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Direct numerical simulations of high-speed mixing layers are used to characterize
the effects of compressibility on the basis of local streamline topology and vortical
structure. Temporal simulations of the mixing layers are performed using a finite
volume gas-kinetic scheme for convective Mach numbers ranging from Mc = 0.2
to Mc = 1.2. The focus of the study is on the transient development and the main
objectives are to (i) investigate and characterize the turbulence suppression mechanism
conditioned upon local streamline topology; and (ii) examine changes in the vortex
vector field – distribution, magnitude and orientation – as a function of Mach number.
We first reaffirm that kinetic energy suppression with increasing Mach number is
due to a decrease in pressure–strain redistribution. Then, we examine the suppression
mechanism conditioned upon topology and vortex structure. Conditional statistics
indicate that (i) at a given Mach number, shear-dominated topologies generally
exhibit more effective pressure–strain redistribution than vortical topologies; and (ii)
for a given topology, the level of pressure–strain correlation mostly decreases with
increasing Mach number. At each topology, with increasing Mach number, there is
a corresponding decrease in turbulent shear stress and production leading to reduced
kinetic energy. Further, as Mc increases, the proportion of vortex-dominated regions
in the flow increases, leading to further reduction in the turbulent kinetic energy of
the flow. Then, the orientation of vortical structures and direction of fluid rotation are
examined using the vortex vector approach of Tian et al. (J. Fluid Mech., vol. 849,
2018, pp. 312–339). At higher Mc, the vortex vectors tend to be more aligned in the
streamwise direction in contrast to low Mc wherein larger angles with streamwise
direction are preferred. The connection between vortex orientation and kinetic energy
production is also investigated. The findings lead to improved insight into turbulence
suppression dynamics in high Mach number turbulent flows.

Key words: compressible turbulence, shear layer turbulence

1. Introduction
Free shear layer flows and associated turbulence have been extensively studied using

analytical, experimental and numerical techniques for several decades. The planar
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mixing layer is the simplest of them with a modal instability, devoid of the
complexities of most other shear flows. As Mach number of the flow increases,
compressibility effects become significant and begin to influence the flow dynamics.
These effects in a mixing layer are quantified by the convective Mach number,
Mc = (U1 − U2)/(c1 + c2), where U1, U2 are free-stream velocities and c1, c2 are
sonic speeds in either stream. The most notable effect of compressibility on mixing
layers is the suppression of turbulence and the consequent reduction of spreading rate.
The physical mechanism of turbulence suppression due to compressibility has been
examined in previous works. It has also been noted that the turbulent flow structure is
modified due to compressibility (Normand & Lesieur 1992). The goal of the present
study is to enhance the understanding of compressibility effects by characterizing the
suppression mechanism in terms of local streamline topology and vortex structure.

The reduced turbulence levels and mixing-layer spread rate at high Mc are
attributed to the suppression of pressure–strain redistribution by Pantano & Sarkar
(2002). As Mach number increases, the free-stream pressure itself decreases,
leading to reduced levels of pressure fluctuations and a proportional reduction in
pressure–strain correlation. Recent attempts to explain the reduction of growth rate
by compressibility include a detailed analysis of vorticity and its generation near the
turbulent/non-turbulent interface and the entrainment process. Jahanbakhshi & Madnia
(2016) show that the curvature of the turbulent/non-turbulent interface in mixing
layers is significantly altered by compressibility, thereby leading to a reduction
in entrained mass flux. Karimi & Girimaji (2016) examine the stabilizing action
of compressibility on Kelvin–Helmholtz instability and propose the existence of a
dilatation interface layer (DIL) in which strong vorticity wind and unwind due to
the action of pressure field. This reversal of vorticity in time reduces the growth
of instability. Linear stability analysis by Sandham & Reynolds (1990) shows that
it is not just the growth rate, but the most unstable mode itself is modified by
compressibility. The most unstable mode changes to oblique modes for Mc > 0.6,
leading to strongly three-dimensional structures at higher Mach numbers. Karimi &
Girimaji (2017) also exhibit the effect of perturbation orientation on instability growth
in compressible mixing layers. It is demonstrated that the degree of stabilization
decreases with increasing obliqueness. Bertsch, Suman & Girimaji (2012) investigate
the effects of flow-thermodynamic interactions in compressible homogeneous shear
flows by examining the evolution of pressure fluctuations. The analysis suggests that
in spatio-temporally developing flows, compressibility effects diminish with time (or
distance). Thus, compressibility effects are most severe in the transient stages of flow
evolution. In this paper, we address the effects of compressibility on the turbulence
statistics and examine the role of pressure and inertia effects during the transient
evolution of mixing layers.

In recent years, characterization of turbulence and turbulent mechanisms using
local streamline topology has gained much popularity (Chong, Perry & Cantwell
1990). Soria et al. (1994) studied the local topology in incompressible mixing layers
using this technique and identify flow features such as vortex sheets and vortex
tubes. Compressibility effects on local flow topology were examined by Suman &
Girimaji (2010) in decaying isotropic turbulence. Although the Mach number has little
effect, the topology was found to be sensitive to local dilatation. Vaghefi & Madnia
(2015) observe that the topology in the vicinity of a turbulent/non-turbulent interface
is different from that in the turbulent core of a mixing layer and that vorticity is
concentrated in specific topologies.

Vortical eddy structures play a key role in many turbulent flows, but a comprehensive
examination of these structures is rendered difficult due to the lack of a formal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.434


40 S. Arun, A. Sameen, B. Srinivasan and S. S. Girimaji

mathematical basis for identifying them. There have been attempts to define a
vortex using both Eulerian and Lagrangian approaches (Epps 2017). Several vortex
identification techniques using velocity gradient tensor have been proposed over the
years, of which the Q-criterion by Hunt, Wray & Moin (1988) and the λ2-criterion
by Jeong & Hussain (1995) are widely used. Tian et al. (2018) propose a vector
quantity to identify vortical structures in the flow field, which not only quantifies the
local strength of rotation of a fluid element but also provides the direction of rotation.
Vortex identification techniques help to elucidate the large-scale structures in the
flow field. Compressibility effects on flow structures and their relation to turbulence
statistics in compressible boundary layers are examined by Normand & Lesieur (1992),
Wang & Lu (2012). The large-scale organization in mixing layers is influenced by
the compressibility as observed by Sandham & Reynolds (1990) and Sandham &
Reynolds (1991). At high Mc, the spanwise roller structures are mostly absent, and
the vortical structures are elongated in the streamwise direction, which leads to
different mixing characteristics. Jahanbakhshi, Vaghefi & Madnia (2015) find that the
interaction of intense vorticity structures with the turbulent/non-turbulent interface
is crucial to vorticity transport in compressible mixing layers. In direct numerical
simulations (DNS) of spatially evolving mixing layers by Zhou, He & Shen (2012),
it is observed that Λ-structures in the flow field evolve to hairpin vortices which
eventually break down to slender vortices before the flow reaches a self-similar state.
Pirozzoli et al. (2015) also observe that a spanwise coherence in flow structures
makes way for skewed eddies in the flow which align in the flow direction. Reynolds
stress and mean velocity profiles in these cases also evolve with time and are
related to the evolution of large-scale structures. In compressible homogeneous shear
flow, production and turbulent kinetic energy are predominant in strain-dominated
topologies, as shown by Ma & Xiao (2016) using conditional statistics of DNS data.
While the changes in flow structures due to compressibility have been studied to a
reasonable extent, the relation between vortex-structure modification and changes in
flow mechanisms is yet to be clearly established.

The objective of this work is to develop further insight into the turbulence
suppression due to compressibility effects in high-speed mixing layers. Specifically,
we seek to characterize the suppression mechanism conditioned on local streamline
topology and vortical structure. To this end, we undertake the following tasks:

(i) Perform mixing-layer simulations over a range of Mach numbers that encompasses
incompressible and compressible flow regimes.

(ii) Reaffirm the suppression of turbulence and mixing-layer spread rate with
increasing Mach number.

(iii) Establish the changes, with increasing Mach number, in pressure–strain correlation,
turbulence shear stress and kinetic energy production processes when conditioned
upon local streamline topology.

(iv) Examine the changes in vortex structure with increasing Mach numbers. We
quantify the change in topology by means of the vortex field structure.

Flow configuration and simulation parameters are summarized in § 2. The main
results, including the evolution of turbulent quantities and topology effects, are
discussed in § 3, followed by conclusions in § 4.

2. Numerical set-up
We perform simulations of temporally evolving mixing layers in a cuboid domain,

shown in figure 1, with free-stream velocities in the ±x1 direction. The streamwise
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x3
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L2
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x2

FIGURE 1. (Colour online) Schematic of the computational domain with mean velocity
profile.

Case Mc L1/δθ0 L2/δθ0 L3/δθ0 Reω Reλ Mt l1/L1 lη/∆

M2 0.20 314.16 157.08 78.54 8495 126 0.098 0.029 0.415
M5 0.50 314.16 157.08 78.54 8273 108 0.208 0.034 0.418
M7 0.75 314.16 157.08 78.54 8160 107 0.302 0.032 0.441
M9 0.90 314.16 157.08 78.54 9544 104 0.362 0.073 0.442
M12 1.20 314.16 157.08 78.54 11 112 107 0.362 0.076 0.465

TABLE 1. Key non-dimensional parameters at the end of the simulations for different
cases.

velocity is a function of the transverse location (x2). The domain, of dimension L1×

L2 × L3 (see table 1), is discretized uniformly into 512× 256× 128 grid points with
periodic boundary conditions in the streamwise (x1) and spanwise (x3) directions. In
the transverse direction, stress-free boundary conditions are applied. A discussion on
domain independence and grid convergence is given in § A.2.

