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THE JIANG–SU ALGEBRA AS A FRAÏSSÉ LIMIT

SHUHEI MASUMOTO

Abstract. In this paper, we give a self-contained and quite elementary proof that the class of all
dimension drop algebras together with their distinguished faithful traces forms a Fraı̈ssé class with the
Jiang–Su algebra as its limit. We also show that the UHF algebras can be realized as Fraı̈ssé limits of
classes of C*-algebras of matrix-valued continuous functions on [0, 1] with faithful traces.

§1. Introduction. Fraı̈ssé theory was originally invented by Roland Fraı̈ssé in [5],
where a bijective correspondence between countable ultrahomogeneous structures
and classes with certain properties of finitely generated structures was established.
The classes and the corresponding ultrahomogeneous structures in question are
called Fraı̈ssé classes and Fraı̈ssé limits of the classes, respectively.
This theory has been, among the rest, a target of generalization to the setting of
metric structures. For example, a general theory was developed in [11], including
connections with bounded continuous logic. In [1], Itaı̈ Ben Yaacov concisely gave
a self-contained presentation of a general theory, using a bright idea of approximate
isomorphisms.
These attempts at generalization ended up successfully, and a number of metric
structures are recognized as Fraı̈ssé limits. Itaı̈ Ben Yaacov [1] pointed out that the
Urysohn universal space, the separable infinite dimensional Hilbert space, and the
atomless standard probability space are examples of Fraı̈ssé limits corresponding
to suitable classes, and reconstructed the discussion in [8] where the Gurarij space
had been implicitly shown to be a Fraı̈ssé limit of the class of all finite dimensional
Banach spaces. The latter result was quantized byMartino Lupini [9]: it was shown
that the noncommutative Gurarij space is the Fraı̈ssé limit of the class of all finite
dimensional 1-exact operator spaces.
Among those instances are operator algebras. In [3], a more generalized version
of Fraı̈ssé theory for metric structures was presented, where the axioms of Fraı̈ssé
class were relaxed, and so the bijective correspondence established in the original
theory no longer holds and the limit structures would have less homogeneity, though
it is still powerful as a construction method. Using this version, the authors of the
paper succeeded in realizing a family of AF algebras including the UHF algebras,
the hyperfinite II1 factor and the Jiang–Su algebra as (generalized) Fraı̈ssé limits of
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a class of finite dimensional C*-algebras with distinguished traces, the class of finite
dimensional factors and the class of dimension drop algebras with distinguished
traces, respectively.
The Jiang–Su algebra was first constructed by Jiang and Su in [7] as the unique
simple monotracial C*-algebra among inductive limits of prime dimension drop
algebras, which is KK-equivalent to the complex numbers C. One of the most
important properties of this algebra is that it is strongly self-absorbing, because of
which it plays a key role in the Elliott’s classification program of separable nuclear
C*-algebras via K-theoretic invariants [4]. As is pointed out in the last section
of [3], the proof that the Jiang–Su algebra satisfies this property is nontrivial, and
there is a reasonable prospect that Fraı̈ssé theoretic view of this algebra will give a
shortcut. However, the proof given in [3] of the fact that the Jiang–Su algebra is a
Fraı̈ssé limit was still “a bit unsatisfactory” in the authors’ phrase, as it used the
existence of the Jiang–Su algebra itself and relied heavily on Robert’s theorem (see
[3, Remark 4.8]).
In this paper, we prove that the collection of all the dimension drop algebras
together with their distinguished faithful traces forms a Fraı̈ssé class. The impor-
tance lies in that this proof is self-contained and quite elementary; in particular, it
depends on neither the existence of the Jiang–Su algebra nor Robert’s theorem, so
that it can be considered as a solution to [3, Remark 4.8]. Also, we show that the
UHF algebras are realized as a Fraı̈ssé limit of a class of C*-algebras of matrix-
valued continuous functions on the interval [0, 1] together with their distinguished
faithful traces. Since this class differs from the one used in [3], this result implies a
different homogeneity property of the UHF algebras.
The paper consists of four sections. In the next section, we briefly introduce a
version of Fraı̈ssé theory for metric structures, which is essentially the same as the
one in [3]. The third section contains the result on the UHF algebras. The argument
included in this section is the basis of the fourth section, where the dimension drop
algebras and the Jiang–Su algebra are dealt with.

§2. Fraı̈ssé theory for metric structures. In this section, we present a general
theory of Fraı̈ssé limits in the context of metric structures, which is almost the same
as the one in [3, Section 2]. The facts stated here are slight generalization of those
of [1], and can be proved with trivial modification.

Definition 2.1. A languageL consists of predicate symbols and function symbols.
To each symbol in L is associated a natural number called its arity. We assume that
L contains a binary predicate symbol d .
An L-structure is a complete metric space M together with an interpretation of
symbols of L:

• to each n-ary predicate symbolP is assigned a continuous map PM : Mn → R,
where the distinguished binary predicate symbol d corresponds to the distance
function; and

• to each n-ary function symbolf is assigned a continuousmapfM : Mn →M .
An embedding of anL-structureM into anotherL-structureN is a map ϕ such that

fN (ϕ(a1), . . . , ϕ(an)) = ϕ(fM (a1, . . . , an))
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and
PN (ϕ(a1), . . . , ϕ(an)) = PM (a1, . . . , an)

hold for any function symbolf, any predicate symbolP and any elements a1, . . . , an
inM .

In this paper, we focus on unital C*-algebraswith distinguished traces.We assume
that L consists of the binary predicate symbol d , an unary predicate symbol tr,
binary function symbols + and · , an unary function symbol � for each � ∈ C

which should be interpreted as multiplication by �, an unary function symbol ∗,
and 0-ary function symbols 0 and 1. Then every unital C*-algebra with trace is
understood as an L-structure in the canonical manner. Note that an embedding in
the sense of Definition 2.1 is an injective trace-preserving ∗-homomorphism in this
case, which we shall call a morphism in the sequel.

Remark 2.2. The definition of languages and metric structures varies by paper
(see [1, Remark 2.2]), and the one we adopted here is the same as [1, Definition 2.1].
Some variants such as [3, Definition 2.1] require that all the maps which appear
should be bounded or uniformly continuous, in which case the language carries
additional informations. A C*-algebra is seemingly not an instance of a metric
structure in these cases, because it is apparently unbounded and the multiplication
is not uniformly continuous. Indeed, this can be easily overcome by using the
unit ball as its representative, as in [3]. Anyway, the results of Fraı̈ssé theory in
both perspectives can be easily translated into each other, so we are in the same
line as [3].

Definition 2.3. A classK of L-structures is said to satisfy

• the joint embedding property (JEP) if for any A,B ∈ K there exists C ∈ K
such that both A and B can be embedded in C .

• the near amalgamation property (NAP) if for any A,B1, B2 ∈ K, any embed-
dings ϕi : A → Bi , any finite subset G ⊆ A and any ε > 0, there exist
embeddings �i of Bi into some C ∈ K such that d (�1 ◦ ϕ1(a), �2 ◦ ϕ2(a)) is
less than ε for all a ∈ G .
An L-structure A is said to be finitely generated if there exists a tuple �a =
(a1, . . . , an) ∈ An such that the smallest substructure of A containing all a1, . . . , an
is A, for some n ∈ N. (Note that we assumed L-structures to be necessarily com-
plete.) As we focus on unital C*-algebras with distinguished traces, this definition
coincides with the usual one, that is, a (unital) C*-algebra (with its distinguished
trace) is finitely generated if there exists a finite subset such that its closure by
addition, multiplication, scalar multiplication and ∗-operation is dense in the whole
C*-algebra.
Let K be a class of finitely generated L-structures. For each n ∈ N, we denote
by Kn the class of all the pairs (A, �a), where A is a member of K and �a ∈ An is a
generator of A. IfK satisfies JEP and NAP, then we can define a pseudometric dK

onKn by
dK

(
(A, �a), (B,�b)

)
:= inf max

i
d (f(ai), g(bi)),

where �a = (a1, . . . , an), �b = (b1, . . . , bn) and the infimum is taken over all the
embeddings f, g of A,B into some C inK.
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Definition 2.4. A classK of finitely generated L-structures with JEP and NAP
is said to satisfy

• the weak Polish property (WPP) if Kn is separable with respect to the
pseudometric dK for all n.

