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Abstract Let R C F be an extension of real closed fields, and let S(M, R) be the ring of (continuous)
semialgebraic functions on a semialgebraic set M C R". We prove that every R-homomorphism ¢ :
S(M, R) — F is essentially the evaluation homomorphism at a certain point p € F" adjacent to the
extended semialgebraic set M. This type of result is commonly known in real algebra as a substitution
lemma. In the case when M is locally closed, the results are neat, while the non-locally closed case
requires a more subtle approach and some constructions (weak continuous extension theorem, appropriate
immersion of semialgebraic sets) that have interest of their own. We consider the same problem for the
ring of bounded (continuous) semialgebraic functions, getting results of a different nature.

Keywords: semialgebraic set; ring of semialgebraic functions; extension of coefficients; evaluation

homomorphisms; substitution theorem; weak continuous extension property

2010 Mathematics subject classification: Primary 14P10; 54C30
Secondary 12D15; 13E99

Introduction and statements of the main results

A basic relevant result in commutative algebra states that, given a ring extension A C B,
every A-homomorphism ¢ : A[xy, ..., x;] = B is completely determined by the images
of the variables x1, ..., x,; that is, it is a point-evaluation homomorphism. This result
is extended straightforwardly to finitely generated algebras over a ring A, but it also
holds in many other situations. For instance, the following types of homomorphism are
point-evaluation homomorphisms: (1) R-homomorphisms from a ring of Nash functions
on a Nash submanifold of R" into a real closed extension F of R (see [10]); (2) K-analytic
homomorphisms from the ring O(K") of germs of analytic functions on K" into the
ring O(X) of germs of analytic functions on an analytic germ X where K=R or
C (see [29]); (3) R-homomorphisms of the ring of smooth functions C*°(N,R) on a
differentiable manifold N (or an open subset of a Banach space) into R (see [2, 17]);
(4) R-homomorphisms of the ring of C* functions on an open subset U of a Banach space
into R under mild conditions (see [15, 16]).
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In real algebra, the previous type of result is commonly known as a substitution
theorem, referring to Efroymson’s classical result [10] for the ring of Nash functions
on a Nash manifold cited above. In [12, §6.1], we prove that this result also holds for
the ring of Nash functions on a semialgebraic set M, involving the pro-constructible set
obtained by intersecting the Nash closures of M in all open semialgebraic subsets of R"
containing M; as one can expect, the result is completely satisfactory if and only if M is
a Nash set.

In what follows, let R C F be an extension of real closed fields, and let M C R" be a
semialgebraic set, that is, a boolean combination of sets defined by polynomial equations
and inequalities. A continuous function f: M — R is semialgebraic if its graph is a
semialgebraic subset of R"*!. We denote the ring of semialgebraic functions on M by
S(M, R), and its subring consisting of those that are bounded by S*(M, R). We use the
notation S°(M, R) when referring to both of them indistinctly.

In this work we afford the problem of understanding the R-homomorphisms ¢ :
S(M, R) — F in terms of evaluation homomorphisms at points p € F", which are either
in the extension My of M to F or ‘very close to this set’” and ‘fill a big area’ (see below the
definition of semialgebraic depth of a point of F"). We introduce and recall first several
concepts to ease the exposition.

Real closed rings and real closure of a ring

It is well known that the rings S°(M, R) are particular cases of the so-called real closed
rings introduced by Schwartz in the 1980s; see [20]. The theory of real closed rings has
been deeply developed in a fruitful attempt to establish new foundations for semialgebraic
geometry with relevant interconnections to model theory; see the results of Cherlin and
Dickmann [5, 6], Schwartz [20-23], Schwartz with Prestel, Madden and Tressl [18, 24, 25],
and Tressl [26-28]. We refer the reader to [21] for a ring-theoretic analysis of the concept of
a real closed ring. Moreover, this theory, which vastly generalizes the classical techniques
concerning the semialgebraic spaces of Delfs and Knebusch [9], provides a powerful
machinery to approach problems concerning certain rings of real-valued functions and
contributes to achieving a better understanding of the algebraic properties of such rings
and the topological properties of their spectra. We highlight some relevant families of
real closed rings: (1) real closed fields; (2) rings of real-valued continuous functions on
Tychonoff spaces; (3) rings of semialgebraic functions on semialgebraic subsets of R"; and,
more generally, (4) rings of definable continuous functions on definable sets in o-minimal
expansions of fields.

Every commutative ring A has a so-called real closure rcl(A), which is unique up to
a unique ring homomorphism over A. This means that rcl(A) is a real closed ring and
there is a (not necessarily injective) ring homomorphism y : A — rcl(A) such that for
every ring homomorphism ¢ : A — B to some other real closed ring B there exists
a unique ring homomorphism ¥ :rcl(A) — B with ¥ = ¥ oy. For example, the real
closure of the polynomial ring R[x] := R[xq, ..., X,] is the ring S(R", R) of semialgebraic
functions on R". More generally, if Z C R" is an algebraic set, then S(Z, R) is the real
closure of the ring P(Z) of polynomial functions on Z. In particular, if ¢ : P(Z) —> F
is an R-homomorphism, then there exists a unique R-homomorphism ¢ : S(Z, R) - F
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such that ¢ =@ oy, where y : P(Z) — S(Z, R) is the natural inclusion. Unfortunately,
S(M, R) is not the real closure of P(M) for an arbitrary semialgebraic set M in general.

Example. Consider the semialgebraic subsets M := (x2+y? <1}and K := {x2+y2 < 1}
of R%Z. We have that R[x, y] = P(R?) = P(K) = P(M), and so the real closure of this ring
is S(R?, R), but in the first row of the following diagram

S(R?, R) — S(K, R)——= S8*(M, R)—= S(M, R)

| A =

R[x,v] P(K) P(M)

none of the involved homomorphisms is bijective. O

There are many ‘polynomial’ subrings of S(M, R) corresponding to all semialgebraic
embeddings of M in some R". The choice of a suitable one will be crucial for our purposes.

Extension of coefficients

There exists a (unique) semialgebraic subset Mr C F" called the extension of M to
F that satisfies M = Mp N R". The extension of semialgebraic sets depicts the natural
expected behavior with respect to boolean operations, interiors, closures, boundedness,
semialgebraically connected components, the transfer principle, and so on (see [3, § 5.1-3]).
Moreover, given another semialgebraic set N C R" and a semialgebraic map f: M — N,
there exists a semialgebraic map fr : Mg — Np called the extension of f to F that fulfills
frlm = f. The extension of semialgebraic maps enjoys the natural expected behavior
with respect to direct and inverse image, continuity, injectivity, surjectivity, bijectivity,
and so on (see [3, §5.1-3]). Summarizing, ‘Every property that can be expressed in the
first-order language of ordered fields with parameters in R can be transferred to F’
([3, 5.2.3]). We refer the reader to [7] and [3, §5] for a complete study of the extension
to F. By [3, 7.3.1], the extension of semialgebraic functions to F induces a well-defined
R-monomorphism
i r:SWM,R)— S(MFp, F), f — fF.

This observation together with the evaluation homomorphism evy, , : S(Mfp, F) = F,
g+ g(p) for p e Mg provides the natural R-homomorphism v :=evy, po0ipm F:
S(M,R) — F.

For each i =1, ..., n, consider the ith projection ; : M — R, x := (x1, ..., X,) > X;.
Given an R-homomorphism ¢ : S(M, R) — F, the point p, 1= (¢(m1), ..., ¢(m,)) € F"
will be called the core of ¢. Our purpose is to understand under which conditions ¢ is
completely determined by its core or, in other words, when ¢ coincides with ;. We still
need some extra terminology.

We say that a point p € F" is adjacent to M if p € Nrp for each locally closed
semialgebraic set N C R" that contains M. The pro-constructible set Mp of points of
F" that are adjacent to M will be called the adjacency of M in F™; clearly, it holds
that Mg C M; C CI(M) F. Of course, if M is locally closed or if R = F, then My = M;
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We will see in Lemma 1.1 that the core of an R-homomorphism ¢ : S(M, R) — F always
belongs to Mp ; hence, in the case when M is locally closed, then p, € Mp. For further
properties of the set M, see [22, 1.3.20].

We will also need to measure ‘how much space’ a point p € Mg ‘fills’ in M (see
Example 1.5), and to that end we define the semialgebraic depth of p as

dy(p) := min{dim(N) : N C M is a closed semialgebraic subset of M and p € Nr}.
(I.1)
As we state in (1.B.2), if M is closed and bounded in R", the semialgebraic depth das(p)
has a further algebraic meaning: dy (p) = trdegg (R(p)), where R(p) denotes the smallest
subfield of F containing R and the coordinates of the tuple p.

Main results

It is clear that the core of an R-homomorphism S(M, R) — F depends on how M is
embedded in R". Thus, a ‘good immersion’ of M in R" increases the possibilities that the
core completely determines the corresponding R-homomorphism. Having this in mind, we
introduce the following concept. A semialgebraic set M C R" is appropriately embedded
if it is bounded and for each point g € CI(M)\ M the germ M, is semialgebraically
connected and either CI(M),; = M, or dim(Cl(M)4 \ M) = dim(M,) — 1. We will show in
Theorem 3.1 that every semialgebraic subset of R" can be appropriately embedded in R".
We expect that this type of embedding has further applications than the ones described
in this article. After this preliminary exposition, we are ready to state our main results.

Lemma 1 (Substitution Lemma). Let p € F" be adjacent to M.

(i) Ifp € MF, then Y :=eVppo iy, F is the unique R-homomorphism S(M, R) — F
whose core is p. In particular, if dcim)(p) = dim(MF ), then p € MF.

(ii) If M is appropriately embedded, p ¢ MF and dcin)(p) = dim(MF ) — 1, there exists
exactly one R-homomorphism Y : S(M, R) — F whose core is p. Moreover, for
each f € S(M, R) there exists a semialgebraic set M C My C CI(M) such that p €
My, f can be extended to fe S(Mys, R), and Y (f) = fp(p).

(i) If p¢Mr and damn(p) < dim(Mpp)—2, there exist infinitely many
R-homomorphisms S(M, R) — F whose core is p.

As Mp = A/l; if M is locally closed, we deduce in this case, by Lemma 1(i) and
Lemma 1.1, that the R-homomorphisms S(M, R) — F are evaluation homomorphisms.
Thus, there exists a bijection between Mp and the set of R-homomorphisms
S(M, R) — F. As one can expect, the most interesting case appears when M is not
locally closed.

Theorem 2 (Substitution Theorem I). Let ¢ : S(M, R) — F be an R-homomorphism.
Then there exist

(i) an appropriately embedded semialgebraic set N C R™ and a semialgebraic embedding
h: N — M such that Ny := h(N) is closed in M,

(ii) a pointp € F" adjacent to N such that either p € Nr or dciv)(p) = dim(Nrp) — 1,
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satisfying that the following diagram is commutative:

f  S(M,R)—Y—~F

[ Tve

flxe  S(No. R) —“= S(N. R)
g—>goh

where Y, : S(N, R) — F is the unique R-homomorphism from S(N, R) to F whose core
1S p.