Simulations are performed for five different values of convective Mach number,
Mc = (0.2, 0.5, 0.75, 0.9, 1.2). The lowest Mc case corresponds to a nearly
incompressible case, while the two higher Mach number cases have significant
compressibility effects involved. A key parameter used for initializing the flow field
is the initial momentum thickness, δθ0 . The Reynolds number of the flow is defined
based on free-stream velocity difference and momentum thickness (Re= ρ∞1Uδθ0/µ).
For all cases considered here initial Re = 160. Many authors have used Re ≈ 200
(Jahanbakhshi et al. 2015; Vaghefi & Madnia 2015) in their simulations, and the
Reynolds number used in the present simulations is well documented (Pantano &
Sarkar 2002; Foysi & Sarkar 2010; Hadjadj, Yee & Sjögreen 2012). Mean streamwise
velocity has a hyperbolic tangent profile given by

ũ1 =
1
2
1U tanh

(
−x2

2δθ0

)
, (2.1)
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and the other two components are set to zero. Temperature follows the Crocco–
Busemann relation (White 2006) for compressible shear layers,

T̃(x2)

T∞
= 1+

γ − 1
2

M2
c

[
1−

(
ũ1(x2)

1U

)2
]
, (2.2)

where ũ1 and T̃ are Favre-averaged quantities defined in the next section. The pressure
field is uniform, and the density field is obtained from the ideal gas equation of state.
Three-dimensional perturbations are added to the mean velocity field to accelerate
the transition to turbulence. Perturbations are generated using a digital filter method,
which has been successfully employed in the computation of temporally evolving
mixing layers by Vaghefi & Madnia (2015). By this method, three-dimensional
perturbations are generated based on a prescribed length scale and Reynolds stress
profile. A spatially correlated perturbation field, rather than white noise, is obtained
by employing this technique. We used initial vorticity thickness (δω0 ≈ 4δθ0) as
length scale and Gaussian profiles for Reynolds stress components, with peak values
of stress components from the nearly incompressible case of Pantano & Sarkar
(2002). All simulations are initialized with the same perturbation velocity field to
minimize differences due to initial condition effects on the transient evolution of the
mixing layer. Therefore, any difference in the evolution of the mixing layer is the
varying response of the system relaxing from these initial conditions and is due to
compressibility, as Mc is the only parameter which varies across the different cases.

A finite volume gas-kinetic scheme which solves the Bhatnagar–Gross–Krook
(BGK)-Boltzmann equation is used for computations (Xu, Mao & Tang 2005).
The scheme employs a second-order approximation for the variation of particle
velocity distribution function in space. For the simulation of turbulent flows, Kumar,
Girimaji & Kerimo (2013) observed that macroscopic variable reconstruction using
weighted essentially non-oscillatory (WENO) schemes enable the resolution of sharp
discontinuities like shocklets without compromising on the accuracy in smooth flow
regions. Following their work, a fifth-order WENO reconstruction is used to calculate
cell interface quantities. To enable simulations for gases with Pr 6= 1, a Prandtl
number correction, proposed by May, Srinivasan & Jameson (2007), is employed.
Time step is determined according to the Courant–Friedrichs–Lewy (CFL) criterion
using macroscopic flow variables. A brief discussion on the numerical scheme is
given in § A.1.

3. Results
The turbulent statistics are discussed for different cases to understand how they

vary with convective Mach number, which is a measure of compressibility. Following
that, we analyse how these statistics are distributed across different topologies in the
flow, in an attempt to explain how changes in topology with Mach number influence
the turbulent statistics. A density weighted averaging in homogeneous x1x3 plane is
used to obtain mean velocity and temperature. Mean density and pressure fields are
obtained by Reynolds averaging. We use the conventional notations for Reynolds ([.])
and Favre ( ˜[.]) averaged quantities and respective fluctuations ([.]′ and [.]′′) from
averages, as given in equation (3.1).

ρ = ρ̄ + ρ ′, p= p̄+ p′, (3.1a,b)

ũ= ρu/ρ̄, u= ũ+ u′′, (3.1c,d)

T̃ = ρT/ρ̄, T = T̃ + T ′′, (3.1e,f )

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.434


Topology effects on compressible mixing layers 43

3.1. Validation
Our computational results are validated by comparing the temporal evolution of the
mixing-layer width with existing experimental and numerical data. Suppression of
mixing-layer growth rate by compressibility is a well-known phenomenon, and a
vast majority of the literature on compressible mixing layers focuses on this aspect.
We use momentum thickness (δθ), an integral quantity, to quantify the extent of the
shear layer. Evolution of momentum thickness, normalized by its initial value (δθ0),
with time (τ = 1Ut/δθ0) is shown in figure 2(a) for different Mc. After an initial
transient period, the mixing layer has a self-similar evolution characterized by a linear
growth of momentum thickness. The linear growth rates, which reduce with Mach
number, are shown in figure 2(b). Self-similar growth rate, δ̇, normalized by the
incompressible growth rate (δ̇inc) is plotted along the vertical axis against convective
Mach number on the horizontal axis. Growth rate at the lowest Mc is chosen as the
incompressible growth rate and is estimated to be δ̇inc = 0.0167, which is in good
agreement with the accepted value of δ̇inc = 0.0160 (Pantano & Sarkar 2002). The
self-similar growth rates for different Mc are compared with the empirical models of
Birch & Eggers (1972), Slessor, Zhuang & Dimotakis (2000) and Barone, Oberkampf
& Blottner (2006) in figure 2(b). Growth rates from several numerical simulations
are also compared in the same figure, and they show a scattered behaviour, which
is attributed to differences in initial conditions and the reference value chosen as
the incompressible growth rate. As further validation of our results, we show the
evolution of anisotropy tensor for different Mc in figure 3. The anisotropy tensor (bij)
is defined as

bij =
R̄ij −

2
3 K̄δij

2K̄
, (3.2)

where R̄ij and K̄ are respectively Reynolds stress and turbulent kinetic energy
integrated across the mixing layer. The evolution of anisotropy tensor (b11, b22, b12)
at Mc = 0.20, 0.75 and 1.20 from our computations are compared against the results
of Pantano & Sarkar (2002). However, their computations are for different Mach
numbers, and our results are compared against the evolution of anisotropy for
Mc = 0.3, 0.7 and 1.1 from Pantano & Sarkar (2002). The mean velocity gradient
is negative according to equation (2.1), which implies that the Reynolds shear stress
R12, and hence b12, is positive in our simulations. Anisotropy peaks during the initial
period before it settles down to a lower value, which increases marginally with Mc.
While the late time anisotropy levels from our computations match well with those
in the literature, there is a difference in the peak values. This can be attributed to the
differences in setting up the initial perturbation field. The peak value of u′′1rms/u

′′

2rms
for M02 is 1.24, which is in agreement with previous numerical experiments (Gatski
& Bonnet 2013).

It is important that the small scales are resolved in turbulent flow computations. If
the smallest length scale in the flow, which is the Kolmogorov length scale, is of the
same order as the grid size then the scales are sufficiently resolved. The Kolmogorov
scale (lη) is a function of turbulent energy dissipation and kinematic viscosity and
takes the smallest value where dissipation is maximum, which is at the centreline
of the mixing layer. In table 1, we report the Reynolds number based on vorticity
thickness (Reω; δω = 1U/(dũ1/dx2)max), Taylor microscale Reynolds number (Reλ =
2K
√

5/3νε), turbulent Mach number (Mt =
√

2ρ̄K/γ p̄) and Kolmogorov length scale
(lη/δ) at the end of the simulation for each case. The grid size (∆), shown to be
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FIGURE 2. (Colour online) (a) Evolution of momentum thickness for various Mc.
(b) Comparison of linear growth rates at different Mach numbers with different numerical
databases and empirical models. s, Papamoschou & Roshko (1988); p, Freund, Lele
& Moin (2000); f, Pantano & Sarkar (2002); A, Fu & Li (2006); C, Foysi & Sarkar
(2010);@, Hadjadj et al. (2012);E, Vaghefi et al. (2013); (- - -), Birch & Eggers (1972);
( ), Slessor et al. (2000); (——), Barone et al. (2006).
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FIGURE 3. (Colour online) Evolution of anisotropy tensor for (a) Mc=0.20, (b) Mc=0.75
and (c) Mc = 1.20. Dashed lines in (a–c) correspond to anisotropy levels at Mc = 0.3, 0.7
1.1 reported by Pantano & Sarkar (2002).

comparable with Kolmogorov scales, is small enough to resolve all the scales. We
also compute the integral length scale (l1), defined as

l1 =
1

u′′21

∫ L1/2

0
u′′1(x)u′′1(x+ δê1) dδ, (3.3)
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where the separation (δ) is along the streamwise direction (ê1). At the end of
the simulation, it is observed that the large scales, quantified by l1, are very
small compared to domain length, thereby ensuring that the computations are not
contaminated by domain size. A comparison of Mt at the centreline, a measure of
compressibility, for the different cases shows that compressibility effects are negligible
for the two low Mc cases. Turbulent Mach number increases with Mc, but the increase
is not proportional to that in the convective Mach number.

3.2. Evolution of turbulent statistics
In the present study, we focus on the initial evolution of the mixing layers, during
which the effects of compressibility, being significant, manifest in the slow growth
of momentum thickness. Our objective is to investigate how compressibility changes
different turbulent statistics during this initial period. The statistics reported in this
work correspond to time, τ < 400. Turbulent statistics in mixing layers are a function
of the transverse direction, x2, at any given instant of time. To enable comparison
during transient evolution of the mixing layer, we use an averaged value for turbulent
quantities defined as

F(t)=

∫
f (t, x2) dx2∫

dx2

, (3.4)

where f (t, x2) is any turbulent statistic varying along the transverse direction and F(t)
is the corresponding averaged quantity. However, the definition does not hold any
physical meaning if a quantity takes both positive and negative values across the shear
layer and caution must be exercised while employing this method to various turbulent
statistics. For example, the transport terms in the kinetic energy budget cannot be
quantified using such an integrated value.