• the Cauchy continuity property (CCP) if
(1) for any n-ary predicate symbol P, the map

(
A, (�a,�b)

) �→ PA(�a) from
Kn+m into R sends Cauchy sequences to Cauchy sequences; and

(2) for any n-ary function symbolf, themap
(
A, (�a,�b)

) �→ (
A, (�a,�b, fA(�a))

)
fromKn+m intoKn+m+1 sends Cauchy sequences to Cauchy sequences.

Remark 2.5. CCP implies that dK
(
(A, �a), (B,�b)

)
= 0 holds if and only if there

is an isomorphism fromA toB which sends �a to�b ([1, Remark 2.13(i)]). Note that if
K is a class of finitely generated unital C*-algebras with traces and if it satisfies JEP
andNAP, then it also satisfies CCP automatically, because all the relevant functions
are 1-Lipschitz on the unit ball.

Definition 2.6. A class K of finitely generated L-structures is called a Fraı̈ssé
class if it satisfies JEP, NAP, WPP, and CCP. A Fraı̈ssé limit of a Fraı̈ssé classK is
a separable L-structureM which is

(1) a K-structure: for any finite subset F of M and any ε > 0, there exists an
embedding ϕ of a member ofK such that the ε-neighborhood of the image
of ϕ includes F .

(2) K-universal: every member ofK can be embedded intoM .
(3) approximately K-homogeneous: if A is a member of K and a1, . . . , an are
elements of A, then for any embeddings ϕ,� of A into M and any ε > 0,
there exists an automorphism α of M with d (α ◦ ϕ(ai ), �(ai)) < ε for
i = 1, . . . , n.

The definition here is more relaxed than that of [1] and close to [3, Definition 2.6]:
our Fraı̈ssé class is incomplete and lacks the hereditary property (see
[1, Definitions 2.5(ii) and 2.12]). Consequently, we cannot establish a bijective
correspondence between Fraı̈ssé classes and separable structures with homogene-
ity, which is a part of the main result of Fraı̈ssé theory. The following theorem
summarizes what remains in our framework.

Theorem 2.7. Every Fraı̈ssé class K admits a unique limit. Moreover, for any
L-structureA0 inK, there exists a sequence of embeddingsA0

ϕ0−→ A1 ϕ1−→ A2 ϕ2−→ · · ·
such that Ai belongs to K for all i and its inductive limit L-structure coincides with
the Fraı̈ssé limit ofK.

§3. UHF algebras. A supernatural number is a formal product
� =

∏
p: prime

pnp ,

where np is either a non-negative integer or ∞ for each p such that
∑
p np = ∞.

In [6, Theorem 1.12], it was proved that one can associate to each UHF algebra a
supernatural number as a complete invariant. Now, given a supernatural number �,
we denote by N(�) the set of all natural numbers which formally divide �, and by
K(�) the class of all the pairs 〈C [0, 1]⊗Mn, 	〉, where n is in N(�) and 	 is a faithful
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trace on the C*-algebra C [0, 1]⊗Mn. Our goal in this section is to show thatK(�)
is a Fraı̈ssé class the limit of which is the UHF algebra with � as its associated
supernatural number.
First, note that C [0, 1] ⊗ Mn is canonically isomorphic to C ([0, 1], Mn), the
C*-algebra of all continuousMn-valued functions on the interval [0, 1]. In the sequel,
we shall denote this C*-algebra by An for simplicity. Next, let 	 be a probability
Radon measure on [0, 1], which is identified with a state on C [0, 1] by integration.
Then 	 ⊗ tr is clearly a trace on An, where tr is the unique normalized trace onMn .
It is easy to see that every trace onAn is of this form, so a probability Radonmeasure
on [0, 1] may also be identified with a trace on An . In the sequel, we simply write 	
instead of 	 ⊗ tr and use the same adjectives for measures and traces in common.
For example, a measure is said to be faithful if its corresponding trace is faithful.
Also, all the measures are assumed to be probability Radon measures so that they
always correspond to traces.
A measure is said to be diffuse or atomless if any measurable set of nonzero mea-
sure can be partitioned into twomeasurable sets of nonzero measure. The following
is often used in the sequel without further mention.

Lemma 3.1. Let 
, 	 be faithful measures. If 
 is diffuse, then there exists a unique
nondecreasing continuous function � from [0, 1] onto [0, 1] with �∗(
) = 	. Moreover,
	 is diffuse if and only if � is a homeomorphism.

Proof. We first assume that the measure 
 is equal to the Lebesgue measure �
and set α(t) := 	([0, t)). Note that α is a strictly increasing lower semicontinuous
function from [0, 1] into [0, 1]. Let � be the unique nondecreasing function extending
α−1. Then

�∗(�)([0, t)) = �
(
�−1

[
[0, t)

])
= �

(
[0, α(t))

)
= α(t) = 	([0, t)),

so �∗(�) is equal to 	. Also, if 	 is diffuse, then α is continuous, whence � = α−1 is
a homeomorphism.
For the general case, let �
, �	 be the nondecreasing continuous functions such
that (�
)∗(�) = 
 and (�	)∗(�) = 	. Then �
 is a homeomorphism and� := �	◦�−1

satisfies �∗(
) = 	, which completes the proof. �
The next propositions are immediate corollaries of the preceding lemma. Recall
that a morphism between elements of K(�) is an injective unital trace-preserving
∗-homomorphism.
Proposition 3.2. Let 	 be a faithful trace onAn . Then for any faithful diffuse trace

 on An , there is a morphism ϕ : 〈An, 	〉 → 〈An, 
〉.
Proof. Let � : [0, 1]→ [0, 1] be the nondecreasing continuous function satisfying
�∗(
) = 	. Then ϕ := �∗ is the desired morphism. �
Proposition 3.3. The classK(�) satisfies JEP.

Proof. Suppose n1, n2 are in N(�) and put n := lcm(n1, n2). Then n is also in
N(�). Also, 〈Ani , �〉 is clearly embeddable into 〈An, �〉 by amplification. This fact
together with Proposition 3.2 implies thatK(�) satisfies JEP. �
Next, we shall show that the class K(�) satisfies NAP. For this, we begin with
proving that all the morphisms between members of K(�) are approximately
diagonalizable.
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Definition 3.4. A morphism ϕ : 〈An, 	〉 → 〈Am, 
〉 is said to be diagonalizable
if there are a unitary u ∈ Am and continuous maps �1, . . . , �k : [0, 1] → [0, 1] such
that

ϕ(f) = u

⎛
⎜⎝
f ◦ �1 0

. . .
0 f ◦ �k

⎞
⎟⎠ u∗ (1)

for all f ∈ An .
In general, for a unitary v in a C*-algebra A, the associated inner automor-
phism a �→ vav∗ is denoted by Ad(v). Also, if a1, . . . , ak are elements of A, then
diag[a1, . . . , ak ] denotes the diagonal element ofMk(A) such that the (i, i)-entry is
equal to ai . Using these notations, we can rewrite equation (1) as

ϕ(f) = Ad(u)
(
diag[f ◦ �1, . . . , f ◦ �k]

)
. (1′)