Of course, the decomposition provided in Theorem 2 is not unique, but this result shows
that every R-homomorphism ¢ : S(M, R) — F is essentially a restriction homomorphism
composed with a point-evaluation homomorphism (via an intermediate R-isomorphism
induced by a semialgebraic homeomorphism). Namely, ¢ is determined by two objects
(see the proof of Theorem 2 for further details).

» A fitting closed semialgebraic subset No C M such that
Iy (Ng) :={f €e SIM,R) : Ngo C {f =0}} C kerg.

m A finite family {gi,...,gi} C S(N,R) such that p:= (p(g1),...,9(gn)) € F" is
adjacent to N and either p € N or dcyv)(p) = dim(Npp) — 1.

This confirms the finite nature of the R-homomorphisms ¢ : S(M, R) — F.

Ring of bounded semialgebraic functions.  The situation for the ring of bounded
semialgebraic functions is quite different. Recall that a semialgebraic pseudo-
compactification of M is a pair (X, j) that consists of a closed and bounded semialgebraic
set X C R" and a semialgebraic embedding j: M — X whose image is dense in X. A
crucial fact is that S*(M, R) is the direct limit of the family constituted by the
rings of semialgebraic functions S(X, R), where (X, j) runs on the semialgebraic
pseudo-compactifications of M (see 1.A). We will use this together with Lemma 1(i)
applied to S(X, R) in order to understand the R-homomorphisms S*(M,R) — F. A
substantial difference using R-homomorphisms ¢ : S(M, R) — F is that, if M is bounded,
the core of an R-homomorphism S*(M, R) — F belongs to CI(M)g with no further
restrictions (compare Lemma 1.1 with Remark 1.2). In fact, if (X, j) is a semialgebraic
pseudo-compactification of M and ¢ : S(X, R) — F is an R-homomorphism, then it can
be extended to the direct limit S*(M, R) (of course this extension is rarely unique; see
Lemma 1.3 and Remark 1.4). A crucial fact proved in [13, Proof of Thm. 3. Step 2]
states the following.

Lemma and Definition 3. Let p be a prime ideal of S°(M, R). Then there exists a
semialgebraic pseudo-compactification (X, ) of M such that

qf(S(X, R)/(pNS(X, R))) = qf(S°(M, R)/p).

We say that (X, j) is a brimming semialgebraic pseudo-compactification of M for p.
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Our main result for the bounded case, which also works for the ring S(M, R), is the
following.

Theorem 4 (Substitution Theorem II). Let ¢ : S°(M, R) — F be an R-homomorphism,
and let (X, j) be a brimming semialgebraic pseudo-compactification of M for p := Ker ¢.
Let p be the core of ¥ := @ o 7%, and denote A := S(X, R)/(p NS(X, R)). Then ¥ induces
the homomorphism

7 ¢ af(A) = qf(S* (M. R)Jp) — F, 4, Y@ _ a1r®)

" [b] v(b)  azr(p)

and the following diagram is commutative:

af(A) Af(S* (M. R)/p)—-—= F

| 1 =7

A L So(M, R)/p

T !

|
S(X,R) S°(M, R)

In particular, ¢ is completely determined by p: if f € S°(M, R), there exist ai,az €

S(X, R) such that ay p(p) #0, axf —ay € p, and ¢(f) = Z;;g;

Proof. By Lemma 1, it holds that ¢ =evx, poix r. Note that 1//7 : qf(A) — F is the
unique homomorphism between the real closed fields qf(A) and F. On the other hand,
@ :S8°(M, R) — F induces the homomorphism

2 :qf(S°(M, R)/p) — F, 1 &)

gl ¢(e)
Since qf(A) = qf(S°(M, R)/p), we have 5: 1}, and for each f € S°(M, R) there exist
aj,ay; € S(X, R) such that a; €pNS(X,R) and ap f —aj € p; in particular, ¢(a;) =
Y (ai) = a;, r(p) and az r(p) = ¢(az) # 0. Thus,

a2, F)e(f) —ai,r(P) = pD)e(f) —¢a) = ¢(bf —a) =0,

that is, @(f) = Z;:g;, as required. O

Remark. If ¢ :S°(M) > A is an R-homomorphism into an R-algebra A, the first
isomorphism theorem provides the following canonical decomposition of ¢:

%
S° (M) = 8°(M)/kerg = imgp <> A.

In particular, if A is an integral domain, the ideal p := ker¢ is prime, and so F :=
qf(S°(M)/p) is a real closed field that contains R as a subfield. Now, the results stated
above can be applied to the R-homomorphism ¢ : S°(M) SN S°(M)/p — F induced
by ¢.

https://doi.org/10.1017/51474748014000206 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748014000206

On the substitution theorem for rings of semialgebraic functions 863

Theorem 2 is proved using Lemma 1, Theorem 4, and the theory of real closed rings [22].
The proof of Lemma 1 is based on a fruitful use of the real closure’s universal properties
of the ring of polynomials with coefficients in R and the crucial fact that semialgebraic
functions enjoy the following weak continuous extension property, which has its own
interest.

Theorem 5 (Weak continuous extension property). Suppose that the germ M, is
semialgebraically connected for all g € CI(M). Then, for each f € S(M, R), there exist an
open semialgebraic neighborhood V of M in CI(M) and a semialgebraic set Y C Cl(M)\ M
such that dim(Y,) < dim(M,) —2 for all g € Y, and f can be extended continuously to
VY.

Of course, if M has dimension 2, we may take ¥ = & after shrinking V. However, this
possibility can no longer be extended for dimension > 3 (see Example 2.2). Namely, we
have the following.

Corollary 6 (Continuous extension property). Assume that M is two dimensional and
that the germ M, is semialgebraically connected for all g € Cl(M). Then, for each
semialgebraic function f € S(M, R), there exists an open semialgebraic neighborhood V
of M in CI(M) such that f can be extended continuously to V.

The article is organized as follows. In § 1, we present all basic notions and notation
used in this paper as well as some preliminary results. We give special attention to the
semialgebraic pseudo-compactifications of a semialgebraic set that play a special role in
this work. Reading can be started directly in § 2, with reference to the preliminaries only
when needed. The aim of §2 is to prove Theorem 5 (in §2.A), and the purpose of §3
is to show that each semialgebraic set can be appropriately embedded. In §4, we prove
Lemma 1 (in §4.A) and Theorem 2 (in §4.C).

1. Preliminaries on semialgebraic sets

In this section, we introduce some terminology, notation, and preliminary results that are
systematically used in this work. For each f € §°(M, R) and each semialgebraic subset
N C M,wedenote Zy(f) :={x e N: f(x) =0}.If N = M, we say that Z(f) := Zy(f) is
the zero set of f. We denote the open ball of R” with center x and radius & with B, (x, ),
and the corresponding closed ball with B, (x, €). In some cases it will be useful to assume
that the semialgebraic set M we are working with is bounded. Such an assumption can
be done without loss of generality. Namely, the semialgebraic homeomorphism
h:B,0,1) — R", X ——

1—[lx|1?
induces an R-isomorphism S(M, R) — S(h™' (M), R), f — foh.

A crucial fact when dealing with the ring of semialgebraic functions on a semialgebraic
set M is that every closed semialgebraic subset Z of M is the zero set Z(h) of a (bounded)
semialgebraic function & on M; take for instance & := min{l1, dist(-, Z)} € S*(M, R).

Local closedness has been revealed in the semialgebraic setting as an important
property for the validity of results which are in the core of semialgebraic geometry.
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If M C R" is a semialgebraic set, then CI(M) and U := R"\ (CI(M)\ M) are also
semialgebraic sets. In the case when M is additionally locally closed, then U is open
in R", and so M = CI(M) N U can be written as the intersection of a closed and an open
semialgebraic subset of R". Consider the subset

p(M) := CL(CI(M) \ M) N M. (1.1)
It follows from [9, 9.14-9.21] that the semialgebraic set
Mic := M\ p(M) = CI(M) \ C(CI(M) \ M) (1.2)

is the largest locally closed and dense subset of M, and it coincides with the set of points
of M that have a closed and bounded semialgebraic neighborhood in M.

An elementary but important fact states that the core of an R-homomorphism
S(M, R) — F is adjacent to M. Its proof is inspired partly by the proof of Efroymson’s
substitution theorem for Nash functions [3, 8.5.2] (see also [12, 6.3] for a generalization).

Lemma 1.1. Let ¢ : S(M, R) — F be an R-homomorphism, and let p be the core of ¢.
Then p is adjacent to M.

Proof. Write CI(M) = Uzr'=1 {gi120,..., gis = 0} for some g;; € R[x]. Suppose first that
p € CI(M) r; we may assume that g;1 r(p) <Ofori =1, ..., r. Consider the semialgebraic
function g :=[]'_,(gi1 — lgi1))?, and observe that g|y = 0; hence, ¢(g) = 0. However,

since ¢ is an R-homomorphism and |g;;| = gizj7 we have ¢(g;j) = gij,r(p) and ¢(|gi;|) =
lgij,F(P)|. Thus,

-
0=0() =[[@iLr®) —lgn.r@E)D* >0,
i=1
because gi1, r(p) <0 for i =1,...,r, which is a contradiction. We conclude that p €
CI(M)F.

Now let N be a locally closed semialgebraic set that contains M. Then N = CI(N)N U,
where U is the open semialgebraic set R" \ (CI(N) \ N); observe that M Cc U. As CI(M) C
CI(N), it is enough to check that p € Up.

Indeed, write R"\U := U{L]{hil >0,...,hijp >0}, and consider the semialgebraic
function / := [T{_y Y%, (hij — |hij|)%. Since Z(h) N\ M = (R"\U) N M = @, we have that
h is a unit in S(M, R), and so 0 < ¢(h) = hp(p); hence, p € F"\ Z(hr) = Uf, as
required. O

A crucial tool when dealing with rings of bounded semialgebraic functions is the use
of semialgebraic pseudo-compactifications.

1.A. Semialgebraic pseudo-compactifications of a semialgebraic set

Let (X, j) be a semialgebraic pseudo-compactification of M. It holds that S(X, R) =
S*(X, R), since the image of a bounded and closed semialgebraic set under a semialgebraic
function is again bounded and closed. The embedding j induces an R-monomorphism
3*: S(X, R) < S°(M, R), f + fo7,and we denote aNS(X, R) := (%)~ (a) for every
ideal a of §°(M, R). The following properties shown in [13, § 1] are decisive.
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(1.A.1) For each finite family {fi,..., fr} C S*(M, R) there exists a semialgebraic
pseudo-compactification (X, j) of M and semialgebraic functions Fi,..., F, € S(X, R)
such that f; = F; o 7.

(1.A.2) Let Fu be the collection of all semialgebraic pseudo-compactifications of M.
Given (X1, j1), (X2,]j2) € §m, we say that (Xy, j1) < (X2,j2) if and only if there exists
a (unique) continuous surjective map p : X» — X such that p o jp = ji; the uniqueness
of p follows because ply = 10 (2lp)~! and M is dense in X;. It holds that (Fu, <) is
a directed set.