The Reynolds stress (Rij= ũ′′i u′′j ) transport equation for compressible turbulent flows
is given by

ρ̄
DRij

Dt
+
∂Tijk

∂xk
=Pij +Πij − εij +Mij, (3.5)

where

Pij = −ρ̄

[
Rik
∂ ũj

∂xk
+ Rjk

∂ ũi

∂xk

]
, (3.6a)

Πij = p′
[
∂u′′j
∂xi
+
∂u′′i
∂xj

]
, (3.6b)

εij = σ ′ik
∂u′′j
∂xk
+ σ ′jk

∂u′′i
∂xk

, (3.6c)

Mij = ρ ′u′′i

[
∂ p̄
∂xj
−
∂σ̄jk

∂xk

]
,+ρ ′u′′j

[
∂ p̄
∂xi
−
∂σ̄ik

∂xk

]
, (3.6d)

Tijk = ρu′′i u′′j u′′k + p′u′′j δik + p′u′′i δjk − σ
′

iku
′′
j − σ

′

jku
′′
i , (3.6e)

are the production by mean flow gradient (Pij), pressure–strain correlation (Πij),
viscous dissipation (εij), fluctuating mass flux contribution (Mij) and transport (Tijk).
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The mean and fluctuating viscous stress tensors are respectively given by σ̄ij and
σ ′ij, of which the fluctuating part is from velocity fluctuations. Contributions due to
viscosity fluctuations are negligible and hence discarded. A transport equation for
turbulent kinetic energy is obtained from equation (3.5) by contracting the indices
and is as follows,

ρ̄
DK
Dt
+
∂Tk

∂xk
=P +Π − ε +M, (3.7)

where K = 1
2 ũ′′i u′′i and the other terms P, Π, ε,M and Tk are similarly obtained from

equations (3.6a–e), respectively.

P = −ρ̄Rik
∂ ũi

∂xk
, (3.8a)

Π = p′
∂u′′i
∂xi

, (3.8b)

ε = σ ′ik
∂u′′i
∂xk

, (3.8c)

M = ρ ′u′′i

[
∂ p̄
∂xi
−
∂σ̄ik

∂xk

]
, (3.8d)

Tk = ρu′′i u′′i u′′k/2+ p′u′′i δik − σ
′

iku
′′
i . (3.8e)

In a temporal mixing layer, the mean velocity has only one non-zero component
and all mean statistics vary only in the transverse direction. The various correlations
described above in their general form reduce accordingly and are discussed in detail
below.

Figures 4–6 show the evolution of turbulent kinetic energy, turbulent stress
components and their budgets for cases M2, M7 and M12. Reynolds stress
components and turbulent kinetic energy are normalized by 1U2 and budget quantities
by 1U3/δθ(t). Only the dominant source (positive) and sink (negative) terms in the
respective budget equations are shown in the plots. Evolution of averaged turbulent
kinetic energy across the shear layer, for different Mc, is given in figure 4(a). Along
the horizontal axis is non-dimensional time (τ ) and along the vertical axis is averaged
turbulent kinetic energy. For all cases, turbulent energy increases with time, but at
slower rates for higher Mach numbers. This means that the turbulent fluctuations
are suppressed by compressibility and this is in agreement with our knowledge of
compressible mixing layers. The reason for the suppression can be understood by
comparing the budgets of turbulent kinetic energy. The major contributions to the
kinetic energy budget are from the production (P), dissipation (ε) and transport
of turbulent fluctuations (Tk). Production of kinetic energy is the only source and
dissipation by molecular viscosity is the only sink in the kinetic energy budget.
Turbulent, molecular and pressure transports only redistribute energy in the transverse
direction, while pressure dilatation (Π) and fluctuating mass flux contributions (M)
are negligible for all the cases considered here. Turbulent kinetic energy production
and dissipation are shown in figure 4(b). With an increase in Mc, energy production
decreases and the changes in the dissipation of energy are not as large as those in
production. Therefore, the difference in energy levels arises from a reduced level of
production at higher convective Mach number. In a temporally evolving mixing layer,
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FIGURE 4. (Colour online) (a) Evolution of averaged turbulent kinetic energy with
time: , Mc = 0.20; , Mc = 0.75; , Mc = 1.20. (b) Turbulent kinetic energy
production (filled symbols) and dissipation (open symbols): , Mc = 0.20; , Mc =

0.75; , Mc = 1.20. Both turbulent kinetic energy and energy production are lower at
higher Mc.

the only non-zero component in the mean velocity gradient tensor is dũ1/dx2, and
hence the turbulent stress responsible for the production is R12 (= ũ′′1u′′2) according
to (3.6a).

A detailed examination of the budgets of R12 indicates that the dominant source
and sink are respectively production by mean flow gradient (P12 = R22 dũ1/dx2) and
destruction by pressure–strain rate covariance (Π12 = p′(du′′1/dx2 + du′′2/dx1)). The
budget equation may be obtained from equation (3.5) by substituting i= 1 and j= 2.
Viscous dissipation of turbulent shear stress is negligible compared to production
and pressure–strain covariance. The time-varying budget terms, in figure 5(a), show
that the production of turbulent shear stress decreases with increase in Mach number.
There exists a balance between shear stress production and pressure–strain correlation
during the very early stages of evolution. This regime is characterized by a balance
between pressure and inertia effects, according to Bertsch et al. (2012), resulting
in stabilization of kinetic energy growth. Though the pressure–strain covariance
also changes with compressibility, we focus on the stress production because any
reduction in source term directly reflects on the shear stress itself. Transverse velocity
fluctuations, in the form of R22, are responsible for the production of turbulent
shear stress. The dependence is evident from the reduction in transverse velocity
fluctuations with Mc, as seen in figure 5(b). Transverse fluctuations are also stabilized
during the very early stages before they start to grow; the onset of which is delayed
by compressibility. Thus, lower R12 at higher Mach numbers is due to the reduced
intensity of transverse fluctuations as well as the stabilization arising from the balance
between the pressure–strain correlation and inertia effects.

The direct production of turbulent fluctuations by the mean flow gradient contributes
only to the streamwise fluctuations. In other words, production of R22 and R33
by the mean velocity gradient is zero since ũ2 and ũ3 are zero. The dominant
source in the budget of transverse and spanwise fluctuations is pressure–strain rate
covariance. In the turbulent energy budget, pressure dilatation (which is the trace
of the pressure–strain rate tensor) is negligible in our computations (Πkk = 0), even
when shocklets are observed in the flow field at Mc= 1.20. The diagonal components
of the pressure–strain rate tensor are not zero, but balance each other such that
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FIGURE 5. (Colour online) (a) Production of Reynolds shear stress (filled symbols)
and pressure rate of strain correlation, Π12 (open symbols) at different Mach
numbers; , Mc = 0.20; , Mc = 0.75; , Mc = 1.20. There is a significant
decrease in production as Mc increases. (b) Evolution of averaged R22 for different Mc.
The reduced production of R12 is due to decreasing levels of transverse fluctuations (R22)
with increase in Mc.
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FIGURE 6. (Colour online) Redistribution terms in the budget of turbulent normal stresses:
(a) Π11; (b) ——, Π22 and - - -, Π33. The plots are for three different cases: , Mc= 0.20;

, Mc = 0.75; , Mc = 1.20.

Π11 ≈ −(Π22 + Π33). This is often referred to as the redistribution of energy by
pressure–strain rate covariance (Pope 2000). It can be perceived as Π11 extracting
some amount of energy from streamwise velocity fluctuations and redistributing that
to the other two fluctuating velocity components.

The values of diagonal terms in Πij, averaged in the transverse direction according
to (3.4), varies with time, and their evolution is given in figure 6. The individual
components of the covariance tensor are normalized by the streamwise fluctuation
production (P11), which enables us to compare the efficiency of pressure–strain
covariance in redistributing the available energy among different velocity components.
Irrespective of Mach number, the redistribution to transverse and spanwise fluctuations
are approximately equal, and the turbulence is expected to have an axisymmetric
structure. There is no equipartition of energy between transverse fluctuations and
internal energy as observed by Lavin et al. (2012) for homogeneous shear turbulence,
but the energy is almost equally distributed between transverse and streamwise
fluctuating components. The magnitudes of diagonal components of pressure–strain
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FIGURE 7. (Colour online) (a) Change in mean internal energy in the mixing layer
with time. (b) Evolution of averaged thermodynamic potential energy; , Mc = 0.20;

, Mc = 0.75; , Mc = 1.20.

covariance, namely Π11, Π22 and Π33, decrease with increasing Mc, especially
during the early stages. Therefore it is evident that redistribution is less efficient
as compressibility effects become significant.

The evolution of averaged internal energy in the mixing layer is shown in
figure 7(a). We report the change in mean internal energy from its initial value
(1E = cv[T̃ − T̃0]), normalized by the initial fluctuation kinetic energy. The internal
energy increases with time primarily due to the energy transfer from kinetic energy
by viscous dissipation. In compressible turbulent flows, there is energy transfer to the
internal mode by dilatational effects, including dilatational dissipation and pressure
dilatation in addition to the incompressible viscous dissipation (Lele 1994). Internal
energy increases more rapidly for lower Mc, which implies that the dilatational effects
are negligible and transfer is mainly through viscous dissipation, which decreases
when Mc increases, as seen in figure 4(b). However, the thermodynamic potential
energy, defined by ET = p′2/γ p̄, exhibits different behaviour. Sarkar et al. (1991)
and Lee & Girimaji (2013) used this quantity to quantify the energy associated with
thermodynamic fluctuations. The evolution of average ET in the shear layer is shown
in figure 7(b). The potential energy increases with Mc, which implies that even though
the energy transfer from kinetic mode to internal mode decreases with compressibility,
there is an increase in energy transfer to thermodynamic fluctuations.

