles on the steady-state solution families. As
discussed in prior work, the turning point in a family of steady-state solutions is a
bifurcation that separates the steady (lower) branch from the unsteady (upper) branch
of steady-state solutions (Jacqmin 2004; Sbragaglia et al. 2008; Vandre et al. 2013).
In this work, we simply identify Cacrit from the solution families and do not perform
a detailed stability analysis.

As n decreases, the onset of dynamic wetting failure occurs at a larger value of
Cacrit. Since Cacrit

= µ0Ucrit/σ , and µ0 and σ are the same for the three liquids, we
can conclude that the critical substrate speed Ucrit increases as the power-law index n
decreases.

Since the solution families in figure 8(a) all have a similar shape, it is natural
to ask whether the capillary number can be re-defined for the shear-thinning cases
such that all the solution families collapse onto a single curve. We do this simply
by defining an effective capillary number Caeff = µeff U/σ , where µeff is a constant
effective viscosity chosen so that the solution families collapse. Note that in general,
the value of µeff will change as n does. The results of this procedure are shown in
the inset to figure 8(a), and the values of µeff are shown in table 3.

It is seen from table 3 that the value of µeff decreases as shear thinning becomes
more significant (smaller n). The critical substrate speed can be expressed as Ucrit

=

Cacrit
eff σ/µeff . Since the values of σ and Cacrit

eff are the same for all three cases shown
in figure 8(a), stronger shear thinning leads to larger values of Ucrit, suggesting that
shear-thinning postpones wetting failure. Note that the values of µeff /µ0 are larger
than β, the dimensionless infinite-shear viscosity.

To gain additional insight into the values of µeff , we can compare them to values
of µave, a viscosity calculated from (3.13) for an average shear rate γ̇ave= 1/lc, where
the numerator of unity represents a characteristic dimensionless velocity change
and the denominator lc represents a characteristic length scale over which there
are significant viscosity changes. Because we expect the most significant viscosity
changes to occur near the contact line (where the shear rates are largest), a reasonable
order-of-magnitude estimate of lc might be the air-film thickness hf (figure 5b). We
thus set lc = hcrit

f , the air-film thickness at the critical conditions.
As seen in table 3, the values of µave are fairly close to the values of µeff ,

confirming the above conjecture. We note that an alternative choice of lc would be
the radial distance to the interface inflection point from the contact line, rf (figure 5b),
at the critical conditions. It turns out that these values are about four to eight times as
large as the hcrit

f values for the cases in table 3. As a consequence, the corresponding
values of µeff are up to twice as large for the shear-thinning liquids and approximately
60 %–70 % of the values for the shear thickening liquids. Because the values of µeff

do not change by orders of magnitude, the radial distance to the inflection point also
provides a reasonable order-of-magnitude estimate of the length scale over which
there are significant viscosity changes. Overall, the collapse the solution families
onto a single curve (inset of figure 8a) suggests that the underlying mechanism of
dynamic wetting failure is likely to be similar for Newtonian and shear-thinning
liquids, a point we will return to in § 5.
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Liquid µeff /µ0 µave/µ0

Shear thinning (n= 0.5) 0.38 0.41
Shear thinning (n= 0.8) 0.60 0.68
Shear thickening (n= 0.5) 2.4 2.85
Shear thickening (n= 0.8) 1.97 2.01

TABLE 3. Viscosity comparison.

In contrast to the shear-thinning case, figure 8(b) shows that Cacrit decreases as
the liquid becomes more shear thickening (decreasing n), indicating that the critical
substrate speed Ucrit decreases as the power-law index n decreases. We also note that
θM increases at a larger rate for smaller n, revealing a stronger dependence of θM on
Ca for shear-thickening liquids.

Rescaling Ca as Caeff = µeff U/σ results in the collapse of all the solution
families onto a single curve, as shown in the inset to figure 8(b). This suggests
that the mechanism of wetting failure is likely to be similar for Newtonian and
shear-thickening liquids. Note that the values of µeff /µ0 (table 3) are smaller than β,
the dimensionless infinite-shear viscosity.

We compare µeff to µave for the shear-thickening liquids in table 3. As in the shear-
thinning case, the two viscosities agree fairly well, but here the value of µeff increases
as shear thickening becomes more significant (smaller n). Since Ucrit

= Cacrit
eff σ/µeff ,

and the values of σ and Cacrit
eff are the same for the three liquids, we can conclude

that the critical substrate speed Ucrit decreases as the power-law index n decreases,
suggesting that shear-thickening promotes wetting failure.