(1.A.3) We have a collection of rings {S(X, R)}(x,5)eg, and R-monomorphisms
Piix,  S(X1,R) = S(Xo, R), f > fop
for (X1, 31) < (X2, J2) such that
° p;l,Xl =1id and
® 0%, X3 = PXy.x;3 © Px, . x, if (X1, 31) < (X2, 32) < (X3, 33).
We conclude that the ring S*(M, R) is the direct limit of the directed system

(S(X, R), 'O;ﬁ(l,Xz) together with the homomorphisms 3* : S(X, R) < S*(M, R), where
(X, 3) € m. We write S*(M, R) = li_I)nS(X, R).

(1.A.4) On the other hand, the ring S(M, R) is the localization S*(M, R)yy of S*(M, R)
at the multiplicative set W of those functions f € S*(M, R) such that Zy(f) = @. In
particular, if p is a prime ideal of S*(M, R) that does not meet W, then qf(S*(M, R)/p) =
af(S(M, R)/pS(M, R)).

Remark 1.2. Proceeding similarly to the first part of the proof of Lemma 1.1, one may
prove that, if M is bounded and ¢ : S*(M, R) — F is an R-homomorphism, then the
core p := (p(my), ..., (ry,)) of ¢ belongs to CI(M)fr. We need the boundedness of M to
guarantee that the polynomial functions on M are bounded functions; that is, P(M) —
S*(M, R).

On the other hand, we cannot adapt the second part of the proof of Lemma 1.1 to
the ring S*(M, R); that is, we cannot ensure that p is adjacent to M, because a function
f € 8*(M, R) with empty zero set need not be a unit. Thus, we can only ensure that
p € CI(M)F.

As a kind of converse of the previous remark, we propose the following result.

Lemma 1.3. Assume that M is bounded, and let X := CI(M) and p € Xp. Then there
exists an R-homomorphism ¢ : S*(M, R) — F whose core is p.

Proof. By the curve selection lemma [3, 2.5.5], there exists a semialgebraic path « :
[0, 1] — F"™ such that «(0) = p and «((0, 1]r) C Mp. Consider the map

0:S8*M,R) > F, fr— 1ir(1)1+(fp oa)(t).
I—

Once we guarantee that lim,_, g+ (fr o @) (¢) exists, it is clear that ¢ is an R-homomorphism
whose core is p.
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Indeed, as the graph of g := froa is a one-dimensional semialgebraic subset of F2,
it is a finite union of singletons and one-dimensional Nash manifolds (see [3, 2.9.10]);
hence, we may assume after shrinking the domain of g that the restriction of g to (0, 1) ¢
is Nash. If g is constant on (0, 1), the existence of the limit is clear. Otherwise, the zero
set of g’ is finite, and, after shrinking the domain of g, we may assume that it is empty
and without loss of generality that g is decreasing on (0, 1) . As g is a bounded function,
g((0, 1]F) = (A, g(1)] for some A € F (use [3, 2.1.7]), and so lim,_, o+ g(z) = A. O

Remark 1.4. Notice that each pair of essentially different semialgebraic paths ap, oy in
Mp through the point p defines different R-homomorphisms ¢; : S*(M, R) — F whose
core is p.

1.B. Semialgebraic depth and transcendence degree

We recall a different point of view for the concept of semialgebraic depth devised in
[13, §2] (see also [11] for a deeper study of this invariant). Given a prime ideal p of
S(M, R), we define the semialgebraic depth of p as

das (p) == min{dim(Z(f)) : f € p}.

Now, given a point p:= (py,...,pn) € Mf, consider the prime ideal p(p):={f €
S(M, R) : fr(p) =0}. As one can check, it holds that dy(p) = dpu(p(p)) (see (I.1)). On
the other hand, let F be the real closed field qf(S(M, R)/p), and let p € F" be the core
of the R-homomorphism

¢:S(M,R) — S(M, R)/p — F.

Then p = p(p), and so dy (p) = du (p).

Recall that an ideal a of S(M, R) is a z-ideal if a function f € S(M, R) belongs to a
whenever there exists g € a such that Z(g) C Z(f). If M is locally closed, all radical ideals
of S(M, R) are z-ideals [3, 2.6.6]. The following properties are proved in [13, Thm. 3].

(1.B.1) Let p be a prime z-ideal of S(M, R). Then dpy(p) = trdegr(S(M, R)/p).

(1.B.2) Let X be a closed and bounded semialgebraic set, and let p be a prime ideal of
S(X, R). Then

dx(p) = trdegp (R[x]/(p N R[x])) = trdegr (S(X, R)/p).

In particular, if p € XF and R(p) is the smallest subfield of F that contains R and the
coordinates of the tuple p,

dx (p) = trdegg(R(p)) = trdegr (qf(S(X, R)/p(p))).

The following example illustrates the algebraic interpretation of the semialgebraic
depth.

Example 1.5. Let F :=R({t*}) be the field of meromorphic Puiseux series with
coefficients in R. Consider the point p := (t,et) € F2. Clearly, trdegg (R(t, %)) = 2,
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and let us check that dp2(p) = 2. Indeed, we have to prove that, if N C R? is a closed
semialgebraic subset such that p € Ng, then it has dimension 2. Otherwise, choose a
one-dimensional closed semialgebraic set N such that p € Nr. By [3, 2.9.10], we may
assume that N is the union of two points and a Nash manifold Nash diffeomorphic
to the interval (0, 1). Thus, there exists a non-zero polynomial P € R[t, x] such that
N C Z(P); hence, P|y, =0, and so P(t,e") =0, which is a contradiction, since t and
et are algebraically independent over R.

2. Weak continuous extension of a semialgebraic function

The purpose of this section is to prove Theorem 5. We begin with some illustrating
examples.

Examples 2.1. (i) Let M := (R?\ {y = 0}) U{(0,0)}, and let f : M\ {(0,0)} — R be the
semialgebraic function that maps {y > 0} onto 1 and {y < 0} onto 0. Since f is bounded
on M\ {(0,0)}, the semialgebraic map g := (x2+ y2) f can be extended continuously to
the origin. However, g cannot be extended continuously to any neighborhood of the origin

in R? = CI(M).
(ii) Let M' :={(y —x)(y +x) > 0}U{(0, 0)}, and consider the bounded semialgebraic
function
iR\ {xy =0} = R, (x,)) > I%I

Clearly, h:=xf € S(M, R) can be extended continuously to {x = 0}. Consider the
semialgebraic maps

0o M—> M, (x,y)— (x,y+h(x,y)) and v : M — M, (x,y)— (x,y—h(x,y)),

which are mutually inverse. Thus, M and M’ are semialgebraically homeomorphic, and
so S(M, R) and S(M’, R) are isomorphic. It follows from the following result that each
g € S(M', R) can be extended continuously to a neighborhood of the origin in CI(M) =
{—x)(+x) =0}

Triangulation of semialgebraic sets

We will use often the following fact. Let X C R" be a bounded and closed semialgebraic
set, and let {S1,..., Sy} be a family of semialgebraic subsets of X. Then there exist a
finite simplicial complex K and a semialgebraic homeomorphism ® : |K| — X such that
the restriction ®|;o : 0% — R" is a Nash embedding for each o € K and each set S; is the
union of finitely many open simplices o° of K (see [3, 9.2.1, 9.2.3] for further details).

2.A. Proof of Theorem 5

Consider the bounded semialgebraic function g := %m, which satisfies |g(x)| < 1 for all
x € M. Note that, since f = 60(g) where 6 : (—1,1) > R, t —
the statement for g.

l‘ . .
—p it s enough to prove

Strategy of the Proof. First, we construct the open neighborhood V of M in C1(M)
quoted in the statement. Next, we construct the set Y in several steps by describing the
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different types of problematic points to extend g continuously and proving that each of
these sets ¥; has local dimension upperly bounded by the local dimension of M minus 2.
We also prove for technical reasons that V \ (Y U M) is locally closed. Finally, we construct
the continuous (semialgebraic) extension of g to V\'Y.

Step 1. General notation and construction of the open semialgebraic neighborhood V.
We assume that M is bounded. Notice that M’ := graph(g) C M x R is a bounded
semialgebraic set, and let X := CI(M’). Consider the projections

7 R R, (X, xp+1) > x  and w4 R 5 R, (x1, ey Xy Xptl) > Xppl.
Define S :={x € X : m,41(x) = £1} and g := 7|x; observe that M'NS = @.

We claim the following. The fiber 0~ '(p) is a singleton for all p € M.

Indeed, suppose by contradiction that there exists a point (g,1) € X such that
g € M and g(g) # A. By the curve selection lemma [3, 2.5.5], there exists a continuous
semialgebraic path « : [0, 1] — R™*! such that «(0) = (¢, 1) and «((0, 1]) C M’. Define
Bi=moa:[0,1] > M, and observe that |11 = (Blo,11,8°Blw0.17), BO) =¢, and
a(0) = (g, 1), where A # g(g), which is against the continuity of g at ¢.

Now, since S is a bounded and closed semialgebraic set, so is C := o(S). Define V :=
CI(M) \ C, which is an open semialgebraic subset of CI(M), and observe that M C V
because o~ !(p) is a singleton and |g(p)| < 1 for each p € M.

Step 2. Construction of the semialgebraic set Y.

S2.a. Define Yy := {p € CI(M) : dim(o~"(p)) = 1}. We claim that dim(Yp,,) < dim(Mp) —
2 for all p € CI(M), and that the fiber 0~'(q) is a singleton for each q € CI(M)\ Y.
Indeed, assume by contradiction that there exists p € CI(M) such that dim(Yy ,) >
dim(Mp) — 1, and let U be an open semialgebraic neighborhood of p such that dim(¥y N
U) > dim(M NU) — 1. Notice that, since o~ !(x) has dimension 1 for each x € YoNU,

dim(o~ ' (Yo N U)) = dim(YoNU) +1 > dim(M N U).
On the other hand, since M NYy = @ and o' (M) = M’,
o' (YoNU) c X\ M)Ne™'(U) C UM N W)\ M Ne™ (U)));
hence, by [3, 2.8.13],
dim(M NU) < dim(e~' (Yo N U)) < dim(M' N~ ' (U)) = dim(M NU),

which is a contradiction. Thus, dim(Yp,,) < dim(M) —2 for all p € CI(M).

Fix a point g € CI(M)\ Yy, and let us check that o~ !(g) is a singleton. Since
g €Yy, we know that o~ '(q) ={z1,...,zs} is a finite set. Choose pairwise disjoint
bounded and closed semialgebraic sets K; C R™1 such that z; € Int(K;). Let K := X\
\UJ;_, Int(K;), which is a closed and bounded semialgebraic set, and so it is also 7 (K). As
0 (q) ={z1, ..., 2z}, we deduce that ¢ & w(K). Define W := R" \ w(K), which is an open
semialgebraic subset of R” that contains g and satisfies o~ (W N CI(M)) C Ule XNK;;
hence,

wnMc | Jrxnk)nm. (2.1)

i=1
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We know that o~ !(y) is a singleton for each y € M; hence, as K; NK; =aifi #j, we
deduce that

r(XNKH)Na(XNK;) CcCIM\M ifi#j.
Moreover, each set 7(XNK;)NM is non-empty and closed in M. Thus, since M, is
semialgebraically connected, we deduce that s = 1, and so 0~ !(¢) is a singleton.