Pantano & Sarkar (2002) attributed the lower levels of production to a decrease in
pressure–strain term with increasing Mc in their self-similar analysis. They also noted
that the decrease in Π11 is similar to that in pressure fluctuations with increasing
compressibility. The present study shows that the initial evolution of the mixing layer
is also characterized by differences in the redistribution of energy by pressure–strain
rate covariance, as they are in the self-similar regime. The pressure–strain correlation
and root mean square of pressure fluctuations at the centreline for different convective
Mach numbers at τ = 200 are shown in figure 8. The quantities are normalized by the
incompressible (Mc = 0.20) value. There is a direct correlation between redistribution
and pressure fluctuations. Pantano & Sarkar (2002) observed similar trends in the
self-similar regime. Thus, the reduced redistribution during the transient evolution is
caused by the suppression of pressure fluctuations by compressibility. Apart from the
variations in redistribution, we also observe that there is a stabilization of turbulent
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FIGURE 8. (Colour online) Pressure–strain correlation and pressure fluctuation at different
Mc, normalized by the incompressible value.

shear stress growth due to the balance between stress production and pressure–strain
correlation when compressibility effects are significant.

3.3. Topological considerations
Turbulent statistics can be influenced by variations in topology. We use the Q-criterion
to classify the topology of the flow into two distinct categories (Hunt et al. 1988). The
second invariant (Q) of the velocity gradient tensor is given by

Q=− 1
2(SijSij −ΩijΩij). (3.9)

In the above, Sij = [∇u′′ + ∇u′′T]/2 and Ωij = [∇u′′ − ∇u′′T]/2 are respectively
the symmetric and anti-symmetric parts of the deviatoric strain rate tensor, ∇u′′ =
u′′i,j − u′′k,kδij/3. The criterion, originally developed for incompressible flows, is valid
for compressible flows only when the invariant is obtained for deviatoric part of
velocity gradient tensor (Kolár 2009). Local flow structure is classified according
to the numerical value of Q. According to the criterion, a positive value of Q
indicates that the flow is locally vortex-dominated and negative values indicate
strain-dominated regions. In the present work, the topology is determined using the
fluctuating quantities, since for the mean field Q turns out to be zero. In this section,
we analyse various turbulent statistics conditioned on the value of Q̄ = Q/Qrms
to study how changes in local flow topology due to compressibility manifests on
turbulent statistics. An average in the homogeneous plane is used for the root mean
square (r.m.s.) calculation. The sample used to calculate the conditional statistics is
the region −2δθ 6 x2 6 2δθ , which constitutes the turbulent core of the mixing layer.
Extreme events, |Q̄| � 1, are not discussed here. Various quantities from each spatial
location are put into different bins based on the local value of Q̄ and conditional
averages for different Q̄ are obtained by averaging the data in respective bins.

Distribution of turbulence among different flow topologies is given by the turbulent
kinetic energy conditioned on Q̄, as in figure 9. The figure shows the variation of
the conditional mean of u′′k u′′k , normalized by 2K(y), with Q̄. For negative values of
Q̄, the conditioned turbulent kinetic energy is higher than the overall turbulent kinetic
energy. There is a sharp drop in the conditional mean as Q̄ increases from zero.
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FIGURE 9. (Colour online) Conditional mean of turbulent kinetic energy, KQ =

〈u′′k u′′k |Q̄〉/2K, representing spatial distribution of turbulent energy among different
topologies, for different cases at τ = 300.

This implies that the turbulent fluctuations are more intense in shear-dominated
regions, and their relative contribution towards overall kinetic energy is higher. The
conditional mean remains nearly constant in the strain-dominated regions, and they
are less influenced by changes in Mc. In vortex-dominated regions, the normalized
conditional kinetic energy has values less than unity and decreases as Q̄ increases
in the compressible flow regime (large Mc). As Mc increases, the conditional mean
for a given Q̄ decreases in vortex-dominated regions. At the highest Mach number
considered, the conditional mean is only approximately 0.60 times the turbulent
kinetic energy in vortex-dominated regions. Thus, vortex-dominated regions have less
turbulence intensity, and in the absence of these flow structures, the overall turbulent
kinetic energy would have been higher owing to higher intensities in strain-dominated
regions. For the range of turbulent Mach numbers in our study, it is safe to conclude
that there is a preferential distribution of turbulent kinetic energy in regions of
negative Q̄.

We have already observed in § 3.2 that differences in turbulent kinetic energy with
compressibility arise from reduced levels of production. Ma & Xiao (2016) showed
that the turbulent kinetic energy production is more in strain-dominated regions, in
the case of homogeneous turbulent shear flows. In our simulations, mixing layer
evolves in such a way that turbulent energy production is due to Reynolds shear
stress, R12, as discussed earlier. So any influence of local flow structure on energy
production must be evident from a conditioned average of ρu′′1u′′2. The conditional
mean of turbulent shear stress, normalized by ρ̄(y)R12(y) is shown in figure 10. There
is a stronger co-variance of fluctuating streamwise and transverse velocities in regions
dominated by strain which means those regions produce more fluctuating energy than
vortex-dominated regions. For the nearly incompressible case (M2), the conditional
mean gradually decreases as Q̄ increases from negative values to positive values. For
moderate Mc (M5 and M7), the conditional mean is nearly constant for Q̄< 0, peaks
at Q̄ = 0 and monotonically decreases beyond that. For the larger Mach numbers,
the conditional turbulent stress increases with Q̄ in the strain-dominated regions,
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FIGURE 10. (Colour online) Turbulent shear stress conditioned on the value of Q̄,
R12|Q = 〈ρu′′1u′′2|Q̄〉/ρ̄R12, for different convective Mach numbers at τ = 300.

reaches a maximum at Q̄ = 0 and decreases as Q̄ increases in the vortex-dominated
regions. Most of the production happens at small negative values of Q̄. However, at
all Mc, the conditional mean has higher values in strain-dominated regions than that
in vortex-dominated regions. Similar to turbulent kinetic energy, the shear stress also
decreases as Mc increases for a given positive value of Q̄. Thus structures which are
strongly dominated by vortex-like motions are less efficient in extracting energy from
mean flow to turbulence. The spatial distribution of production explains the higher
turbulence intensity in strain-dominated regions. The observation relating energy
production and the fluctuating velocity gradient in compressible mixing layers was
hitherto unknown.

The Reynolds shear stress, R12, represents turbulent transport of fluctuating
streamwise momentum (ρu′′1) by transverse fluctuations (u′′2). Conditioned statistics in
figure 10 imply that vortex-dominated regions do not transport as much fluctuating
momentum as strain-dominated regions do. A closer look at flow structure in regions
of strong positive Q̄ makes apparent how local flow topology affects turbulent stress.
Figure 11 shows the streamline pattern around a tube-like structure with Q̄ = 1.1
for Mc = 0.75 at τ = 200. Streamlines are coloured by sgn(u′′1u′′2), solid red for
positive values and dashed blue for negative values. The streamlines are helical near
the vortex-dominated region, swirling around the tube-like structure. Such helical
streamlines are characteristic of vortex-dominated regions. Moving along the helical
streamline, the product u′′1u′′2 alternates between positive and negative values. Therefore,
any net positive contributions to R12 from these regions are small and turbulent
transport of fluctuating momentum is less compared to regions where such helical
streamlines are absent. This kind of flow pattern is more likely to diminish turbulent
production when these streamlines are aligned with their axes along the streamwise
direction. Helical streamlines with their axes inclined away from the streamwise
direction may contribute significantly to the turbulent shear stress and thus the energy
production. A better understanding of the inclination of such streamlines is given
by an in-depth analysis of the structure of the vortex field in § 3.4. Although the
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FIGURE 11. (Colour online) Streamlines around a vortex-dominated tube-like structure in
the flow. The structure is contour of Q̄= 1.1 from an instantaneous snapshot of the flow
field at τ = 200 for Mc= 0.75. Solid parts of the streamline indicate that u′′1u′′2 is positive
in those regions and dashed lines indicate that the product is negative.

streamline pattern shown in figure 11 is instantaneous, we have observed several
such patterns in the flow field for all the cases, and all helical streamlines are found
in the regions of positive Q̄. Not all regions of positive Q̄, however, have a helical
streamline pattern.

Turbulent kinetic energy production in simple shear flows is linked to redistribution
effects of the pressure–strain correlation tensor (Πij), as described in § 3.2. Turbulent
stress, responsible for energy production in mixing layers, depends on transverse
velocity fluctuations, which are produced by redistribution of energy by diagonal
components of Πij. We observed that compressibility reduces redistribution by
Πij. Therefore, it is imperative to investigate the effects of local flow topology
on energy redistribution. Redistribution of kinetic energy depends on the local
flow structure, as shown in figure 12, where we plot conditional average Π11|Q =

〈−p′∂u′′1/∂x1|Q̄〉/(K1U/δθ) against Q̄. The quantity on the vertical axis represents
the rate of energy extraction from streamwise fluctuations by pressure–strain
covariance, which then is redistributed between the transverse and spanwise
fluctuating components. The conditional mean is minimum for Q̄ = 0, but increases
as the topology become either strain dominated or vortex dominated. However,
the strain-dominated regions have higher values for the conditional mean than
vortex-dominated regions and the difference increases with Mc. Thus strain-dominated
regions, where Q̄ < 0, are significantly more effective in transferring energy from
streamwise fluctuations to the other directions. Redistribution by pressure–strain in
vortex-dominated regions is comparatively less, especially at higher Mach numbers.
These differences contribute to the preferential distribution of production and kinetic
energy discussed above.

The turbulent kinetic energy has a dependence on local flow structure, which is due
to a preferential distribution of energy production and redistribution. However, the
preferential distribution of kinetic energy and production exist at all Mach numbers
in our study. Therefore it is difficult to explain reduced turbulence levels at higher
Mach numbers based on conditional statistics alone. However, the probability density
function (PDF) of Q̄ shows that the flow topology is changed by compressibility.
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FIGURE 12. (Colour online) Conditional average of pressure–strain covariance Π11|Q =

〈−p′(∂u′′1/∂x1)|Q̄〉/(K1U/δθ ) in the turbulent mixing layer at different convective Mach
numbers.