It should be noted that that the solution families shown in figure 8 also collapse
onto a single curve when Ca is scaled by Cacrit (see supplementary material available
online at https://doi.org/10.1017/jfm.2020.154). This collapse, along with those shown
in the insets of figure 8 suggest that similar physical mechanisms govern dynamic
wetting failure in Newtonian, shear-thinning and shear-thickening liquids. Before
examining physical mechanisms in § 5, we perform a more detailed characterization
of interface shapes and discuss the influence of De.

4.3. Characterization of interface shapes and influence of De

To characterize interface shapes near Cacrit, the solution families for n = 0.5 and
n= 1 from figure 8(a) are shown again in figure 9(a), with several points identified
by circles (marked 1, 2 and 3) that denote three different wetting states. A given
pair of points has approximately the same macroscopic contact angle θM but a
different capillary number Ca. The interfacial shapes corresponding to these point
pairs are shown in figure 9(b). It can be seen that for the points labelled 2 and
3, the interface is less elongated for the shear-thinning liquid. The differences are
more readily apparent when plotted with a semilog scale, as shown in figure 9(c).
The smaller elongation for the shear-thinning liquid corresponds to an air film that
has not penetrated as far into the liquid for a given θM. This suggests that shear
thinning postpones wetting failure by inhibiting the formation of a thin air film near
the contact line.

The same characterization is made for the shear-thickening case. Figure 10(a)
illustrates the solution families for n= 0.5 and n= 1 as they appear in figure 8(b). In
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FIGURE 9. (a) Solution families of a shear-thinning liquid with β = 0.1 (n = 0.5, red
solid line) and a Newtonian liquid (n = 1, black solid line). (b) Interface shapes of the
two liquids at points 1, 2 and 3 (red dashed line for n = 0.5 and black solid line for
n = 1). (c) Semilog plot of the interface profiles shown in (b). Other parameters are
χ = 10−3, λ= 10−4, θmic,T = θmic,B = 90◦ and De= 0.1.

this case, the interfacial elongation is larger for the shear-thickening liquid as shown
in figures 10(b) and 10(c). This implies that shear thickening helps the receding air
phase penetrate into the advancing liquid, thereby promoting wetting failure.

We now discuss the influence of varying De. Figure 11 shows solution families for
n= 0.5 with β = 0.1 and β = 3.5 at different values of De. For shear-thinning liquids,
increasing the value of De causes Cacrit to increase (figure 11a), whereas the opposite
is observed for shear-thickening liquids (figure 11b). Note that for De�1, the solution
family approaches that for a Newtonian liquid at the zero-shear viscosity, whereas for
De�1, the solution family approaches that for a Newtonian liquid at the infinite-shear
viscosity.

For a given non-Newtonian liquid, De will increase as Ca does. Solution families
can also be obtained at constant elasticity number E, defined as E = De/Ca =
(λsσ)/(µH). This parameter is only a function of liquid properties and the flow
geometry, and is independent of the substrate speed, so solution families at constant
E correspond to solution families for a given liquid.

The dashed lines in figure 11 are solution families at fixed values of E. These values
of E correspond to conditions where De = 0.1 when Ca = Cacrit (turning point in
solution family). It is seen that these solution families have a similar shape to those
obtained at constant De. The results of figures 8 and 11 thus demonstrate that for
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FIGURE 10. (a) Solution families of a shear-thickening liquid with β = 3.5 (n= 0.5, red
solid line) and a Newtonian liquid (n = 1, black solid line). (b) Interface shapes of the
two liquids at points 1, 2 and 3 (red dashed line for n = 0.5 and black solid line for
n= 1). (c) Semilog plot of the interface profiles shown in (b). Other parameters are χ =
10−3, λ= 10−4, θmic,T = θmic,B = 90◦ and De= 0.1.

a given non-Newtonian liquid, shear thinning will postpone wetting failure whereas
shear thickening will promote wetting failure, relative to a Newtonian liquid of the
same zero-shear viscosity.

5. Physical mechanisms
In Newtonian liquids, dynamic wetting failure occurs when the capillary-stress

gradients can no longer provide the pressure gradients needed to pump the receding
fluid away from the contact line (Vandre et al. 2013; Liu et al. 2016a,b, 2019). In
this section, we show that a similar physical mechanism holds for shear-thinning and
shear-thickening liquids.

