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Abstract Let R ⊂ F be an extension of real closed fields, and let S(M, R) be the ring of (continuous)

semialgebraic functions on a semialgebraic set M ⊂ Rn . We prove that every R-homomorphism ϕ :
S(M, R)→ F is essentially the evaluation homomorphism at a certain point p ∈ Fn adjacent to the

extended semialgebraic set MF . This type of result is commonly known in real algebra as a substitution

lemma. In the case when M is locally closed, the results are neat, while the non-locally closed case
requires a more subtle approach and some constructions (weak continuous extension theorem, appropriate

immersion of semialgebraic sets) that have interest of their own. We consider the same problem for the

ring of bounded (continuous) semialgebraic functions, getting results of a different nature.
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Introduction and statements of the main results

A basic relevant result in commutative algebra states that, given a ring extension A ⊂ B,

every A-homomorphism ϕ : A[x1, . . . ,xn] → B is completely determined by the images

of the variables x1, . . . ,xn ; that is, it is a point-evaluation homomorphism. This result

is extended straightforwardly to finitely generated algebras over a ring A, but it also

holds in many other situations. For instance, the following types of homomorphism are

point-evaluation homomorphisms: (1) R-homomorphisms from a ring of Nash functions

on a Nash submanifold of Rn into a real closed extension F of R (see [10]); (2) K-analytic

homomorphisms from the ring O(Kn) of germs of analytic functions on Kn into the

ring O(X) of germs of analytic functions on an analytic germ X where K = R or

C (see [29]); (3) R-homomorphisms of the ring of smooth functions C∞(N ,R) on a

differentiable manifold N (or an open subset of a Banach space) into R (see [2, 17]);

(4) R-homomorphisms of the ring of Ck functions on an open subset U of a Banach space

into R under mild conditions (see [15, 16]).
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In real algebra, the previous type of result is commonly known as a substitution

theorem, referring to Efroymson’s classical result [10] for the ring of Nash functions

on a Nash manifold cited above. In [12, § 6.1], we prove that this result also holds for

the ring of Nash functions on a semialgebraic set M , involving the pro-constructible set

obtained by intersecting the Nash closures of M in all open semialgebraic subsets of Rn

containing M ; as one can expect, the result is completely satisfactory if and only if M is

a Nash set.

In what follows, let R ⊂ F be an extension of real closed fields, and let M ⊂ Rn be a

semialgebraic set, that is, a boolean combination of sets defined by polynomial equations

and inequalities. A continuous function f : M → R is semialgebraic if its graph is a

semialgebraic subset of Rn+1. We denote the ring of semialgebraic functions on M by

S(M, R), and its subring consisting of those that are bounded by S∗(M, R). We use the

notation S�(M, R) when referring to both of them indistinctly.

In this work we afford the problem of understanding the R-homomorphisms ϕ :
S(M, R)→ F in terms of evaluation homomorphisms at points p ∈ Fn , which are either

in the extension MF of M to F or ‘very close to this set’ and ‘fill a big area’ (see below the

definition of semialgebraic depth of a point of Fn). We introduce and recall first several

concepts to ease the exposition.

Real closed rings and real closure of a ring

It is well known that the rings S�(M, R) are particular cases of the so-called real closed

rings introduced by Schwartz in the 1980s; see [20]. The theory of real closed rings has

been deeply developed in a fruitful attempt to establish new foundations for semialgebraic

geometry with relevant interconnections to model theory; see the results of Cherlin and

Dickmann [5, 6], Schwartz [20–23], Schwartz with Prestel, Madden and Tressl [18, 24, 25],

and Tressl [26–28]. We refer the reader to [21] for a ring-theoretic analysis of the concept of

a real closed ring. Moreover, this theory, which vastly generalizes the classical techniques

concerning the semialgebraic spaces of Delfs and Knebusch [9], provides a powerful

machinery to approach problems concerning certain rings of real-valued functions and

contributes to achieving a better understanding of the algebraic properties of such rings

and the topological properties of their spectra. We highlight some relevant families of

real closed rings: (1) real closed fields; (2) rings of real-valued continuous functions on

Tychonoff spaces; (3) rings of semialgebraic functions on semialgebraic subsets of Rn ; and,

more generally, (4) rings of definable continuous functions on definable sets in o-minimal

expansions of fields.

Every commutative ring A has a so-called real closure rcl(A), which is unique up to

a unique ring homomorphism over A. This means that rcl(A) is a real closed ring and

there is a (not necessarily injective) ring homomorphism γ : A→ rcl(A) such that for

every ring homomorphism ψ : A→ B to some other real closed ring B there exists

a unique ring homomorphism ψ : rcl(A)→ B with ψ = ψ ◦ γ . For example, the real

closure of the polynomial ring R[x] := R[x1, . . . ,xn] is the ring S(Rn, R) of semialgebraic

functions on Rn . More generally, if Z ⊂ Rn is an algebraic set, then S(Z , R) is the real

closure of the ring P(Z) of polynomial functions on Z . In particular, if ϕ : P(Z)→ F
is an R-homomorphism, then there exists a unique R-homomorphism ϕ : S(Z , R)→ F
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such that ϕ = ϕ ◦ γ , where γ : P(Z) ↪→ S(Z , R) is the natural inclusion. Unfortunately,

S(M, R) is not the real closure of P(M) for an arbitrary semialgebraic set M in general.

Example. Consider the semialgebraic subsets M := {x2+ y2 < 1} and K := {x2+ y2 6 1}
of R2. We have that R[x,y] = P(R2) = P(K ) = P(M), and so the real closure of this ring

is S(R2, R), but in the first row of the following diagram

S(R2, R) // // S(K , R) �
� // S∗(M, R) �

� // S(M, R)

R[x,y]?
�

OO

P(K )
?�

OO

P(M)
?�

OO

+ �

88

none of the involved homomorphisms is bijective.

There are many ‘polynomial’ subrings of S(M, R) corresponding to all semialgebraic

embeddings of M in some Rn . The choice of a suitable one will be crucial for our purposes.

Extension of coefficients

There exists a (unique) semialgebraic subset MF ⊂ Fn called the extension of M to

F that satisfies M = MF ∩ Rn . The extension of semialgebraic sets depicts the natural

expected behavior with respect to boolean operations, interiors, closures, boundedness,

semialgebraically connected components, the transfer principle, and so on (see [3, § 5.1-3]).

Moreover, given another semialgebraic set N ⊂ Rn and a semialgebraic map f : M → N ,

there exists a semialgebraic map fF : MF → NF called the extension of f to F that fulfills

fF |M = f . The extension of semialgebraic maps enjoys the natural expected behavior

with respect to direct and inverse image, continuity, injectivity, surjectivity, bijectivity,

and so on (see [3, § 5.1-3]). Summarizing, ‘Every property that can be expressed in the

first-order language of ordered fields with parameters in R can be transferred to F ’

([3, 5.2.3]). We refer the reader to [7] and [3, § 5] for a complete study of the extension

to F . By [3, 7.3.1], the extension of semialgebraic functions to F induces a well-defined

R-monomorphism

iM,F : S(M, R) ↪→ S(MF , F), f 7→ fF .

This observation together with the evaluation homomorphism evMF ,p : S(MF , F)→ F ,

g 7→ g(p) for p ∈ MF provides the natural R-homomorphism ψp := evMF ,p ◦iM,F :
S(M, R)→ F .

For each i = 1, . . . , n, consider the ith projection πi : M → R, x := (x1, . . . , xn) 7→ xi .

Given an R-homomorphism ϕ : S(M, R)→ F , the point pϕ := (ϕ(π1), . . . , ϕ(πn)) ∈ Fn

will be called the core of ϕ. Our purpose is to understand under which conditions ϕ is

completely determined by its core or, in other words, when ϕ coincides with ψpϕ . We still

need some extra terminology.

We say that a point p ∈ Fn is adjacent to M if p ∈ NF for each locally closed

semialgebraic set N ⊂ Rn that contains M . The pro-constructible set M̂F of points of

Fn that are adjacent to M will be called the adjacency of M in Fn ; clearly, it holds

that MF ⊂ M̂F ⊂ Cl(M)F . Of course, if M is locally closed or if R = F , then MF = M̂F .
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We will see in Lemma 1.1 that the core of an R-homomorphism ϕ : S(M, R)→ F always

belongs to M̂F ; hence, in the case when M is locally closed, then pϕ ∈ MF . For further

properties of the set M̂F , see [22, I.3.20].

We will also need to measure ‘how much space’ a point p ∈ MF ‘fills’ in M (see

Example 1.5), and to that end we define the semialgebraic depth of p as

dM (p) := min{dim(N ) : N ⊂ M is a closed semialgebraic subset of M and p ∈ NF }.
(I.1)

As we state in (1.B.2), if M is closed and bounded in Rn , the semialgebraic depth dM (p)
has a further algebraic meaning: dM (p) = tr degR(R(p)), where R(p) denotes the smallest

subfield of F containing R and the coordinates of the tuple p.

Main results

It is clear that the core of an R-homomorphism S(M, R)→ F depends on how M is

embedded in Rn . Thus, a ‘good immersion’ of M in Rn increases the possibilities that the

core completely determines the corresponding R-homomorphism. Having this in mind, we

introduce the following concept. A semialgebraic set M ⊂ Rn is appropriately embedded

if it is bounded and for each point q ∈ Cl(M) \M the germ Mq is semialgebraically

connected and either Cl(M)q = Mq or dim(Cl(M)q \Mq) = dim(Mq)− 1. We will show in

Theorem 3.1 that every semialgebraic subset of Rn can be appropriately embedded in Rn .

We expect that this type of embedding has further applications than the ones described

in this article. After this preliminary exposition, we are ready to state our main results.

Lemma 1 (Substitution Lemma). Let p ∈ Fn be adjacent to M.

(i) If p ∈ MF , then ψp := evMF ,p ◦iM,F is the unique R-homomorphism S(M, R)→ F
whose core is p. In particular, if dCl(M)(p) = dim(MF,p), then p ∈ MF .

(ii) If M is appropriately embedded, p 6∈ MF and dCl(M)(p) = dim(MF,p)− 1, there exists

exactly one R-homomorphism ψp : S(M, R)→ F whose core is p. Moreover, for

each f ∈ S(M, R) there exists a semialgebraic set M ⊂ M f ⊂ Cl(M) such that p ∈
M f,F , f can be extended to f̂ ∈ S(M f , R), and ψp( f ) = f̂F (p).

(iii) If p 6∈ MF and dCl(M)(p) 6 dim(MF,p)− 2, there exist infinitely many

R-homomorphisms S(M, R)→ F whose core is p.

As MF = M̂F if M is locally closed, we deduce in this case, by Lemma 1(i) and

Lemma 1.1, that the R-homomorphisms S(M, R)→ F are evaluation homomorphisms.

Thus, there exists a bijection between MF and the set of R-homomorphisms

S(M, R)→ F . As one can expect, the most interesting case appears when M is not

locally closed.

Theorem 2 (Substitution Theorem I). Let ϕ : S(M, R)→ F be an R-homomorphism.

Then there exist

(i) an appropriately embedded semialgebraic set N ⊂ Rn and a semialgebraic embedding

h : N ↪→ M such that N0 := h(N ) is closed in M,

(ii) a point p ∈ Fn adjacent to N such that either p ∈ NF or dCl(N )(p) = dim(NF,p)− 1,
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satisfying that the following diagram is commutative:

f_

��

S(M, R)
ϕ //

j∗
��

F

f |N0 S(N0, R) h∗ // S(N , R)

ψp

OO

g � // g ◦ h

where ψp : S(N , R)→ F is the unique R-homomorphism from S(N , R) to F whose core

is p.

Of course, the decomposition provided in Theorem 2 is not unique, but this result shows

that every R-homomorphism ϕ : S(M, R)→ F is essentially a restriction homomorphism

composed with a point-evaluation homomorphism (via an intermediate R-isomorphism

induced by a semialgebraic homeomorphism). Namely, ϕ is determined by two objects

(see the proof of Theorem 2 for further details).

A fitting closed semialgebraic subset N0 ⊂ M such that

IM (N0) := { f ∈ S(M, R) : N0 ⊂ { f = 0}} ⊂ kerϕ.

A finite family {g1, . . . , gn} ⊂ S(N , R) such that p := (ϕ(g1), . . . , ϕ(gn)) ∈ Fn is

adjacent to N and either p ∈ NF or dCl(N )(p) = dim(NF,p)− 1.

This confirms the finite nature of the R-homomorphisms ϕ : S(M, R)→ F .

Ring of bounded semialgebraic functions. The situation for the ring of bounded

semialgebraic functions is quite different. Recall that a semialgebraic pseudo-

compactification of M is a pair (X,j) that consists of a closed and bounded semialgebraic

set X ⊂ Rn and a semialgebraic embedding j : M ↪→ X whose image is dense in X . A

crucial fact is that S∗(M, R) is the direct limit of the family constituted by the

rings of semialgebraic functions S(X, R), where (X,j) runs on the semialgebraic

pseudo-compactifications of M (see 1.A). We will use this together with Lemma 1(i)

applied to S(X, R) in order to understand the R-homomorphisms S∗(M, R)→ F . A

substantial difference using R-homomorphisms ϕ : S(M, R)→ F is that, if M is bounded,

the core of an R-homomorphism S∗(M, R)→ F belongs to Cl(M)F with no further

restrictions (compare Lemma 1.1 with Remark 1.2). In fact, if (X,j) is a semialgebraic

pseudo-compactification of M and ϕ : S(X, R)→ F is an R-homomorphism, then it can

be extended to the direct limit S∗(M, R) (of course this extension is rarely unique; see

Lemma 1.3 and Remark 1.4). A crucial fact proved in [13, Proof of Thm. 3. Step 2]

states the following.

Lemma and Definition 3. Let p be a prime ideal of S�(M, R). Then there exists a

semialgebraic pseudo-compactification (X,j) of M such that

qf(S(X, R)/(p∩S(X, R))) = qf(S�(M, R)/p).

We say that (X,j) is a brimming semialgebraic pseudo-compactification of M for p.
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Our main result for the bounded case, which also works for the ring S(M, R), is the

following.

Theorem 4 (Substitution Theorem II). Let ϕ : S�(M, R)→ F be an R-homomorphism,

and let (X,j) be a brimming semialgebraic pseudo-compactification of M for p := kerϕ.

Let p be the core of ψ := ϕ ◦j∗, and denote A := S(X, R)/(p∩S(X, R)). Then ψ induces

the homomorphism

ψ̂ : qf(A) = qf(S�(M, R)/p) ↪→ F,
[a]
[b] 7→

ψ(a)
ψ(b)

= a1,F (p)

a2,F (p)

and the following diagram is commutative:

qf(A) qf(S�(M, R)/p) �
� ψ̂ // F

A
?�

OO

� � j
∗

// S�(M, R)/p
?�

OO

+ �

ϕ

88

S(X, R) �
�

j∗
//

OO

ψ

EE

S�(M, R)

OO
ϕ

KK

In particular, ϕ is completely determined by p: if f ∈ S�(M, R), there exist a1, a2 ∈
S(X, R) such that a2,F (p) 6= 0, a2 f − a1 ∈ p, and ϕ( f ) = a1,F (p)

a2,F (p)
.