Figure 13 compares the PDF of Q̄ for Mc = 0.20 and 1.20. At higher convective
Mach numbers, the probability of the occurrence of positive values of Q̄ is higher
than that in lower Mach number cases. The fraction of the shear layer which has
a locally vortex-dominated topology, calculated by the area under PDF curve for Q̄,
for different cases is listed in table 2. At any given instant of time or mixing-layer
width, the fraction of the shear layer with vortex-dominated structures increases with
convective Mach number. Nevertheless, strain-dominated regions are more prominent
than vortex-dominated regions at all Mach numbers, according to the values in table 2.
The lower turbulent kinetic energy at higher Mach numbers can thus be attributed
to the higher fraction of vortex-dominated regions which are less efficient in kinetic
energy production and redistribution. The differences in topology tend to even out at
later times and any differences in turbulent statistics due to differences in local flow
structure are expected to be small during the late time and self-similar evolution of
the mixing layer. In addition to the pressure dilatation effects, a vortex-dominated
topology also contributes towards lower levels of turbulence as convective Mach
number increases.

3.4. Vortex vectors
In § 3.3, the Q-criterion was used to identify the vortex-dominated regions and the
reported statistics were conditioned on the value of Q, a scalar. Vortex identification
using the Q-criterion lacks information on the direction of rotation, or on the
orientation of these vortex-dominated structures. Recently, Tian et al. (2018) (from
now on TGDL18) defined a quantity called the vortex vector which not only identifies
vortex-dominated regions but also gives the direction of rotation of the fluid element
locally. In this section, we apply their definition of the vortex vector to our DNS
data to analyse the effects of compressibility.

At any point in the flow field, TGDL18 defines a local rotation axis relative to
which fluid has rotational motion in the plane orthogonal to the axis. Let us denote
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FIGURE 13. (Colour online) Probability density function of Q̄ in the turbulent shear
layer for Mc = 0.20 and 1.20 at τ = 300. Data correspond to −2δθ 6 x2 6 2δθ .

τ M2 M5 M7 M9 M12

200 34 37 41 42 46
250 36 37 39 40 44
300 36 37 38 38 43
350 36 37 38 38 42

δθ/δθ0 M2 M5 M7 M9 M12
3 40 40 44 45 45
5 36 37 38 39 41
7 36 37 38 38 40

TABLE 2. Percentage of vortex-dominated regions in the turbulent shear layer, estimated
from the probability density function of Q̄, for different cases. The changes in topology
with time (top) and growth of the mixing-layer thickness (bottom) for different cases show
that higher Mc has more vortex-dominated regions in the flow field.

this local rotation axis by z, and let xy be the plane orthogonal to this axis. Then xyz
is an orthogonal coordinate system which varies from point to point due to the change
in orientation of the local rotation axis. By definition, there is no rotational motion of
the fluid element in any plane other than xy. This requires that the local velocity field
V= (u, v,w) in the local orthogonal coordinate system satisfies ∂u/∂z=0 and ∂v/∂z=0.
These are necessary and sufficient conditions for z to be the local rotation axis. The
unit vector along z in the general reference frame is given by r= r1ê1 + r2ê2 + r3ê3,
where ê1, ê2 and ê3 are unit vectors in the general reference frame along the x1, x2
and x3 directions respectively. The vector r at each point is obtained by solving the
following equations,

r2
1 + r2

2 + r2
3 = 1, (3.10a)

∂u
∂z
= 0, (3.10b)
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∂v

∂z
= 0, (3.10c)

where the velocity gradients in the local coordinate system are given by a transformation
from the original reference frame. The velocity gradient tensor in the xyz frame,
denoted by ∇V, is related to that in the original reference frame, ∇u, as

∇V = A∇uA−1, (3.11)

where A is the orthogonal transformation matrix. The transformation matrix is a
function of the local rotation axis and is given by

A=


r2

2 + r2
3 + r3

1+ r3
−

r1r2

1+ r3
−r1

−
r1r2

1+ r3

r2
1 + r2

3 + r3

1+ r3
−r2

r1 r2 r3

 . (3.12)

Since ∇u is known, equation (3.10) becomes a system of nonlinear equations with
r1, r2 and r3 as unknowns. This set of equations are solved using the Newton–Raphson
method, with local vorticity direction as an initial guess.

The conditions imposed to define the local rotation axis only imply that there is
no rotation around the other axes in the orthogonal reference frame, but they do not
mean that the fluid element is rotating about the z-axis. The rotation of the fluid also
needs to be quantified. The fluid element is deemed to be rotational depending on the
values of α and β, which are defined as follows,

α =
1
2

√(
∂u
∂x
−
∂v

∂y

)2

+

(
∂v

∂x
+
∂u
∂y

)2

, (3.13)

β =
1
2

(
∂v

∂x
−
∂u
∂y

)
. (3.14)

The fluid element has a rotational deformation only when β2 > α2 and then the
strength of rotation is defined as

Rz =

2(β − α), β2
− α2 > 0, β > 0,

2(β + α), β2
− α2 > 0, β < 0,

0, β2
− α2 6 0.

(3.15)

With the local rotation axis and strength of rotation known, the vortex vector at any
point in the flow field is given by

R= Rzr. (3.16)

The vortex vector represents the magnitude and direction of the local fluid rotation
and a connected region where R 6= 0 is a vortex. Rigorous mathematical proofs for
the definitions can be found in Liu et al. (2018).

We employ this method to find the vortex vectors and identify vortices in the
turbulent mixing layer at different Mc. According to TGDL18, iso-surfaces of the
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(a) (b)

FIGURE 14. (Colour online) Visualization of vortical structures in a turbulent mixing layer
using the Q-criterion and vortex vector. The figures are instantaneous snapshots for Mc=

0.75 at τ = 200. (a) Contours of Q̂ = 0.07, where Q̂ is the value of Q normalized by
(1U/δθ0)

2. (b) Iso-surfaces of normalized |R| = 0.05.

vortex vector magnitude can be used to visualize the vortices in the flow. The
vortex vector is normalized by 1U/δθ0 in this study. For the conditional statistical
analysis in the previous section, the Q-criterion was used to identify vortex-dominated
regions. In figure 14, we compare the visualization of vortices in the flow field using
the Q-criterion and vortex vector. Figure 14(a) shows contours of Q̂ = 0.07 and
figure 14(b) shows the iso-surfaces of |R| = 0.05 for Mc = 0.75 at time τ = 200. The
iso-surfaces in the latter are qualitatively similar to the contours of Q̂, albeit there are
differences in small-scale structure. The large-scale structures in either visualization
match very well. The figures may exactly match each other if the contour values
are chosen appropriately. Since the relation between the strength of rotation and the
Q value is unknown at this point of time, it is not possible to predict the value
of Q̂ which exactly matches the iso-surfaces for a given value of rotation strength.
Nevertheless, it is safe to assume that the vortex-dominated regions identified by the
Q-criterion are regions of finite rotation strength.

Vortex vector also gives the direction of rotation, which the Q-criterion does not.
The vector is directed along the local rotational axis defined earlier. Figure 15(a)
shows the vortex vectors on a hairpin vortex core, identified using rotation strength,
in the flow field. The hairpin vortex is one of several similar structures in figure 14(b)
and is isolated by magnifying the same figure. The vortex vectors show the direction
of rotation at each point, and their length is proportional to the magnitude of the
vortex vector. These vortex vectors align with the identified vortex core structure and
indicate the direction of local rotation axis at each point. The fluid element rotates
about the vortex vector in a plane perpendicular to it. In fluid mechanics, the lines
formed by the vorticity vector is referred to as vortex lines. However, TGDL18 define
vortex lines as lines whose tangent at any point is along the vortex vector, not the
vorticity vector, at that point. A few vortex lines in the neighbourhood of the same
hairpin vortex structure are shown in figure 15(b). These vortex lines also capture
the shape of the hairpin structure as good as the iso-surface of rotation strength. The
lines are coloured by the local rotation strength, which helps in finding out where
the rotation is strong or weak. With the Q-criterion or other vortex identification
techniques, it is not possible to quantify the strength of local rotation. For example,
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FIGURE 15. (Colour online) Vortex vectors and vortex lines on a hairpin-like structure,
identified using iso-surface of vortex strength (|R| = 0.05), in a turbulent mixing layer for
Mc= 0.75 at τ = 200. (a) Vortex vectors on the vortical structure. (b) Vortex lines passing
through the vortical structure coloured by the local strength of rotation.

Q, defined by equation (3.9), is not a measure of rotation itself. It only indicates
whether vorticity or strain rate is dominant. Vortex vector, on the other hand, describes
both the strength and direction of local fluid rotation.

In § 3.3, we discussed how the turbulent statistics are different in regions with
vortical structures compared to those in other regions. It was found that turbulent
kinetic energy production is lower in regions of positive Q, and the reduction was
attributed to the helical streamline patterns in the vortex-dominated regions (refer
to figure 11). Changes in turbulent shear stress (R12), which are responsible for
energy production, are mirrored by those in the inclination of these vortex lines
with respect to the streamwise direction as explained below. Let us consider a
helical streamline pattern with the axis of helix along the streamwise direction as in
figure 16(a). Along the streamline, the transverse velocity changes from positive to
zero to negative and vice versa. Assuming that the streamwise velocity fluctuations do
not change significantly in the neighbourhood of this streamline pattern, the product
of the two fluctuating velocity components also shows similar behaviour. Hence the
average of this product, which is the correlation u′′1u′′2, is not expected to have a very
large magnitude. However, this behaviour changes when the axis of the helix becomes
inclined to the streamwise direction, as shown in 16(b). When θ , the angle between
the axis of the helix and streamwise direction, takes large positive or negative values,
the transverse velocity along the streamline does not alternate between positive and
negative values. Instead, it remains biased towards either positive or negative u′′2.
For example, the helical streamline in figure 16(b) has a positive transverse velocity
at almost every point of the streamline. In such a scenario, the magnitude of the
correlation u′′1u′′2 can be significantly larger than when the helix axis is along the
streamwise direction. The relationship between velocity correlation and streamwise
inclination is described in appendix B. Therefore, the reduced turbulent production at
higher Mc in vortex-dominated regions can be explained by quantifying the inclination
of helical streamlines with the streamwise direction.
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œ
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FIGURE 16. (a) Schematic diagram of a helical streamline with axis of helix along
streamwise direction. Correlation u′′1u′′2 is very small in this case. (b) Streamline with axis
at an angle θ to the streamwise direction. Since u′′2 at most points along the streamline is
positive, u′′1u′′2 is significantly large. For details refer to appendix B.
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FIGURE 17. (Colour online) Vortical structures in the turbulent mixing-layer flow field
identified using the Q-criterion and the streamline pattern around the vortical structures
for different cases. The streamlines are generated by seeding random points on the surface
of the tube-like structures. The arrows are vortex vectors which are along the axis of the
helical streamlines.