By applying lubrication theory to the receding phase, it can be shown that the
receding-phase pressure gradients scale as (Vandre et al. 2013; Liu et al. 2016b)∣∣∣∣dp

dx

∣∣∣∣∼ χ

h2
f
, (5.1)

where χ is the viscosity ratio and hf is the height of the inflection point (see
figure 5b). When the Navier-slip boundary condition (3.8) is applied on the bottom
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FIGURE 11. Steady-state solution families of (a) shear-thinning liquids (β = 0.1 and n=
0.5), and (b) shear-thickening liquids (β = 3.5 and n = 0.5) with De = 0.01, 0.1, and 1.
The dashed lines are examples of what solution families would look like for a given non-
Newtonian liquid, where De increases as Ca does (E= 0.095 in (a) and E= 0.58 in (b),
where E=Ca/De). Other parameters are χ = 10−3, λ= 10−4 and θmic,T = θmic,B = 90◦.

substrate, the interface curvature κ diverges as a function of r (κ ∼ ln r) (Snoeijer
& Andreotti 2013), where r is the radial distance of a point on the interface from
the contact line on the bottom substrate. Thus, the capillary-stress gradients in the
advancing phase scale as

1
Ca

∣∣∣∣dκdx

∣∣∣∣∼ 1
Ca

1
rf
, (5.2)

where rf is the distance of the inflection point from the contact line (see figure 5b).
The capillary-stress gradients and the receding-phase pressure gradients of a

Newtonian liquid (β = 1) are plotted as a function of Ca and compared to those of
a shear-thinning liquid with β = 0.1 and n= 0.5 (figure 12a) and a shear-thickening
liquid with β = 3.5 and n = 0.5 (figure 12b) at De = 0.1. For both β = 0.1 and
β = 3.5, these quantities become equal at Cacrit. This confirms that the wetting-failure
mechanism in shear-thinning and shear-thickening liquids is similar to that for
Newtonian liquids. Moreover, the scaling relationships (5.1) and (5.2) match the
numerical results well in both cases. The receding-phase pressure gradients grow
(with respect to Ca) at a lower rate for β = 0.1 and at a higher rate for β = 3.5
when compared to those of the Newtonian liquid. This results in a higher Cacrit for
the shear-thinning liquid and a lower Cacrit for the shear-thickening liquid. Notably,
the non-Newtonian rheology does not have as significant an effect on the values of
the capillary-stress gradients.

As noted earlier, De will increase as Ca does for a given non-Newtonian liquid.
Suppose we consider the case where De = De∗ at the point of wetting failure
and perform calculations in which we allow De to increase as Ca does, keeping
E=De/Ca constant. Then, the receding-phase pressure gradients for a shear-thinning
liquid will grow more rapidly with Ca relative to the case where De is held fixed
at De∗. However, they will still grow more slowly relative to those for a Newtonian
liquid at the same zero-shear viscosity, leading to a larger value of Cacrit. Similarly,
the receding-phase pressure gradients for a shear-thickening liquid will grow more
slowly with Ca relative to the case where De is held fixed at De∗, but they will still
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FIGURE 12. Magnitude of stress gradients at the inflection point for (a) Newtonian liquid
(β = 1, black diamonds), shear-thinning liquid (β = 0.1, red circles) and (b) Newtonian
liquid (β = 1, black diamonds), shear-thickening liquid (β = 3.5, blue circles). Capillary-
stress gradients (filled symbols) meet the receding-phase pressure gradients (open symbols)
at Cacrit (vertical dashed line) for all cases. Black (β= 1), red (β= 0.1) and blue (β= 3.5)
dashed lines correspond to (5.1) and black (β = 1), red (β = 0.1) and blue (β = 3.5) solid
lines correspond to (5.2). Magnitude of stress gradients of (a,b) are replotted using Caeff
(§ 4.2) in (c,d). Other parameter values are χ = 10−3, n= 0.5, λ= 10−4, θmic,T = θmic,B= 90◦
and De= 0.1.

grow more rapidly relative to those for a Newtonian liquid at the same zero-shear
viscosity, leading to a smaller value of Cacrit.