Proof. By Lemma 1, it holds that ψ = evX F ,p ◦iX,F . Note that ψ̂ : qf(A)→ F is the

unique homomorphism between the real closed fields qf(A) and F . On the other hand,

ϕ : S�(M, R) ↪→ F induces the homomorphism

ϕ̂ : qf(S�(M, R)/p) ↪→ F,
[ f ]
[g] 7→

ϕ( f )
ϕ(g)

.

Since qf(A) = qf(S�(M, R)/p), we have ϕ̂ = ψ̂ , and for each f ∈ S�(M, R) there exist

a1, a2 ∈ S(X, R) such that a2 6∈ p∩S(X, R) and a2 f − a1 ∈ p; in particular, ϕ(ai ) =
ψ(ai ) = ai,F (p) and a2,F (p) = ϕ(a2) 6= 0. Thus,

a2,F (p)ϕ( f )− a1,F (p) = ϕ(b)ϕ( f )−ϕ(a) = ϕ(b f − a) = 0;
that is, ϕ( f ) = a1,F (p)

a2,F (p)
, as required.

Remark. If ϕ : S�(M)→ A is an R-homomorphism into an R-algebra A, the first

isomorphism theorem provides the following canonical decomposition of ϕ:

S�(M) π−→ S�(M)/ kerϕ
ϕ∼= imϕ ↪→ A.

In particular, if A is an integral domain, the ideal p := kerϕ is prime, and so F :=
qf(S�(M)/p) is a real closed field that contains R as a subfield. Now, the results stated

above can be applied to the R-homomorphism ψ : S�(M) π−→ S�(M)/p ↪→ F induced

by ϕ.
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Theorem 2 is proved using Lemma 1, Theorem 4, and the theory of real closed rings [22].

The proof of Lemma 1 is based on a fruitful use of the real closure’s universal properties

of the ring of polynomials with coefficients in R and the crucial fact that semialgebraic

functions enjoy the following weak continuous extension property, which has its own

interest.

Theorem 5 (Weak continuous extension property). Suppose that the germ Mq is

semialgebraically connected for all q ∈ Cl(M). Then, for each f ∈ S(M, R), there exist an

open semialgebraic neighborhood V of M in Cl(M) and a semialgebraic set Y ⊂ Cl(M) \M
such that dim(Yq) 6 dim(Mq)− 2 for all q ∈ Y , and f can be extended continuously to

V \ Y .

Of course, if M has dimension 2, we may take Y = ∅ after shrinking V . However, this

possibility can no longer be extended for dimension > 3 (see Example 2.2). Namely, we

have the following.

Corollary 6 (Continuous extension property). Assume that M is two dimensional and

that the germ Mq is semialgebraically connected for all q ∈ Cl(M). Then, for each

semialgebraic function f ∈ S(M, R), there exists an open semialgebraic neighborhood V
of M in Cl(M) such that f can be extended continuously to V .

The article is organized as follows. In § 1, we present all basic notions and notation

used in this paper as well as some preliminary results. We give special attention to the

semialgebraic pseudo-compactifications of a semialgebraic set that play a special role in

this work. Reading can be started directly in § 2, with reference to the preliminaries only

when needed. The aim of § 2 is to prove Theorem 5 (in § 2.A), and the purpose of § 3

is to show that each semialgebraic set can be appropriately embedded. In § 4, we prove

Lemma 1 (in § 4.A) and Theorem 2 (in § 4.C).

1. Preliminaries on semialgebraic sets

In this section, we introduce some terminology, notation, and preliminary results that are

systematically used in this work. For each f ∈ S�(M, R) and each semialgebraic subset

N ⊂ M , we denote Z N ( f ) := {x ∈ N : f (x) = 0}. If N = M , we say that Z( f ) := Z M ( f ) is

the zero set of f . We denote the open ball of Rn with center x and radius ε with Bn(x, ε),
and the corresponding closed ball with Bn(x, ε). In some cases it will be useful to assume

that the semialgebraic set M we are working with is bounded. Such an assumption can

be done without loss of generality. Namely, the semialgebraic homeomorphism

h : Bn(0, 1)→ Rn, x 7→ x√
1−‖x‖2

induces an R-isomorphism S(M, R)→ S(h−1(M), R), f 7→ f ◦ h.

A crucial fact when dealing with the ring of semialgebraic functions on a semialgebraic

set M is that every closed semialgebraic subset Z of M is the zero set Z(h) of a (bounded)

semialgebraic function h on M ; take for instance h := min{1, dist(·, Z)} ∈ S∗(M, R).
Local closedness has been revealed in the semialgebraic setting as an important

property for the validity of results which are in the core of semialgebraic geometry.
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If M ⊂ Rn is a semialgebraic set, then Cl(M) and U := Rn \ (Cl(M) \M) are also

semialgebraic sets. In the case when M is additionally locally closed, then U is open

in Rn , and so M = Cl(M)∩U can be written as the intersection of a closed and an open

semialgebraic subset of Rn . Consider the subset

ρ(M) := Cl(Cl(M) \M)∩M. (1.1)

It follows from [9, 9.14–9.21] that the semialgebraic set

Mlc := M \ ρ(M) = Cl(M) \Cl(Cl(M) \M) (1.2)

is the largest locally closed and dense subset of M , and it coincides with the set of points

of M that have a closed and bounded semialgebraic neighborhood in M .

An elementary but important fact states that the core of an R-homomorphism

S(M, R)→ F is adjacent to M . Its proof is inspired partly by the proof of Efroymson’s

substitution theorem for Nash functions [3, 8.5.2] (see also [12, 6.3] for a generalization).

Lemma 1.1. Let ϕ : S(M, R)→ F be an R-homomorphism, and let p be the core of ϕ.

Then p is adjacent to M.

Proof. Write Cl(M) =⋃r
i=1{gi1 > 0, . . . , gis > 0} for some gi j ∈ R[x]. Suppose first that

p 6∈ Cl(M)F ; we may assume that gi1,F (p) < 0 for i = 1, . . . , r . Consider the semialgebraic

function g :=∏r
i=1(gi1− |gi1|)2, and observe that g|M = 0; hence, ϕ(g) = 0. However,

since ϕ is an R-homomorphism and |gi j | =
√

g2
i j , we have ϕ(gi j ) = gi j,F (p) and ϕ(|gi j |) =

|gi j,F (p)|. Thus,

0 = ϕ(g) =
r∏

i=1

(gi1,F (p)− |gi1,F (p)|)2 > 0,

because gi1,F (p) < 0 for i = 1, . . . , r , which is a contradiction. We conclude that p ∈
Cl(M)F .

Now let N be a locally closed semialgebraic set that contains M . Then N = Cl(N )∩U ,

where U is the open semialgebraic set Rn \ (Cl(N ) \ N ); observe that M ⊂ U . As Cl(M) ⊂
Cl(N ), it is enough to check that p ∈ UF .

Indeed, write Rn \U :=⋃k
i=1{hi1 > 0, . . . , hi` > 0}, and consider the semialgebraic

function h :=∏k
i=1

∑`
j=1(hi j − |hi j |)2. Since Z(h)∩M = (Rn \U )∩M = ∅, we have that

h is a unit in S(M, R), and so 0 < ϕ(h) = hF (p); hence, p ∈ Fn \ Z(hF ) = UF , as

required.

A crucial tool when dealing with rings of bounded semialgebraic functions is the use

of semialgebraic pseudo-compactifications.

1.A. Semialgebraic pseudo-compactifications of a semialgebraic set

Let (X,j) be a semialgebraic pseudo-compactification of M . It holds that S(X, R) =
S∗(X, R), since the image of a bounded and closed semialgebraic set under a semialgebraic

function is again bounded and closed. The embedding j induces an R-monomorphism

j∗ : S(X, R) ↪→ S�(M, R), f 7→ f ◦j, and we denote a∩S(X, R) := (j∗)−1(a) for every

ideal a of S�(M, R). The following properties shown in [13, § 1] are decisive.
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(1.A.1) For each finite family { f1, . . . , fr } ⊂ S∗(M, R) there exists a semialgebraic

pseudo-compactification (X,j) of M and semialgebraic functions F1, . . . , Fr ∈ S(X, R)
such that fi = Fi ◦j.

(1.A.2) Let FM be the collection of all semialgebraic pseudo-compactifications of M .

Given (X1,j1), (X2, j2) ∈ FM , we say that (X1,j1) 4 (X2, j2) if and only if there exists

a (unique) continuous surjective map ρ : X2 → X1 such that ρ ◦j2 = j1; the uniqueness

of ρ follows because ρ|M = j1 ◦ (j2|M )−1 and M is dense in X i . It holds that (FM ,4) is

a directed set.

(1.A.3) We have a collection of rings {S(X, R)}(X,j)∈FM and R-monomorphisms

ρ∗X1,X2
: S(X1, R)→ S(X2, R), f 7→ f ◦ ρ

for (X1,j1) 4 (X2,j2) such that

• ρ∗X1,X1
= id and

• ρ∗X1,X3
= ρ∗X2,X3

◦ ρ∗X1,X2
if (X1,j1) 4 (X2,j2) 4 (X3,j3).

We conclude that the ring S∗(M, R) is the direct limit of the directed system

〈S(X, R), ρ∗X1,X2
〉 together with the homomorphisms j∗ : S(X, R) ↪→ S∗(M, R), where

(X,j) ∈ FM . We write S∗(M, R) = lim−→ S(X, R).

(1.A.4) On the other hand, the ring S(M, R) is the localization S∗(M, R)W of S∗(M, R)
at the multiplicative set W of those functions f ∈ S∗(M, R) such that Z M ( f ) = ∅. In

particular, if p is a prime ideal of S∗(M, R) that does not meet W, then qf(S∗(M, R)/p) =
qf(S(M, R)/pS(M, R)).

Remark 1.2. Proceeding similarly to the first part of the proof of Lemma 1.1, one may

prove that, if M is bounded and ϕ : S∗(M, R)→ F is an R-homomorphism, then the

core p := (ϕ(π1), . . . , ϕ(πn)) of ϕ belongs to Cl(M)F . We need the boundedness of M to

guarantee that the polynomial functions on M are bounded functions; that is, P(M) ↪→
S∗(M, R).

On the other hand, we cannot adapt the second part of the proof of Lemma 1.1 to

the ring S∗(M, R); that is, we cannot ensure that p is adjacent to M , because a function

f ∈ S∗(M, R) with empty zero set need not be a unit. Thus, we can only ensure that

p ∈ Cl(M)F .

As a kind of converse of the previous remark, we propose the following result.

Lemma 1.3. Assume that M is bounded, and let X := Cl(M) and p ∈ X F . Then there

exists an R-homomorphism ϕ : S∗(M, R)→ F whose core is p.

Proof. By the curve selection lemma [3, 2.5.5], there exists a semialgebraic path α :
[0, 1]F → Fn such that α(0) = p and α((0, 1]F ) ⊂ MF . Consider the map

ϕ : S∗(M, R)→ F, f 7→ lim
t→0+

( fF ◦α)(t).
Once we guarantee that limt→0+( fF ◦α)(t) exists, it is clear that ϕ is an R-homomorphism

whose core is p.
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Indeed, as the graph of g := fF ◦α is a one-dimensional semialgebraic subset of F2,

it is a finite union of singletons and one-dimensional Nash manifolds (see [3, 2.9.10]);

hence, we may assume after shrinking the domain of g that the restriction of g to (0, 1)F
is Nash. If g is constant on (0, 1)F , the existence of the limit is clear. Otherwise, the zero

set of g′ is finite, and, after shrinking the domain of g, we may assume that it is empty

and without loss of generality that g is decreasing on (0, 1)F . As g is a bounded function,

g((0, 1]F ) = (λ, g(1)] for some λ ∈ F (use [3, 2.1.7]), and so limt→0+ g(t) = λ.

Remark 1.4. Notice that each pair of essentially different semialgebraic paths α1, α2 in

MF through the point p defines different R-homomorphisms ϕi : S∗(M, R)→ F whose

core is p.

1.B. Semialgebraic depth and transcendence degree

We recall a different point of view for the concept of semialgebraic depth devised in

[13, § 2] (see also [11] for a deeper study of this invariant). Given a prime ideal p of

S(M, R), we define the semialgebraic depth of p as

dM (p) := min{dim(Z( f )) : f ∈ p}.
Now, given a point p := (p1, . . . ,pn) ∈ MF , consider the prime ideal p(p) := { f ∈
S(M, R) : fF (p) = 0}. As one can check, it holds that dM (p) = dM (p(p)) (see (I.1)). On

the other hand, let F be the real closed field qf(S(M, R)/p), and let p ∈ Fn be the core

of the R-homomorphism

ϕ : S(M, R)→ S(M, R)/p ↪→ F.

Then p = p(p), and so dM (p) = dM (p).

Recall that an ideal a of S(M, R) is a z-ideal if a function f ∈ S(M, R) belongs to a

whenever there exists g ∈ a such that Z(g) ⊂ Z( f ). If M is locally closed, all radical ideals

of S(M, R) are z-ideals [3, 2.6.6]. The following properties are proved in [13, Thm. 3].

(1.B.1) Let p be a prime z-ideal of S(M, R). Then dM (p) = tr degR(S(M, R)/p).

(1.B.2) Let X be a closed and bounded semialgebraic set, and let p be a prime ideal of

S(X, R). Then

dX (p) = tr degR(R[x]/(p∩ R[x])) = tr degR(S(X, R)/p).

In particular, if p ∈ X F and R(p) is the smallest subfield of F that contains R and the

coordinates of the tuple p,

dX (p) = tr degR(R(p)) = tr degR(qf(S(X, R)/p(p))).

The following example illustrates the algebraic interpretation of the semialgebraic

depth.

Example 1.5. Let F := R({t∗}) be the field of meromorphic Puiseux series with

coefficients in R. Consider the point p := (t, et) ∈ F2. Clearly, tr degR(R(t, et)) = 2,
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and let us check that dR2(p) = 2. Indeed, we have to prove that, if N ⊂ R2 is a closed

semialgebraic subset such that p ∈ NF , then it has dimension 2. Otherwise, choose a

one-dimensional closed semialgebraic set N such that p ∈ NF . By [3, 2.9.10], we may

assume that N is the union of two points and a Nash manifold Nash diffeomorphic

to the interval (0, 1). Thus, there exists a non-zero polynomial P ∈ R[t,x] such that

N ⊂ Z(P); hence, P|NF = 0, and so P(t, et) = 0, which is a contradiction, since t and

et are algebraically independent over R.

2. Weak continuous extension of a semialgebraic function

The purpose of this section is to prove Theorem 5. We begin with some illustrating

examples.

Examples 2.1. (i) Let M := (R2 \ {y = 0})∪ {(0, 0)}, and let f : M \ {(0, 0)} → R be the

semialgebraic function that maps {y > 0} onto 1 and {y < 0} onto 0. Since f is bounded

on M \ {(0, 0)}, the semialgebraic map g := (x2+ y2) f can be extended continuously to

the origin. However, g cannot be extended continuously to any neighborhood of the origin

in R2 = Cl(M).
(ii) Let M ′ := {(y− x)(y+ x) > 0} ∪ {(0, 0)}, and consider the bounded semialgebraic

function

f : R2 \ {xy = 0} → R, (x, y) 7→ xy
|xy| .