In this paper, we shall call this equation a diagonal expression of ϕ, and u and
�1, . . . , �k its associated unitary and maps. Note that the union of the images of
the maps associated to a diagonal expression is equal to [0, 1], as morphisms
are necessarily faithful. Also, compositions of diagonalizable morphisms are again
diagonalizable.
Proposition 3.5. Let ϕ : 〈An, 	〉 → 〈Am, 
〉 be a morphism. Then for any finite
subset G ⊆ An and any ε > 0, there exists a diagonalizable morphism � : 〈An, 	〉 →
〈Am, 
〉 with ‖ϕ(g)− �(g)‖ < ε for all g ∈ G . Moreover, we can take � so that the
maps �1, . . . , �k associated to a diagonal expression of � satisfy �1 ≤ · · · ≤ �k .
For the proof, we shall introduce a notation. A multiset is a generalization of
the concept of a set such that each element is allowed to occur multiple times. In
order to distinguish multisets from usual sets, we use double braces. For example,
{{a, a, b}} denotes the multiset which consists of two a’s and one b.
Proof of Proposition 3.5. For t ∈ [0, 1], let evt : Am → Mm be the evaluation

∗-homomorphism. Then evt ◦ϕ is a unital ∗-homomorphism from An to the finite
dimensional C*-algebra Mm, so there exist a unitary vt ∈ Mm and real numbers
st1, . . . , s

t
k ∈ [0, 1] such that the equation

evt ◦ϕ(f) = Ad(vt)
(
diag

[
f(st1), . . . , f(s

t
k)
])

holds for all f ∈ An. Note that {{st1, . . . , s tk}} coincides with the spectrum of
evt ◦ϕ(id[0,1]⊗1Mn) as multisets. By continuity, if t1 and t2 are close to each other,
then so are the spectra of evt1 ◦ϕ(id[0,1]⊗1Mn) and evt2 ◦ϕ(id[0,1]⊗1Mn) with respect
to the Hausdorff distance. Therefore, if we define

�1(t) := max{{st1, . . . , s tk}};
�i(t) := max

[
{{st1, . . . , s tk}} \ {{�1(t), . . . , �i−1(t)}}

]
,

then obviously �1, . . . , �k are continuous functions from [0, 1] into [0, 1] satisfying
�1 ≤ · · · ≤ �k and {{�1(t), . . . , �k(t)}} = {{st1, . . . , s tk}}. By multiplying an appro-
priate permutation unitary from the right if necessary, we may assume in the rest of
the proof that the unitary vt satisfies

evt ◦ϕ(f) = Ad(vt)
(
diag

[
f(�1(t)), . . . , f(�k(t))

])
for each t.
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Next, fix t0 ∈ [0, 1]. We claim that there exists 
(t0) > 0 with the following
property: if |t− t0| < 
(t0), then there exists a unitarywt0 ∈ Mm with ‖vt−wt0‖ < ε
such that the equation

evt0 ◦ϕ(f) = Ad(wt0 )
(
diag

[
f(�1(t0)), . . . , f(�k(t0))

])
holds for all f ∈ An. To see this, let {s1, . . . , sl} be the set of distinct eigenvalues of
evt0 ◦ϕ(id[0,1]⊗1Mn) and take mutually orthogonal non-negative continuous func-
tions f1, . . . , fl such that fi is constantly equal to 1 on some neighborhood of si
for each i . Note that if {ep,q} is the system of standard matrix units of Mn , then
{evt0 ◦ϕ(fi ⊗ ep,q)}i,p,q forms a system of matrix units which spans Im(evt0 ◦ϕ),
and if t is sufficiently close to t0, then {evt ◦ϕ(fi ⊗ ep,q)}i,p,q is a system of matrix
units in Im(evt ◦ϕ) which is close to {evt0 ◦ϕ(fi ⊗ ep,q)}i,p,q . Hence, as in the proof
of [2, Lemma III.3.2], we can find a unitary w with ‖w − 1‖ < ε such that

w
(
evt0 ◦ϕ(fi ⊗ ep,q)

)
w∗ = evt ◦ϕ(fi ⊗ ep,q),

and wt0 := vtw has the desired property.
Now take 
0 > 0 sufficiently small so that the inequalities

‖g(�i(s))− g(�i(t))‖ < ε, ‖ evs ◦ϕ(g) − evt ◦ϕ(g)‖ < ε
hold for all g ∈ G whenever |s − t| < ε, and consider an open covering

U :=
{
U
(t)

∣∣ t ∈ [0, 1] & 
 < min{
(t), 
0}}
of [0, 1], where U
(t) denotes the open ball of radius 
 and center t. Since [0, 1]
is compact, there exists a finite subcovering, say {I1, . . . , Ir}. We denote the center
of Ij by cj , and without loss of generality, we may assume c1 < · · · < cr and
Ij ∩ Ij+1 �= ∅ for all j. Take small � > 0 and bj ∈ Ij ∩ Ij+1 ∩ (cj + �, cj+1 − �) for
each j, and find a unitary u ∈ Am such that
• u(bj) is equal to vbj for all j;
• the image of u on [cj +�, cj+1− �] is included in the ε-ball of center u(bj); and
• the image of u on [cj − �, cj + �] is included in the path-connected subset{

w
∣∣∣ evcj ◦ϕ(f) = Ad(w)

(
diag

[
f(�1(cj)), . . . , f(�k(cj))

])}
of unitaries,

which is possible by the claim we proved in the previous paragraph.
We shall set

�(f) := Ad(u)
(
diag[f ◦ �1, . . . , f ◦ �k]

)
and show that this � has the desired property. First, it is clear from the definition of
�i that� is trace-preserving.Now, let g be amember ofG .Without loss of generality,
we may assume that the norm of g is less than 1. Then, for t ∈ [cj + �, cj+1 − �] we
have

evt ◦�(g) = Ad(u(t))
(
diag

[
g(�1(t)), . . . , g(�k(t))

])
∼3ε Ad(u(bj))

(
diag

[
g(�1(bj)), . . . , g(�k(bj))

])
= evbj ◦ϕ(g)

∼ε evt ◦ϕ(g).
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On the other hand, if t ∈ [cj − �, cj + �], then
evt ◦�(g) = Ad(u(t))

(
diag

[
g(�1(t)), . . . , g(�k(t))

])
∼ε Ad(u(t))

(
diag

[
g(�1(cj)), . . . , g(�k(cj))

])
= evcj ◦ϕ(g)

∼ε evt ◦ϕ(g).
Consequently, it follows that ‖ϕ(g) − �(g)‖ < 4ε for all g ∈ G , which completes
the proof. �
Proposition 3.6. Let 	, 
 be faithful diffuse measures on [0, 1]. Then for any
n ∈ N(�) and any ε > 0, there exist m ∈ N(�) and a diagonalizable morphism
ϕ : 〈An, 	〉 → 〈Am, 
〉 such that the images of the maps associated to a diagonal
expression of ϕ have diameters less than ε.
The following proof is presented with the intention of helping the reader to
understand the proof of Proposition 4.8. For a more straightforward proof, see
Remark 3.7.

Proof of Proposition 3.6. Since 	 is diffuse, there exists 
 > 0 such that
	([t1, t2]) < 
 implies |t2 − t1| < 1/6. Take k ∈ N so that m1 := nk is in N(�) and
1/k is smaller than 
. Then there are t0 ∈ (1/2, 2/3) and r ∈ Nwith 	([0, t0]) = r/k.
We set 	1 := k

r 	|[0,t0] and 	2 := k
k−r 	[t0,1], so 	 =

r
k 	1 +

k−r
k 	2. By Lemma 3.1, one

can find increasing maps �1 : [0, 1] → [0, t0] and �2 : [0, 1] → [t0, 1] such that 	i is
equal to (�i)∗(
) for i = 1, 2. We set

�1j :=
{
�1 if j = 1, . . . , r,
�2 if j = r + 1, . . . , k,

and define ϕ1 : An → Am1 by
ϕ1(f) = diag[f ◦ �11 , . . . , f ◦ �1k].