The magnitudes of the stress gradients shown in figures 12(a) and 12(b) are
replotted using Caeff (§ 4.2) in figures 12(c) and 12(d), respectively. In figure 12(c),
the magnitudes of the capillary-stress gradients of the Newtonian and shear-thinning
liquids collapse on a single curve and so do the magnitudes of the receding-phase
pressure gradients. For the shear-thickening liquid, the magnitudes of the stress
gradients behave similarly, as shown in figure 12(d). This data collapse suggests
that the underlying mechanism of dynamic wetting failure is similar for Newtonian,
shear-thinning and shear-thickening liquids. Note that in figures 12(c) and 12(d),
the dashed lines appearing in figures 12(a) and 12(b) have been omitted for clarity.
Additionally, the data of figures 12(a) and 12(b) also collapse when rescaled by their
respective critical values and plotted using Ca/Cacrit (see supplementary material).

To understand why shear thinning postpones and shear thickening promotes the
onset of dynamic wetting failure, the tangential stresses at the interface inflection
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FIGURE 13. Tangential stresses at the inflection point for (a) Newtonian liquid (β = 1,
black diamonds), shear-thinning liquid (β=0.1, red circles) and (b) Newtonian liquid (β=
1, black diamonds), shear-thickening liquid (β=3.5, blue circles). Dashed lines correspond
to (5.3). The insets show the tangential stresses versus Caeff . Other parameter values are
χ = 10−3, n= 0.5, λ= 10−4, θmic,T = θmic,B = 90◦ and De= 0.1.

point for β = 0.1 and β = 3.5 are plotted as a function of Ca and compared to
those of a Newtonian liquid in figures 13(a) and 13(b), respectively. According to the
tangential stress balance (3.6), the tangential stresses in the advancing phase are equal
to those in the receding phase. Figure 13(a) shows that shear thinning decreases the
tangential stresses at the inflection point. Since the receding-phase tangential stresses
are approximated as n ·T · t|rec≈χ(∂u/∂y)|rec (Liu et al. 2016b), the velocity gradients
in the receding phase, (∂u/∂y)|rec, decrease. It will be shown later that this reduction
is achieved by a thickened air film (figure 15a). In contrast, shear thickening increases
the tangential stresses (figure 13b) leading to a thinner air film (figure 15b).

The insets of figures 13(a) and 13(b) show the tangential stresses versus Caeff
(§ 4.2). When replotted in this way, the data collapse well. In addition, by normalizing
the tangential stresses with their respective critical value and replotting with Ca/Cacrit,
the data shown in figures 13(a) and 13(b) each nearly collapse onto a single curve. For
brevity, the rescaled data are not shown here but can be found in the supplementary
material.

Application of lubrication theory to the receding phase shows that the receding-
phase tangential stresses scale as (Vandre et al. 2013; Liu et al. 2016b)

n · T · t|rec ∼
χ

hf
, (5.3)

where hf is the height of the interface inflection point (figure 5b) and χ is the
viscosity ratio. Equation (5.3) is included in figures 13(a) and 13(b) and it shows
good agreement with the numerical data for all liquids.

Figures 14(a) and 14(b) show contour plots of the dimensionless viscosity for
β = 0.1 and β = 3.5 at their respective values of Cacrit. In the liquid bulk, the
viscosity remains almost constant and approximately equal to the zero-shear viscosity.
But in the vicinity of the contact line where the shear rates are higher, the viscosity
is reduced for β = 0.1 and increased for β = 3.5. This is of course due to the
shear-thinning and shear-thickening natures of the liquids as described by (3.13). The
length scale over which the viscosity varies significantly is consistent with the values
of hf and rf (figure 5b), as discussed in § 4.2.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.154


892 A1-20 V. Charitatos, W. J. Suszynski, M. S. Carvalho and S. Kumar

U

U

Fixed boundary

Fixed boundary

3.0
2.4
2.0
1.8
1.4
1.2

0.9
0.8
0.7
0.6
0.5
0.4
0.2

µ(©� )

µ(©� )

(a)

(b)

FIGURE 14. (a) Viscosity contours for β=0.1 at Ca=Cacrit
=1.05. (b) Viscosity contours

for β = 3.5 at Ca=Cacrit
= 1.71× 10−1. Other parameters are χ = 10−3, n= 0.5, λ= 10−4,

θmic,T = θmic,B = 90◦ and De= 0.1.