S2.b. Let (K, ®) be a semialgebraic triangulation of X compatible with M’, X\ M’,
o L (V\ M), and o~ (Yp) such that Dl 0: 09 - §0:= &%) c R"*!is a Nash embedding
for each o € K. Let § be the collection of all simplices T € K such that
e 70 := & (1% c o~ (V\ (M UYp)) and
e there exists a point x € T satisfying dim(Txo) = dim(M}) — 1.
We cléxim the following. If t € §, then dim(TZO) =dim(M)) —1 and X, \ M, = TZO for all
zeT”.

Indeed, suppose there exists a point z’ € T° such that dlm(TO) dlm(M’ ) —2. Then
there exists a simplex ¢’ € K such that 7/ € §' := ®(¢’) and dlm(o’) = dlm(M; ) because

(K, ®) is compatible with M’ and X. As 7’ € T°NS’, we deduce that 7 is a proper face
of o/, and so

dlm(M ) = dim(o’) < dlm(M’) = dlm(TO) +1
= dlm(TZO,) +1< dlm(MZ,) —2+1= d1m(Mé,) -1,

which is a contradiction. Thus, dim(TZO) =dim(M]) —1 for all z € 70.

Now, let ze€T? and let 0 € K be a simplex such that z e §:=®(c) and
§9:=d(0% c M'. Since z € T°NS, we deduce that v C o is a (proper) face of o,
and as dim(7) = dim(M]) —1 and T° C X\ M’, we deduce that dim(S?) = dim(M).
Observe that, since z € T? and dim(7?) = dim(M]) — 1, we have dim(7) < dim(X, \ M))
<dim(M) -1 = dim(TZO), and so dim(TZO) = dim(X; \ M)); hence, TZ0 = X, \ M/ for all
zeTO.

S2.c. Let & be the collection of all simplices € € K such that E?:= ® (%) c o7!
(VN (M UYy)), and define Y; := Uee@\& Q(EO). We claim that dim(Y; ,) < dim(Mp) —2
for all p € CI(M).

Let p € CI(Y1), and suppose that dim(Yy ,) > dim(M,) — 1. Pick a point g € Y close
to p such that dim(Y; 4) = dim(Y1, ,) and dim(M,) < dim(M,,). Since g € Y1 C CI(M) \ M,
we have Y 4 C CI(M)4 \ My; hence, by [3, 2.8.13], dim(Y; 4) < dim(M,) — 1. Thus,

dim(M,) < dim(M,) < dim(Y7 ) +1 = dim(Y1 4) +1 < dim(M,) — 1+ 1 = dim(M,),

and so dim(Y; 4) = dim(M,) — 1. As Y1 C V \ Yy, we deduce that 0~ '(g) is a singleton {z}.
Let €1, ..., € be simplices in &\ § such that z € E; = ®(¢;). Notice that dim(E?‘Z) <

dim(M]) —2 for each j=1,...,r. Moreover, as gly’: M’ — M is a semialgebraic
homeomorphism and o(M!) C My, we deduce that dim(M]) = dim(o(M))) < dim(M,).
Thus,

dim(r(EY),) < dim(x(ED)) < dim(E)) = dim(E7 ) < dim(M]) —2 < dim(My) -2,

and, since Y1 4 = Uj 1JT(E )g, we deduce that dim(M,) — 1 = dim(Y; ) < dim(M,) — 2,
which is a contradiction. Thus dim(Y1,,) < dim(M,) —2 for all p € CI(M).
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S2.d. Define Y := Cl(Yp U Y) \ M that satisfies dim(Y,,) < dim(M,) —2 for all p € CI(M).

Step 3. Construction of the continuous extension G of g to V\Y. Write o~!(q) =
(q,G(q)) for all g € V\Y, and observe that G|y = g. We claim that G: V\Y — R
is continuous, and that consequently it is a semialgebraic function.

S3.a. Since G|y, = glm,. is continuous and M. is open in CI(M), it is enough to check
the continuity of G at the points of V \ (Y U My.).

S3.b. We first check the continuity at the points g € V\ (Y UM) = V \ (C(Y)U M).

Choose a point g € V\(YUM). We begin with the construction of fitting
neighborhoods of ¢ in CI(M) and p~'(g) in X.

We know that 0~!(¢) = {x} is a singleton and that there exists a simplex t € K such
that x € T° and Tx0 = X, \ M; recall also that dim(TZO) =dim(M)) —1 for all z € 70.
Let o1, ...,0m € K be the simplices of K such that dim(o;) = dim(M}) and t C o;. The
condition dim(TZO) =dim(M)) —1for all z € T9 guarantees that 701 UTzl S? is an open
neighborhood of 7% in X. Define C; := X \ (7% |_|T:1 S?), which is a closed semialgebraic
set, and so o(C) is also a closed semialgebraic set. Since o~ !(g) = {x} and x ¢ Cy,
we deduce that ¢ € X\ 0(C1). Let U; be a closed semialgebraic neighborhood of ¢ in
CI(M) contained in V \ (C1(Y) U o(C})) such that U; N M is semialgebraically connected
(use that the germ M, is semialgebraically connected). Thus, W =0 1 (U)) is a closed
semialgebraic neighborhood of x in X contained in 7% |_|?’=1 S?.

Notice that the restriction ol : W — U, is a semialgebraic homeomorphism because
W is closed and bounded and ol is a bijective (continuous) semialgebraic map. Let us
check now that W\ T° is semialgebraically connected.

Indeed, since TZ0 = X, \ M/ for each z € 79 we deduce that (X\M)NW =T°NW,
and so

eW\T) = oW\ (X\M") =o(WNM)=UiNM.
As U N M is semialgebraically connected, so is W \ T°. Since S? is open, S? N S? =@ if
i #j,and S? NW = &, we deduce that m = 1 and T°U S? is an open neighborhood of x
in X. As Q|%} (2) = (z, G|U] (z)) and U, is a semialgebraic neighborhood of ¢, we deduce

that G is continuous at g because Q%l is continuous.
1

S3.c. To finish, let us prove that G is continuous at all points of M\ M\.. Suppose by
contradiction that there exists a point p € M \ M) such that G is not continuous at p.
Then we can find ¢ > 0 such that p is adherent to the semialgebraic set D :={y € V \
Y . |G(p) — G(y)| > €}. By the curve selection lemma, there exists a semialgebraic path
a : [0, 1] = R" such that «(0) = p and «((0, 1]) C D. On the other hand, since G|y = g
is continuous, there exists § > 0 such that |G(x) — G(p)| < 5 for each x € M NB,(p, 8).
Shrinking the domain of &, we may assume that ima C B, (p, §). Since im(«) C CI(M) N
B.(p,§), there exists by the curve selection lemma a semialgebraic path g : [0, 1] - R"

such that B(0) = «(1) and B((0,1]) € M NB,(p, ). Thus,

£ <|G(p)=Ga()] = 121(1)1 IG(p) =GB <

’

N ™

which is a contradiction.
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Hence, g € S(M, R) can be extended to a semialgebraic function G € S(V \ Y, R), as
required. O
The following example shows that the previous result is sharp.

Example 2.2. Consider the semialgebraic set M := {x —y > 0, y > 0}U{(0, 0,0)} C R?
and the bounded semialgebraic function f : M\ {(0,0,0)} - R, (x,y,2) — )% Observe
that M is appropriately embedded and that g := zf can be extended continuously to the
origin. However, g cannot be extended to any neighborhood of the origin in CI(M),
because such extension should value z on the semialgebraic set CI(M) N {y = 0} and 0 on
the semialgebraic set CI(M) N {x — y = 0}, which contradicts the continuity of g.

3. Appropriate embedding of semialgebraic sets

In the introduction, we presented the appropriately embedded semialgebraic sets, and our
aim in this section is to prove that every semialgebraic set M C R" can be appropriately
embedded. The proof of this result requires some initial preparation. We denote by n(M)
the set of points g € C1(M) \ M such that either 0 < dim(Cl(M), \ M) < dim(M,) — 1 or
M, is not semialgebraically connected. Obviously, M is appropriately embedded if and
only if n(M) = &. Moreover, n(M) is a semialgebraic set. Only the semialgebraicity of the
set of all points x € CI(M) \ M such that the germ M, is not semialgebraically connected
requires some comment: this holds by [14, 4.2] (although this result is stated for the case
R = R, the same proof works for an arbitrary real closed field R).

Theorem 3.1 (Appropriate embedding). Assume that M C R" is bounded. Then there
exists a neighborhood U of n(M) such that N := M\ U 1is appropriately embedded as
well as a surjective semialgebraic map h : CI(N) — CI(M) such that hly : N > M is a
semialgebraic homeomorphism.

We begin with the inspiring particular case when n(M) is closed, whose proof is strongly
based on [3, 9.4.1, 9.4.4].
Proof of Theorem 3.1 when n(M) is closed. The proof is conducted in several steps.

Initial preparation. Consider the semialgebraic sets Sy := CI(M)\n(M) and S := M,
which clearly have the same closure. Let B be a closed ball centered at the origin of
radius large enough to obtain CI(M) C B. Consider the semialgebraic function f :=
dist(-, n(S$2)) € S(B, R), as well as the semialgebraic sets S; and S»; since n(S3) is closed,
we have Z(f) = n(S2). One can prove the following. There exist € > 0, semialgebraic sets
A1, Ay C 1), and a semialgebraic map

0:10,e1x f~1e) — f71([0, e])
such that the restriction
010,61 : (0, e1x f1e) = £71((0, e])

is a semialgebraic homeomorphism, the composition w := f o6 : (0,e] x f~1(e) = (0, €]
is the projection onto the first factor, (e, x) = x for all x € f~(g), and 6((0, €] x A;) =
Sin 71, &]).
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To that end, proceed similarly to the proof of [3, 9.4.4], but taking care of the
semialgebraic sets S§; by using the triangulability of the semialgebraic function f
compatible with the semialgebraic sets S| and S, [3, 9.4.1].

Let us identify the semialgebraic sets A;. Given a semialgebraic set T C R" and § > 0,
we denote

Tio.51 == {x € T : dist(x, n(S$2)) < 8} = TN =0, 8)),

Tis) := {x € T : dist(x, 7($2)) =8} = TN f71(8).
We write

=000 F70. 1= (0.1 x £ (), x > (1(x). fa(x)).
Now, given 0 < § < ¢, we have
By x e ="' =07"(f7'©®) andso f7'©®) =08} x 7' (e)).