The vortex vector can, by evidence, not only identify but also describe the
orientation of the vortical structures in the flow field. Vortex vector is oriented
along the local rotation axis defined earlier, which also coincides with the axis of
any helical streamlines present in the region. Vortex-dominated regions, identified
using the Q-criterion, in the flow field for three different Mach numbers are shown
in figure 17. The streamlines around vortex-dominated regions have a helical pattern
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with axis along the filament-like structures. The streamlines are generated by seeding
at points very close to the iso-surfaces. At higher Mc, the streamlines spiral more
than that at lower Mach numbers. Vortex vectors are also shown in the figure and are
parallel to the axis of the helical streamline shown. Thus the orientation of helical
streamlines in the flow field can be quantified using vortex vectors.

3.5. Structure of vortex field
In the turbulent mixing layer, there are several regions where helical streamlines are
present, especially in vortex-dominated regions. The orientation of such streamlines
can be revealed by a statistical analysis of the vortex vector. Similar analyses of
vorticity fields have been performed for turbulent channel flows by Moin & Kim
(1985) and for incompressible homogeneous shear turbulence by Rogers & Moin
(1987). The orientation of vortex vectors with respect to the streamwise direction
is of particular interest due to the reasons discussed earlier. The angle between the
vortex vector and streamwise direction can be calculated from the scalar product of
the vortex vector and the unit vector along the streamwise direction. Similarly, the
orientations with respect to the transverse and spanwise directions are also given by
scalar products. Thus the orientation of the vortex vector is defined by

cos θ = R · ê1/|R|, (3.17)
cos φ = R · ê2/|R|, (3.18)
cosψ = R · ê3/|R|, (3.19)

where θ, φ and ψ are respectively the angles made by the vortex vector with the
positive streamwise, transverse and spanwise directions. A statistical analysis based on
the PDF or joint probability density functions (JPDF) of these angles in the turbulent
mixing layer provides information on the orientation of the vortex vectors. The JPDFs
for different Mc enable us to study how compressibility changes the vortical structures
in mixing layers. We analyse the joint probability density function of the cosine of the
angles, pairing them with each other, to understand how the vortex vectors are oriented
when they are projected onto spanwise, streamwise and transverse planes. Only the
points which are in the core of the turbulent mixing layer, that is −2δθ 6 x2 6 2δθ ,
are used for the analysis. Points which are locally irrotational are omitted because the
vortex vector has zero magnitude at those points. For the analysis, the cosines of the
angles, instead of the angles themselves, are used.

For mixing layers, the joint probability density function for cos θ and cosφ is more
important than the other two in understanding the relation between vortex vector
orientation and turbulence production. The JPDF, denoted henceforth by P(θ, φ),
reflects the orientation of vortex vectors projected onto a spanwise plane. A JPDF
analysis of vorticity components in turbulent boundary layers was performed by Ong
& Wallace (1998), where they observed significant changes in the JPDFs of vorticity
components at different transverse locations. Moin & Kim (1985) also observed that
the structure of the vorticity field depends on the distance from the wall in turbulent
channel flows. Therefore, a similar study is undertaken here to see if there is any
dependence of vortex vector orientations on the transverse location by examining
the statistics at different x2. Figure 18 shows P(θ, φ) at three transverse locations,
viz x2 = 0, δθ , 2δθ , for Mc = 0.20. These plots correspond to the non-dimensional
time τ = 200. The figures show contours of P(θ, φ) and the contour levels, indicated
in 18(c), are the same for all the three figures. The large values of P(θ, φ) occur in
quadrants II and IV of the cos θ– cos φ plane with peaks around cos θ ≈±0.8 at all
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FIGURE 18. (Colour online) The JPDFs of cos θ and cosφ at different transverse locations
for Mc = 0.20 at τ = 200. (a) x2 = 0, (b) x2 = δθ and (c) x2 = 2δθ .
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FIGURE 19. (Colour online) The JPDFs, P(θ, φ), for different Mach numbers at τ =
200 for vortex vectors in the region −2δθ 6 x2 6 2δθ . (a) Mc = 0.50, (b) Mc = 0.90,
(c) Mc = 1.20.

three transverse locations. This implies that the orientation of vortex vectors does not
change significantly from one transverse location to another. Vortex vector orientations
remain independent of the transverse location at other Mach numbers studied. For
further analysis and comparison across different convective Mach numbers, all the
points which are in the turbulent core (−2δθ 6 x2 6 2δθ) are considered together as a
single set of data. The JPDF of these angles at different Mc is shown in figure 19.
Only three sets of results, corresponding to Mc = 0.50, 0.90 and 1.20, are presented
here. The JPDFs for the nearly incompressible case are very similar to that for
Mc = 0.50. The other set of results not presented here corresponds to Mc = 0.75
for which the distributions closely resemble those for Mc = 0.90. At all three Mach
numbers, the high probability regions, indicated by red colour, falls in the second
and fourth quadrants of the Cartesian plane defined by cos θ and cos φ as axes.

The vector cos θ ê1 + cos φê2 is the projection of the unit vector along R onto the
spanwise plane. The angle between the projection and coordinate axes x1 and x2 are,
respectively,

cos θ2D = cos θ/
√

cos2 θ + cos2 φ, (3.20)

cos φ2D = cos φ/
√

cos2 θ + cos2 φ. (3.21)

These angles are not independent of each other and are related, as schematically
shown in figure 20(a). The JPDFs of the direction cosines of the projected vector
reveal the most probable orientations of the vortex vector on the spanwise plane.
Non-zero values of JPDFs lie on the unit circle cos2 θ2D + cos2 φ2D = 1. The peaks
occur at approximately the same orientations as they occur in figure 19 since the
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FIGURE 20. (a) Schematic diagram showing relation between the cosines for vectors
projected onto spanwise plane. Shaded regions represent the more probable orientations of
vortex vectors in terms of their direction cosines. (b) A schematic of projections of vectors
which are more likely to occur in the mixing layer. Solid and dashed arrows correspond
to the shaded quadrants IV and II respectively in the figure on the left.

likely orientations of three-dimensional vectors lie close to the unit circle described
by cos2 θ + cos2 φ= 1. Hence the high probability regions fall in quadrants II and IV
of the Cartesian grid defined by the cosines of the two-dimensional angles. However,
since θ2D and φ2D are not independent, these quadrants correspond to π/2 6 θ 6 π,
0 6 φ 6 π/2 and 3π/2 6 θ 6 2π, π 6 φ 6 3π/2. The orientation of the projected
vectors may be uniquely defined by either θ2D or φ2D. The high probability regions
fall in the shaded quadrants of figure 20(a), and the projection of vortex vectors on
the spanwise plane is parallel to the position vectors of points in these quadrants of
the x1–x2 Cartesian plane.

The mixing layer is set up in such a way that the free-stream velocity is negative
for positive x2 and positive for negative x2. Schematic diagrams of a few highly
probable orientations of the vortex vector projections in the flow field are shown in
figure 20(b). The solid and dashed arrows correspond to position vectors of points in
quadrants II and IV, respectively, as discussed earlier. In the upper stream (x2 > 0),
the solid arrows direct towards the centreline while dashed arrows point towards the
free stream and vice versa in the lower stream. Thus the high probability orientations
are, (i) either inclined away from the direction of averaged streamwise velocity and
towards the edge of the shear layer (ii) or opposing the free-stream velocity but
slightly inclined in such a way that the vectors point towards the centre of the
shear layer. Spanwise projection of most probable orientation of the vortex vector
can be found using P(θ2D, φ2D). A similar analysis was used by Ong & Wallace
(1998) to find projections of vorticity filaments contributing most to the vorticity
covariance in turbulent boundary layers. There are two most probable orientations for
the projections which are given by the maximum of JPDF in quadrants II and IV.
Using θ2D corresponding to the peak in P(θ2D, φ2D) at different transverse locations,
line segments can be created locally for different x2. These line segments, with slope
tan θ2D on the x3 plane, can be joined together to obtain the projection of the most
probable vortex vector orientation on the spanwise plane. This line segment can also
be representative of the projection of the most probable vortex structure in the flow
field. The reconstructed vortex vector orientations for different Mc at τ = 100 and 300
are shown in figure 21. The most probable orientation of the vortex vector is nearly
the same for the lower Mach numbers at τ = 100. As Mc increases, the most likely
orientation becomes closer to that of the streamwise direction. For Mc = 1.20, vortex
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FIGURE 21. (Colour online) Projections of the most probable orientation of vortex vectors
for different Mc at (a) τ = 100 and (b) τ = 300. The solid lines are constructed from the
peaks of JPDF in quadrant II and the dashed lines from the peaks in quadrant IV.

vectors are closer to the x1 axis than those at other Mach numbers. This applies to
not only the most probable occurrence but also most of the orientations with large
probabilities as discussed below.