The change in viscosity near the contact line explains the reduced tangential
stresses for β = 0.1 and increased tangential stresses for β = 3.5, as shown in
figures 13(a) and 13(b), respectively. The viscosity changes also suggest that relative
to a Newtonian liquid of the same zero-shear viscosity, there will be less viscous
bending of the interface for a shear-thinning liquid, and thus smaller values of θM
(figure 8a). Similarly, for a shear-thickening liquid there will be more viscous bending
and larger values of θM (figure 8b).

To further characterize how shear thinning and shear thickening influence the
interface shape, the characteristic length scales hf and rf (figure 5b) are plotted as
a function of the capillary number Ca for β = 0.1 and β = 1 in figure 15(a) and
β = 1 and β = 3.5 in figure 15(b). The characteristic length scales of all three liquids
decrease with increasing Ca, which means that the inflection point approaches the
contact line, and the air film is thinned and stretched.

For β = 0.1, both hf and rf are larger compared to those for β = 1, which
corresponds to a thicker air film for the shear-thinning liquid (figure 15a). The
thicker air film reduces the tangential stresses in the receding phase, allowing it to
balance the reduced tangential stresses in the advancing phase (figures 13a and 14a).
The thicker air film also leads to smaller receding-phase pressure gradients for β= 0.1
(figure 12a), which results in a postponement of wetting failure.

In contrast, rf and hf for β = 3.5 are smaller than those for β = 1 (figure 15b),
corresponding to a thinner air film for the shear-thickening liquid. The thinner air
film increases the tangential stresses in the receding phase, allowing it to balance the
increased tangential stresses in the advancing phase (figures 13b and 14b). The thinner
air film also leads to larger receding-phase pressure gradients for β = 3.5 (figure 12b),
meaning that wetting failure is promoted. These effects become more pronounced as
β increases from unity, and the strong deformation of the interface that results from
the increased viscous forces makes convergence of the calculations difficult when β

becomes too large. Note that for β= 0.1 and Ca∼ 10−3, the inflection point is located

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.154


Dynamic wetting failure in non-Newtonian liquids 892 A1-21

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0 0.1 0.2 0.3 0.4

10-1

10-2

10-1

10-2

1.2

0.8

0.4

0.20

0.15

0.10

0.05

Ca

Ca Ca

ı = 1

ı = 1

ı = 1
ı = 1

ı = 0.1 ı = 0.1

ı = 0.1

ı = 3.5

ı = 3.5

ı = 3.5

n = 0.5

n = 0.5

n = 0.5n = 0.5

hf

L

h f
, r

f
(a) (b)

(c) (d)

FIGURE 15. Characterization of interface shape. Black symbols are used for Newtonian
(β = 1), red for shear-thinning (β = 0.1) and blue for shear-thickening (β = 3.5) liquids.
(a,b) Interfacial length scales hf (open symbols) and rf (closed symbols) as a function
of Ca. (c) Interface length L as a function of Ca. (d) Height of inflection point hf as a
function of interface length L. Other parameters are χ = 10−3, n= 0.5, λ= 10−4, θmic,T =

θmic,B = 90◦ and De= 0.1.

at higher y than that for β = 1, as opposed to β = 3.5 where it is located at a lower y
compared to β = 1. By normalizing hf and rf with their respective critical values and
the x-axis by Cacrit or Caeff , the hf and rf curves of all three liquids have a similar
shape (see supplementary material).

In figure 15(c), the interface length L (see figure 5a) is plotted as a function of
Ca. The interface elongates with increasing Ca for all β, but for β = 0.1 a smaller
elongation is obtained at larger Ca. This reduced elongation is a result of shear
thinning, and means that penetration of the receding phase has been inhibited. In
contrast, the elongation for β = 3.5 is much larger, which leads to a smaller Cacrit.
Note that when both axes are normalized with their respective critical values (or Caeff

is used for the horizontal axis), the data for all three liquids nearly collapse onto a
single curve (see supplementary material).

To see how elongation affects the air-film thickness, hf is plotted with L in
figure 15(d). For all liquids, the air-film thickness gets reduced with increasing
interfacial elongation. After a certain L the three curves collapse onto each other,
suggesting that the mechanism of interfacial elongation in shear-thinning and
shear-thickening liquids is similar to that in Newtonian liquids. When the axes
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are normalized with their respective critical values, the curves for all three liquids
still retain a similar shape (see supplementary material).

6. Low-speed dynamic wetting
Although the focus of this paper is on high-speed dynamic wetting near the limit

of air entrainment, the results reported here may also be useful for developing models
of low-speed dynamic wetting in non-Newtonian liquids. Such models are useful for
understanding phenomena such as droplet spreading (de Gennes 1985; Bonn et al.
2009).