Clearly, h := x f ∈ S(M, R) can be extended continuously to {x = 0}. Consider the

semialgebraic maps

ϕ : M → M ′, (x, y) 7→ (x, y+ h(x, y)) and ψ : M ′→ M, (x, y) 7→ (x, y− h(x, y)),

which are mutually inverse. Thus, M and M ′ are semialgebraically homeomorphic, and

so S(M, R) and S(M ′, R) are isomorphic. It follows from the following result that each

g ∈ S(M ′, R) can be extended continuously to a neighborhood of the origin in Cl(M) =
{(y− x)(y+ x) > 0}.

Triangulation of semialgebraic sets

We will use often the following fact. Let X ⊂ Rn be a bounded and closed semialgebraic

set, and let {S1, . . . , Sr } be a family of semialgebraic subsets of X . Then there exist a

finite simplicial complex K and a semialgebraic homeomorphism 8 : |K | → X such that

the restriction 8|σ 0 : σ 0 → Rn is a Nash embedding for each σ ∈ K and each set Si is the

union of finitely many open simplices σ 0 of K (see [3, 9.2.1, 9.2.3] for further details).

2.A. Proof of Theorem 5

Consider the bounded semialgebraic function g := f
1+| f | , which satisfies |g(x)| < 1 for all

x ∈ M . Note that, since f = θ(g) where θ : (−1, 1)→ R, t 7→ t
1−|t | , it is enough to prove

the statement for g.

Strategy of the Proof. First, we construct the open neighborhood V of M in Cl(M)
quoted in the statement. Next, we construct the set Y in several steps by describing the
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different types of problematic points to extend g continuously and proving that each of

these sets Yi has local dimension upperly bounded by the local dimension of M minus 2.

We also prove for technical reasons that V \ (Y ∪M) is locally closed. Finally, we construct

the continuous (semialgebraic) extension of g to V \ Y .

Step 1. General notation and construction of the open semialgebraic neighborhood V .

We assume that M is bounded. Notice that M ′ := graph(g) ⊂ M × R is a bounded

semialgebraic set, and let X := Cl(M ′). Consider the projections

π : Rn+1 → Rn, (x, xn+1) 7→ x and πn+1 : Rn+1 → R, (x1, . . . , xn, xn+1) 7→ xn+1.

Define S := {x ∈ X : πn+1(x) = ±1} and % := π |X ; observe that M ′ ∩ S = ∅.

We claim the following. The fiber %−1(p) is a singleton for all p ∈ M .

Indeed, suppose by contradiction that there exists a point (q, λ) ∈ X such that

q ∈ M and g(q) 6= λ. By the curve selection lemma [3, 2.5.5], there exists a continuous

semialgebraic path α : [0, 1] → Rn+1 such that α(0) = (q, λ) and α((0, 1]) ⊂ M ′. Define

β := π ◦α : [0, 1] → M , and observe that α|(0,1] = (β|(0,1], g ◦β|(0,1]), β(0) = q, and

α(0) = (q, λ), where λ 6= g(q), which is against the continuity of g at q.

Now, since S is a bounded and closed semialgebraic set, so is C := %(S). Define V :=
Cl(M) \C , which is an open semialgebraic subset of Cl(M), and observe that M ⊂ V
because %−1(p) is a singleton and |g(p)| < 1 for each p ∈ M .

Step 2. Construction of the semialgebraic set Y .

S2.a. Define Y0 := {p ∈ Cl(M) : dim(%−1(p)) = 1}. We claim that dim(Y0,p) 6 dim(Mp)−
2 for all p ∈ Cl(M), and that the fiber %−1(q) is a singleton for each q ∈ Cl(M) \ Y0.

Indeed, assume by contradiction that there exists p ∈ Cl(M) such that dim(Y0,p) >
dim(Mp)− 1, and let U be an open semialgebraic neighborhood of p such that dim(Y0 ∩
U ) > dim(M ∩U )− 1. Notice that, since %−1(x) has dimension 1 for each x ∈ Y0 ∩U ,

dim(%−1(Y0 ∩U )) = dim(Y0 ∩U )+ 1 > dim(M ∩U ).

On the other hand, since M ∩ Y0 = ∅ and %−1(M) = M ′,

%−1(Y0 ∩U ) ⊂ (X \M ′)∩ %−1(U ) ⊂ (Cl(M ′ ∩ %−1(U )) \ (M ′ ∩ %−1(U )));
hence, by [3, 2.8.13],

dim(M ∩U ) 6 dim(%−1(Y0 ∩U )) < dim(M ′ ∩ %−1(U )) = dim(M ∩U ),

which is a contradiction. Thus, dim(Y0,p) 6 dim(Mp)− 2 for all p ∈ Cl(M).
Fix a point q ∈ Cl(M) \ Y0, and let us check that %−1(q) is a singleton. Since

q 6∈ Y0, we know that %−1(q) = {z1, . . . , zs} is a finite set. Choose pairwise disjoint

bounded and closed semialgebraic sets Ki ⊂ Rn+1 such that zi ∈ Int(Ki ). Let K := X \⋃s
i=1 Int(Ki ), which is a closed and bounded semialgebraic set, and so it is also π(K ). As

%−1(q) = {z1, . . . , zs}, we deduce that q 6∈ π(K ). Define W := Rn \π(K ), which is an open

semialgebraic subset of Rn that contains q and satisfies %−1(W ∩Cl(M)) ⊂⋃s
i=1 X ∩ Ki ;

hence,

W ∩M ⊂
s⋃

i=1

π(X ∩ Ki )∩M. (2.1)
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We know that %−1(y) is a singleton for each y ∈ M ; hence, as Ki ∩ K j = ∅ if i 6= j , we

deduce that

π(X ∩ Ki )∩π(X ∩ K j ) ⊂ Cl(M) \M if i 6= j.

Moreover, each set π(X ∩ Ki )∩M is non-empty and closed in M . Thus, since Mq is

semialgebraically connected, we deduce that s = 1, and so %−1(q) is a singleton.

S2.b. Let (K ,8) be a semialgebraic triangulation of X compatible with M ′, X \M ′,
%−1(V \M), and %−1(Y0) such that8|σ 0 : σ 0 → S0 := 8(σ 0) ⊂ Rn+1 is a Nash embedding

for each σ ∈ K . Let F be the collection of all simplices τ ∈ K such that

• T 0 := 8(τ 0) ⊂ %−1(V \ (M ∪ Y0)) and

• there exists a point x ∈ T 0 satisfying dim(T 0
x ) = dim(M ′x )− 1.

We claim the following. If τ ∈ F, then dim(T 0
z ) = dim(M ′z)− 1 and Xz \M ′z = T 0

z for all

z ∈ T 0.

Indeed, suppose there exists a point z′ ∈ T 0 such that dim(T 0
z′ ) 6 dim(M ′z′)− 2. Then

there exists a simplex σ ′ ∈ K such that z′ ∈ S′ := 8(σ ′) and dim(σ ′) = dim(M ′z′) because

(K ,8) is compatible with M ′ and X . As z′ ∈ T 0 ∩ S′, we deduce that τ is a proper face

of σ ′, and so

dim(M ′z′) = dim(σ ′) 6 dim(M ′x ) = dim(T 0
x )+ 1

= dim(T 0
z′ )+ 1 6 dim(M ′z′)− 2+ 1 = dim(M ′z′)− 1,

which is a contradiction. Thus, dim(T 0
z ) = dim(M ′z)− 1 for all z ∈ T 0.

Now, let z ∈ T 0, and let σ ∈ K be a simplex such that z ∈ S := 8(σ) and

S0 := 8(σ 0) ⊂ M ′. Since z ∈ T 0 ∩ S, we deduce that τ ⊂ σ is a (proper) face of σ ,

and as dim(T 0
z ) = dim(M ′z)− 1 and T 0 ⊂ X \M ′, we deduce that dim(S0

z ) = dim(M ′z).
Observe that, since z ∈ T 0 and dim(T 0

z )= dim(M ′z)−1, we have dim(T 0
z )6 dim(Xz \M ′z)

6 dim(M ′z)− 1 = dim(T 0
z ), and so dim(T 0

z ) = dim(Xz \M ′z); hence, T 0
z = Xz \M ′z for all

z ∈ T 0.

S2.c. Let G be the collection of all simplices ε ∈ K such that E0 := 8(ε0) ⊂ %−1

(V \ (M ∪ Y0)), and define Y1 :=
⋃
ε∈G\F %(E0). We claim that dim(Y1,p) 6 dim(Mp)− 2

for all p ∈ Cl(M).
Let p ∈ Cl(Y1), and suppose that dim(Y1,p) > dim(Mp)− 1. Pick a point q ∈ Y1 close

to p such that dim(Y1,q) = dim(Y1,p) and dim(Mq) 6 dim(Mp). Since q ∈ Y1 ⊂ Cl(M) \M ,

we have Y1,q ⊂ Cl(M)q \Mq ; hence, by [3, 2.8.13], dim(Y1,q) 6 dim(Mq)− 1. Thus,

dim(Mq) 6 dim(Mp) 6 dim(Y1,p)+ 1 = dim(Y1,q)+ 1 6 dim(Mq)− 1+ 1 = dim(Mq),

and so dim(Y1,q) = dim(Mq)− 1. As Y1 ⊂ V \ Y0, we deduce that %−1(q) is a singleton {z}.
Let ε1, . . . , εr be simplices in G \F such that z ∈ E j = 8(ε j ). Notice that dim(E0

j,z) 6
dim(M ′z)− 2 for each j = 1, . . . , r . Moreover, as %|M ′ : M ′→ M is a semialgebraic

homeomorphism and %(M ′z) ⊂ Mq , we deduce that dim(M ′z) = dim(%(M ′z)) 6 dim(Mq).

Thus,

dim(π(E0
j )q) 6 dim(π(E0

j )) 6 dim(E0
j ) = dim(E0

j,z) 6 dim(M ′z)− 2 6 dim(Mq)− 2,

and, since Y1,q =
⋃r

j=1 π(E
0
j )q , we deduce that dim(Mq)− 1 = dim(Y1,q) 6 dim(Mq)− 2,

which is a contradiction. Thus, dim(Y1,p) 6 dim(Mp)− 2 for all p ∈ Cl(M).
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S2.d. Define Y := Cl(Y0 ∪ Y1) \M that satisfies dim(Yp) 6 dim(Mp)− 2 for all p ∈ Cl(M).

Step 3. Construction of the continuous extension G of g to V \ Y . Write %−1(q) =
(q,G(q)) for all q ∈ V \ Y , and observe that G|M = g. We claim that G : V \ Y → R
is continuous, and that consequently it is a semialgebraic function.

S3.a. Since G|Mlc = g|Mlc is continuous and Mlc is open in Cl(M), it is enough to check

the continuity of G at the points of V \ (Y ∪Mlc).

S3.b. We first check the continuity at the points q ∈ V \ (Y ∪M) = V \ (Cl(Y )∪M).
Choose a point q ∈ V \ (Y ∪M). We begin with the construction of fitting

neighborhoods of q in Cl(M) and ρ−1(q) in X .

We know that %−1(q) = {x} is a singleton and that there exists a simplex τ ∈ K such

that x ∈ T 0 and T 0
x = Xx \M ′x ; recall also that dim(T 0

z ) = dim(M ′z)− 1 for all z ∈ T 0.

Let σ1, . . . , σm ∈ K be the simplices of K such that dim(σi ) = dim(M ′x ) and τ ⊂ σi . The

condition dim(T 0
z ) = dim(M ′z)− 1 for all z ∈ T 0 guarantees that T 0 t⊔m

j=1 S0
i is an open

neighborhood of T 0 in X . Define C1 := X \ (T 0 t⊔m
j=1 S0

i ), which is a closed semialgebraic

set, and so %(C1) is also a closed semialgebraic set. Since %−1(q) = {x} and x 6∈ C1,

we deduce that q ∈ X \ %(C1). Let U 1 be a closed semialgebraic neighborhood of q in

Cl(M) contained in V \ (Cl(Y )∪ %(C1)) such that U 1 ∩M is semialgebraically connected

(use that the germ Mq is semialgebraically connected). Thus, W := %−1(U 1) is a closed

semialgebraic neighborhood of x in X contained in T 0 t⊔m
j=1 S0

i .

Notice that the restriction %|W : W → U 1 is a semialgebraic homeomorphism because

W is closed and bounded and %|W is a bijective (continuous) semialgebraic map. Let us

check now that W \ T 0 is semialgebraically connected.

Indeed, since T 0
z = Xz \M ′z for each z ∈ T 0, we deduce that (X \M ′)∩W = T 0 ∩W ,

and so

%(W \ T 0) = %(W \ (X \M ′)) = %(W ∩M ′) = U 1 ∩M.

As U 1 ∩M is semialgebraically connected, so is W \ T 0. Since S0
i is open, S0

i ∩ S0
j = ∅ if

i 6= j , and S0
i ∩W = ∅, we deduce that m = 1 and T 0 ∪ S0

1 is an open neighborhood of x
in X . As %|−1

U 1
(z) = (z,G|U 1

(z)) and U 1 is a semialgebraic neighborhood of q, we deduce

that G is continuous at q because %|−1
U 1

is continuous.

S3.c. To finish, let us prove that G is continuous at all points of M \Mlc. Suppose by

contradiction that there exists a point p ∈ M \Mlc such that G is not continuous at p.

Then we can find ε > 0 such that p is adherent to the semialgebraic set D := {y ∈ V \
Y : |G(p)−G(y)| > ε}. By the curve selection lemma, there exists a semialgebraic path

α : [0, 1] → Rn such that α(0) = p and α((0, 1]) ⊂ D. On the other hand, since G|M = g
is continuous, there exists δ > 0 such that |G(x)−G(p)| < ε

2 for each x ∈ M ∩Bn(p, δ).
Shrinking the domain of α, we may assume that imα ⊂ Bn(p, δ). Since im(α) ⊂ Cl(M)∩
Bn(p, δ), there exists by the curve selection lemma a semialgebraic path β : [0, 1] → Rn

such that β(0) = α(1) and β((0, 1]) ⊂ M ∩Bn(p, δ). Thus,

ε < |G(p)−G(α(1))| = lim
t→0+
|G(p)−G(β(t))| 6 ε

2
,

which is a contradiction.
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Hence, g ∈ S(M, R) can be extended to a semialgebraic function G ∈ S(V \ Y, R), as

required.

The following example shows that the previous result is sharp.

Example 2.2. Consider the semialgebraic set M := {x − y > 0, y > 0} ∪ {(0, 0, 0)} ⊂ R3

and the bounded semialgebraic function f : M \ {(0, 0, 0)} → R, (x, y, z) 7→ x−y
x . Observe

that M is appropriately embedded and that g := z f can be extended continuously to the

origin. However, g cannot be extended to any neighborhood of the origin in Cl(M),
because such extension should value z on the semialgebraic set Cl(M)∩ {y = 0} and 0 on

the semialgebraic set Cl(M)∩ {x − y = 0}, which contradicts the continuity of g.