With increasing Mach number the high probability regions (indicated in red) move
closer towards cos θ =±1, as seen in figure 19. The change is subtle as Mc increases
from 0.50 to 0.90 but more prominent at the highest Mach number. This implies that
the vortex vectors get more aligned along the streamwise direction as compressibility
effects increase. The number of helical streamlines in the flow field, which are
oriented in directions close to the streamwise direction, increases with increase in Mc.
The JPDFs at a later time (τ = 300) are shown in figure 22. The high probability
regions occur at a smaller |cos θ | in comparison with figure 19. This means that the
vortex vectors tend to move away from the streamwise direction as time progresses.
As seen in figure 21(b), by τ = 300, the most probable orientations of the vortex
vectors are less sensitive to compressibility effects, except for the largest Mc. In
comparison with their orientations at τ = 100, the vortex vectors tend to move away
from directions closer to the streamwise direction. Nevertheless, more vortex vectors
at a higher Mc continue to be closer to the streamwise direction than those at a
lower Mc. This dependence of vortex vector orientation on the convective Mach
number becomes clear when the probability density function of cos θ is analysed.
In figure 23, the probability density function of the magnitude of the cosine of the
angle between vortex vector and streamwise direction is plotted at two different times.
The vectors which are closely aligned towards the streamwise direction have larger
values of |cos θ | and those inclined away from the streamwise direction have smaller
magnitudes of cos θ . In figure 23(a), which is at τ = 200, there are more vectors
which are aligned in (or opposite to) the direction of the streamwise axis at all
Mach numbers. The higher the Mach number, the larger the PDF value for direction
cosines close to unity, which implies that the probability of vectors being oriented
in directions closer to the streamwise direction increases with Mc. A reverse trend
can be seen at lower magnitudes of the cosines which are more likely to occur at
lower convective Mach numbers. The PDF at a later time (τ = 300) in figure 23(b)
shows that while the likelihood of finding vortex vectors not close to the streamwise
directions increases, there still exist more vectors which are closely aligned to the
streamwise direction. The dependence of PDF on the convective Mach number also
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FIGURE 22. (Colour online) The JPDFs, P(θ, φ), for different Mach numbers at
τ = 300 for vortex vectors in the region −2δθ 6 x2 6 2δθ . (a) Mc = 0.50,
(b) Mc = 0.90, (c) Mc = 1.20.
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FIGURE 23. (Colour online) Probability density functions of absolute values of cos θ at
different Mc. (a) τ = 200, (b) τ = 300.

remains similar to that at earlier times. It can be inferred that the vortex vectors
change their orientation as the flow evolves with more vectors getting inclined away
from directions closer to the streamwise direction. For the incompressible Mach
numbers, there are more vortex vectors at larger θ at earlier time instants. From
figures 21 and 23, it is clear that, as time progresses, the vortical structures in
the compressible cases approach the incompressible state. The solenoidal nature of
velocity fluctuations in compressible shear flows during later times is observed by
Bertsch et al. (2012). We can conclude that similar behaviour is exhibited by the
flow structures too.

For completeness, we also report the statistics of the other two direction cosines.
Figure 24 shows the JPDF, P(ψ, φ), for different Mach numbers at τ = 200. It can
be observed that it is rare to find vortex vectors with negative values of cosψ , which
indicates that almost all of them have their spanwise components of vortex vector
along the positive x3 direction. In this work, the mixing-layer evolution is in such a
way that the mean vorticity is along the positive spanwise direction. Thus the vortex
vectors also tend to align in the direction of mean vorticity. The JPDF patterns are
similar for the lower Mc, but for the highest Mc, the pattern is significantly different.
At Mc= 1.20, the probability of finding vortex vectors being oriented with very small
values of cos ψ and cos φ is significant, as inferred from the green patch seen on
the JPDF plot near the origin. In our earlier discussions, we have observed that at
this Mach number, the probability of vortex vectors being aligned very close to the
streamwise axis is very large. Therefore, those vectors are characterized by very small
values of direction cosines for the other two directions, and this is reflected in the
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FIGURE 24. (Colour online) The JPDFs, P(ψ, φ), for different Mach numbers at τ =
300 for vortex vectors in the region −2δθ 6 x2 6 2δθ . (a) Mc = 0.50, (b) Mc = 0.90,
(c)Mc = 1.20.
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FIGURE 25. (Colour online) The JPDFs, P(ψ, θ), for different Mach numbers at τ =
300 for vortex vectors in the region −2δθ 6 x2 6 2δθ . (a) Mc = 0.50, (b) Mc = 0.90,
(c) Mc = 1.20.

JPDF plot here. The JPDF of the remaining cosine pair, P(ψ, θ) is shown in figure 25.
These JPDF plots also indicate that negative values of cosψ are not so likely, and at
higher Mach numbers the high probability orientations move towards cos θ =±1. The
orientations with respect to spanwise and transverse directions are also shown using
the PDF of respective direction cosines in figure 26. The PDF of |cosφ|, shown in
figure 26(a), implies that as Mach number increases, there are fewer vectors aligned
in the transverse direction. The orientation of vectors with respect to the x3 direction
has a uniform distribution, to a moderate extent, at smaller Mc. At the highest Mc, as
more and more vortices align in the streamwise direction, they are more likely to be
orthogonal to the spanwise direction as indicated by the high PDF value for |cosψ |≈0
in figure 26(b). In the present results, the strength of rotation of vortical structures is
given by the magnitude of vortex vector. Evolution of volume-averaged vortex strength
for different cases is given in figure 27. The vortex strength (R) is normalized by the
initial value (R0). Vortex strength increases as the mixing layer develops. However, the
strength of rotation of fluid elements is suppressed by compressibility. The vortical
structures at high Mc mixing layers align in the streamwise direction but are weaker
compared to those at low Mc.

In summary, vortex vectors tend to align more towards the streamwise direction
as compressibility effects increase. This means that there are more helical streamline
patterns in the flow field, which are aligned in such a way that the axes of helices
are closer to the streamwise direction. The net turbulent transport of fluctuating
momentum (u′′1u′′2) in those regions are less, as discussed above. Thus, more
vortical structures getting aligned in the streamwise direction effectively brings
down the turbulent stress R12 and decreases the turbulent kinetic energy production.
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FIGURE 26. (Colour online) Probability density functions of absolute values of (a) cos φ
and (b) cosψ at different Mc. The statistics are obtained at τ = 200.
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FIGURE 27. (Colour online) Evolution of volume-averaged vortex strength with time for
different cases. Vortex strength, the magnitude of vortex vector, is normalized by the initial
value.

Similar changes in vortical structures with compressibility have been observed by
Normand & Lesieur (1992) during the transition in compressible boundary layers.
The transitional flow at low Mach numbers is dominated by hairpin vortices and
spanwise billows, but at high Mach numbers, they observed that there are Λ-vortices
which break up into small-scale structures. Sandham & Reynolds (1990) reported the
streamwise elongation of vortices in compressible mixing layers, as compressibility
effects increase. These vortices are less intense compared to those at low Mc. The
presence of more streamwise aligned vortical structures of lesser strength in our
present study conforms to these results.

4. Conclusion
Direct numerical simulations of compressible mixing layers are performed for

different Mach numbers, including a nearly incompressible case. The evolution of
mixing-layer thickness and degree of suppression of growth rates by compressibility
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are in agreement with existing numerical and experimental results. The primary
objective of this work is to further enhance our understanding of the effects of
compressibility on the transient evolution.

In the early evolution, the following are observed for turbulent statistics.

(i) Suppression of energy production and subsequently turbulent kinetic energy by
compressibility during the transient development.

(ii) There exists a balance between R12 production and pressure rate of strain
correlation (Π12), which results in reduced levels of the Reynolds shear stress.

(iii) Compressibility also reduces the redistribution, which again causes suppression
of energy production.

The present study reaffirms that the effects of compressibility vary with time and
are more prominent during the transient evolution.

The topology is classified into two regions – strain dominated or vortex dominated
– using the Q criterion. Influence of topology on the turbulent mechanism is examined
using statistics conditioned on topology, which reveals the following.

(i) Redistribution of normal Reynolds stresses is higher in strain-dominated regions
as compared to vortex-dominated topologies.

(ii) This leads to reduced levels of R12 and turbulent kinetic energy in vortex-
dominated regions.

(iii) Compressibility alters local flow topology, resulting in a larger proportion of flow
field having a vortex-dominated topology at higher Mc.

Since vortex-dominated regions are less energetic, a larger proportion of the same
results in the suppression of turbulent kinetic energy as Mc increases. The volume
fraction of vortex-dominated regions in the flow field approaches the incompressible
value as time progresses (observed for all Mc).

Application of a recently developed vortex identification technique suggests a new
interpretation of the correlations between turbulent energy production and streamline
topology. We find that vortex-dominated regions feature helical streamline patterns
which are associated with lower levels of turbulent production. Orientations of helical
streamlines are quantified using the structure of vortex vector field, which gives the
magnitude and direction of rotation of fluid elements in vortex-dominated regions.
A statistical analysis of vortex vector orientation in the flow field shows that

(i) vortex vector orientations depend on compressibility;
(ii) at higher Mc, the vortical structures are more aligned in the streamwise direction

whereas at lower Mc these structures align at considerably larger angles with the
streamwise direction;

(iii) the orientations of vortical structures for all Mc shift to larger angles, similar to
incompressible flow, with the progress in time;

(iv) the rate at which the orientation changes is decreasing with Mc.