The standard theory for low-speed dynamic wetting in Newtonian liquids was
developed by Cox, who applied asymptotic analysis to describe the behaviour of the
apparent contact angle θap as a function of the capillary number Ca, during two-phase
displacement (Cox 1986),

g(θmic; χ)− g(θap; χ)=Ca ln(λCox),

g(θ; χ)=
∫ θ

0

χ(x2
− sin2 x)[(π− x)+ sin x cos x] + [(π− x)2 − sin2 x](x− sin x cos x)

2 sin x[χ2(x2 − sin2 x)+ 2χ [x(π− x)+ sin2 x] + [(π− x)2 − sin2 x]]
dx.


(6.1)

Here, θmic is the microscopic contact angle, χ = µrec/µ0 is the viscosity ratio and
λCox = lmic/lM is the ratio between a characteristic microscopic length scale lmic
and a characteristic macroscopic length scale lM. The scale lmic is of the order of
molecular dimensions (∼1 nm) (Petrov & Petrov 1992; Blake 2006) whereas the
scale lM (∼10 µm − 1 mm) may be set by the system geometry or gravity. Cox’s
theory neglects inertial effects and is limited to low-speed steady wetting (Ca� 1)
with slowly varying interface angles (Ca|∂θ/∂x| � 1). For the case of vanishing χ ,
g(θ)≈ θ 3/9.

Note that lmic is not necessarily equal to the slip length, and θap is not necessarily
equal to the macroscopic contact angle θM. Nevertheless, by identifying θap with θM or
a measured apparent contact angle, and treating λCox as a fitting parameter, equation
(6.1) can be fit to data from experiments or simulations to see how well it works.

In our previous work (Vandre et al. 2013), equation (6.1) was found to describe
well data for small Ca obtained from simulations for Newtonian liquids like those
conducted here. It was generally found that λCox was an order of magnitude larger
than the dimensionless slip length λ. Given the similarities in dynamic wetting failure
between Newtonian, shear-thinning and shear-thickening liquids reported in the present
paper, it is natural to ask how well (6.1) can describe the simulation data for the
non-Newtonian liquids. Because we are interested in how θM varies with Ca at low
Ca for a given liquid, for the calculations in this section we present results at fixed
E=De/Ca.

Figure 16 shows a comparison between the finite-element calculations and the
predictions of (6.1), where λCox is treated as a fitting parameter and θM is used in
place of θap. Our simulation results are compared with results obtained from (6.1) for
a Newtonian (β= 1), a shear-thinning (β= 0.1) and a shear-thickening liquid (β= 3.5)
for χ = 0 (figure 16a) and χ = 10−3 (figure 16b). Simulation results are shown with
open symbols and results from (6.1) are given by dashed lines. For simplicity, the
same values of λCox are used for both values of χ , and these are obtained from fitting
(6.1) to the χ = 0 simulation results.

At low Ca, equation (6.1) agrees well with our simulation data for all β and both
χ . As Ca increases, a disagreement is observed. However, such a disagreement might
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FIGURE 16. Comparison of solution families for (a) χ = 0 and (b) χ = 10−3 with results
obtained from (6.1). Black diamonds correspond to β = 1, red circles to β = 0.1 and
blue squares to β = 3.5. Results from the asymptotic theory (6.1) are shown with dashed
lines (black for β = 1, red for β = 0.1 and blue for β = 3.5). λCox,newt = 0.06 (for
β = 1), λCox,thin = 0.55 (for β = 0.1) and λCox,thick = 3.8 × 10−4 (for β = 3.5). (c,d) Data
in (a) and (b) replotted with Caeff , respectively. Other parameters are n= 0.5, λ= 10−2,
θmic,T = θmic,B = 90◦. In all cases, E=De/Ca= 10.

be expected (Kamal et al. 2019) since Cox’s theory is derived for Newtonian liquids
with small Ca and does not take into account any effects that a shear-rate-dependent
viscosity may have on contact-line dynamics. Note that for all cases, λCox is within
approximately an order-of-magnitude of λ, similar to what was found in our previous
work. This is consistent with the idea that the mechanics of dynamic wetting in
Newtonian, shear-thinning and shear-thickening liquids have strong similarities.