Then it can be easily verified that ϕ1 is a morphism from 〈An, 	〉 to 〈Am1 , 
〉, and
that the images of the maps �11 , . . . , �

1
k are either [0, t0] or [t0, 1], so their diameters

are less than 2/3.
Now take d ∈ N large enough so that (2/3)d is less than ε, and repeat the
procedure above for d times to obtain a sequence

〈An, 	〉 ϕ1−−→ 〈Am1 , 
〉
ϕ2−−→ · · · ϕd−1−−−→ 〈Amd , 
〉.

Then ϕ := ϕd−1 ◦ · · · ◦ ϕ1 has the desired property. �
Remark 3.7. Here is a shorter and more natural proof of Proposition 3.6. Take
a natural number k ∈ N so that there exists a partition 0 = t0 < · · · < tk = 1
of [0, 1] with |ti − ti−1| < ε and 	([ti−1, ti ]) = 1/k for all i , and that the number
m := nk is in N(�). By Lemma 3.1, there exists a function �i from [0, 1] onto
[ti−1, ti ] such that 1k (�i)∗(
) = 	|[ti−1 ,ti ]. Then the map ϕ : An → Am defined by
ϕ(f) = diag[f ◦ �1, . . . , f ◦ �k] has the desired property.
Proposition 3.8. The classK(�) satisfies NAP.
Proof. Let ϕ1 andϕ2 be morphisms from 〈An0 , 	0〉 into 〈Am′ , 
 ′〉 and 〈Am′′ , 
 ′′〉,
respectively, and G be a finite subset of An0 . Our goal is to show that given ε >
0, we can find morphisms �1 and �2 from 〈Am′ , 
 ′〉 and 〈Am′′ , 
 ′′〉 into some
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〈An2 , 	2〉 ∈ K(�) with ‖�1 ◦ ϕ1(g)− �2 ◦ ϕ2(g)‖ < ε for all g ∈ G . To see this, by
Propositions 3.3, 3.2, and 3.5, we may assume from the outset that m′ = m′′ =: n1
and 
 ′ = 
 ′′ =: 	1, that 	1 is diffuse, and that both ϕ1 and ϕ2 are diagonalizable.
Let �i1, . . . , �

i
l be themaps associated to a diagonal expression of ϕi . Take 
 > 0 so

that |s−t| < 
 implies |g(s)−g(t)| < ε for any g ∈ G , and apply Proposition 3.6 to
obtain a morphism � from 〈An1 , 	1〉 into some 〈An2 , 	2〉 such that the images of the
maps associated to a diagonal expression of � ◦ ϕ̃i have diameters less than 
/3 for
each i . Then apply Proposition 3.3 to find a diagonalizable morphism Φi such that
the inequaily ‖� ◦ϕi(g)−Φi (g)‖ < ε holds for g ∈ G , and that the maps �i1, . . . , �ik
associated to a diagonal expression of Φi satisfies �i1 ≤ · · · ≤ �ik . Recalling the proof
of Proposition 3.5, one can easily check that the diameters of the images of �ij is
still less than 
/3.
We claim that the inequality ‖�1j − �2j‖ < 
 holds for all j. To see this, suppose
on the contrary that �1j(t) ≥ �2j(t) + 
 at some point t ∈ [0, 1], and set c := max �2j ,
d := min �1j+1. (If j is equal to k, then set d := 1 instead.) Then it follows that

• the image of �2l is included in [0, c] if 1 ≤ l ≤ j; and
• if the image of �1l intersects with [0, d ), then l is less than or equal to j.
Since d is larger than c by at least 
/3, and since Φi is trace-preserving, we have

j =
j∑
l=1

	2
(
(�2l )

−1[0, c]
) ≤ n2	0([0, c]) < n2	0([0, d )) ≤

j∑
l=1

	2
(
(�1l )

−1[0, 1]
)
= j,

which is a contradiction. Therefore, ‖�1j − �2j‖must be smaller than 
, as desired.
Now, let ui be a unitary such that the equality

Φi(f) = Ad(ui)
(
diag[f ◦ �i1, . . . , f ◦ �ik]

)
holds for all f ∈ An0 , and put �1 := � and �2 := Ad(u1u∗2 ) ◦ �. Then for g ∈ G ,
we have

�2 ◦ ϕ2(g) = Ad(u1u∗2 ) ◦ � ◦ ϕ2(g)
∼ε Ad(u1u∗2 ) ◦Φ2(g)
= Ad(u1)

(
diag[g ◦ �21 , . . . , g ◦ �2k]

)
∼ε Ad(u1)

(
diag[g ◦ �11 , . . . , g ◦ �1k ]

)
= Φ1(g)

∼ε �1 ◦ ϕ1(g),
which completes the proof. �
Theorem 3.9. The classK(�) is a Fraı̈ssé class.

Proof. We have already shown that K(�) satisfies JEP and NAP in
Propositions 3.3 and 3.8. Also, it can be easily verified form the proof of
Proposition 3.2 thatK(�) satisfies WPP. SinceK(�) automatically satisfies CCP, as
is noted in Remark 2.5, it follows thatK(�) is a Fraı̈ssé class. �
We close this section by showing that the Fraı̈ssé limit ofK(�) is the unique UHF
algebraM� corresponding to the supernatural number �. The following lemma will
be needed for the proof.
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Lemma 3.10. Let 〈An, 	〉 be a member ofK(�). Then for any finite subset F ⊆ An
and any ε > 0, there exist a morphism from 〈An, 	〉 into some 〈Am, 
〉 ∈ K(�) and a
finite dimensional C*-subalgebra B ⊆ Am such that the image ϕ[F ] is included in the
ε-neighborhood of B.
Proof. We may assume F = {id[0,1]⊗1Mn} ∪ {1C [0,1] ⊗ ei,j | i, j = 1, . . . , n}
where {ei,j} is the system of standardmatrix units ofMn , because this set generates
An . Also, we may assume that 	 is diffuse by Proposition 3.2. Now, let ϕ be as in
Proposition 3.6. Then

ϕ(id[0,1]⊗1Mn) = diag[�1, . . . , �k ]
∼ε 1C [0,1] ⊗ diag[�1(0), . . . , �k(0)],

so ϕ[F ] is included in the ε-neighborhood of the finite dimensional C*-subalgebra
1C [0,1] ⊗Mm, as desired. �
We use the following theorem of George A. Elliott. Recall that for a uni-
tal AF-algebra A, its scaled dimension group is defined as its ordered K0-group
〈K0(A), K0(A)+〉 together with the canonical ordered unit [1A]0. (For the precise
definition of these objects and a proof of the theorem, see [10, Definitions 3.1.4
and 5.1.4 and Theorem 7.3.4]).

Theorem 3.11 (Elliott’s classification theorem (for unital AF-algebras)). Two
AF-algebras A and B are isomorphic if and only if their scaled dimension groups
〈K0(A), K0(A)+, [1A]0〉 and 〈K0(B), K0(B)+, [1B]0〉 are isomorphic.
Theorem 3.12. The Fraı̈ssé limit ofK(�) is 〈M� , tr〉, where tr is the unique trace
onM� .
Proof. Let 〈A, �〉 be the Fraı̈ssé limit ofK. ByK-universality and Theorem 2.7,
it is clear thatA andM� have the sameK-theory. Therefore, in view of Theorem 3.11,
it suffices to show thatA is anAF algebra. For this, letF be a finite subset ofA. Then
given ε > 0, we can find a morphism ϕ of some 〈An, 	〉 ∈ K(�) into 〈A, �〉 and a
finite subsetF ′ ⊆ An such thatF is included in the ε-neighborhoodofϕ[F ′]. On the
other hand, byLemma3.10, there is amorphism� from 〈An, 	〉 into some 〈Am, 
〉 ∈
K(�) such that�[F ′] is included in the ε-neighborhood of a finite dimensional C*-
subalgebra ofAm. Since 〈A, �〉 isK-universal and approximatelyK-homogeneous,
there is a morphism � : 〈Am, 
〉 → 〈A, �〉 such that d (ϕ(f), � ◦ �(f)) is less than
ε for all f ∈ F ′. It follows that F is included in the 3ε-neighborhood of a finite
dimensional C*-subalgebra of A, so by [2, Theorem III.3.4], A is an AF algebra,
which completes the proof. �

§4. The Jiang–Su algebra. Let p, q be natural numbers. We shall begin with the
well-known observation that if {eij}i,j and {fkl}k,l are the systems of standard
matrix units of Mp and Mq , respectively, then {eij ⊗ fkl}(i,k),(j,l) is a system of
matrix units which spansMp ⊗Mq , soMp ⊗Mq is canonically identified withMpq .
Now, the dimension drop algebra Zp,q is defined by

Zp,q := {f ∈ Apq | f(0) ∈ Mp ⊗ 1Mq & f(1) ∈ 1Mp ⊗Mq},
where we took over the notationAn = C ([0, 1],Mn) from Section 3. It is said to be
prime if p and q are coprime. We denote byK the class of all pairs 〈Zp,q , 	〉, where
Zp,q is a prime dimension drop algebra and 	 is a faithful trace on it.
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In [7], Jiang and Su constructed the Jiang–Su algebra as an inductive limit of
prime dimension drop algebras, and proved that it is the unique monotracial simple
C*-algebra among such inductive limits. Our goal here is to show that the Jiang–Su
algebra together with its unique trace is the Fraı̈ssé limit of the class K. The
direction of the proof is the same as that of Section 3, but we need some additional
observations because of the pinching condition.
We shall say a ∗-homomorphism ϕ from Zp,q into Zp′ ,q′ is diagonalizable if it is
of the form

ϕ(f) = Ad(u)
(
diag[f ◦ �1, . . . , f ◦ �k]

)
for some unitary u in Ap′q′ and some continuous maps �1, . . . , �k from [0, 1] into
[0, 1]. Lemma 4.2 below helps us construct diagonalizable morphisms between
members ofK.
Notation 4.1. Let � = (�1, . . . , �k) be a tuple of functions from [0, 1] to [0, 1]. For
s = 0, 1, we set Fs(�) = {�1(s), . . . , �k(s)}. Also, for t ∈ Fs(�), we denote by nts(�)
the number of i with �i(s) = t. If the family � under consideration is apparent from
context, then Fs(�) and nts (�) are simply written as Fs and n

t
s , respectively.

Lemma 4.2. Let ϕ : Zp,q → Ap′q′ be a ∗-homomorphism of the form
ϕ(f) = diag[f ◦ �1, . . . , f ◦ �k],

where �1, . . . , �k are continuous functions from [0, 1] into [0, 1], and nts = n
t
s(�) be as

in Notation 4.1. Then the following are equivalent.
(i) There exists a unitary u ∈ Ap′q′ such that the image of Ad(u) ◦ ϕ is included
in Zp′,q′ .

(ii) The congruence equations

qn00 ≡ pn10 ≡ 0 (mod q′), qn01 ≡ pn11 ≡ 0 (mod p′),
nt0 ≡ 0 (mod q′), nt1 ≡ 0 (mod p′) (t �= 0, 1) (2)

hold.
Moreover, if Zp,q is prime, then there exists a unitary v ∈ Ap′q′ with the following
property: for any � : Zp,q → Ap′q′ of the form

�(f) = diag[f ◦ �1, . . . , f ◦ �k ],
where �1 ≤ · · · ≤ �k are continuous functions from [0, 1] into [0, 1], if the numbers
nts(�) satisfies equations (2), then the image of Ad(v) ◦ � is included in Zp,q .
Proof. First, we shall prove (i) ⇒ (ii). Let Fs = Fs(�) be as in Notation 4.1.
For t ∈ F0, take ft ∈ Zp,q such that ft(t) is a minimal projection in evt[Zp,q ] and
ft(s) vanishes if s ∈ F0 \ {t}. If t �= 0, 1, then ev0 ◦ϕ(ft) is a projection of rank
nt0 in Mp′ ⊗ 1Mq′ . Since the rank of any projection in Mp′ ⊗ 1Mq′ is necessarily a
multiple of q′, it follows that nt0 ≡ 0 (mod q′). On the other hand, f0(0) and f1(1)
are minimal projections in Mp ⊗ 1Mq and 1Mp ⊗Mq , so that their ranks are q and
p, respectively. Therefore, ev0 ◦ϕ(f0) and ev0 ◦ϕ(f1) are projections of ranks qn00
and pn10, which implies qn

0
0 ≡ pn10 ≡ 0 (mod q′). The other congruence equations

in equations (2) follow by similar arguments.
Next, in order to see (ii)⇒ (i), suppose equations (2) hold. If �i(0) = t, then by
definition of nts , there are distinct suffixes i = i1, . . . , int0 such that �i1 (0) = · · · =
�int0
(0) = t, so that thematricesf(�i1(0)), . . . , f(�int0

(0)) are equal for eachf ∈ Zp,q .
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On one hand, for t �= 0, 1, the number nt0 is a multiple of q′ by assumption; on the
other hand, if t = 0 or t = 1, then f(�i(0)) is included inMp ⊗ 1Mq or 1Mp ⊗Mq ,
respectively, so the congruence equation qn00 ≡ pn10 ≡ 0 (mod q′) implies the
existence of a permutation unitary w such that diag

[
f(�i1 (0)), . . . , f(�int0

(0))] is

equal toAd(w)(af⊗1Mq′ ) for somematrix af . Consequently, there is a permutation
unitary u0 ∈ Mp′q′ such that the image of Ad(u0) ◦ ev0 ◦ϕ is included inMp′ ⊗1Mq′ .
Similarly, we can find a unitary u1 ∈ Mp′q′ such that the image of Ad(u1) ◦ ev1 ◦ϕ
is included in 1Mq′ ⊗Mp′ . Since the unitary group ofMp′q′ is path-connected, there
is a unitary u ∈ Ap′q′ with u(0) = u0 and u(1) = u1, so that the image of Ad(u) ◦ϕ
is included in Zp′ ,q′ , as desired.
Finally, suppose that Zp,q is prime. In order to prove the existence of the unitary
v in the latter claim, we only have to show the congruence equations

n00(�) ≡ n00(�) (mod q′), n10(�) ≡ n10(�) (mod q′),
n01(�) ≡ n01(�) (mod p′), n11(�) ≡ n11(�) (mod p′),

recalling the construction of the unitary u in the preceding paragraph and taking
the assumption �1 ≤ · · · ≤ �k into account. To see these congruence equations, note
that by what we proved in the preceding paragraphs we have

qn00(�) ≡ pn10(�) ≡ 0 (mod q′), qn00(�) ≡ pn10(�) ≡ 0 (mod q′),
and

n00(�) + n
1
0(�) ≡ k ≡ n00(�) + n10(�) (mod q′),

since nt0 ≡ 0 (mod q′) for t �= 0, 1. Consequently, it follows that
p(n00(�)− n00(�)) ≡ p(n10(�)− n10(�)) ≡ 0 (mod q′),

q(n10(�)− n10(�)) ≡ q(n00(�)− n00(�)) ≡ 0 (mod q′),

and so
n00(�) ≡ n00(�) (mod q′), n10(�) ≡ n10(�) (mod q′),

since p and q are coprime. The other equivalences follow similarly, which completes
the proof. �
We note that every trace on a dimension drop algebra bijectively corresponds to a
probability Radonmeasure on [0, 1], as in the case ofAn . The following proposition
is an immediate corollary of Lemma 3.1. The proof is the same as Proposition 3.2,
so we omit it.
Proposition 4.3. Let 	 be a faithful trace on Zp,q . Then for any faithful diffuse
trace 
 on Zp,q , there is a morphism ϕ : 〈Zp,q , 	〉 → 〈Zp,q , 
〉.
Proposition 4.4. Let p and q be coprime natural numbers. Then there exists
M (p, q) ∈ N such that if p′ and q′ are coprime natural numbers larger thanM (p, q)
and if pq divides p′q′, then for any faithful diffuse measures 	, 
 on [0, 1], we can find
a morphism ϕ from 〈Zp,q , 	〉 into 〈Zp′ ,q′ , 
〉.
Proof. Let c, d be divisors of p, q, respectively. Then, since c and d are coprime,
there exists N(c, d ) ∈ N such that for any n ∈ N, one can find l, m ∈ N with
(lc +md ) < N(c, d ) and lc +md ≡ n (mod cd ). We set