Helical streamline patterns, with axes closer to the streamwise direction, are
associated with small values of u′′1u′′2 and hence lower turbulent energy production.
Therefore, the suppression of turbulent energy production is observed to be correlated
with the presence of a large number of vortical structures aligned in the streamwise
direction.
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Appendix A. Numerical scheme and convergence
A.1. BGK gas-kinetic scheme

The numerical simulations are performed using a gas-kinetic scheme. The scheme
uses a finite volume formulation to solve the Boltzmann equation with the Bhatnagar–
Gross–Krook model for the collision integral (Xu et al. 2005). The BGK-Boltzmann
equation is

∂f
∂t
+ ci

∂f
∂xi
=−

f − g
τ

, (A 1)

where f is velocity distribution function, g is equilibrium distribution function, ci are
the particle velocities and τ is average particle collision time. Equation (A 1) describes
the evolution of the distribution function, which is a function of space xi, time t,
particle velocity ci and internal variable ξ , in the absence of any external forces. The
equilibrium distribution has the Maxwellian form and is a function of flow variables
as follows:

g= ρ
(
λ

π

)(K+2)/2

exp[−λ((c1 −U1)
2
+ (c2 −U2)

2
+ (c3 −U3)

2
+ ξ 2)]. (A 2)

In the above expression, ρ is the density, Ui are the macroscopic velocities and λ=
m/2kT . The last term in the exponent has the form ξ 2

= ξ 2
1 + ξ

2
2 + · · · + ξ

2
K , where

K is the total number of internal degrees of freedom for the gas molecule given by
K = (5− 3γ )/(γ − 1). The flow variables, W = (ρ, ρU, ρε)T, are related to f by

W =


ρ
ρU1
ρU2
ρU3
ρε

=
∫
ψα f dΞ, (A 3)

where ψα = (1, c1, c2, c3,
1
2(c

2
1 + c2

2 + c2
3 + ξ

2))T are the weights and the integration is
over the entire phase space dΞ =dc1dc2dc3dξ1dξ2 · · ·dξn. Mass, momentum and energy
conservation equations for compressible flows are recovered from the BGK-Boltzmann
equation when τ = µ/P. The moments of (A 1) integrated over the phase space in a
numerical cell and time step 1t give

Wn+1
mnp −Wn

mnp =
1

1x11x21x3

∫ tn+1

tn

[∫
(Fm−1/2,n,p − Fm+1/2,n,p) dx2 dx3

+

∫
(Gm,n−1/2,p −Gm,n+1/2,p) dx1 dx3

+

∫
(Hm,n,p−1/2 −Hm,n,p+1/2) dx1 dx2

]
dt. (A 4)

The time-dependent fluxes (F, G, H) of macroscopic quantities arise from the
advection terms in the BGK-Boltzmann equation. The moments of the right-hand

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.434


Topology effects on compressible mixing layers 69

side collision model vanish because mass, momentum and energy are conserved
during particle collisions. This leads to the compatibility condition∫

ψα(g− f ) dΞ = 0. (A 5)

For a cell (m, n, p), flux across a cell interface with normal in the x1 direction is
computed by 

Fρ
FρU1

FρU2

FρU3

Fρε

=
∫

c1ψα f (xm+1/2
1 , xn

2, xp
3, t, ci, ξ). (A 6)

The distribution function used for computing the flux is given by the general solution
of the BGK model at the cell interface, in terms of an initial distribution f0 and the
equilibrium state g. In our simulations, we use a second-order BGK scheme in which
the distribution functions are linearly reconstructed around cell interfaces. For example,
the distribution functions are reconstructed in the following way around the interface
located at xm+1/2

1 ,

f0 =

{
gl(1+ alx1 + blx2 + clx3 − τ(alc1 + blc2 + clc3 + Al)), x1 < xm+1/2

1 ,

gr(1+ arx1 + brx2 + crx3 − τ(arc1 + brc2 + crc3 + Ar)), x1 > xm+1/2
1 .

(A 7)

The coefficients al, ar are associated with gradients of flow variables normal to
the interface and bl, . . . , cr with gradients tangential to the interface. Equilibrium
distributions gl and gr correspond to the reconstructed values of macroscopic variables
on either side of the interface. Macroscopic variables are reconstructed using a
weighted essentially non-oscillatory scheme following Kumar et al. (2013). This
enables us to resolve any sharp discontinuities like shocklets in the turbulent flow
field. All simulations are carried out with Pr= 0.7. The Prandtl number correction is
applied at the step where coefficients al, ar, . . . are calculated. This does not change
the underlying BGK scheme and is equivalent to dividing the heat flux term by the
Prandtl number in a conventional Navier–Stokes solver (May et al. 2007).

The equilibrium distribution is reconstructed as

g= g0[1+ (1− h[x− xm+1/2
1 ])ālx1 + h[x1 − xm+1/2

1 ]ārx1 + bx2 + cx3 + Āt], (A 8)

where g0 is the local equilibrium distribution at the interface, h(x) is the Heaviside
function which is one for positive values of x and zero otherwise. The coefficients are
calculated from the gradients of flow variables. Coefficients Al and Ar are obtained
by equating the moments of non-equilibrium contributions in (A 7) to zero and Ā
from the compatibility condition (A 5). The procedure to obtain these coefficients from
gradients of flow variables can be found in Xu et al. (2005). After determining these
parameters, the distribution function at the cell interface, which is used to compute
the numerical flux, is given by

f (xm+1/2
1 , xn

2, xp
3, t, ci, ξ) = (1− e−t/τ )g0 + τ(t/τ − 1+ e−t/τ )Āg0

+ (τ (−1+ e−t/τ )+ te−t/τ )
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Case Mc L1/δθ0 L 2/δθ0 L 3/δθ0 N1 ×N2 ×N3

M12 1.20 314.16 157.08 78.54 512× 256× 128
LD12 1.20 314.16 157.08 157.08 512× 256× 128
HR12 1.20 314.16 157.08 78.54 768× 384× 192

TABLE 3. Grid details for the high resolution and larger spanwise extent simulations.

× (ālh[c1]ār(1− h[c1])+ b̄c2 + c̄c3)c1g0

+ e−t/τ ([1− (t+ τ)(c1al
+ c2bl

+ c3cl)]h[c1]gl

+ [1− (t+ τ)(c1ar
+ c2br

+ c3cr)](1− h[c1])gr)

− e−t/τ (τAlh[c1]gl
+ τAr(1− h[c1])gr). (A 9)

Flux across the interface m+ 1/2 is computed by substituting (A 9) in (A 6). A similar
procedure is used to calculate fluxes G and H in the other two directions.

The time advancement is included in the flux calculation according to equation (A 4)
by way of an exact integration in time of the discretized distribution function. The
resulting scheme is second order accurate in time, as shown in Ohwada (2002). The
time step used in this integration is calculated using the CFL criterion by

1t=C
V

Σk(λcSk + 2λvS2
k/V)

, (A 10)

where C is the CFL number, V is the volume of the cell, Sk is the area of the kth face
of the cell, λc=|Uk|+ cs and λv=γ ν/Pr. The quantities Uk and cs are the face-normal
velocity and speed of sound. The stability of the scheme depends on the macroscopic
flow variables as in the case of Navier–Stokes solvers (Venugopal & Girimaji 2015).

A.2. Convergence of the numerical simulations
Two additional simulations are performed to check the accuracy of the results. The
additional simulations are for the largest convective Mach number to examine the
effects of grid resolution and spanwise domain extent. The initial conditions for these
simulations are the same as that for the case M12 reported in this work. The details
of the high resolution (HR12) and larger domain (LD12) grids are given in table 3
Case LD12 has a spanwise extent twice as that in the other two cases. The domain
is uniformly discretized with equal spacing in all three directions.

The results from LD12 and HR12 simulations are compared with those of M12.
The momentum thickness evolution in these simulations does not show any significant
difference, as can be seen in figure 28(a). The focus of this work is the transient
evolution of the mixing layer. The evolution of averaged turbulent kinetic energy,
calculated using equation (3.4), is shown in figure 28(b). As in the case of momentum
thickness, the turbulent kinetic energy is not influenced by the domain extent or the
cell size. The Reynolds stress anisotropy also shows grid and domain independence
(see figure 28c).

The effects of domain extent and grid resolution on the topology dependence of
the turbulent statistics are also investigated. Figure 29 shows that the shear-dominated
regions have more turbulent kinetic energy than vortex-dominated regions irrespective
of the domain extent and grid resolution. It is also important to show that the
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FIGURE 28. (Colour online) (a) Momentum thickness evolution with time for the
three simulations. (b) Evolution of turbulent kinetic energy with time. (c) Evolution of
anisotropy tensor. Solid line and circles, b11; dashed line and squares, b22; dot-dashed line
and triangles, b12. Filled and unfilled symbols correspond to LD12 and HR12 simulations,
respectively.
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FIGURE 29. Conditionally averaged turbulent kinetic energy for different simulations at
τ = 340.

topology of the flow is grid converged. For this purpose, we compare the fraction
of vortex-dominated topology in the flow field from different simulations. The cases
M12, LD12 and HR12 respectively have 42, 43 and 41 per cent of the flow field with
a vortex topology at the instant τ = 340. The contours of vorticity on the streamwise
plane during the evolution of M12 and LD12 are shown in figure 30. The spanwise
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FIGURE 30. (Colour online) Vorticity contours on the x2x3 plane at τ = 400. (a) M12 and
(b) LD12.

distributions of vortical structures are not influenced by the length of the domain.
From these results, it can be seen that HR12 and LD12 simulations do not differ
significantly from M12. Hence, it is concluded that the resolutions and domains used
for M12 and other simulations are adequate for the present work.

Appendix B. Helical streamlines and velocity correlation
Consider the parametric equation for a helix (streamline) given by

r(t)= (At, B sin t, B cos t), (B 1)

where A and B are constants. The tangent vector for this curve is

u′′ = (A, B cos t,−B sin t), (B 2)

which is the local velocity. When the helical streamline has the axis along x1, as
in figure 16(a), the components of the tangent vector are equal to the velocity
components in the original coordinate system (x1, x2, x3), given by

u′′1 = A; u′′2 = B cos t. (B 3a,b)

The velocity correlation is obtained by the average of the product u′′1u′′2. Over one
period of the helix,

u′′1u′′2 =

∫ 2π

0
u′′1u′′2 dt∫ 2π

0
dt
=

∫ 2π

0
AB cos t dt∫ 2π

0
dt

= 0. (B 4)

In figure 16(b), the axis of the helix is at an angle θ with respect to x1. Velocity
components in the original coordinate system (x1, x2, x3) are given byu′′1

u′′2
u′′3

=
cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 A
B cos t
−B sin t

 . (B 5)
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Then,

u′′1 = A cos θ − B cos t sin θ; u′′2 = A sin θ + B cos t cos θ, (B 6a,b)

u′′1u′′2 = A2 sin θ cos θ + AB cos2 θ cos t− B2 cos2 t sin θ cos θ, (B 7)

for which ∫ 2π

0
u′′1u′′2 dt 6= 0, (B 8)

over a period of the helix. The velocity correlation is thus non-zero and hence also the
production. This indicates that the reduction in turbulent energy production is strongly
correlated with the orientation of helical streamlines.
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