Shear-thinning liquids appear to have a larger value of λCox compared to Newtonian
liquids, whereas shear-thickening liquids appear to have a smaller value. This may
reflect the idea that slip plays a stronger role in shear-thinning liquids due to the
reduced viscosities near the dynamic contact line, whereas it plays a weaker role
in shear-thickening liquids. The influence of viscosity is also seen in the values of
θM: smaller viscosities near the contact line lead to less viscous bending and smaller
values of θM compared to the Newtonian case, whereas larger viscosities lead to more
viscous bending and larger values of θM (Seevaratnam et al. 2007; Wei et al. 2009a).
The weaker dependence of θM on Ca for shear-thinning liquids is consistent with
experimental observations (Seevaratnam et al. 2007; Wei et al. 2009a).
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Figures 16(c) and 16(d) show the collapse of the simulation data (open symbols) of
figures 16(a) and 16(b), respectively, when plotted using Caeff =µeff U/σ (§ 4.2). For
both values of χ , we use the same values of µeff , µeff = 0.18µ0 for β= 0.1 and µeff =

3µ0 for β = 3.5. The good collapse of the data, especially at low Caeff , suggests that
the mechanics of low-speed dynamic wetting in Newtonian, shear-thinning and shear-
thickening liquids are similar. As in § 4.2, the values of µeff imply that the effective
viscosity for a non-Newtonian liquid is likely an averaged value in the vicinity of the
contact line.

Although development of an asymptotic theory like Cox’s for non-Newtonian
liquids is beyond the scope of the present work, the results presented here may
provide guidance in developing such a theory. In particular, one might imagine an
inner region that behaves like a Newtonian liquid at the infinite-shear viscosity, an
outer region that behaves like a Newtonian liquid at a higher viscosity (shear-thinning
liquid) or lower viscosity (shear-thickening liquid), and an intermediate region that
connects the two. Regardless of whether this conjecture is borne out, development
of a rigorous theory for non-Newtonian liquids along the lines of Cox’s work would
likely shed light on the limitations of various approximate theories of low-speed
dynamic wetting in non-Newtonian liquids that have been developed specifically in
the context of droplet spreading (Carré & Eustache 2000; Betelú & Fontelos 2003;
Starov et al. 2003; Betelú & Fontelos 2004; Wang et al. 2007a,b; Liang et al. 2012;
Lu, Wang & Duan 2016; Wang et al. 2018).

7. Conclusions
The results of our work indicate that shear thinning postpones the onset of dynamic

wetting failure whereas shear thickening promotes it. Strong viscosity gradients arise
near the dynamic contact line, influencing the tangential stress balance there. In
shear-thinning liquids, a lower tangential stress arises in the liquid phase (compared
to a Newtonian liquid of the same zero-shear viscosity), so a lower tangential stress
is required in the air phase to balance this. This lower tangential stress is achieved
through a thickening of the air film, which in turn lowers the pressure gradients
in the air phase near the contact line. As a result, the capillary-stress gradients are
more effective at pumping air away from the contact line, increasing the maximum
speed at which steady wetting can be maintained. The opposite scenario arises in
shear-thickening liquids. Our results can be interpreted in terms of an effective
viscosity, and demonstrate that similar physical mechanisms govern dynamic wetting
failure in Newtonian, shear-thinning and shear-thickening liquids. Shear thinning leads
to a lower effective viscosity, whereas shear thickening leads to a higher effective
viscosity.

For low-speed dynamic wetting, our results indicate that shear thinning leads to
less viscous bending of the interface and thus smaller values of the dynamic contact
angle relative to a Newtonian liquid of the same zero-shear viscosity, consistent with
experimental observations (Seevaratnam et al. 2007; Wei et al. 2009a). In contrast,
shear thickening leads to more viscous bending and larger values of the dynamic
contact angle. The dependence of the dynamic contact angle on the capillary number
appears to be well described by the asymptotic theory of Cox (1986).

The results of this work appear to be qualitatively consistent with the motivating
experiments described in § 2 as well as other experiments described in § 1. While
outside the scope of the present work, a systematic experimental study using a
plunge-tank geometry will be essential for making a more quantitative comparison
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between model predictions and experiments. Similarly, extension of the model to
account for the more complex geometries encountered in actual coating processes
(e.g. curtain coating) would be extremely valuable. The results of such studies will
provide further insight into the mechanisms underlying dynamic wetting failure in
non-Newtonian liquids, and insight into how liquid rheology can be controlled to
postpone air entrainment as much as possible.
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