M (p, q) := max
c|p,d |q

pq

cd
N(c, d ).
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Now suppose that p′, q′ are coprime natural numbers larger than M (p, q) and
that pq divides p′q′. Set r := p′/(gp,p′gq,p′) and s := q′/(gp,q′gq,q′), where gn,m
denotes the greatest common divisor of n and m. Note that since p′ and q′ are
coprime and pq divides p′q′, the equations p = gp,p′gp,q′ and q = gq,p′gq,q′ hold.
Since r > M (p, q)/(gp,p′gq,p′) ≥ N(gp,q′ , gq,q′) and similarly s > N(gp,p′ , gq,q′), we
can find lr , mr , ls ,ms ∈ N such that both r− lrgp,q′ −mrgq,q′ and s− lsgp,p′ −msgq,p′
are positive and can be divided by gp,q′gq,q′ and gp,p′gq,p′ , respectively. We shall put

a0 := lrgp,q′s, b0 := rs − a0,
a1 := lsgp,p′r, b1 := rs − a1.

Suppose a0 > a1 and set c := a0−a1.We cut [0, 1] into three intervals I1 = [0, t1],
I2 = [t1, t2] and I3 = [t2, 1] so that

	(I1) =
a1 + 1/3
rs

, 	(I2) =
c − 2/3
rs

, 	(I3) =
b0 + 1/3
rs

.

Let 	i be the normalization of 	|Ii . An argument similar to the proof of Lemma 3.1
enables us to find continuous functions �1, �2, �3 such that
• �1 is a surjection from [0, 1] onto I1 with �1(0) = �1(1) = 0 and (�1)∗(
) = 	1;
• �2 is the increasing surjection from [0, 1] onto [0, 1] with (�2)∗(
) = 1

3c (	1 +
	3) + (1 − 2

3c )	2; and• �3 is a surjection from [0, 1] onto I3 with �3(0) = �3(1) = 1 and (�3)∗(
) = 	3.
Then put

�i :=

⎧⎨
⎩
�1 if i = 1, . . . , a1,
�2 if i = a1 + 1, . . . , a0,
�3 if i = a0 + 1, . . . , rs,

and consider the ∗-homomorphism ϕ : Zp,q → Ap′q′ defined by
ϕ(f) = diag[f ◦ �1, . . . , f ◦ �rs ].

It is not difficult to see from the definition of �i that ϕ is trace-preserving.
We shall check that thisϕ satisfies condition (ii) in Lemma 4.2. Indeed, the functions
�1, �2, �3 are defined so that the equations

n00 = a0, n10 = b0, n01 = a1, n11 = b1

hold, where nts = n
t
s (�) is as in Notation 4.1. Now, it follows that

qn00 = qa0 = qlrgp,q′s = gq,p′ lrq
′ ≡ 0 (mod q′),

and

pn10 = p(rs − a0) = p(r − lrgp,q′ −mrgq,q′)s + pmrgq,q′s ≡ 0 (mod q′).
The other congruences in equations (2) can be similarly verified, so there exists a
unitary u ∈ Ap′q′ such that Ad(u) ◦ϕ is a morphism from 〈Zp,q , 	〉 into 〈Zp′ ,q′ , 
〉,
which completes the proof of the case a0 > a1. The cases a0 < a1 and a0 = a1 can
be shown similarly. �
Corollary 4.5. The classK satisfies JEP.
Proof. Let 〈Zp1 ,q1 , 	1〉, 〈Zp2 ,q2 , 	2〉 be members of K. Find coprime p3, q3 ∈ N

such that both p3 and q3 are larger than max{M (p1, q1),M (p2, q2)} and p3q3 is
divided by lcm(p1q1, p2q2). Then by Propositions 4.3 and 4.4, there is a morphism
ϕi from 〈Zpi ,qi , 	i 〉 into 〈Zp3,q3 , 	3〉, where 	3 is a diffuse faithful trace. �
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One might surmise that every morphism of K can be approximated by a
diagonalizable one. However, as the following example shows, this claim is false.

Example 4.6. We shall construct an injective ∗-homomorphism from Z2,3 to
Z7,8. Define c2 : M2 ⊗ 1M3 → M2 and c3 : 1M2 ⊗M3 → M3 by c2(a ⊗ 1) = a and
c3(1⊗ b) = b, respectively, and consider the map � from Z2,3 to A56 defined by

evt ◦�(f) = diag
[
c2(f(0)), f(0), . . . , f(0)︸ ︷︷ ︸

5

, f(t), . . . , f(t)︸ ︷︷ ︸
4

]
.

Then ev0 ◦�(f) is equal to c2(f(0)) ⊗ 1M28 , while ev1 ◦�(f) is unitarily similar
to 1M8 ⊗ diag

[
c2(f(0)), c2(f(0)), c3(f(1))

]
, so one can find a unitary u ∈ A56

such that the image of the ∗-homomorphism Ad(u) ◦ � is included in Z7,8. This
map is clearly not diagonalizable, because in general there exists a diagonalizable
∗-homomorphism from Zp,q to Zp′ ,q′ only if pq divides p′q′, but 56 = 7 × 8 is not
a multiple of 6 = 2× 3.
As we pointed out in the preceding example, in order for there to be a diago-
nalizable ∗-homomorphism from Zp,q to Zp′,q′ , it is necessary that pq divides p′q′.
We shall show in the next proposition that if p and q are coprime, then this con-
dition is indeed sufficient for every ∗-homomorphism from Zp,q to Zp′ ,q′ to be
approximately diagonalizable.
Proposition 4.7. Let ϕ : 〈Zp,q , 	〉 → 〈Zp′ ,q′ , 
〉 be a morphism, and suppose that
p and q are coprime and that pq divides p′q′. Then for any finite subset G ⊆ Zp,q
and any ε > 0, there exists a diagonalizable morphism � : 〈Zp,q , 	〉 → 〈Zp′ ,q′ , 
〉
with ‖ϕ(g) − �(g)‖ < ε for all g ∈ G . Moreover, we can take � so that the maps
�1, . . . , �k associated to a diagonal expression of � satisfy �1 ≤ · · · ≤ �k .
Proof. Let cp : Mp ⊗ 1Mq → Mp and cq : 1Mp ⊗Mq → Mq be the maps defined
by cp(a⊗1) = a and cq(1⊗b) = b, respectively. As in the proof of Proposition 3.5,
one can find a unitary vt ∈ Mp′q′ and real numbers st1, . . . , s

t
k ∈ [0, 1] for each

t ∈ [0, 1] such that the equation

evt ◦ϕ(f) = Ad(vt)
(
diag

[ a︷ ︸︸ ︷
cp(f(0)), . . . , cp(f(0)),

f(st1), . . . , f(s
t
k), cq(f(1)), . . . , cq(f(1))︸ ︷︷ ︸

b

])

holds for allf ∈ Zp,q .Wemay assumewithout loss of generality that the inequalities
0 ≤ a < q and 0 ≤ b < p hold, because

diag
[
cp(f(0)), . . . , cp(f(0))︸ ︷︷ ︸

q

]
= f(0)

and

diag
[
cq(f(1)), . . . , cq(f(1))︸ ︷︷ ︸

p

]
= f(1).