3. Appropriate embedding of semialgebraic sets

In the introduction, we presented the appropriately embedded semialgebraic sets, and our

aim in this section is to prove that every semialgebraic set M ⊂ Rn can be appropriately

embedded. The proof of this result requires some initial preparation. We denote by η(M)
the set of points q ∈ Cl(M) \M such that either 0 6 dim(Cl(M)q \Mq) < dim(Mq)− 1 or

Mq is not semialgebraically connected. Obviously, M is appropriately embedded if and

only if η(M) = ∅. Moreover, η(M) is a semialgebraic set. Only the semialgebraicity of the

set of all points x ∈ Cl(M) \M such that the germ Mx is not semialgebraically connected

requires some comment: this holds by [14, 4.2] (although this result is stated for the case

R = R, the same proof works for an arbitrary real closed field R).

Theorem 3.1 (Appropriate embedding). Assume that M ⊂ Rn is bounded. Then there

exists a neighborhood U of η(M) such that N := M \U is appropriately embedded as

well as a surjective semialgebraic map h : Cl(N )→ Cl(M) such that h|N : N → M is a

semialgebraic homeomorphism.

We begin with the inspiring particular case when η(M) is closed, whose proof is strongly

based on [3, 9.4.1, 9.4.4].

Proof of Theorem 3.1 when η(M) is closed. The proof is conducted in several steps.

Initial preparation. Consider the semialgebraic sets S1 := Cl(M) \ η(M) and S2 := M ,

which clearly have the same closure. Let B be a closed ball centered at the origin of

radius large enough to obtain Cl(M) ⊂ B. Consider the semialgebraic function f :=
dist(·, η(S2)) ∈ S(B, R), as well as the semialgebraic sets S1 and S2; since η(S2) is closed,

we have Z( f ) = η(S2). One can prove the following. There exist ε > 0, semialgebraic sets

A1, A2 ⊂ f −1(ε), and a semialgebraic map

θ : [0, ε]× f −1(ε)→ f −1([0, ε])
such that the restriction

θ |(0,ε] : (0, ε]× f −1(ε)→ f −1((0, ε])
is a semialgebraic homeomorphism, the composition π := f ◦ θ : (0, ε]× f −1(ε)→ (0, ε]
is the projection onto the first factor, θ(ε, x) = x for all x ∈ f −1(ε), and θ((0, ε]× Ai ) =
Si ∩ f −1((0, ε]).
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To that end, proceed similarly to the proof of [3, 9.4.4], but taking care of the

semialgebraic sets Si by using the triangulability of the semialgebraic function f
compatible with the semialgebraic sets S1 and S2 [3, 9.4.1].

Let us identify the semialgebraic sets Ai . Given a semialgebraic set T ⊂ Rn and δ > 0,

we denote

T[0,δ] := {x ∈ T : dist(x, η(S2)) 6 δ} = T ∩ f −1([0, δ]),
T{δ} := {x ∈ T : dist(x, η(S2)) = δ} = T ∩ f −1(δ).

We write

ζ := θ |−1
(0,ε] : f −1(0, ε] → (0, ε]× f −1(ε), x 7→ (ζ1(x), ζ2(x)).

Now, given 0 < δ 6 ε, we have

{δ}× f −1(ε) = π−1(δ) = θ−1( f −1(δ)) and so f −1(δ) = θ({δ}× f −1(ε)).

Thus, f −1(ε) is semialgebraically homeomorphic to f −1(δ), and it holds that

ζ1( f −1(δ)) = {δ}; in particular, ζ1(x) = dist(x, η(S2)) for all x ∈ f −1((0, ε]). Moreover,

Ai = θ({ε}× Ai ) = θ(({ε}× f −1(ε))∩ ((0, ε]× Ai ))

= f −1(ε)∩ Si ∩ f −1((0, ε]) = Si ∩ f −1(ε) = Si,{ε};
hence, Ai = Si,{ε} and A1 = Cl(A2). So the semialgebraic sets (0, ε]× Si,{ε} and Si,[0,ε] are

semialgebraically homeomorphic.

Step 1. Construction of the semialgebraic homeomorphisms. Consider the semialgebraic
maps

g : S1 → S1 \ S1,[0, ε2 ], x 7→


x if x ∈ S1 \ S1,[0,ε],

θ

(
ε

2
+ dist(x, η(S2))

2
, ζ2(x)

)
if x ∈ S1,[0,ε],

h : Cl(S1 \ S1,[0, ε2 ])→ Cl(S1), x 7→
 x if x ∈ Cl(S1 \ S1,[0,ε]),

θ(2 dist(x, η(S2))− ε, ζ2(x)) if x ∈ Cl(S1,[0,ε] \ S1,[0, ε2 ]).

As θ(ε, x) = x for all x ∈ f −1(ε), the semialgebraic maps g, h are well defined at

the ‘conflictive points’ of the set S1,{ε}. Notice that h ◦ g = idS1 and g ◦ h|S1\S1,[0, ε2 ]
=

idS1\S1,[0, ε2 ]
; hence, Si and Si \ Si,[0, ε2 ] are semialgebraically homeomorphic. Moreover, as

Cl(S1 \ S1,[0, ε2 ]) is bounded and closed, so is h(Cl(S1 \ S1,[0, ε2 ])), and, since h(S1 \ S1,[0, ε2 ]) =
S1, we conclude that h is surjective.

Write N := S2 \ S2,[0, ε2 ] = M \ f −1([0, ε2 ]). Consider the open cover of Cl(N ):

Cl(N ) =
(

Cl(N ) \ f −1
([

0,
ε

2

]))
∪ (Cl(N )∩ f −1([0, ε)))).

Step 2. For each point q ∈ Cl(N )∩ f −1([0, ε)), the germ Nq is semialgebraically

connected, and either Cl(N )q = Nq or dim(Cl(N )q \ Nq) = dim(Nq)− 1.

Indeed, fix q ∈ Cl(N )∩ f −1([0, ε)), and observe that ε
2 6 dist(q, η(S2)) < ε. Clearly, the

semialgebraic set N[0,ε] = S2,[0,ε] \ S2,[0, ε2 ] satisfies Nq = N[0,ε],q and we obtain that

ζ |Cl(N[0,ε]) : Cl(N[0,ε])→
[ε

2
, ε
]
× A1, x 7→ (dist(x, η(S2)), ζ2(x))
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h

h(x)
x

Figure 1. Action of the semialgebraic map h : Cl(S1 \ S1,[0, ε2 ])→ S1.

is a semialgebraic homeomorphism; furthermore, ζ(N[0,ε]) = ( ε2 , ε]× A2. Let U be a

neighborhood of q in Cl(N[0,ε]). Then there exists a semialgebraically connected open

semialgebraic subset V1 ⊂ A1 and ε
2 6 δ1 < δ2 < ε such that θ([δ1, δ2)× V1) ⊂ U is

a neighborhood of q in Cl(N[0,ε]). Moreover, since for each p ∈ Cl(S2) \ η(S2) the

germ S2,p is semialgebraically connected, we may assume that V2 := V1 ∩ A2 is also

semialgebraically connected, and, since for each p ∈ Cl(S2) \ η(S2) either Cl(S2)p = S2,p
or dim(Cl(S2)p \ S2,p) = dim(S2,p)− 1, we deduce that either A1,z = A2,z or dim(A2,z \
A1,z) = dim(A1,z)− 1 for each z ∈ A2 \ A1; hence, we may assume that either V1 = V2 or

dim(V1 \ V2) = dim(V1)− 1. Observe that dim(Vi ) = dim(Nq)− 1.

Moreover, W1 := θ([δ1, δ2)× V1) is a semialgebraic neighborhood of q in Cl(N[0,ε]), and

N ∩W1 = N[0,ε] ∩W1 =


θ([δ1, δ2)× V2) if δ1 >

ε

2
,

θ
((ε

2
, δ2

)
× V2

)
if δ1 = ε

2
because θ({ ε2 }× A2) = S2,{ ε2 }. As θ((δ1, δ2)× V2) is semialgebraically connected, we deduce

that Nq is also semialgebraically connected. Moreover, we get

(Cl(N ) \ N ) ∩ W1 = (Cl(N[0,ε]) \ N[0,ε])∩W1 = W1 \ (N[0,ε] ∩W1)

=


θ([δ1, δ2)× (V1 \ V2)) if

ε

2
< δ1,

θ
({ε

2

}
× V1

)
∪ θ([δ1, δ2)× (V1 \ V2)) if

ε

2
= δ1,

which is either empty or has dimension dim(Nq)− 1.

Step 3. For each q ∈ Cl(N ) \ f −1([0, ε2 ]), the germ Nq is semialgebraically connected, and

either Cl(N )q = Nq or dim(Cl(N )q \ Nq) = dim(Nq)− 1.

Indeed,

q ∈ Cl(N ) \ f −1
([

0,
ε

2

])
⊂ Cl(S2) \ f −1

([
0,
ε

2

])
⊂ Cl(S2) \ η(S2);

hence, S2,q = (M \ f −1([0, ε2 ]))q = Nq , and so Cl(S2)q = Cl(N2)q . But, since S2,q is

semialgebraically connected if q ∈ Cl(S2) \ η(S2), the same happens to Nq . Again q ∈
Cl(S2) \ η(S2) implies that either Cl(S2)q = S2,q (and so Cl(N )q = Nq) or dim(Cl(S2)q \
S2,q) = dim(S2,q)− 1 (and so dim(Cl(N )q \ Nq) = dim(Nq)− 1), as required.
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3.A. Basics on tubular neighborhoods for open simplices

The proof of Theorem 3.1 in the general case when η(M) is not necessarily closed

is harder, and it requires the use of a suitable triangulation of M as well as fitting

tubular neighborhoods of some of its open simplices. To construct them, we present

some preliminary results.

Lemma and Definition 3.2. Let τ ⊂ Rd be a d-dimensional simplex. Denote the faces of τ

of dimension d − 1 with ϑ1, . . . , ϑd+1. Then there exists a unique point pτ ∈ τ such that

dist(p, ϑ1) = dist(p, ϑi ) for i = 1, . . . , d + 1. Moreover, d(pτ , ∂τ ) = maxx∈τ {d(x, ∂τ )}, and

this maximum is just attained at pτ . We call pτ the incenter of τ .

Proof. Let p1, . . . , pd , pd+1 be the vertices of τ ; we may assume that pd+1 = 0. Consider

a linear change of coordinates f := ( f1, . . . , fd) : Rd → Rd that transforms pi into the

point (0, . . . , 0, 1(i), 0, . . . , 0) for i = 1, . . . , d (and pd+1 = 0 into 0). Then

f (τ ) =
{

x1 > 0, . . . , xd > 0, 1−
d∑

i=1

xi > 0

}

and so τ =
{

f1 > 0, . . . , fd > 0, 1−
d∑

i=1

fi > 0

}
.

Write fi (x) := 〈ui , x〉 for linearly independent u1, . . . , ud ∈ Rd . We may assume that

ϑi = τ ∩ {〈ui , x〉 = 0} ∀i = 1, . . . , d and ϑd+1 = τ ∩ {1−〈u1+ · · ·+ ud , x〉 = 0}.
Observe that, for each x ∈ τ ,

dist(x, ϑi ) = 〈ui , x〉
‖ui‖ ∀i = 1, . . . , d and dist(x, ϑd+1) = 1−〈u1+ · · ·+ ud , x〉

‖u1+ · · ·+ ud‖ .

Consider now the system of linear equations

〈u1, x〉
‖u1‖ − xn+1 = 0,

...
〈ud , x〉
‖ud‖ − xn+1 = 0,

1−〈u1+ · · ·+ ud , x〉
‖u1+ · · ·+ ud‖ − xn+1 = 0,

;



〈u1, x〉− ‖u1‖xn+1 = 0,
...

〈ud , x〉− ‖ud‖xn+1 = 0,(
‖u1+ · · ·+ ud‖+

d∑
i=1

‖ui‖
)

xn+1 = 1.

The unique solution of the previous linear system is pτ .
We now prove the second part. Denote ud+1 := u1+ · · ·+ ud , and observe that

d+1∑
i=1

‖ui‖d(x, ϑi ) = 1 (3.1)

for each x ∈ τ . Notice that d(x, ∂τ ) = mini=1,...,d+1{d(x, ϑi )}, and so

d(pτ , ∂τ ) = d(pτ , ϑi ) = 1∑d+1
i=1 ‖ui‖

=: λ for i = 1, . . . , d + 1.
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Figure 2. Examples of the semialgebraic set U τ,ε.

Assume that x ∈ τ satisfies d(x, ∂τ ) > d(pτ , ∂τ ). Then

min
i=1,...,d+1

{d(x, ϑi )} > d(pτ , ϑi ) for i = 1, . . . , d + 1,

and so d(x, ϑi ) > d(pτ , ϑi ) = λ for i = 1, . . . , d + 1. Using equation (3.1), we deduce that

d(x, ϑi ) = λ = d(pτ , ϑi ) for i = 1, . . . , d + 1,

and this implies that x = pτ , as required.

3.A.1. Construction of tubular neighborhoods. Let τ ⊂ Rd be a d-dimensional

simplex with incenter pτ , and let 0 < ε < 1. We denote the simplex obtained as the

cone of base τ ×{0} and vertex (pτ , ε∗ dist(pτ , ∂τ )), where ε∗ := ε√
1−ε2

by τ̂ε. Let m > 1,

denote n := d +m, and let π : Rn ≡ Rd × Rn−d → Rn, (x, y) 7→ (x, 0) be the projection

onto the first factor. For each 0 < ε < 1, consider the semialgebraic sets

Uτ,ε := {(x, y) ∈ Rn : dist((x, y), τ ×{0}) < ε dist((x, y), ∂τ ×{0})},
U τ,ε := {(x, y) ∈ Rn : dist((x, y), τ ×{0}) 6 ε dist((x, y), ∂τ ×{0})}.

We prove next that (Uτ,ε, π) is a tubular neighborhood of τ 0 for each 0 < ε < 1.

Lemma 3.3. The semialgebraic set U τ,ε equals {(x, y) ∈ Rn : (x, ‖y‖) ∈ τ̂ε}, and (Uτ,ε, π)
is a tubular neighborhood of τ 0.

Proof. Observe first that dist((x, y), τ ×{0}) 6 dist((x, y), ∂τ ×{0}) for all (x, y) ∈ Rn and

{(x, y) ∈ Rd × Rm : dist((x, y), τ ×{0}) < dist((x, y), ∂τ ×{0})} = τ 0× Rm .

The last equality holds because the distance of a point p to the simplex τ ×{0} equals the

distance of p to the affine subspace W generated by one of its faces σ ×{0}. Furthermore,

there exists a point q ∈ σ 0×{0} such that

dist(p, τ ×{0}) = dist(p, σ 0×{0}) = dist(p,W ) = dist(p, q).