Thus, f~!'(¢) is semialgebraically homeomorphic to f~!'(8), and it holds that
21 (f~1(8)) = {8}; in particular, ¢1(x) = dist(x, (S,)) for all x € £~1((0, €]). Moreover,

Ai = 0({e} x A) = 0(({e} x £~ 1(e)) N (0, €] x A))

= ' @NS N0, 6D = SN fTHE) = Sigeys

hence, A; = S; (¢} and A| = CI(A3). So the semialgebraic sets (0, €] x S; (¢} and S; [0,¢] are
semialgebraically homeomorphic.
Step 1. Construction of the semialgebraic homeomorphisms. Consider the semialgebraic

maps

X ifx e S1 \Sl.[o,g],
g8 = Si\Sipsx — ) (e dist(x, 7(S»))

5 + — 5 é'z(x)> if x € Sy 0.1,

if x € CI(S) \ Si.0.61)s

h: CI(S] \S]JQ%J) — CI(S1),)C = ) )
0(2dist(x, n(5)) — &, &(x))  if x € CL(Sy 0,61 \ S1.j0,51)-

As O(e,x) =x for all x € f~(¢), the semialgebraic maps g,h are well defined at
the ‘conflictive points’ of the set Sj (). Notice that hog =ids, and goh|sl\51,[o,%] =
idsl\glmgl; hence, S; and S; \Si,[O,%] are semialgebraically homeomorphic. Moreover, as
CI(S; \SL[O,%]) is bounded and closed, so is 2(CI(S; \SL[O’%])), and, since h(S; \ 51,[0,52']) =
S1, we conclude that & is surjective.

Write N := S\ 52,[07%] =M\ (o, £1). Consider the open cover of CI(N):

aw = (am s ([o. 5])) v n ' qo.em).

Step 2. For each point q € CIN)N f~1([0, ¢)), the germ N, is semialgebraically
connected, and either CI(N), = N4 or dim(CI(N), \ Ny) = dim(N,) — 1.

Indeed, fix g € CI(N) N f~1([0, £)), and observe that % < dist(g, n(S2)) < ¢. Clearly, the
semialgebraic set Nyo,e] = S2,[0.¢1 \ 52,0, satisfies Ny = Njoe1,¢ and we obtain that

¢leio. : CUNe) = [ 5+ 6] x A1, x = (distir, n(5). 22()
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n(S1) n(S1)

S1\S1,[0.e] S1\S1,[0.e]

Figure 1. Action of the semialgebraic map h : CI(Sy \Sl,[O,%]) — 8.

is a semialgebraic homeomorphism; furthermore, ¢(Njo)) = (5,61 x A2. Let U be a
neighborhood of ¢ in CI(N[g¢]). Then there exists a semialgebraically connected open
semialgebraic subset V| C A; and % <61 <8 <& such that 9([81,8)x V) CU is
a neighborhood of ¢ in Cl(Njoe]). Moreover, since for each p € CI(S2)\n(S2) the
germ S , is semialgebraically connected, we may assume that V,:= Vi NA; is also
semialgebraically connected, and, since for each p € CI(S2) \ 7(S2) either CI(S2), = S,
or dim(CIL($2)p \ $2,p) = dim(S$2,,) — 1, we deduce that either Ay, = Az, or dim(A;;\
A1) =dim(A; ;) — 1 for each z € Ay \ A1; hence, we may assume that either Vi = V, or
dim(V; \ V2) = dim(V;) — 1. Observe that dim(V;) = dim(N,) — 1.

Moreover, Wi := 6([81, §2) x V1) is a semialgebraic neighborhood of ¢ in CI(Njo 1), and

0([81,82) x Vo) if &) > g
6 ((%32) x Vz) I8 = g

because 9({%} X Ap) = Sz’{%}. As0((81, 82) x V,) is semialgebraically connected, we deduce
that N, is also semialgebraically connected. Moreover, we get

(CN)\N) N W1 = (Cl(Npo,e1) \ No,e1) N Wi = Wi\ (Njo,e1 N W)

0([61.82) x (Vi \ V2)) if% <51,

NNW; = N[o’g]ﬂwl =

o ({5} vi)uvewsi s xvivvay it 2 =a,

which is either empty or has dimension dim(Ny) — 1.

Step 3. For each g € CI(N)\ f~([0, £D), the germ Ny is semialgebraically connected, and

either CI(N)4 = Ny or dim(CI(N )4 \ Ny) = dim(Ny) — 1.
Indeed,

-1 3 -1 ¢ .

g e\ £ ([0.5]) casyv s ([o.5]) € cusvmes:

hence, $4 = (M \ £~(0, %]))q =N,, and so CI($2),; = Cl(N2)4. But, since Sy, is

semialgebraically connected if ¢ € C1(S2) \ 7(S2), the same happens to N,. Again g €

CI(S2) \ n(S2) implies that either CI(S2)y = S2,4 (and so CI(N), = Ny) or dim(CI(S2)4 \

$2,4) = dim(Sz 4) — 1 (and so dim(Cl(N)4 \ N,) = dim(Ny) — 1), as required. O
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3.A. Basics on tubular neighborhoods for open simplices

The proof of Theorem 3.1 in the general case when n(M) is not necessarily closed
is harder, and it requires the use of a suitable triangulation of M as well as fitting
tubular neighborhoods of some of its open simplices. To construct them, we present
some preliminary results.

Lemma and Definition 3.2. Let t C RY be a d-dimensional simplex. Denote the faces of T
of dimension d — 1 with U1, ..., 044+1. Then there exists a unique point p; € T such that
dist(p, 91) = dist(p, ;) fori =1,...,d + 1. Moreover, d(p;, 0T) = maxyc.{d(x, 97)}, and
this maximum is just attained at pr. We call p; the incenter of t.

Proof. Let pi1, ..., p4, pa+1 be the vertices of 7; we may assume that py+; = 0. Consider
a linear change of coordinates f := (fi,..., fs) : R — R? that transforms p; into the
point (0,...,0,19,0,...,0) fori=1,...,d (and pg+1 = 0 into 0). Then

d
fl@) = {x1>0»-~~1xd>0,1_2xi>0}

d
andsor=<f1 >0, f1201-) f 20}.
i=1

Write fi(x) := (u;, x) for linearly independent up, ..., uq € RY. We may assume that
Vi =tN{{u;j,x)=0}Vi=1,....,d and V441 =7tN{l—(u+---+ug,x)=0}

Observe that, for each x € t,

. . L= {ur 4+ ua,
WiX) G d and dist(r, dgyy) = LT ud X))
[lues |l lleg + - - -+ uqll

Consider now the system of linear equations

dist(x, ¥;) =

(ug, x)
—Xp+1 =0, (ur, x) = llur |l xp41 =0,

oy |

(g, %) o (ua, x) — ualxns1 =0,
— An+1 O,

gl d

T ey + -+ ugl+ > Nl ) xpg1 = 1.
lley + - - -+ uqgll

The unique solution of the previous linear system is pr.
We now prove the second part. Denote ug4+1 := u1 +- - -+ ug, and observe that
d+1
D luilld(x, 90) = 1 (3.1)
i=1
for each x € t. Notice that d(x, dt) = min;—___g+1{d(x, ¥;)}, and so

.....

1
d(pr,01) =d(p, )= ———— =:A fori=1,...,d+1.
S |
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(pe» &* dist(pr, 97))
tCR? TCR
dim(t) =2 dim(z) =1

UT.S

(pe, —* dist(pz, 87))

Figure 2. Examples of the semialgebraic set Uq ¢.

Assume that x € t satisfies d(x, dt) > d(p;, 7). Then

min {d(x, %)} > d(p;,0;) fori=1,...,d+1,
i=1,...d+1

and so d(x, ¥;) > d(p;, %) =Afori =1,...,d+ 1. Using equation (3.1), we deduce that
dix, %) =rl=d(p;,0%;) fori=1,...,d+1,
and this implies that x = p;, as required. O

3.A.1. Construction of tubular neighborhoods. Let © C R? be a d-dimensional

simplex with incenter p;, and let 0 <& < 1. We denote the simplex obtained as the

cone of base T x {0} and vertex (p;, £* dist(p;, 97)), where ¢* := —£— by 7T,. Let m > 1,
A 1-¢2

denote n:=d+m, and let 7 : R" = R x R"~4 — R", (x, y) — (x,0) be the projection
onto the first factor. For each 0 < & < 1, consider the semialgebraic sets

Ure :={(x,y) € R" : dist((x, y), T X {0}) < edist((x, y), dt x {0})},
ULS = {(x,y) € R" : dist((x, y), T x {0}) < edist((x, y), dt x {O}}.

We prove next that (Ur g, 7) is a tubular neighborhood of 70 for each 0 < & < 1.

Lemma 3.3. The semialgebraic set ﬁr,s equals {(x,y) € R" : (x, |yl) € T}, and (Ur ¢, 7)
is a tubular neighborhood of V.

Proof. Observe first that dist((x, y), T x {0}) < dist((x, y), dt x {0}) for all (x, y) € R" and
{(x,y) € R4 x R™ : dist((x, y), T x {0}) < dist((x, y), a7 x {0D} = 77 x R™.

The last equality holds because the distance of a point p to the simplex t x {0} equals the
distance of p to the affine subspace W generated by one of its faces o x {0}. Furthermore,
there exists a point ¢ € o° x {0} such that

dist(p, T x {0}) = dist(p, ¥ x {0}) = dist(p, W) = dist(p, g).
A straightforward computation shows that, for each p := (x,y) € T x R™,

dist((x, y), a7 x {0)? = dist(x, a7)>+ |ly|> and dist((x, y), T x {0}) = [|y|.
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Thus, as 0 < ¢ < 1,
Ure = {(x,y) € T x R™ : |ly]* < e2(dist(x, 3)* + |y 1)}
= {(x,y) e T x R"™ : |ly| < &*dist(x, 37)}.

Consider the semialgebraic set

S:={(x,1) et xR:0<1t <& dist(x, 91)}. (3.2)

For our purposes, it is enough that S =7,. Of course, it holds that dist(x,d7) =
min{dist(x, ¥;) : i = 1,...,d + 1}, where ¥, ..., U441 are the faces of dimensiond — 1 of 7.
As we have seen in the proof of Lemma 3.2, there exist independent vectors uy, ..., uq €

R? such that 7 = {fi:=(u1,x)=20,..., fa:=(ug,x) 20, fas1 := I—Zflzlf,- >0} If
we denote ug41 :=uy+---+ug, we have
Ji(x)
flui
for each x € . Now observe that (x, ) € S if and only if
0 <t < é&*dist(x, dt) = ¢*min{dist(x, %) :i =1,...,d +1}
< min{e*dist(x,9;))—r:i=1,...,d+1}>0, t>0.