We claim that a and b are equal to 0. To see this, note that pa + qb is a multiple
of pq, because pq divides p′q′. Since p and q are coprime, it follows that a ≡ 0
(mod q) and b ≡ 0 (mod p), so a = b = 0, as desired. Consequently, we can find
continuous maps �1, . . . , �k from [0, 1] to [0, 1] with �1 ≤ · · · ≤ �k such that
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evt ◦ϕ(f) = Ad(vt)
(
diag

[
f(�1(t)), . . . , f(�k(t))

])
for all f ∈ Zp,q , as in the proof of Proposition 3.5.
It can be easily seen that the rest of the proof of Proposition 3.5 works even if

An and Am are replaced by Zp,q and Ap′q′ , respectively, so one can easily obtain a
morphism � from 〈Zp,q , 	〉 into 〈Ap′q′ , 
〉 with ‖ϕ(g) − �(g)‖ < ε for all g ∈ G .
Moreover, a careful reading and a trivial modification of the third paragraph of
the proof of Proposition 3.5 enable us to take the unitary u so that ev0 ◦ϕ(f) =
ev0 ◦�(f) and ev1 ◦ϕ(f) = ev1 ◦�(f) hold for all f ∈ Zp,q . Therefore, we can
take � so that its image is included in Zp′ ,q′ , which completes the proof. �
Proposition 4.8. Let 	, 
 be faithful diffuse measures on [0, 1]. Then for any
coprime p, q ∈ N, there exist coprime p′, q′ ∈ N and a diagonalizable morphism
ϕ : 〈Zp,q , 	〉 → 〈Zp′ ,q′ , 
〉 such that the images of the maps associated to a diagonal
expression of ϕ have diameters less than ε.
Proof. The proof is similar to that of Proposition 3.6, but this time, instead of
dividing [0, 1] into two intervals [0, t0] and [t0, 1], we divide [0, 1] into three intervals
[0, t0], [t0, t1], and [t1, 1] the diameters of which are close to 1/3, and use Lemma 4.2.
Take integers l > 2q,m > 2p so that p1 := lp and q1 := mq are coprime, and set
k := lm. Then let r, s be natural numbers such that

r ≡ k (mod q1), s ≡ k (mod p1), r + s < k.

We can always find such r and s because k = lm > max{2p1, 2q1}. Since 	 is
diffuse, there are t0 < t1 in (0, 1) such that 	([0, t0]) = r/k and 	([t1, 1]) = s/k.
Here, we may assume that the diameters of [0, t1] and [t2, 1] are arbitrarily close to
1/3, because l andm can be arbitrarily large and so q1/k andp1/k can be arbitrarily
small.
Now,put I1 := [0, t0], I2 := [t0, t1], and I3 := [t1, 1], and let 	i be the normalization
of 	|Ii . By Lemma 3.1, we can find continuous functions �i from [0, 1] onto Ii such
that

• �1 and �3 are increasing;
• �2 is decreasing; and
• (�i)∗(
) = 	i .
We shall set

�j :=

⎧⎨
⎩
�1 if j = 1, . . . , r,
�2 if j = r + 1, . . . , k − s,
�3 if j = k − s + 1, . . . , k,

and check condition (ii) in Lemma 4.2. Let nts = n
t
s(�) be as in Notation 4.1. Then

clearly n10 = n
0
1 = 0. Also,

qn00 = qr ≡ qk = q1l ≡ 0 (mod q1),
and

pn11 = ps ≡ pk = p1m ≡ 0 (mod p1),

so equations (2) hold, as desired. Consequently, there is a diagonalizable morphism
ϕ1 : 〈Zp,q , 	〉 → 〈Zp′ ,q′ , 
〉 such that the ranges of the maps associated to ϕ1 have
their diameters arbitrarily close to 1/3. The rest of the proof is now the same as
Proposition 3.6, so we are done. �
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Lemma 4.9. Let ϕ,� be ∗-homomorphisms from Zp,q into Zp′ ,q′ of the forms
ϕ(f) = Ad(u)

(
diag[f ◦ �1, . . . , f ◦ �k]

)
,

�(f) = Ad(v)
(
diag[f ◦ �1, . . . , f ◦ �k]

)
.

Then, for any finite subset G ⊆ Zp,q and any ε > 0, there exists a unitary w ∈ Ap′q′
such that the inner automorphism Ad(w) of Ap′q′ preserves Zp′ ,q′ and ‖Ad(w) ◦
ϕ(g) − �(g)‖ < ε holds for all g ∈ G .
Proof. Let � be the ∗-homomorphism from Zp,q into Ap′q′ defined by

�(f) = diag[f ◦ �1, . . . , f ◦ �k],
and put

Bs := evs ◦�[Zp,q ],
Cϕs := evs ◦Ad(u∗)[Zp′ ,q′ ], and C�s := evs ◦Ad(v∗)[Zp′ ,q′ ]

for s = 0, 1. Then, Cϕs and C�s are simple subalgebras ofMp′q′ which are isomor-
phic to each other, andBs is included in both of them. It is not difficult to find a uni-
taryw ′

s in the commutant (Bs )′ ofBs which induces the isomorphism of Cϕs onto C�s .
Now, take 
 > 0 so that |t1 − t2| < 
 implies ‖g(�i(t1)) − g(�i(t2))‖ < ε/2, and
let w ′ be a unitary in Ap′q′ such that
• w ′(0) = w ′

0 and w
′(1) = w ′

1;
• w ′(t) = 1 for t ∈ [
, 1 − 
]; and
• the images of w ′|[0,
] and w ′|[1−
,1] is included in (B0)′ and (B1)′, respectively.
Then, clearly the inner automorphism induced by w := vw ′u∗ preserves Zp′,q′ .
Also, for g ∈ G and t ∈ [0, 
],

evt ◦Ad(w) ◦ ϕ(g) = Ad
(
v(t)w ′(t)

)(
diag

[
g(�1(t)), . . . , g(�k(t))

])
∼ε/2 Ad

(
v(t)w ′(t)

)(
diag

[
g(�1(0)), . . . , g(�k(0))

])
= Ad(v(t))

(
diag

[
g(�1(0)), . . . , g(�k(0))

])
∼ε/2 Ad(v(t))

(
diag

[
g(�1(t)), . . . , g(�k(t))

])
= evt ◦�(g).

Similarly, it follows that evt ◦Ad(w) ◦ϕ(g) ∼ε evt ◦�(g) if t is in [1 − 
, 1], and it
is obvious that evt ◦Ad(w) ◦ ϕ(g) = evt ◦�(g) if t is in [
, 1 − 
]. Consequently,
‖Ad(w) ◦ ϕ(g) − �(g)‖ is less than ε for all g ∈ G , which completes the proof. �
Proposition 4.10. The classK satisfies NAP.
Proof. Let ϕ1 and ϕ2 be morphisms from 〈Zp0 ,q0 , 	0〉 to 〈Zp′ ,q′ , 	′〉 and