A straightforward computation shows that, for each p := (x, y) ∈ τ × Rm ,

dist((x, y), ∂τ ×{0})2 = dist(x, ∂τ )2+‖y‖2 and dist((x, y), τ ×{0}) = ‖y‖.
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Thus, as 0 < ε < 1,

U τ,ε = {(x, y) ∈ τ × Rm : ‖y‖2 6 ε2(dist(x, ∂τ )2+‖y‖2)}
= {(x, y) ∈ τ × Rm : ‖y‖ 6 ε∗ dist(x, ∂τ )}.

Consider the semialgebraic set

S := {(x, t) ∈ τ × R : 0 6 t 6 ε∗ dist(x, ∂τ )}. (3.2)

For our purposes, it is enough that S = τ̂ε. Of course, it holds that dist(x, ∂τ ) =
min{dist(x, ϑi ) : i = 1, . . . , d + 1}, where ϑ1, . . . , ϑd+1 are the faces of dimension d − 1 of τ .

As we have seen in the proof of Lemma 3.2, there exist independent vectors u1, . . . , ud ∈
Rd such that τ = { f1 := 〈u1, x〉 > 0, . . . , fd := 〈ud , x〉 > 0, fd+1 := 1−∑d

i=1 fi > 0}. If

we denote ud+1 := u1+ · · ·+ ud , we have

dist(x, ϑi ) = fi (x)
‖ui‖ , ∀i = 1, . . . , d + 1

for each x ∈ τ . Now observe that (x, t) ∈ S if and only if

0 6 t 6 ε∗ dist(x, ∂τ ) = ε∗min{dist(x, ϑi ) : i = 1, . . . , d + 1}
⇐⇒ min{ε∗ dist(x, ϑi )− t : i = 1, . . . , d + 1} > 0, t > 0.

Since τ = {x ∈ Rd : fi (x) > 0 : i = 1, . . . , d + 1}, we conclude that

S = {(x, t) ∈ Rd+1 : ε∗ fi (x)− t‖ui‖ > 0, t > 0 : i = 1, . . . , d + 1},
which is a convex polyhedron of Rd+1. As τ ×{0} ⊂ S and (pτ , ε∗ dist(pτ , ∂τ )) ∈ S, we

deduce that S contains the cone of vertex (pτ , ε∗ dist(pτ , ∂τ )) and basis τ ×{0}, that

is, the simplex τ̂ε. As we have seen in Lemma 3.2, dist(pτ , ∂τ ) = maxx∈τ {d(x, ∂τ )}, and

this maximum is only attained at pτ . Thus, (pτ , ε∗ dist(pτ , ∂τ )) is a vertex of S, and,

in particular, S is contained in τ ×[0, ε∗ dist(x, ∂τ )]. Moreover, in view of the definition

(3.2) of S, all vertices of τ ×{0} are also vertices of S, and they are exactly d + 1 ones.

Now, as S is described by d + 2 equations and has dimension d + 1, it must be a simplex

and have exactly d + 2 vertices. These d + 2 vertices are those of the simplex τ̂ε, so we

conclude that S = τ̂ε, as required.

3.A.2. Cross-sections of tubular neighborhoods. We analyze the structure of

cross-sections of the semialgebraic set U τ,ε by affine subspaces of dimension d + 1
containing the d-dimensional simplex τ . We begin with a straightforward consequence of

Lemma 3.3.

Corollary 3.4. Let L be the affine subspace generated by a d-dimensional simplex τ ⊂ Rn,

let p ∈ Rn \ L, and let [L , p] be the affine subspace generated by p and L. Denote the

half-space of [L , p] determined by L and that containing p by [L , p]+. Let q be the unique

point of [L , p]+ such that dist(q, L) = dist(q, pτ ) = ε∗ dist(pτ , ∂τ ). Then [L , p]+ ∩U τ,ε is

the simplex obtained by considering the convex hull of the set τ ∪ {q}.

Corollary 3.5. Let σ ⊂ Rn be a simplex, and let τ be one of its faces. Then U τ,ε \ ∂τ only

meets the faces of σ that contain τ for each ε > 0 small enough.

Proof. Let m := dim(σ ), and let β1, . . . , βr be the (m− 1)-dimensional faces of σ that

do not contain τ . Let ε > 0 be such that ε∗d(pτ , ∂τ ) < mini=1,...,r {d(pτ , βi )}. Denote the
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affine subspace generated by σ with W and the hyperplane of W generated by βi with

Hi . Notice that each face of σ that does not contain τ is contained in some face βi and

therefore in some Hi for i = 1, . . . , r .

Let ε > 0 be such that

ε∗d(pτ , ∂τ ) < min
i=1,...,r

{d(pτ , Hi )},

and let H ′i := {h′i = 0} be the hyperplane of Rn orthogonal to W such that W ∩ H ′i = Hi .

Notice that the ball Bn(pτ , ε∗d(pτ , ∂τ )) does not meet H ′i for i = 1, . . . , r . We may

assume that it is contained in the strict half-space H ′i
> := {h′i > 0}. Since τ 6⊂ βi , we

deduce that τ 6⊂ H ′i , and so τ 0 ∩ H ′i = ∅. As pτ ∈ H ′i
>, we conclude that τ 0 ⊂ H ′i

>.

Let L be the affine subspace generated by τ . By Corollary 3.4,

U τ,ε =
⋃

q

[L , q]+ ∩U τ,ε,

where q ∈ Bn(pτ , ε∗d(pτ , ∂τ ))∩ (pτ + L⊥) and [L , q]+ ∩U τ,ε is the simplex obtained by

considering the convex hull of the set τ ∪ {q}. Thus, ([L , q]+ ∩U τ,ε) \ ∂τ ⊂ H ′i
> for i =

1, . . . , r . Hence, U τ,ε \ ∂τ ⊂ H ′i
> for i = 1, . . . , r , and so U τ,ε \ ∂τ does not meet the faces

of σ that do not contain the simplex τ .

Lemma 3.6. Let σ ⊂ Rn be an n-dimensional simplex such that the simplex τ is one of

its faces. Denote the affine subspace generated by τ with L and its dimension with d. Let

ε > 0 be small enough such that U τ,ε \ ∂τ only meets the faces of σ that contain τ . Then

σ ∩ [L , p] ∩U τ,ε = [L , p]+ ∩U τ,ε for each p ∈ σ \ τ .

Proof. By Corollary 3.4, there exists a point q ∈ [L , p]+ such that [L , p]+ ∩U τ,ε is the

convex hull of τ ∪ {q}. Thus, since σ is convex and τ is a face of σ , it is enough to check

that q belongs to σ . Assume by contradiction that q does not belong to σ . Observe that

K := σ ∩ [L , p] is a convex polyhedron of dimension d + 1 because it contains {p} ∪ τ . As

U τ,ε is a neighborhood of τ 0, the segment connecting p with pτ meets U τ,ε in a (maybe

smaller) segment; hence, we may assume that p ∈ U τ,ε ∩ Int(K). As [L , p]+ ∩U τ,ε is a

simplex and q 6∈ σ , the segment that connects q and p meets ∂K in a point p0 ∈ ∂K.

Observe that p0 6∈ L because both q and p belong to the convex set [L , p]+ \ L; hence, p0
belongs to a d-dimensional face of K different from τ . This d-dimensional face corresponds

to the intersection of [L , p] with a face of σ that does not contain τ . We conclude that

U τ,ε meets a face of σ that does not contain τ , which contradicts our choice of ε.

3.A.3. Appropriate embedment of some essential differences of semialgebraic

sets. Let S be the difference between a simplex σ and the closure U τ,ε of a suitable

tubular neighborhood of the interior of one of its faces τ . We continue proving that the

obstructing set η(S) is contained in ∂τ . In fact, S is appropriately embedded, but this is

cumbersome to prove. For our purposes the following is enough.

Lemma 3.7. Let σ ⊂ Rn be a simplex, and let τ be a face of σ . Let ε > 0 be small enough

such that U τ,ε \ ∂τ only meets the faces of σ that contain τ . Consider the semialgebraic

sets S := σ 0 \U τ,ε and Ŝ := σ \U τ,ε. Then the sets η(S) and η(Ŝ) are contained in ∂τ .
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Figure 3. Appropriate embedment of the differences S := σ 0 \U τ,ε and Ŝ := σ \U τ,ε.

Proof. As σ and σ 0 are appropriately embedded, there is nothing to prove for points in

the set Cl(S) \U τ,ε = Cl(Ŝ) \U τ,ε. Thus, it only remains to check that the following holds.

For each q ∈ Cl(S)∩ (U τ,ε \ ∂τ), the germs Sq and Ŝq are semialgebraically connected,

dim(Cl(S)q \ Sq) = dim(Sq)− 1, and dim(Cl(Ŝ)q \ Ŝq) = dim(Ŝq)− 1.

First, we may assume that σ has dimension n. Let W be the affine subspace generated

by τ , and let π : Rn → W be the orthogonal projection onto W ; recall that, by Lemma 3.3,
U τ,ε = {x ∈ Rn : (π(x), ‖x −π(x)‖) ∈ τ̂ε}. Using the fact that U τ,ε is a bounded and

closed convex set, we construct next a semialgebraic homeomorphism g1 : Rn → Rn such

that g1(U τ,ε) = Bn(0, 1) and all lines through the origin are kept invariant.

After a change of coordinates, we may assume that pτ is the origin. For each x ∈ Rn ,

let `x be the half-line from the origin passing through x . Since U τ,ε is a closed and

bounded convex set and the origin is an interior point of U τ,ε, the set `x ∩U τ,ε is a

(non-trivial) closed bounded interval; denote the endpoint of `x ∩U τ,ε different from the

origin with f (x). It holds that f (x) ∈ ∂U τ,ε by [1, 11.2.4], and the map δ : Rn \ {0} →
[0,+∞), x 7→ ‖ f (x)‖ is continuous by [1, 11.3.1.2]; hence, it is semialgebraic. Observe

that f (x) = δ(x) x
‖x‖ for all x ∈ Rn \ {0} and that δ is constant on every half-line from the

origin. Consider now the semialgebraic maps

g1 : Rn → Rn, x 7→


0 if x = 0,

x
δ(x)

if x 6= 0
and g2 : Rn → Rn, x 7→

 0 if x = 0,

xδ(x) if x 6= 0.

The continuity of such maps follows from the following fact. Since 0 is an interior point

of U τ,ε and ∂U τ,ε is closed and bounded, there exist M,m > 0 such that m < δ(x) < M
for all x ∈ Rn \ {0}. A straightforward computation shows in addition that g1 ◦ g2 = g2 ◦
g1 = idRn , and therefore both are semialgebraic homeomorphisms. Notice moreover that

g1(U τ,ε) = Bn(0, 1).
After this preparation, we are ready to prove the statement. Fix a point q ∈ Cl(S)∩

U τ,ε \ ∂τ . Let H1, . . . , Hr be the hyperplanes of Rn generated by those respective

(n− 1)-dimensional faces of σ that contain τ ; clearly, W = H1 ∩ · · · ∩ Hr . Write Hi :=
{hi = 0}, and assume that σ ⊂ {h1 > 0, . . . , hr > 0}. Denote T := {h1 > 0, . . . , hr > 0} \
U τ,ε and T̂ := {h1 > 0, . . . , hr > 0} \U τ,ε, and notice the following. Since U τ,ε \ ∂τ only

meets the faces of σ that contain τ , we have Sq = Tq and Ŝq = T̂q for each q ∈
Cl(S)∩ (U τ,ε \ ∂τ).
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On the other hand, as g1 keeps all lines through the origin invariant, we conclude that

T ′ := g1(T ) = {h1 > 0, . . . , hr > 0} \Bn(0, 1),

T̂ ′ := g1(T̂ ) = {h1 > 0, . . . , hr > 0} \Bn(0, 1),

g1(Cl(S)∩ (U τ,ε \ ∂τ)) ⊂ ∂(Bn(0, 1)∩ {h1 > 0, . . . , hr > 0}).
For each point z ∈ ∂(Bn(0, 1)∩ {x1 > 0, . . . , xr > 0}), the germs T ′z and T̂ ′z are

semialgebraically connected, and in addition dim(Cl(T ′)z \ T ′z ) = dim(T ′z )− 1 and

dim(Cl(T̂ ′)z \ T̂ ′z ) = dim(T̂ ′z )− 1. Of course, the same holds for the germs Sq = Tq and

Ŝq = T̂q for each q ∈ Cl(S)∩ (U τ,ε \ ∂τ), as required.

3.A.4. Separation of tubular neighborhoods of two different simplices. We

prove now that, given two simplices whose intersection is a common face, we can find

disjoint tubular neighborhoods for their relative interiors. We need a preliminary result

concerning strict separation of simplices meeting just in a face that we include for the

sake of completeness.

Lemma 3.8 (Strict separation of simplices). Let τ1, τ2 ⊂ Rn be two simplices such that

τ1 ∩ τ2 is a common face ϑ. Then there exists a hyperplane H := {h = 0} of Rn such that

τi ∩ H = ϑ and τi \ϑ ⊂ {(−1)i h > 0}.
Proof. We analyze the case that τ1 ∩ τ2 is a common vertex of the simplices τ1 and τ2
first.

Indeed, we may assume that dim(τ1) = n and dim(τ2) = m 6 n; in fact, we suppose that

τ1 is the simplex whose vertices are the origin 0 and points ei := (0, . . . , 0, 1(i), 0, . . . , 0)
whose coordinates are all zero except for the ith, which is equal to 1. After reordering the

vertices of τ1, we assume that ϑ is the simplex of vertices 0, e1, . . . , ed . Let ud+1, . . . , um
be the remaining vertices of τ2, and consider the projection

π : Rn → Rn−d , x := (x1, . . . , xn) 7→ x ′ := (xd+1, . . . , xn).

Let τ ′i := π(τi ), and denote e′k := π(ek) for k = d + 1, . . . , n and u′j := π(u j ) for j = d +
1, . . . , n. Of course, τ ′1 is the simplex of vertices 0, e′d+1, . . . , e′n and τ ′2 is the simplex of

vertices 0, u′d+1, . . . , u′m . Let us check that τ ′1 ∩ τ ′2 = {0}.
Pick a point p′ ∈ τ ′1 ∩ τ ′2, and write

(pd+1, . . . , pn) = p′ = pd+1e′d+1+ · · ·+ pne′n = µd+1u′d+1+ · · ·+µmu′m,

where pk, µ j > 0,
∑n

k=d+1 pk 6 1, and
∑m

j=d+1 µ j 6 1. Denote p := (p1, . . . , pn) :=∑m
j=d+1 µ j u j , and let q := (q1, . . . , qn) := 1

2n(‖p‖+1) p+ 1
2n
∑d
`=1 e`. Notice that

q` =


1

2n

(
p`

(‖p‖+ 1)
+ 1

)
> 0 for ` = 1, . . . , d,

p`
1

2n(‖p‖+ 1)
> 0 for ` = d + 1, . . . , n

and

n∑
`=1

q` = d
2n
+ 1

2n

n∑
`=1

p`
(‖p‖+ 1)

< 1,
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Figure 4. Separation technique.

so q ∈ τ1. On the other hand,

q =
d∑
`=1

1
2n

e`+
n∑

j=d+1

1
2n(‖p‖+ 1)

µ j u j and
d
2n
+

n∑
j=d+1

µ j

2n(‖p‖+ 1)
6 1,

so q ∈ τ2. As τ1 ∩ τ2 = ϑ , we deduce that q ∈ ϑ , and so µ j = 0 for j = d + 1, . . . , n. Hence,

p′ = 0; that is, τ ′1 ∩ τ ′2 = {0}.
Therefore it is enough to separate τ ′1 and τ ′2 by a hyperplane of Rn−d , and we can

assume from the beginning that ϑ = τ1 ∩ τ2 is just a vertex (the origin). Let us construct

two disjoint open convex neighborhoods A1 and A2 of τ1 \ {0} and τ2 \ {0}. Then we have

reduced everything to the separation of these two sets using the Hahn–Banach theorem

[1, 11.4.5].