Since t ={x e R?: fi(x) >0:i=1,...,d+ 1}, we conclude that

S={(x,0 e RM i e*fix) —tllui| 0,6 >0:i=1,....,d+1},
which is a convex polyhedron of R4t As v x {0} € S and (p., *dist(p;, 37)) € S, we
deduce that S contains the cone of vertex (p.,&*dist(p;, d7)) and basis t x {0}, that
is, the simplex T,. As we have seen in Lemma 3.2, dist(p;, 9T) = max,¢.{d(x, 1)}, and
this maximum is only attained at p,;. Thus, (p;, e*dist(p;, d7)) is a vertex of §, and,
in particular, S is contained in t x [0, e* dist(x, dt)]. Moreover, in view of the definition
(3.2) of S, all vertices of t x {0} are also vertices of S, and they are exactly d + 1 ones.
Now, as S is described by d + 2 equations and has dimension d + 1, it must be a simplex
and have exactly d +2 vertices. These d + 2 vertices are those of the simplex T;, so we
conclude that S = T,, as required. O

dist(x, 0;) = Vi=1,....,d+1

3.A.2. Cross-sections of tubular neighborhoods. We analyze the structure of
cross-sections of the semialgebraic set U, . by affine subspaces of dimension d + 1
containing the d-dimensional simplex 7. We begin with a straightforward consequence of
Lemma 3.3.

Corollary 3.4. Let L be the affine subspace generated by a d-dimensional simplexr T C R",
let pe R"\ L, and let [L, p] be the affine subspace generated by p and L. Denote the
half-space of [L, p] determined by L and that containing p by [L, p]*. Let g be the unique
point of [L, p]* such that dist(q, L) = dist(q, p;) = &*dist(p;, dt). Then [L, p]t NU, . is
the simplex obtained by considering the convex hull of the set t U{q}.

Corollary 3.5. Let o C R" be a simplex, and let T be one of its faces. Then U, \ 9T only
meets the faces of o that contain t for each ¢ > 0 small enough.

Proof. Let m := dim(o), and let By,..., B+ be the (m — 1)-dimensional faces of ¢ that
do not contain t. Let ¢ > 0 be such that ¢*d(p;, 9t) < min;—;___,{d(p<, Bi)}. Denote the

.....
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affine subspace generated by o with W and the hyperplane of W generated by g; with
H;. Notice that each face of o that does not contain t is contained in some face f; and
therefore in some H; fori =1,...,r.

Let & > 0 be such that

,,,,,

and let H/ := {h; = 0} be the hyperplane of R" orthogonal to W such that W N H/ = H;.
Notice that the ball B,(p, e*d(p;, 7)) does not meet Hi’ for i=1,...,r. We may
assume that it is contained in the strict half-space Ht.’> = {h} > 0}. Since 7 ¢ B;, we
deduce that T ¢ H/, and so TN H/ = @. As p, € H/”, we conclude that t° C H/”.

Let L be the affine subspace generated by 7. By Corollary 3.4,

ﬁt,e = U[La Q]+ mUr,e»
q

where g € B, (pr, e*d(pe, 37)) N (pr + L) and [L, g1 ﬂﬁm is the simplex obtained by
considering the convex hull of the set T U{g}. Thus, ([L, g]" ﬂUm) \dt C Hi/> for i =
1,...,r.Hence, Uy \ 0T C Hl.’> fori=1,...,r,and so U, \ 87 does not meet the faces
of o that do not contain the simplex 7. O

Lemma 3.6. Let o C R" be an n-dimensional simplex such that the simplex T is one of
its faces. Denote the affine subspace generated by T with L and its dimension with d. Let
e > 0 be small enough such that Uf’g \ 0T only meets the faces of o that contain t. Then
oN[L, pINUre =I[L, pIt NU.; for each p e o\ .

Proof. By Corollary 3.4, there exists a point ¢ € [L, p]* such that [L, p]* NU, is the
convex hull of T U{gq}. Thus, since o is convex and t is a face of o, it is enough to check
that ¢ belongs to o. Assume by contradiction that g does not belong to o. Observe that
X :=0oN[L, p]is a convex polyhedron of dimension d + 1 because it contains {p}Ut. As
Uy, is a neighborhood of 7°, the segment connecting p with p, meets U ¢ in a (maybe
smaller) segment; hence, we may assume that p € U, NInt(X). As [L, p]t NU,, is a
simplex and ¢ ¢ o, the segment that connects ¢ and p meets 0K in a point pg € K.
Observe that pg ¢ L because both ¢ and p belong to the convex set [L, p]™ \ L; hence, po
belongs to a d-dimensional face of X different from 7. This d-dimensional face corresponds
to the intersection of [L, p] with a face of o that does not contain . We conclude that
UT,E meets a face of o that does not contain 7, which contradicts our choice of €. O

3.A.3. Appropriate embedment of some essential differences of semialgebraic
sets. Let S be the difference between a simplex o and the closure ﬁf,g of a suitable
tubular neighborhood of the interior of one of its faces T. We continue proving that the
obstructing set n(S) is contained in dt. In fact, S is appropriately embedded, but this is
cumbersome to prove. For our purposes the following is enough.

Lemma 3.7. Let o C R" be a simplex, and let T be a face of 0. Let ¢ > 0 be small enough

such that U, ¢\ 3T only meets the faces of o that contain t. Consider the semialgebraic
sets § = o0 \U+¢ and S := o\ Uq. Then the sets n(S) and n(S) are contained in dt.
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Figure 3. Appropriate embedment of the differences S := ol \Ure and Si=o \Ure.

Proof. As o and o are appropriately embedded, there is nothing to prove for points in
the set CI(S) \ U, = Cl(§) \ﬁr ¢- Thus, it only remains to check that the following holds.
For each g € CI(S)N (UT e \0T), the germs Sq and Sq are semzalgebmzcally connected,
dim(C1(8)4 \ Sy) = dim(S,) — 1, and dlm(Cl(S)q \ Sq) = dlm(Sq) —1.

First, we may assume that ¢ has dimension n. Let W be the affine subspace generated
by 7,and let 7 : R" — W be the orthogonal projection onto W; recall that, by Lemma 3.3,
UT,S ={x e R": (m(x), ||x —w(x)||) € T;}. Using the fact that U” is a bounded and
closed convex set, we construct next a semialgebraic homeomorphism g1 : R" — R™ such
that gl(ﬁm) = B,(0, 1) and all lines through the origin are kept invariant.

After a change of coordinates, we may assume that p; is the origin. For each x € R",
let £, be the half-line from the origin passing through x. Since U, is a closed and
bounded convex set and the origin is an interior point of Uf,g, the set £, ﬂﬁr,g is a
(non-trivial) closed bounded interval; denote the endpoint of £, N U+ . different from the
origin with f(x). It holds that f(x) € 8U,, by [1, 11.2.4], and the map & : R"\ {0} —
[0, +00), x +— || f(x)] is continuous by [1, 11.3.1.2]; hence, it is semialgebraic. Observe
that f(x) = 8(x)H§—” for all x € R"\ {0} and that & is constant on every half-line from the
origin. Consider now the semialgebraic maps

. . 0 if x =0, ; ; 0 if x =0,
g1 :R"—> R" x+— X and g:R"—> R', x —~

) ifx £0 x8(x) ifx #0.

The continuity of such maps follows from the following fact. Since 0 is an interior point
of ﬁm and BU,,S is closed and bounded, there exist M, m > 0 such that m < §(x) < M
for all x € R™"\ {0}. A straightforward computation shows in addition that g;jog; = gs o0
g1 = idgn, and therefore both are semialgebraic homeomorphisms. Notice moreover that
81 (Ur,a) = B,(0, 1).

After this preparation, we are ready to prove the statement. Fix a point g € CI(S)N
Uf’g \otr. Let Hj,..., H, be the hyperplanes of R" generated by those respective
(n — 1)-dimensional faces of o that contain T; clearly, W = HiN---N H,. Write H; :=

{h; = 0}, and assume that o C {h1 20,...,h >0}. Denote T :={h; >0, ...,h > 0}\
U, e and T:= {h1 >20,... > 0}\ Ur s and notice the followmg Slnce Ut ¢\ 07 only
meets the faces of o that contaln T, we have S, =1, and Sq = T for each g €
CI(S)N(Ure \ 37).
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On the other hand, as g; keeps all lines through the origin invariant, we conclude that

T/ = g](T) = {]’l] > 0, ...,hr > O}\‘Bn(oy 1)7
T =g (T)=1{h1 20,...,h, = 0}\'B,(0, 1),
g1(CIS) N (Ur.e\9T)) C (B (0, 1)N{hy =0, ..., h >0}).

For each point z € d(B,0,1)N{x; >0,...,x, >0}), the germs TZ/ and T“z/ are
semialgebraically connected, and in addition dim(Cl(7");\T)) =dim(T))—1 and
dim(CI(T");\ T)) = dim(T)) — 1. Of course, the same holds for the germs S, = 7, and

Sq =T, for each g € CI(S) N (Um \ d7), as required. O

3.A.4. Separation of tubular neighborhoods of two different simplices. @ We
prove now that, given two simplices whose intersection is a common face, we can find
disjoint tubular neighborhoods for their relative interiors. We need a preliminary result
concerning strict separation of simplices meeting just in a face that we include for the
sake of completeness.

Lemma 3.8 (Strict separation of simplices). Let 71, 72 C R" be two simplices such that
1 N1y is a common face O. Then there exists a hyperplane H := {h = 0} of R" such that
NH =9 and ; \ ¥ C {(=1)'h > 0}.

Proof. We analyze the case that 71 N1 is a common vertex of the simplices 1 and T
first.

Indeed, we may assume that dim(zry) = n and dim(tp) = m < n; in fact, we suppose that
71 is the simplex whose vertices are the origin 0 and points ¢; := (0, ..., 0, 19,0,...,0)
whose coordinates are all zero except for the ith, which is equal to 1. After reordering the
vertices of 71, we assume that ¢ is the simplex of vertices 0, ey, ..., eq. Let ugyy, ..., unm
be the remaining vertices of 7, and consider the projection

T R" > R x:=(x1,....,x) > x' = (Xgq1, ..., Xn).

Let 7/ := n(7;), and denote e; :=m(ex) for k =d+1,...,n and u’j =n(uj) for j=d+

1,...,n. Of course, 7] is the simplex of vertices 0, e(’Hl, ..., e, and 7} is the simplex of
vertices 0, “21+1’ ..., up,. Let us check that 7; N 1) = {0}.
Pick a point p’ € 7/ N7}, and write
(Pd41s s Pn) =P = Payi€gy + -+ Pn€) = farityy g+ -+ Wity
where pr,p; >0, Yh_gp e <1, and 370, 1 < 1. Denote pi=(pi,..., pn) 1=
d .
Z;flzdﬂ wjuj, and let g := (q1, ..., qn) = Wp—i— ﬁ > ¢—; ee. Notice that
1
(P2 4 1)>0 fore=1,....4d
_ 2n \ (Ipll+1)
1

pe—— 20 ford =d+1,...,n
2n(llpll+ 1)

n

n
d 1 De
and qr=—+— — <1,
Z} 2n - 2n ; (tpl+1)
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Figure 4. Separation technique.

so ¢ € 71. On the other hand,

d n n
1 1 d 1
q= E —er+ E —————uju; and —+ Z — <1
S A il + 2n A 2ndlipll+ 1)

sog € . Asty N1 =¥, wededuce that ¢ € ¥, andsopu; =0for j =d +1,...,n. Hence,
p' = 0; that is, [ N 1) = {0}.