〈Zp′′ ,q′′ , 	′′〉, respectively,G be a finite subset included in the unit ball ofZp,q , and ε
be a positive real number. Our goal is to find morphisms �1 and �2 from 〈Zp′ ,q′ , 	′〉
and 〈Zp′′ ,q′′ , 	′′〉 into some 〈Zp2,q2 , 	2〉 such that the inequality ‖�1 ◦ ϕ1(g) − �2 ◦
ϕ2(g)‖ < ε holds for all g ∈ G . To see this, by Corollary 4.5 and Propositions 4.4
and 4.7, we may assume from the outset that 〈Zp′ ,q′ , 	′〉 = 〈Zp′′ ,q′′ , 	′′〉 =:
〈Zp1 ,q1 , 	1〉, that p0q0 divides p1q1, and that the morphisms ϕ1 and ϕ2 are
diagonalizable. Also, we may assume that the trace 	1 is diffuse, by Proposition 4.3.
Take 
 > 0 so that |s − t| < 
 implies ‖g(s) − g(t)‖ < ε. By Proposi-
tions 4.8 and 4.7, we can find a diagonalizable morphism � from 〈Zp1 ,q1 , 	1〉 into
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some 〈Zp2 ,q2 , 	2〉 ∈ K and diagonalizable morphisms Φ1,Φ2 from 〈Zp0 ,q0 , 	0〉 into
〈Zp2 ,q2 , 	2〉 with the following properties, as in the proof of Proposition 3.8:
• the inequality ‖� ◦ ϕi(g)−Φi(g)‖ < ε holds for all g ∈ G ; and
• there is a diagonal expression

Φi(f) = Ad(ui)
(
diag[f ◦ �i1, . . . , f ◦ �ik]

)
,

such that �i1 ≤ · · · ≤ �ik for each i , and ‖�1j − �2j‖ < 
 for all j.
By Lemma 4.2, there exists a unitary v ∈ Ap2q2 such that for each i the image
of Ψi := Ad(vu∗i ) ◦ Φi is included in Zp2,q2 . Then by Lemma 4.9, there exists a
unitary wi ∈ Ap2q2 such that the inner automorphism Ad(wi) preserves Zp2 ,q2 , and
that ‖Ad(wi) ◦ Φi(g) − Ψi(g)‖ < ε holds for all g ∈ G . We put �1 := � and
�2 := Ad(w∗

1w2) ◦ �. Then for g ∈ G , we have
�2 ◦ ϕ2(g) = Ad(w∗

1w2) ◦ � ◦ ϕ2(g)
∼ε Ad(w∗

1w2) ◦Φ2(g)
∼ε Ad(w∗

1 ) ◦Ψ2(g)
= Ad(w∗

1 v)
(
diag[g ◦ �21 , . . . , g ◦ �2k]

)
∼ε Ad(w∗

1 v)
(
diag[g ◦ �11 , . . . , g ◦ �1k]

)
= Ad(w∗

1 ) ◦Ψ1(g)
∼ε Φ1(g)
∼ε �1 ◦ ϕ1(g),

which completes the proof. �
The following theorem can be shown in almost the same way as Theorem 3.9.
We omit details.
Theorem 4.11. The classK is a Fraı̈ssé class.
We close this section by showing that the Fraı̈ssé limit ofK is simple and mono-
tracial. Since every inductive limit of a sequence of dimension drop algebras is iso-
morphic to the Jiang–Su algebra if it is simple and monotracial ([7, Theorem 6.2]),
and since the Fraı̈ssé limit of a Fraı̈ssé class is obtained as the inductive limit of a
sequence of members of the class by Theorem 2.7, this fact implies that the Fraı̈ssé
limit ofK is indeed isomorphic to the Jiang–Su algebra.
Lemma 4.12. For a measure 	 on [0, 1], let E(	) be the set of all morphisms from

〈Z1,1, 	〉 into some 〈Zp,q , 	′〉 ∈ K. If 	 is diffuse and faithful, and if 
 is a measure
with E(
) ⊇ E(	), then 
 = 	.
Proof. Suppose 
 �= 	. Then there exists s ∈ (0, 1) with 
([0, s]) �= 	([0, s]).
If 
([0, s]) > 	([0, s]), then since 	 is diffuse there exists t > s such that

([0, s]) = 	([0, t]). Now apply Proposition 4.8 to find a diagonalizable morphism
ϕ : 〈Z1,1, 	〉 → 〈Zp,q , 	〉 such that the images of the maps �1, . . . , �k associated to a
diagonal expression of ϕ have diameters less than (t − s)/3, and set

S = {�i | Im �i ∩ [0, s] �= ∅}, T = {�i | Im �i ⊆ [0, t]}.
Then clearly S � T , and since ϕ ∈ E(	) ⊆ E(
), it follows that


([0, s]) ≤ #S
pq
<
#T
pq

≤ 	([0, t]) = 
([0, s]),
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which is a contradiction. The inequality 
([0, s]) < 	([0, s]) implies a similar
contradiction, so 
 = 	. �
Proposition 4.13. Let 〈Z , 	〉 be the Fraı̈ssé limit of the class K. Then 	 is the
unique trace on Z .
Proof. Let 〈Zp1 ,q1 , 	1〉 and 〈Zp2 ,q2 , 	2〉 be members of K. We first claim that
if � and ϕ are morphisms from 〈Zp1 ,q1 , 	1〉 to 〈Z , 	〉 and 〈Zp2 ,q2 , 	2〉, respectively,
then there exists a net {��}� of morphisms from 〈Zp2 ,q2 , 	2〉 to 〈Z , 	〉 such that the
net {�� ◦ ϕ}� converges to � with respect to the point-norm topology. Indeed, by
K-universality, there exists a morphism � from 〈Zp2 ,q2 , 	2〉 to 〈Z , 	〉. Since 〈Z , 	〉 is
approximatelyK-homogeneous, for any finite G ⊆ Zp,q and any ε > 0 there exists
an automorphism αG,ε of 〈Z , 	〉 with ‖αG,ε ◦ � ◦ ϕ(g) − �(g)‖ < ε for all g ∈ G .
Therefore, the net {αG,ε ◦ �}G,ε has the desired property.
Now, let 
 be a faithful trace onZ and suppose 
 �= 	. Since 〈Z , 	〉 is the inductive
limit of a sequence of members of K, and since Z1,1 = C [0, 1] is canonically
isomorphic to the center of any dimension drop algebra, there exists an embedding
� : Z1,1 → Z such that �∗(	) �= �∗(
). By what we proved in the preceding paragraph
and Proposition 4.3, we may assume without loss of generality that �∗(	) is diffuse.
Now assume ϕ : 〈Z1,1, �∗(	)〉 → 〈Zp,q , �〉 is in E(�∗(	)), and find a net {��}� of
morphisms from 〈Zp,q , �〉 to 〈Z , 	〉 such that {�� ◦ϕ} converges to � with respect to
the point-norm topology. Set �′� := (��)

∗(
) and let �′ be a limit point of {�′�}� in
the setT (Zp,q) of all traces onZp,q . Then it is clear thatϕ : 〈Z1,1, �∗(
)〉 → 〈Zp,q , �′〉
is trace-preserving, so ϕ is in E(�∗(
)). This contradicts with Lemma 4.12, whence

 is equal to 	. �
Proposition 4.14. The Fraı̈ssé limit 〈Z , 	〉 is simple.
Proof. Let I ⊆ Z be a nontrivial ideal. For each embedding � : Z1,1 → Z , let
Σ� be the closed subset of [0, 1] which corresponds to the ideal I� := Z1,1 ∩ �−1[I].
For each ε > 0, choose a function fε� ∈ I� such that the inequality |fε� (t)| ≥ ε
holds if dist(t,Σ�) ≥ ε. Now, by Proposition 4.8, there exists a diagonalizable
morphism ϕ from 〈Z1,1, �〉 into some 〈Zp,q , �〉 such that the images of the maps
�1, . . . , �k associated to a diagonal expression of ϕ have diameters less than ε, and
as in the proof of Proposition 4.13, we can find an embedding � : Z1,1 → Z which
factors through ϕ and satisfies ‖�(fε� ) − �(fε� )‖ < ε. Then Σ� is included in the
ε-neighborhood of Σ� , since dist(fε� ,I�) = dist(�(fε� ),I) < ε (see the proof of
[2, Lemma III.4.1], for example). On the other hand, clearly Σ� ∩ Im �i is nonempty
for all i , so Σ� intersects every 4ε-ball. Since this is true for any ε > 0 and any �, it
follows that Σ� is equal to [0, 1] for any �, so I = 0. �
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