Indeed, let ηi be the face of τi such that τi is the bounded cone of basis ηi and vertex 0.

Consider the infinite convex cone

Ci := {t x : x ∈ τi , t ∈ [0,+∞)}
and the closed semialgebraic set Ti := { x

‖x‖ : x ∈ τi } contained in the sphere Sn := {x ∈
Rn : ‖x‖ = 1}. Notice that T1 ∩ T2 = ∅ and Ci = {t y : y ∈ Ti }. Let V1, V2 be two disjoint

open subsets of Sn such that Ti ⊂ Vi . Notice that

Ci \ {0} ⊂ Ai := {t x : x ∈ Vi , t ∈ (0,+∞)}
and A1 ∩ A2 = ∅. After shrinking Ai if necessary, we may assume that Ai is an infinite

convex cone. Define δi := dist(ηi , Rn \ Ai ), which is strictly positive because ηi is closed

and bounded, Rn \ Ai is closed, and ηi ∩ (Rn \ Ai ) = ∅.

We claim the following. The open semialgebraic set Wi := {x ∈ Rn : dist(x, ηi ) <
δi
2 } ⊂ Ai

is convex.

Indeed, if x, y ∈ Wi , there exist x0, y0 ∈ ηi such that ‖x − x0‖ < δi
2 and ‖y− y0‖ < δi

2 .

Fix λ ∈ [0, 1], and let us see that λx + (1− λ)y ∈ Wi . As ηi is convex, λx0+ (1− λ)y0 ∈ ηi .
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Moreover,

‖λx + (1− λ)y− (λx0+ (1− λ)y0)‖ 6 λ‖x − x0‖+ (1− λ)‖y− y0‖ < δi

2
.

Hence, λx + (1− λ)y ∈ Wi ; that is, Wi is convex.

Notice that the open convex sets A′i := {t x : x ∈ Wi , t ∈ (0,+∞)} ⊂ Ai contain Ci \ {0},
and so τi \ {0}, as required.

Lemma 3.9 (Small intersection). Let τ1, τ2 ⊂ Rn be two simplices such that the

intersection ϑ := τ1 ∩ τ2 = ∂τ1 ∩ ∂τ2 is either empty or a common face. Then U τ1,ε ∩
U τ2,ε = ϑ, and, in particular, Uτ1,ε ∩Uτ2,ε = ∅ for ε > 0 small enough.

Proof. Let Wi ⊂ Rn be the affine subspace generated by τi , and let πi : Rn → Rn be the

orthogonal projection onto Wi . By Lemma 3.3, we know that

U τi ,ε = {p ∈ Rn : (π(p), ‖p−π(p)‖) ∈ τ̂i,ε}, (3.3)

where τ̂i,ε ⊂ Wi × R is the (d + 1)-dimensional simplex obtained as the (convex) cone

whose basis is τi ×{0} and whose vertex is the point vτi := (pτi , ε
∗ dist(pτi , ∂τi )); see

Lemma 3.3.

By Lemma 3.8, there exists a hyperplane H := {h = 0} of Rn such that τi ∩ H = ϑ and

τi \ϑ ⊂ {(−1)i h > 0}. Thus, (−1)i h(pτi ) > 0, and we pick ε0 > 0 such that Bn(pτi , ε0) ⊂
{(−1)i h > 0}. Choose ε > 0 small enough such that ε∗ dist(pτi , ∂τi ) < ε0 (see § 3.A.1).

Recall that U τi ,ε is by (3.3) the union of all cones of basis τi and vertices contained in

the set

Vi := {q ∈ Rn : πi (q) = pτi and ‖q − pτi ‖ = ε∗ dist(pτi , ∂τi )}.
As τi \ϑ and Vi ⊂ {(−1)i h > 0}, we conclude that U τi ,ε \ϑ ⊂ {(−1)i h > 0}, and so U τ1,ε ∩
U τ2,ε = ϑ , as required.

3.B. Proof of Theorem 3.1 in the general case

We proceed by induction on the dimension of the semialgebraic set η(M).

Step 1. First step and formulation of induction hypothesis. The first step of the induction

dim(η(M)) = 0 follows from the case when η(M) is closed. Assume that the result is true

if dim(η(M)) 6 d − 1, and let us check that it holds if dim(η(M)) = d.

Step 2. Reduction of the problem to the piecewise linear case. Let (K ,8) be a
semialgebraic triangulation of Cl(M) compatible with M , Cl(M) \M , and η(M), where K
is a finite simplicial complex and 8 : |K | → Cl(M) is a semialgebraic homeomorphism.

To simplify the notation, we identify Cl(M) with |K |, M with 8−1(M), and η(M) with

8−1(η(M)). Let τ1, . . . , τs be the simplices of K of dimension d such that τ 0
i is contained

in η(M); observe that η(M)′ := η(M) \⋃s
i=1 τ

0
i has dimension 6 d − 1.

Step 3. Local construction of the appropriate embedding. For each i = 1, . . . , s, denote

the affine subspace generated by τi with L i and the orthogonal projection onto L i with

πi : Rn → L i . We use freely that dist(x, τi ) = ‖x −πi (x)‖ if x ∈ π−1
i (τi ). To simplify the

forthcoming work, we prove the following identity:

dist(x, ∂τi )
2 = ‖x −πi (x)‖2+ dist(πi (x), ∂τi )

2 ∀x ∈ π−1
i (τi ). (3.4)
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Indeed, let y, z ∈ ∂τi ⊂ L i such that dist(x, ∂τi ) = ‖x − y‖ and dist(πi (x), ∂τi ) =
‖πi (x)− z‖. Then, using Pythagoras’ theorem,

dist(x, ∂τi )
2 = ‖x −πi (x)‖2+‖πi (x)− y‖2 > ‖x −πi (x)‖2+ dist(πi (x), ∂τi )

2

= ‖x −πi (x)‖2+‖πi (x)− z‖2 = ‖x − z‖2 > dist(x, ∂τi )
2,

and equality (3.4) holds.

We deduce furthermore that, for each 0 < ε < 1 and x ∈ π−1
i (τi ), the equivalence

dist(x, τi ) 6 ε dist(x, ∂τi ) ⇐⇒ ‖x −πi (x)‖ 6 ε∗ dist(πi (x), ∂τi ) (3.5)

holds, where ε∗ := ε√
1−ε2

. Rewrite the semialgebraic neighborhoods of τ 0
i provided in

Lemma 3.3, by means of (3.5), as follows:

Ui,ε := Uτi ,ε = {x ∈ π−1
i (τi ) : ‖x −πi (x)‖ < ε∗ dist(πi (x), ∂τi )},

U i,ε := U τi ,ε = {x ∈ π−1
i (τi ) : ‖x −πi (x)‖ 6 ε∗ dist(πi (x), ∂τi )}.

By Corollary 3.5 and Lemma 3.9, we may choose ε > 0 such that U i,ε \ ∂τi only meets

the simplices of K that contain τi and U i,ε ∩U j,ε = τi ∩ τ j if i 6= j .
Now, define Mδ := M \⋃s

i=1(U i,δ \ ∂τi ) for each δ > 0, and observe that
⋃s

i=1(U i,δ \ ∂τi )

is a (tubular) neighborhood of
⋃s

i=1 τ
0
i . Consider the semialgebraic maps

gi : Vi := U i,ε \ τ 0
i → Wi := U i,ε \ (U i, ε2

\ ∂τi )

x 7→


πi (x)+ x −πi (x)

‖x −πi (x)‖ (a1 dist(πi (x), ∂τi )+ a2‖x −πi (x)‖) if x 6∈ ∂τi ,

x if x ∈ ∂τi ,

hi : W i := U i,ε \Ui, ε2
→ V i := U i,ε

x 7→


πi (x)+ x −πi (x)

‖x −πi (x)‖ (b1‖x −πi (x)‖+ b2 dist(πi (x), ∂τi )) if x 6∈ ∂τi ,

x if x ∈ ∂τi ,

where (a1, a2), (b1, b2) ∈ R2 are the respective solutions of the system of linear equationsa1 =
(ε

2

)∗
,

a1+ ε∗a2 = ε∗

∣∣∣∣∣∣ ;


a1 =
(ε

2

)∗
,

a2 =
ε∗− ( ε2 )∗

ε∗
and


(ε

2

)∗
b1+ b2 = 0,

ε∗b1+ b2 = ε∗,

∣∣∣∣∣∣
;


b1 = ε∗

ε∗− ( ε2 )∗
,

b2 = −
(ε

2

)∗ ε∗

ε∗− ( ε2 )∗
.

Let us motivate the formulas of gi and hi . Consider the segment S := {λy+ (1− λ)πi (y) :
λ ∈ (0, 1]} that connects a point y ∈ π−1

i (τi ) such that ‖y−πi (y)‖ = ε∗ dist(πi (y), ∂τi )

with the point πi (y). Define also the segment S′ := {λy+ (1− λ)πi (y) : λ ∈ (µ, 1]}
that connects y with the point z ∈ S such that ‖z−πi (z)‖ = ( ε2 )∗ dist(πi (z), ∂τi ). A

https://doi.org/10.1017/S1474748014000206 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000206


On the substitution theorem for rings of semialgebraic functions 883

Figure 5. Action of the map hi : σ \Uτi , ε2
→ σ .

straightforward computation shows that µ = ( ε2 )
∗

ε∗ . The semialgebraic map gi arises when

one ‘linearly’ transforms the segment S onto S′. The semialgebraic map hi appears to

perform reversely.

The continuity of gi and hi at ∂τi requires further comments. We analyze as an example

what happens with hi , as the behavior of gi is analogous. Pick a point y ∈ ∂τi , and let

x ∈ Wi \ ∂τi be close to y. Then

‖hi (x)− hi (y)‖ = ‖hi (x)− y‖ 6 ‖hi (x)−πi (x)‖+‖πi (x)− y‖
= |b2 dist(πi (x), ∂τi )+ b1‖x −πi (x)‖|+ ‖πi (x)− y‖
6 (|b2| + 1)‖πi (x)− y‖+ b1(‖x − y‖+‖y−πi (x)‖)
6 (2b1+ |b2| + 1)‖x − y‖,

so hi is continuous at y.

Using the identities a1+ a2b2 = 0 and a2b1 = 1, straightforward computations show

that

gi (Vi ) = Wi , hi (W i ) = V i , gi ◦ hi |Wi = idWi and (hi |Wi ) ◦ gi = idVi ,

so both hi |Wi and gi are semialgebraic homeomorphisms. Moreover, by Lemma 3.6,

and taking into account that gi and hi are invariant over the segments (of suitable

length) orthogonal to τi , it holds that gi (σ ∩ Vi ) = σ ∩Wi and hi (σ ∩W i ) = σ ∩ V i for

each simplex σ such that τi ⊂ σ .

Step 4. Global construction of the appropriate embedding outside a semialgebraic set of

low dimension. As one can check straightforwardly, the previous semialgebraic maps gi
and hi glue together to provide the following semialgebraic maps:

g : M → N := M ε
2
,

x 7→


x if x ∈ Mε

gi (x) if x ∈ M ∩ Vi , i = 1, . . . , s,

h : Cl(N ) → Cl(M),

x 7→


x if x ∈ Cl(M)ε,

hi (x) if x ∈ Cl(M)∩W i , i = 1, . . . , s.
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Figure 6. Walkthrough of the proof.

Again, routine computations show that g ◦ h|N = idN and h|N ◦ g = idM ; hence, g and

h|N are both semialgebraic homeomorphisms.

Step 5. The semialgebraic set N is appropriately embedded outside a semialgebraic set

of low dimension. Let us check now that for each q ∈ Cl(N ) \ η(M)′ the germ Nq is

semialgebraically connected, and either Cl(N )q = Nq or dim(Cl(N )q \ Nq) = dim(Nq)− 1;

once this is done, and taking into account that dim(η(M)′) = d − 1, the statement holds

by the induction hypothesis.

Indeed, let q ∈ Cl(N ) \ η(M)′. Observe that, if q 6∈⋃s
i=1 U i, ε2

, then

Mq =
(

M \
s⋃

i=1

U i, ε2

)
q

= Nq

and q ∈ Cl(M) \ η(M). Thus, Nq is semialgebraically connected, and either Cl(N )q = Nq
or dim(Cl(N )q \ Nq) = dim(Nq)− 1. Therefore we may assume that q ∈ U i, ε2

\ ∂τi and

dist(q, τi ) = ε
2 dist(q, ∂τi ) for some i = 1, . . . , s. Let σ ∈ K be the simplex such that q ∈

σ 0. We claim that τi ⊂ σ .

Indeed, hi (q) = πi (q) ∈ τ 0
i because, by (3.4),

0 < dist(q, τi ) = ‖q −πi (q)‖ =
(ε

2

)∗
dist(πi (q), ∂τi ).

Thus, since hi (σ ∩W i ) = σ ∩ V i , we deduce that hi (q) ∈ σ ∩ τ 0
i 6= ∅, and so τi ⊂ σ .

Let σ1, . . . , σr be the collection of all simplices of K such that σ ⊂ σ j and σ 0
j ⊂ M ,

and let us assume that σ1 = σ . The union
⋃r

j=1 σ
0
j is an open neighborhood of q in M .
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Denote S j := σ 0
j \U i, ε2

and Ŝ j := σ j \U i, ε2
, and let us check that the germ

Nq = Mq \U i, ε2 ,q
=
( r⋃

k=1

σ 0
k,q

)
\U i, ε2 ,q

=
r⋃

k=1

σ 0
k,q \U i, ε2 ,q

=
r⋃

k=1

Sk,q (3.6)

is semialgebraically connected and that dim(Cl(N )q \ Nq) = dim(Nq)− 1.

By Lemma 3.7, the germ S j,q is semialgebraically connected, and

dim(Cl(Ŝ j,q) \ Ŝ j,q) = dim(S j,q)− 1

for each j = 1, . . . , r . As S1 ⊂ Ŝ j , we deduce that the germ S1,q ∪ S j,q is connected for

j = 1, . . . , r , and so also Nq =⋃r
k=1 Sk,q .

Next, let us check that Cl(Sk)q \ Nq ⊃ Cl(Ŝk)q \ Ŝk,q . It is enough to show that Cl(Sk) \⋃r
j=1 S j ⊃ Cl(Ŝk) \ Ŝk . Indeed,

Cl(Sk) \
r⋃

j=1

S j = Cl(Sk) \
r⋃

j=1

((σ 0
j ∩ σk) \U i, ε2

) ⊃ Cl(Sk) \ (σk \U i, ε2
) = Cl(Ŝk) \ Ŝk .