Therefore it is enough to separate z; and 7, by a hyperplane of R and we can
assume from the beginning that ¢ = 11 N 13 is just a vertex (the origin). Let us construct
two disjoint open convex neighborhoods A; and A; of 71\ {0} and 1, \ {0}. Then we have
reduced everything to the separation of these two sets using the Hahn—Banach theorem
[1, 11.4.5].

Indeed, let n; be the face of 7; such that 7; is the bounded cone of basis n; and vertex 0.
Consider the infinite convex cone

Ci:={tx:x ert,t €[0,400)}

and the closed semialgebraic set T; := {”;‘—” : x € 7;} contained in the sphere §" := {x €
R™ : |lx|| = 1}. Notice that T1NT, = @ and C; = {ty : y € T;}. Let Vi, V5 be two disjoint
open subsets of " such that 7; C V;. Notice that

Ci\{0} C A; :={tx:x € Vj,t € (0, +00)}

and A; N Ay = @. After shrinking A; if necessary, we may assume that A; is an infinite
convex cone. Define §; := dist(n;, R" \ A;), which is strictly positive because n; is closed
and bounded, R"\ A; is closed, and n; N (R"\ A;) = @.
We claim the following. The open semialgebraic set W; := {x € R" : dist(x, n;) < %} C A;
1S CONVEL.

Indeed, if x, y € W;, there exist xg, yo € n; such that ||x —xp| < %" and ||y —yoll < 57’.
Fix A € [0, 1], and let us see that Ax + (1 — L)y € W;. As n; is convex, Axg+ (1 —A)yg € n;.
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Moreover,
5.
[Ax + (1 =2)y — (Axo + (1 =) yo) |l < Allx —xoll + (1 =) [ly — yoll < EI
Hence, Ax + (1 — A1)y € W;; that is, W; is convex.
Notice that the open convex sets A} := {tx : x € W;, t € (0, 400)} C A; contain C; \ {0},
and so 7; \ {0}, as required. O

Lemma 3.9 (Small intersection). Let 71,70 C R" be two simplices such that the
intersection ¥ := 11 N1y =3t NIy is either empty or a common face. Then Uy N
U, =9, and, in particular, Uy, . NUy, . = @ for e > 0 small enough.

Proof. Let W; C R" be the affine subspace generated by t;, and let 7; : R* — R”" be the
orthogonal projection onto W;. By Lemma 3.3, we know that

Unpe={peR":(x®).p-m®)I) €T} (3.3)
where T; . C W; x R is the (d 4 1)-dimensional simplex obtained as the (convex) cone
whose basis is 7; x {0} and whose vertex is the point vy := (py,, e* dist(py,, 07;)); see

Lemma 3.3.

By Lemma 3.8, there exists a hyperplane H := {h = 0} of R" such that ; " H = ¢ and
7\ 9 C {(=1)'h > 0}. Thus, (—l)ih(p,i) > 0, and we pick gy > 0 such that B, (py,, €9) C
{(=1)'h > 0}. Choose & > 0 small enough such that &* dist(py,, 97;) < g0 (see §3.A.1).
Recall that Uy, . is by (3.3) the union of all cones of basis 7; and vertices contained in
the set

Vi:={q € R" : mi(q) = py; and ||qg — py|| = " dist(py,, 97;)}.
Ast;\ ¥ and V; C {(—=1)'h > 0}, we conclude that Url.,g \ ¢ C {(=1)'h > 0}, and so Ufl,g N
UTZ,E = ¢, as required. O

3.B. Proof of Theorem 3.1 in the general case

We proceed by induction on the dimension of the semialgebraic set n(M).

Step 1. First step and formulation of induction hypothesis. The first step of the induction
dim(n(M)) = 0 follows from the case when n(M) is closed. Assume that the result is true
if dim(n(M)) < d — 1, and let us check that it holds if dim(n(M)) =d.

Step 2. Reduction of the problem to the piecewise linear case. Let (K, ®) be a
semialgebraic triangulation of CI(M) compatible with M, CI(M) \ M, and n(M), where K
is a finite simplicial complex and @ : |K| — CI(M) is a semialgebraic homeomorphism.
To simplify the notation, we identify CI(M) with |K|, M with ®~1(M), and n(M) with

O~ (n(M)). Let 11, ..., 7, be the simplices of K of dimension d such that rio is contained
in n(M); observe that (M) :=n(M)\ U;_, rl.o has dimension < d — 1.
Step 3. Local construction of the appropriate embedding. For each i = 1,...,s, denote

the affine subspace generated by t; with L; and the orthogonal projection onto L; with
7w R" — L;. We use freely that dist(x, t;) = [|lx —m;(x)] if x € ni_l(ri). To simplify the
forthcoming work, we prove the following identity:

dist(x, 37/)% = |lx — m () |? + dist(m; (v), 91)*  Vx € 77 (7). (3.4)
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Indeed, let y,z € dr; C L; such that dist(x,d7;) = |lx —y|| and dist(mw;(x), dt;) =
|l7wi (x) — z||. Then, using Pythagoras’ theorem,
dist(x, 87,)* = [lx = (OII* + 7 (x) = y[I* > llx — 73 (x) 1> + dist(m; (x), 87,)°
= fx — 7 ()1 + I (x) — zlI* = [lx — 21> > dist(x, 97:)*,

and equality (3.4) holds.
We deduce furthermore that, for each 0 < e < 1 and x € ni_l(ri), the equivalence

dist(x, ;) < edist(x, 91;) <= |lx —m;(x)| < e*dist(m;(x), 97;) (3.5)

£ Rewrite the semialgebraic neighborhoods of tl.o provided in

holds, where &* := .
1—¢2

Lemma 3.3, by means of (3.5), as follows:

Uie i= Uge = (x €, (1) lx —m ()| < &* dist(m; (x), 7)),
Uie = Uy ={xem (@) : Ix =m0 < & dist(m (x), 97:)).
By Corollary 3.5 and Lemma 3.9, we may choose & > 0 such that U; .\ d7; only meets
the simplices of K that contain t; and ﬁ;,g DU/-,S =1 Nt;ifi #j.

Now, define Ms := M\ |UJ;_,(U; s\ 37;) for each § > 0, and observe that | JI_;(U; 5 \ 37;)
is a (tubular) neighborhood of [ J;_,; tio. Consider the semialgebraic maps

g Vi=Uie\ ) = Wi i=Uie \(Uj 5\ 91)

X —T1; (X . .
mi(x) + A(m dist(m; (x), 07;) +azllx —m; (X)) if x & 97,
X llx — 77 ()|l
X if x € 91,
h,’ ZWi = ﬁi)g \ Ui,% —> Vi = ﬁi)g

x — i (x) . .
7 (x) + —————(b1llx — 7 (X)|| + b2 dist(7r; (x), d7;)) if x & 97;,
X llx — 77 Ol
X if x € 07y,

where (a1, a2), (b1, b2) € R? are the respective solutions of the system of linear equations

£\ *
£\ * = (= EN\*
a1=<§> , - a“ (2) ’ and (5) b1 +by =0,
* g *
a)+¢&*ay = ¢* ay = # £*b1 + by = &¥,
€
E*
e
-~ 2
m=-(3) 7
TN e

Let us motivate the formulas of g; and h;. Consider the segment 8 := {Ay + (1 — A)m; () :
A € (0, 1]} that connects a point y € ni_l(r,-) such that ||y —m;(y)|| = e* dist(7; (y), 91;)
with the point m;(y). Define also the segment 8 :={Ay+(1—Mm((y): A e (u,1]}
that connects y with the point z € § such that ||z —m;(2)] = (%)*dist(m(z),an). A
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o ﬂﬁiyg/z

Figure 5. Action of the map h; : o0 \U_.

e —> 0.
T

straightforward computation shows that u = (éz* The semialgebraic map g; arises when
one ‘linearly’ transforms the segment 8 onto 8. The semialgebraic map h; appears to
perform reversely.

The continuity of g; and h; at d7; requires further comments. We analyze as an example
what happens with &;, as the behavior of g; is analogous. Pick a point y € dt;, and let

x € W; \ a7; be close to y. Then
i (x) =Rl = N1hi (x) = Il < [17i (x) — 70 )Nl + [l (x) =yl
= |by dist(7; (x), 97;) + billx — 7 () [[| + ll7wi (x) — |
(1b2] + Dllzwi (x) = yll + bi(llx — yll + Iy — 7w () )
(2by + b2+ Dllx — 1l

NN

so h; is continuous at y.
Using the identities a; +a2b, = 0 and azb; = 1, straightforward computations show
that

s(V=W;, h(W) =V, gohilw =idw, and (hilw,)og =idy,

so both h;lw, and g; are semialgebraic homeomorphisms. Moreover, by Lemma 3.6,
and taking into account that g; and h; are invariant over the segments (of suitable
length) orthogonal to t;, it holds that g;(c NV;) = o NW; and h;(c NW;)=0onV; for
each simplex ¢ such that 7; C o.

Step 4. Global construction of the appropriate embedding outside a semialgebraic set of

low dimension. As one can check straightforwardly, the previous semialgebraic maps g;
and h; glue together to provide the following semialgebraic maps:

g:M—> N=M

)

(SR

X if x € M,

gilx) fxeMnV,i=1,...,s,
h:CI(N) - CI(M),
X if x € CI(M),,

hi(x) ifxeClMNW;,i=1,...,s.
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P

semialgebraic
triangulation

Stage 0

M = (([=2, 1] x [=1, ID\{xy = 0}) U {(0, 0)}
n(M) == (M N {xy = 0H\{(0, 0)} Stage 1 h(l)

L@

Stage 2

Figure 6. Walkthrough of the proof.

Again, routine computations show that goh|y =idy and h|y o g = idys; hence, g and
h|n are both semialgebraic homeomorphisms.

Step 5. The semialgebraic set N is appropriately embedded outside a semialgebraic set
of low dimension. Let us check now that for each g € CI(N)\ n(M)" the germ N, is
semialgebraically connected, and either CI(N), = Ny or dim(CI(N)4 \ Ny) = dim(N,) — 1;
once this is done, and taking into account that dim(n(M)’) = d — 1, the statement holds
by the induction hypothesis.

Indeed, let ¢ € CI(N) \ n(M)'. Observe that, if ¢ ¢ [Ji_; Ui 5, then

S
M, = (M\U U,-);) =N,

i=1 q
and g € CI(M) \ n(M). Thus, N, is semialgebraically connected, and either CI(N), = N,
or dim(Cl(N)4 \ Ny) = dim(N,) — 1. Therefore we may assume that g € U,»,% \dt; and
dist(q, t;) = %dist(q, 0t;) for some i =1,...,s. Let 0 € K be the simplex such that g €
00. We claim that ; C o.

Indeed, h;(q) = 7;(q) € rio because, by (3.4),

0 < dist(g, ) = lg —mi (@)l = (%)*dist(m(q), 97i).