Thus, Cl(N )q \ Nq ⊃⋃q
k=1 Cl(Ŝk)q \ Ŝk,q , and, using [3, 2.8.13], we conclude that

dim(Nq)− 1 > dim(Cl(N )q \ Nq) = max{dim(Cl(Ŝk)q \ Ŝk,q) : k = 1, . . . , r}
= max{dim(Sk,q) : k = 1, . . . , r}− 1 = dim(Nq)− 1,

as required.

4. Proofs of Lemma 1 and Theorem 2

In this section, we carry out the proofs of Lemma 1 and Theorem 2 stated in the

introduction.

4.A. Proof of Lemma 1

(i) Let ϕ be a homomorphism whose core is p. At least the homomorphism ψp := evMF ,p ◦
iM,F fits this condition. We develop the proof in several steps.

Step 1. Assume that M is closed in Rn . Consider the evaluation R-homomorphism ψ :
R[x] := R[x1, . . . ,xn] → F, Q 7→ Q(p). Since F is a real closed field and S(Rn, R) is

the real closure of R[x], there exists a unique homomorphism 9 : S(Rn, R)→ F such

that 9|R[x] = ψ ; of course, 9 = evFn ,p ◦iRn ,F . Since M is a closed semialgebraic subset
of Rn , the R-homomorphism

θ : S(Rn, R)→ S(M, R), f 7→ f |M
is by [8] surjective, and the uniqueness of 9 guarantees that 9 = ϕ ◦ θ . Thus, if f ∈
S(M, R), we pick a semialgebraic extension f̂ ∈ S(Rn, R), and deduce that

ϕ( f ) = 9( f̂ ) = f̂F (p) = fF (p).

The last equality holds because p ∈ MF . We conclude that ϕ = ψp.

Step 2. The general case. Let (X,jX ) be a semialgebraic pseudo-compactification of M .

We know by Step 1 that ϕ ◦j∗X = evX F ,jX,F (p) ◦iX,F , and so ϕ ◦j∗X (h) = hF (jX,F (p)) =
(h ◦jX )F (p) for all h ∈ S(X, R). Now, since S∗(M, R) = lim−→ S(X, R) (see 1.A), we deduce
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that ϕ(h) = hF (p) for all h ∈ S∗(M, R). Next, if g ∈ S(M, R), we write g = g
1+|g|/

1
1+|g| ,

where g
1+|g| ,

1
1+|g| ∈ S∗(M, R) and 1

1+|g| is a unit in S(M, R). Hence,

ϕ(g) =
ϕ
(

g
1+|g|

)
ϕ
(

1
1+|g|

) = gF (p)
1+|gF (p)|

1
1+|gF (p)|

= gF (p);

that is, ϕ = evMF ,p ◦iM,F .

Step 3. Let us now prove the following. If dCl(M)(p) = dim(MF,p), then p ∈ MF .

Suppose that p ∈ Cl(MF ) \Mlc,F = Cl(Cl(MF ) \MF ). As usual, we assume that M is

bounded, and let (K ,8) be a semialgebraic triangulation of X := Cl(M) compatible

with M . Consider the open semialgebraic subset U :=⋃p∈8(σ)F
8(σ 0) of X ; clearly,

p ∈ UF . Notice that dim(M ∩U ) = dim(MF,p). We have

p ∈ Cl(X F \MF )∩UF = Cl((X F ∩UF ) \ (MF ∩UF ))∩UF ⊂ Cl(Cl(M ∩U ) \ (M ∩U ))F ;
hence, by [3, 2.8.13], we conclude that

dim(MF,p) = dX (p) 6 dim(Cl(Cl(M ∩U ) \ (M ∩U )))

= dim(Cl(M ∩U ) \ (M ∩U )) < dim(M ∩U ) = dim(MF,p),

which is a contradiction. Thus, p ∈ Mlc,F ⊂ MF , as required.

(ii) Let ϕ be a homomorphism whose core is p, and fix f ∈ S(M, R). Since M is

appropriately embedded, there exists by Theorem 5 an open semialgebraic neighborhood

V of M in X := Cl(M), a semialgebraic set Y ⊂ V \M such that dim(Cl(Y )q) 6 dim(Mq)−
2 for all q ∈ X , and a semialgebraic extension f̂ ∈ S(V \ Y, R). We claim that p ∈ (V \
Cl(Y ))F .

Indeed, since V is locally closed and p is adjacent to M , we have p ∈ VF . Let us check

next that p 6∈ Cl(Y )F . Let (K ,8) be a semialgebraic triangulation of X compatible with

M and Cl(Y ), where K is a finite simplicial complex and 8 : |K | → X a semialgebraic

homeomorphism. For the sake of simplicity, we identify X with |K |, and the involved

objects M and Cl(Y ) with their inverse images under 8.

Assume by contradiction that p ∈ Cl(Y )F . As (K ,8) is compatible with Cl(Y ), there

exists τ ∈ K such that p ∈ τ 0
F ⊂ Cl(Y )F . Define G := {σ ∈ K : τ ⊂ σ }, and consider the

open semialgebraic neighborhood U := St(τ 0) =⋃σ∈G σ 0 of τ 0 in X . Let F := {σ ∈
G : σ 0 ⊂ Cl(Y )} and d := max{dim(σ ) : σ ∈ F}. Since dim(Cl(Y )q) 6 dim(Mq)− 2 for all

q ∈ X , there exists a simplex ς ∈ G such that d 6 dim(ς)− 2 and ς0 ⊂ M . Thus, we

have p ∈ τ 0
F ⊂ ςF and

dim(ς0) = dim(ς0
F ) = dim(ς0

F,p) 6 dim(MF,p), (4.1)

because ς0
F is pure dimensional. As p ∈ UF ∩Cl(Y )F =⋃σ∈F σ 0

F , we deduce using (4.1)

that

dX (p) 6 dim(Cl(UF ∩Cl(Y )F )) = dim(UF ∩Cl(Y )F )

= d 6 dim(ς0
F )− 2 6 dim(MF,p)− 2 < dX (p),

which is a contradiction. Therefore, p ∈ VF \Cl(Y )F = (V \Cl(Y ))F .
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Consider now the closed semialgebraic set (X \ V )∪Cl(Y ), and let G ∈ S(X, R) be a

semialgebraic function such that Z(G) = (X \ V )∪Cl(Y ); clearly, G F (p) 6= 0. Denote the

natural inclusion induced by the restriction to M with θ : S(X, R) ↪→ S(M, R), and let

g = θ(G). The semialgebraic functions h1 := f
1+| f |g and h2 := g

1+| f | can be extended by

zero to respective semialgebraic functions H1, H2 ∈ S(X, R); that is, θ(Hi ) = hi . By (i),

and using p ∈ X F , we have ϕ ◦ θ = evX F ,p ◦iM,F ; hence, ϕ(hi ) = ϕ ◦ θ(Hi ) = Hi,F (p) and

ϕ(g) = ϕ ◦ θ(G) = G F (p). As p ∈ (V \Cl(Y ))F and f can be extended to f̂ ∈ S(V \ Y, R),
we deduce that

ϕ( f )
1+ |ϕ( f )|ϕ(g) = ϕ(h1) = H1,F (p) = f̂F (p)

1+ | f̂F (p)|
G F (p) = f̂F (p)

1+ | f̂F (p)|
ϕ(g),

1
1+ |ϕ( f )|ϕ(g) = ϕ(h2) = H2,F (p) = 1

1+ | f̂F (p)|
G F (p) = 1

1+ | f̂F (p)|
ϕ(g).

Since 1
1+|ϕ( f )|ϕ(g) 6= 0, we conclude that ϕ( f ) = f̂F (p) after dividing the previous

equalities.

We have proved the uniqueness as well as the existence of the homomorphism ϕ.

(iii) Assume that M is bounded, and let C ⊂ X := Cl(M) be a closed semialgebraic set

of dimension dX (p) such that p ∈ CF . Let (K ,8) be a semialgebraic triangulation of X
compatible with M , C , and X \M , where K is a finite simplicial complex and8 : |K | → X
is a semialgebraic homeomorphism. For the sake of simplicity, we identify X with |K |,
and the involved objects M , Cl(Y ), and X \M with their inverse images under 8.

Let τ ∈ K be a simplex such that p ∈ τ 0
F , and let us check the following. There exists

a simplex σ ∈ K of dimension dim(σ ) > dim(τ )+ 2 such that τ ⊂ σ and σ 0 ⊂ M.

Indeed, define G := {σ ∈ K : τ ⊂ σ }, and consider the open semialgebraic neighborhood

U := St(τ 0) =⋃σ∈G σ 0 of τ 0 in X . Let F := {σ ∈ G : σ 0 ⊂ C}, and notice the following.

Since p ∈ τ 0
F and (K ,8) is compatible with C , we have

dX (p) 6 dim(τ ) = dim(τ 0) 6 dim(C) = dX (p);
that is, dX (p) = dim(τ ). Since dX (p) 6 dim(MF,p)− 2 and

dim(MF,p) = max{dim(σ ) : σ ∈ G and σ 0 ⊂ M},
there exists a simplex σ ∈ G such that dim(σ ) > dX (p)+ 2 = dim(τ )+ 2 and σ 0 ⊂ M .

As p 6∈ MF , we have τ 0 ∩M = ∅. Let b ∈ σ 0 be the barycenter of σ , and let ε be

a face of σ of dimension dim(σ )− 1 such that τ ( ε. Let ε(b) be the convex hull of

ε ∪ {b}, which is a simplex such that τ ⊂ ε(b), dim(σ ) = dim(ε(b)), and ε(b) \M ⊂ ε.
Since dim(ε(b)) = dim(ε)+ 1 > dim(τ )+ 2, there exists a vertex v of ε(b) such that v 6∈ τ .

Let η be the segment connecting v and b, which is a face of ε(b) that does not meet τ .

Moreover, η \M ⊂ {v}, and so the interior of any segment connecting a point of η0 with

a point of τ is contained in M .

For each q ∈ η0, denote the convex hull of τ ∪ {q} with τ(q), which is a simplex

contained in ε(b), and consider the closed semialgebraic subset T (q) := τ(q)∩M of M ,

which satisfies Cl(T (q)) = τ(q) and τ(q) \ T (q) ⊂ τ . By [8], the homomorphism

φq : S(M, R)→ S(T (q), R), f 7→ f |T (q) (4.2)
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Figure 7. Construction of ε(b) and τ(q) for q ∈ η0.

is surjective for each q ∈ η0. Since p 6∈ MF , we have τ 0 ∩M = ∅, and so

τ 0 ⊂ τ(q) \ T (q) ⊂ τ. (4.3)

As dim(T (q)) = dim(τ 0)+ 1 and

dM (p) 6 dT (q)(p) 6 dim(τ 0) = dM (p),

we obtain dT (q)(p) = dim(T (q))− 1 = dim(T (q)F,p)− 1 because T (q)F is pure dimen-

sional. Moreover, observe that T (q) is appropriately embedded because it is

bounded, T (q)x is semialgebraically connected, and by (4.3) either τ(q)x = T (q)x
or dim(τ (q)x \ T (q)x ) = dim(τ ) = dim(T (q)x )− 1 for all x ∈ τ(q). Thus, by (ii), there

exists a unique homomorphism

ϕq : S(T (q), R)→ F, h 7→ ĥ(p) (4.4)

for each q ∈ η0. In each case, ĥ is the continuous extension of h to a fitting semialgebraic

set T (q) ⊂ T̂ (q) ⊂ Cl(T (q)) that contains p. In view of (4.2) and (4.4), the core of the

homomorphism ψq := ϕq ◦φq for each q ∈ η0 is p.

To finish, let us prove the following. Given two different points q1, q2 ∈ η0, there exists

a semialgebraic function f ∈ S(M, R) such that φq1( f ) 6= φq2( f ).
Indeed, as T (q1)∩ T (q2) ⊂ τ ∩M , the closed semialgebraic subsets Ci := T (qi ) \ τ of

M \ τ are disjoint. Thus, there exists by [8] a bounded semialgebraic function f0 ∈
S(M \ τ, R) such that f0|Ci = i − 1. On the other hand, τ \ τ 0 is a closed semialgebraic

set in Rn , and we choose a bounded semialgebraic function g ∈ S(Rn, R) such that
Z(G) = τ \ τ 0; denote g := G|M\τ . Clearly, the semialgebraic function f0g ∈ S(M \ τ, R)
can be extended by zero to a semialgebraic function f ∈ S(M, R). Observe that

f |T (q1) = G|T (q1) f0|T (q1) = 0 and f |T (q2) = G|T (q2) f0|T (q2) = G|T (q2). Thus, φq1( f ) = 0
and φq2( f ) = G F (p) 6= 0, because Z(G F ) = τF \ τ 0

F and p ∈ τ 0
F .

4.B. Basics on real spectra

The proof of Theorem 2 requires some preliminary definitions and notation concerning

real spectra that we summarize here. Denote with A either P(M) or S(M, R), and

with Specr (A) the real spectrum of A; we refer the reader to [3, § 7] for the definition,

notation and main properties of the real spectrum of a unital commutative ring. The

points of Specr (A) are called prime cones. The support Pα := α ∩ (−α) of a prime

https://doi.org/10.1017/S1474748014000206 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000206


On the substitution theorem for rings of semialgebraic functions 889

cone α ∈ Specr (A) is a prime ideal of A. As usual, given f ∈ A and α ∈ Specr (A), we

write f (α) > 0 if f ∈ α and f (α) > 0 if f ∈ α \ (−α); otherwise, f (α) < 0. Consider the

collection of sets {α ∈ Specr (A) : g1(α) > 0, . . . , gr (α) > 0}, where g1, . . . , gr ∈ A. Such

a collection constitutes a basis of the spectral topology of Specr (A). Recall that, if

A = P(M), the zero set of Pα is

Z(Pα) := {x ∈ M
zar : h(x) = 0 ∀h ∈ Pα},

where M
zar

is the Zariski closure of M in Rn . Moreover, if N :=⋃r
i=1{gi1 > 0, . . . ,

gis > 0, fi = 0} ⊂ M is a semialgebraic set with gi j , fi ∈ R[x], then Ñ is the set of

all prime cones α ∈ Specr (A) satisfying the existence of an index 1 6 i 6 r such that

gi1(α) > 0, . . . , gis(α) > 0, fi (α) = 0; of course, Ñ does not depend on the description of

N . Now, if α ∈ Specr (A), we define

dim(α) := dim(P(M)/Pα) and dimα(M̃) := sup{dim(β) : β ⊂ α and β ∈ M̃}. (4.5)

The Zariski spectrum Spec(A) of A is the collection of all prime ideals of A, and its Zariski

topology has as a basis the collection of sets D(g) := {p ∈ Spec(A) : g 6∈ p}, where g ∈ A.

If A = S(M, R), it is well known that Specr (S(M, R)) is homeomorphic to Spec(S(M, R))
via the support map α 7→ Pα (see for instance [22]).

4.C. Proof of Theorem 2

We divide the proof into several steps.

Step 1. Construction of the semialgebraic set N0 in the statement. Let p0 := kerϕ be the

kernel of ϕ, and let (X ⊂ Rn,j) be a brimming semialgebraic pseudo-compactification

of M for p0. To simplify the notation, we identify M with j(M). The challenge of this

proof is to find a chain of prime z-ideals pd ⊂ · · · ⊂ p1 ⊂ p0 of maximal length in S(M, R)
such that dM (pi ) = tr degR(qf(S(M, R)/p0))+ i for i = 1, . . . , d. The construction of such

a chain is quite cumbersome and involves a strong use of real spectra.

S1.a. Initial preparation. Let Z0 be the Zariski closure of X , and let φ : P(Z0) ↪→ S(X, R)
be the inclusion homomorphism. Consider the commutative diagram

Specr (S(X, R))
Specr (φ) //

support ∼=
��

X̃ ⊂ Specr (P(Z0))

support
��

Spec(S(X, R))
Spec(φ) // Spec(P(Z0))

where the rows and columns are continuous maps (with respect to the respective

spectral and Zariski topologies), Specr (φ)(α) = φ−1(α) for each α ∈ Specr (S(X, R)), and

Spec(φ)(q) = φ−1(q) if q ∈ Spec(S(X, R)) (see [3, 7.1.7-8]). As is well known, the map

µ := Specr (φ) ◦ support−1 : Spec(S(X, R))→ X̃

is a homeomorphism (see [4, § 3]), and, for every chain of prime cones X̃ 3 α0 ( · · · ( αr
in P(Z0), µ

−1(α0) ( · · · ( µ−1(αr ) is a chain of prime ideals in S(X, R). Moreover, for

each α ∈ X̃ , it holds that Pα = µ−1(α)∩P(Z0) and

dM (µ
−1(α)) = dim(Z(Pα)), (4.6)

because by [3, 2.6.6] we have Z(Pα) =⋂ f ∈µ−1(α) Z X ( f )
zar

.
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We construct now, with the aid of µ, a chain of prime ideals of maximal length contained

in p0 such that the image of each term of the chain under µ belongs to M̃lc. To that end,

let β0 := µ(p0 ∩S(X, R)) ∈ X̃ . As Mlc is dense in X , so is M̃lc in X̃ (by the Artin–Lang

theorem); hence, β0 is adherent to the constructible set M̃lc. By [19, Thm. I], it holds

that

d := dimβ0(M̃lc)− dim(β0) > 0 (4.7)

(see (4.5) for the definitions of the previous dimensions), and M̃lc contains d points

β1, . . . , βd such that βd ( · · · ( β1 ( β0.

S1.b. Reduction to the case d > 1. If d = 0, then β0 ∈ M̃lc. We have the following diagram:

P(Z0)/Pβ0
� � // S(X, R)/(p0 ∩S(X, R)) �

� // S(M, R)/p0
� � ϕ // F

P(Z0)

OOOO

� � // S(M, R)

OOOO
ϕ

::

where the arrows in the first row preserve orderings. In particular, the prime cone β0
is the inverse image of the cone F2. As β0 ∈ M̃lc, there exist g1, . . . , gr , f ∈ R[x] :=
R[x1, . . . ,xn] such that {g1> 0, . . . , gr > 0, f = 0} ⊂ M̃lc and g1(β0) > 0, . . . , g f (β0) > 0,
f (β0) = 0. Thus, ϕ(g1) > 0, . . . , ϕ(gr ) > 0, ϕ( f ) = 0; hence, the core p := (ϕ(π1), . . . ,

ϕ(πm)) of ϕ satisfies g1(p) > 0, . . . , gr (p) > 0, f (p) = 0, and we conclude that

p ∈ Mlc,F ⊂ MF . By Lemma 1, ϕ = ψp : S(M, R)→ F is the unique R-homomorphism

from S(M, R) to F whose core is p. Thus, we assume in the following that d > 1.

S1.c. Construction of the chain of prime z-ideals pd ( · · · ( p1 ( p0 in S(M, R) such that

dM (pi ) = tr degR(qf(S(M, R)/p0))+ i for i = 1, . . . , d. Consider the chain of prime ideals

µ−1(βd) ( · · · ( µ−1(β1) ( µ−1(β0) = p0 ∩S(X, R)

of S(X, R). We claim the following.

(4.C.1) For i = 1, . . . , d, the ideal pi := µ−1(βi )S(Mlc, R)∩S(M, R) is a prime z-ideal

of S(M, R) contained in p0 such that pi ∩S(X, R) = µ−1(βi ).

The last part of the claim shows in particular that each pi is a proper ideal. Fix an

equation G ∈ S(X, R) of the closed semialgebraic set X \Mlc, and notice that G 6∈ µ−1(βi )

for i = 1, . . . , d because βi ∈ M̃lc; denote g := G|M . Let us begin by proving the following.

(4.C.2) The ideal p′i := µ−1(βi )S(Mlc, R) of S(Mlc, R) satisfies p′i ∩S(X, R) = µ−1(βi )

for i = 1, . . . , d.

Indeed, fix H ∈ p′i ∩S(X, R). There exist H j ∈ µ−1(βi ) and g j ∈ S(Mlc, R) for j =
1, . . . , r satisfying H = H1g1+ · · ·+ Hr gr . The semialgebraic functions

g′ := g
1+ |g1| + · · · + |gr | and g′i :=

gi g
1+ |g1| + · · · + |gr |

can be extended by zero to respective semialgebraic functions G ′,G ′i ∈ S(X, R), so

G ′H = H1G ′1+ · · ·+ Hr G ′r ∈ µ−1(βi ).

Since Z(G ′) = X \Mlc, we conclude that G ′ 6∈ µ−1(βi ), and therefore H ∈ µ−1(βi ).
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(4.C.3) We show now that p′i is a prime ideal of S(Mlc, R) for i = 1, . . . , d. Consequently,

pi = p′i ∩S(M, R) is a prime ideal of S(M, R).
Indeed, let a1, a2 ∈ S(Mlc, R) be such that a1a2 ∈ p′i . Observe that

a j
1+|a j |g can be

extended by zero to a semialgebraic function Ai ∈ S(X, R), so

A1 A2 ∈ µ−1(βi )S(M, R)∩S(X, R) = µ−1(βi ).

Thus, we may assume that A1 ∈ µ−1(βi ), and therefore a1
g

1+|a1| ∈ p′i . As g
1+|a1| is a unit

in S(Mlc, R), we deduce that a1 ∈ p′i ; hence, p′i is a prime ideal.

(4.C.4) Now we prove that pi is a prime z-ideal of S(M, R) for i = 1, . . . , d.

Indeed, let f1 ∈ pi = p′i ∩S(M, R) and f2 ∈ S(M, R) be such that Z M ( f1) ⊂ Z M ( f2);

hence, Z Mlc( f1) ⊂ Z Mlc( f2). As p′i is a prime z-ideal (see § 1.B) because Mlc is locally

closed, f2|Mlc ∈ p′i , and so f2 ∈ p′i ∩S(M, R) = pi .

(4.C.5) Let us show next that pi ⊂ p0 for i = 1, . . . , d.

Indeed, let h ∈ pi , H j ∈ µ−1(βi ) and g j ∈ S(Mlc) for j = 1, . . . , r such that

h = H1g1+ · · ·+ Hr gr .

As Mlc is open in X , the semialgebraic set Z(H2
1 + · · ·+ H2

r ) \Mlc is closed in X . Pick

B1, B2 ∈ S(X, R) such that Z(B1) = Z(H2
1 + · · ·+ H2

r ) \Mlc and Z(B2) = ClX (Z(H2
1 +

· · ·+ H2
r )∩Mlc). Observe that Z(B1 B2) = Z(H2

1 + · · ·+ H2
r ), and, as pi is a prime z-ideal

and (H1|M )2+ · · ·+ (Hr |M )2 ∈ pi , we conclude that B1|M B2|M ∈ pi . Note that B1|Mlc is a

unit in S(Mlc); hence, B1|M 6∈ pi , and so B2|M ∈ pi . Thus, B2 ∈ pi ∩S(X, R) = µ−1(βi ).

By Lemma 1, we know that ϕ ◦j∗ = evX F ,jF (p0) ◦iX,F and we deduce B2,F (p0) =
ψ(B2) = 0, as B2 ∈ µ−1(βi ) ⊂ p0 ∩S(X, R) ⊂ kerϕ. Therefore, p0 ∈ Cl(Z(H2

1 + · · ·+
H2

r )F ∩Mlc,F ), and by the curve selection lemma there exists a semialgebraic path

α : [0, 1] → Fn such that

α((0, 1]) ⊂ Z(H2
1 + · · ·+ H2

r )F ∩Mlc,F = Mlc,F ∩
r⋂

j=1

Z(H j,F ) (4.8)

and α(0) = p0. By Theorem 4, there exist A1, A2 ∈ S(X, R) such that A2h− A1 ∈ p0,

A2,F (p0) 6= 0, and ϕ(h) = A1,F (p0)
A2,F (p0)

. Thus,

ϕ(A2|M h) = A2,F (p0)ϕ(h) = A1,F (p0).

By (4.8), the semialgebraic functions H j,F ◦α are identically zero, and the semialgebraic

functions g j,F ◦α are well defined on the interval (0, 1] of F . Thus,

A1,F (p0) = lim
t→0+

(A1,F ◦α)(t) = lim
t→0+

(A2,F ◦α)(t)
 r∑

j=1

(H j,F ◦α)(g j,F ◦α)
 (t)

= lim
t→0+

0 = 0;

hence, ϕ(h) = A1,F (p0)
A2,F (p0)

= 0, and we conclude that pi ⊂ p0 := kerϕ.

(4.C.6) Finally, we prove that dM (pi ) = tr degR(qf(S(M, R)/p0))+ i for i = 1, . . . , d.
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Indeed, as Pβi+1 ( Pβi and each Pβi := support(βi ) is a real ideal, it holds that

dim(Z(Pβi )) > dim(Z(Pβi−1)) (4.9)

for i = 1, . . . , d. Therefore,

dim(Z(Pβd ))
(4.9)
> d + dim(Z(Pβ0)) = d + dim(β0)

(4.7)= dimβ0(M̃lc)

(4.5)
> dim(βd) = dim(Z(Pβd )).

We deduce that dim(Z(Pβd )) = d + dim(Z(Pβ0)), and so

dim(Z(Pβi )) = dim(Z(Pβ0))+ i

for i = 1, . . . , d. By (4.6),

dX (µ
−1(βi )) = dim(Z(Pβi )) = dim(Z(Pβ0))+ i = dX (µ

−1(β0))+ i.

As pi is a z-ideal and pi ∩S(X, R) = µ−1(βi ), we obtain by (1.B.1) that

dX (µ
−1(βi )) = tr degR(qf(S(X, R)/µ−1(βi )))

6 tr degR(qf(S(M, R)/pi ) = dM (pi )) 6 dX (µ
−1(βi ));

that is, dM (pi ) = dX (µ
−1(βi )). Now, since X is a brimming semialgebraic pseudo-

compactification of M for p0, we conclude by (1.B.2) that

dM (pi ) = dX (µ
−1(βi )) = dX (µ

−1(β0))+ i

= tr degR(qf(S(X, R)/(p0 ∩S(X, R))))+ i = tr degR(qf(S(M, R)/p0))+ i.

S1.d. Pick f ∈ p1 such that dim(Z( f )) = dM (p1), and define N0 := Z( f ). By [8], the map

ψ : S(M, R)→ S(N0, R), f 7→ f |N0 is an epimorphism. Since p1 is a z-ideal and f ∈
p1, we obtain kerψ ⊂ p1 ⊂ p0. Therefore, qi := pi/ kerψ is a prime ideal of S(N0, R) =
S(M, R)/ kerψ and S(M, R)/pi ∼= S(N0, R)/qi for i = 0, 1. Using the fact that p1 is a

z-ideal, one proves directly that q1 := p1/ kerψ is a z-ideal of S(N0, R). Thus,

tr degR(qf(S(N0, R)/q0))+ 1 = tr degR(qf(S(M, R)/p0))+ 1 = dM (p1) = dim(N0).

We claim that (T0 := ClX (N0),j|T0) is a brimming pseudo-compactification of N0 for q0.

Indeed, consider the commutative diagram

S(X, R) // //
� _

��

S(T0, R)� _

��
S(M, R) // // S(N0, R)

where the rows are epimorphisms and the columns are monomorphisms. Since q0 :=
p0/ kerψ , we obtain

S(T0, R)/(q0 ∩S(T0, R)) ∼= S(X, R)/(p0 ∩S(X, R)),

and conclude that

qf(S(T0, R)/(q0 ∩S(T0, R))) ∼= qf(S(X, R)/(p0 ∩S(X, R)))
∼= qf(S(M, R)/p0) ∼= qf(S(N0, R)/q0).
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Step 2. Construction of the semialgebraic set N in the statement. By Lemma 3.1,

there exist an appropriately embedded semialgebraic set N ⊂ Rn and a surjective semi-

algebraic map H : T := Cl(N )→ T0 := Cl(N0) whose restriction h := H |N : N → N0
is a semialgebraic homeomorphism. Then it holds that T is a brimming pseudo-

compactification of N for h∗(q0); i.e.,

qf(S(T, R)/h∗(q0)∩S(T, R)) = qf(S(N , R)/h∗(q0)). (4.10)

Indeed, H induces an injective homomorphism H∗ : S(T0, R) ↪→ S(T, R) that makes

the following diagram commutative:

S(T0, R) �
� H∗ //

� _

��

S(T, R)� _

��
S(N0, R) h∗

∼=
// S(N , R)

Thus, we get the following inclusion of fields:

qf(S(N0, R)/q0) = qf(S(T0, R)/q0 ∩S(T0, R)) ⊂ qf(S(T, R)/h∗(q0)∩S(T, R))

⊂ qf(S(N , R)/h∗(q0)) ∼= qf(S(N0, R)/q0),

and, comparing transcendence degrees, we conclude that equality (4.10) holds.

Step 3. Construction of the (core) point p ∈ Fn in the statement. Consider the

R-homomorphism ϕ : S(N , R)→ F such that ϕ = ϕ ◦ h∗ ◦i∗, where i∗ : S(M, R)→
S(N0, R), g 7→ g|N0 is the homomorphism induced by the inclusion i : N0 ↪→ M . Let

p := (ϕ(π1), . . . , ϕ(πn)), where πi : Rn → R is the projection onto the ith coordinate. By

(1.B.2), we have

dim(NF,p) = dim(TF,p) > dT (p) = tr degR qf(S(T, R)/h∗(q0)∩S(T, R))

= dim(N0)− 1 = dim(N )− 1 > dim(NF,p)− 1.

If p ∈ NF (which includes the case dT (p) = dim(NF,p)) or if dT (p) = dim(NF,p)− 1
and p 6∈ NF , we deduce by Lemma 1 that ϕ = ψp : S(N , R)→ F is the unique

R-homomorphism from S(N , R) to F whose core is p.
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