Thus, since hj (6 NW;) = o NV;, we deduce that h;(g) € o N tl.o #*#J,andsot; Co.
Let o1, ..., 0, be the collection of all simplices of K such that ¢ C o; and a? CcM,

and let us assume that o1 = 0. The union U;-:l 0!

] is an open neighborhood of ¢ in M.
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Denote §; := O'j(-) \U,-,% and TS'\] =0 \U,-y%, and let us check that the germ

r r r
Ny =M \U;s 4= (U a,gq> \Uisg=Jo\Uisq = Skq (3.6)
k=1 k=1 k=1

is semialgebraically connected and that dim(CI(N), \ Ny) = dim(N,) — 1.
By Lemma 3.7, the germ S, is semialgebraically connected, and
dim(C1(S;. ;)\ Sj4) = dim(S; ;) — 1
for each j=1,...,7r. As S| C fS'}, we deduce that the germ Sy ,US;, is connected for
j=1,....r,and so also Ny = Jj_; Sk.q-
Next, let us check that CI(Sg)g \ Ny D CL(Si)4 \ Sk.q. It is enough to show that CI(Sx) \
U;'=1 S; D CI(Sk) \ Sk. Indeed,

ciso\ | ;= ciso\ Je?non\Ti 5) 5 CUS)\ (0 \ Uy 5) = CISi) \ S
j=1 j=1

Thus, CI(N)4 \ Ny D UZ:I C1(§k)q \§k,q7 and, using [3, 2.8.13], we conclude that
dim(N,) — 1 > dim(CI(N), \ N,) = max{dim(Cl(S)g \ S.g) sk =1,...,7}
= max{dim(Si4) : k=1,...,r} =1 =dim(N,) — 1,

as required. O

4. Proofs of Lemma 1 and Theorem 2

In this section, we carry out the proofs of Lemma 1 and Theorem 2 stated in the
introduction.

4.A. Proof of Lemma 1

(i) Let ¢ be a homomorphism whose core is p. At least the homomorphism v/, 1= eV, o
iy, F fits this condition. We develop the proof in several steps.

Step 1. Assume that M is closed in R". Consider the evaluation R-homomorphism ¥ :
R[x] == R[x1,...,x4] > F, QO+ Q(p). Since F is a real closed field and S(R", R) is
the real closure of R[x], there exists a unique homomorphism ¥ : S(R", R) — F such
that W|g[x) = ¥; of course, W =evpn ,0ipgn . Since M is a closed semialgebraic subset
of R", the R-homomorphism

0:S(R"R) > SIM,R), f— flu

is by [8] surjective, and the uniqueness of W guarantees that ¥ = @ o6. Thus, if f €
S(M, R), we pick a semialgebraic extension f € S(R", R), and deduce that

o(f) = V() = fre®) = fr(@).
The last equality holds because p € Mr. We conclude that ¢ = v,.

Step 2. The general case. Let (X, jx) be a semialgebraic pseudo-compactification of M.

We know by Step 1 that ¢ o j*X = eVXy iy r(p) O 1X.F; and so g o j*X(h) =hr(ix.r(p)) =

(hoijx)r(p) for all h € S(X, R). Now, since S*(M, R) = limS(X, R) (see 1.A), we deduce
—
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that (p(h) = hp(p) for all h € S*(M, R) Next, if g € S(M, R), we write g = —/L,

1+\ I is a unit in S(M, R). Hence,

¢ (ﬁ) Erga)
p(g) = = =g
@ (Tgl) I+1gr (@)l

that is, ¢ =evyp poim F.

where 1+\g|’ 1+|g| € 8*(M, R) and

Step 3. Let us now prove the following. If dcim)(p) = dim(MFr ), then p € Mr.

Suppose that p € Cl(MF) \ Mic,r = CI(CI(MF) \ MF). As usual, we assume that M is
bounded, and let (K, ®) be a semialgebraic triangulation of X := CI(M) compatible
with M. Consider the open semialgebraic subset U := [ & (0% of X; clearly,
p € Ur. Notice that dim(M NU) = dim(MF,,). We have
p e CIXp\Mp)NUr =CI((XrNUR)\MrNUpr)NUr CCIICIIMNU)\(MNU))F;
hence, by [3, 2.8.13], we conclude that

dim(Mrp) = dx(p) < dim(CI(CIM NU)\ (M NU)))
= dim(CIMNU)\ (M NU)) <dim(MNU) =dim(Mrp),

pe®(o)r

which is a contradiction. Thus, p € Mic,r C MF, as required.

(ii) Let ¢ be a homomorphism whose core is p, and fix f € S(M, R). Since M is
appropriately embedded, there exists by Theorem 5 an open semialgebraic neighborhood
V of M in X := CI(M), a semialgebraicset Y C V \ M such that dim(CI(Y),) < dim(M,) —
2 for all g € X, and a semialgebraic extension f € S(V\Y, R). We claim that p € (V\
CI(Y))F.

Indeed, since V is locally closed and p is adjacent to M, we have p € Vr. Let us check
next that p € C1(Y)r. Let (K, ®) be a semialgebraic triangulation of X compatible with
M and CI(Y), where K is a finite simplicial complex and & : |K| — X a semialgebraic
homeomorphism. For the sake of simplicity, we identify X with |K|, and the involved
objects M and CI(Y) with their inverse images under ®.

Assume by contradiction that p € CI(Y)r. As (K, ®) is compatible with CI(Y), there
exists T € K such that p € rg C CI(Y)F. Define & :={o € K : t C 0}, and consider the
open semialgebraic neighborhood U := St(z9) = Ucre(’i 6% of 79 in X. Let §:= {o €
& : 0% c CI(Y)} and d := max{dim(o) : 0 € §}. Since dim(Cl1(Y)4) < dim(M,) —2 for all
g € X, there exists a simplex ¢ € & such that d < dim(¢)—2 and ¢® ¢ M. Thus, we
have p € rg C ¢F and

dim(¢®) = dim(¢p) = dim(c}, ) < dim(Mp ), (4.1)

because gg is pure dimensional. As p € Ur NCI(Y)p = UGE& 02, we deduce using (4.1)
that

dx(p) < dim(Cl(Ur NCI(Y)F)) = dim(Ur NCI(Y)F)
= d < dim(sp) —2 < dim(Mrp) —2 < dx(p),
which is a contradiction. Therefore, p € Vg \CI(Y)r = (V\CI(Y))F.
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Consider now the closed semialgebraic set (X \ V)UCI(Y), and let G € S(X, R) be a
semialgebraic function such that Z(G) = (X \ V) UCI(Y); clearly, G r(p) # 0. Denote the
natural inclusion induced by the restriction to M with 8 : S(X, R) — S(M, R), and let
g = 0(G). The semialgebraic functions hy := %mg and hyp := %Ifl can be extended by
zero to respective semialgebraic functions Hi, Hy € S(X, R); that is, 0(H;) = h;. By (i),
and using p € X, we have 9 06 = evy, o1y, r; hence, ¢(h;) = ¢ 06(H;) = H; r(p) and
0(g) =¢9o0(G) =Gr(p). Asp € (V\CI(Y))F and f can be extended to fe S(V\Y,R),
we deduce that

o(f) Jr(®) _ fr

= h = H = *G e —— 5

1+|¢(f)|¢(g) @(hy) 1,F(P) 7o)l F(P) 1+|fF(p)|</)(g)
1 1

1+|¢(f)|<ﬂ(g) @(h2) 2,7 (P) 15 o) F(P) 1+|fF(p)|(p(g)

Since mw(g) # 0, we conclude that ¢(f) = f}(p) after dividing the previous
equalities.
We have proved the uniqueness as well as the existence of the homomorphism ¢.

(iii) Assume that M is bounded, and let C C X := CI(M) be a closed semialgebraic set
of dimension dy(p) such that p € Cp. Let (K, ®) be a semialgebraic triangulation of X
compatible with M, C, and X \ M, where K is a finite simplicial complex and ® : |[K| - X
is a semialgebraic homeomorphism. For the sake of simplicity, we identify X with |K|,
and the involved objects M, CI(Y), and X \ M with their inverse images under ®.

Let T € K be a simplex such that p € tg, and let us check the following. There exists
a simplex o € K of dimension dim(c) > dim(t) +2 such that t C o and c° C M.

Indeed, define ® := {0 € K : T C ¢}, and consider the open semialgebraic neighborhood
U :=St(r%) = Uses o of 1%1in X. Let § := {0 € & : ¢ C C}, and notice the following.
Since p € rg and (K, ®) is compatible with C, we have

dx (p) < dim(7) = dim(r") < dim(C) = dx (p);
that is, dx(p) = dim(z). Since dx (p) < dim(MF ) —2 and
dim(Mr ,) = max{dim(o) : 0 € & and 0° C M},

there exists a simplex o € & such that dim(o) > dx(p) +2 = dim(r) +2 and ¢° c M.

As p & Mp, we have T°NM = @. Let b € ¢° be the barycenter of o, and let € be
a face of o of dimension dim(c)—1 such that v C €. Let €(b) be the convex hull of
€ U {b}, which is a simplex such that t C €(b), dim(c) = dim(e(b)), and €(b)\ M C €.
Since dim(e (b)) = dim(e) + 1 > dim(t) 4 2, there exists a vertex v of €(b) such that v & .
Let n be the segment connecting v and b, which is a face of €(b) that does not meet 7.
Moreover, n\ M C {v}, and so the interior of any segment connecting a point of n° with
a point of T is contained in M.

For each g € n°, denote the convex hull of TU{g} with 7(g), which is a simplex
contained in €(b), and consider the closed semialgebraic subset T(g) := t(g) "M of M,
which satisfies CI(T' (¢)) = t(q) and t(¢) \ T(g) C 7. By [8], the homomorphism

bg : SM,R) > S(T(q), R), [ [lrg (4.2)
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A“ ~

Figure 7. Construction of €(b) and t(q) for q € no.

is surjective for each ¢ € n°. Since p & Mr, we have TN M = @, and so
' Ct@\T@@ Cr. (4.3)
As dim(T(¢)) = dim(z%) + 1 and

du(p) < dr)(®) < dim(z°) = dy (p),

we obtain dr)(p) =dim(T(g)) — 1 = dim(T(¢)F,p) — 1 because T(q)r is pure dimen-
sional. Moreover, observe that T (g) is appropriately embedded because it is
bounded, T(g)y is semialgebraically connected, and by (4.3) either 7(q)y = T(¢)x
or dim(z(g)x\T(g)x) = dim(r) = dim(T(¢)x) — 1 for all x € t(g). Thus, by (ii), there
exists a unique homomorphism

9q : S(T(q). R) > F.h > h(p) (4.4)

for each g € n°. In each case, 71 is the continuous extension of h to a fitting semialgebraic
set T(q) C T\(q) C CI(T (¢)) that contains p. In view of (4.2) and (4.4), the core of the
homomorphism v, := ¢, o ¢, for each q n% is p.

To finish, let us prove the following. Given two different points q1, g2 € n°, there exists
a semialgebraic function f € S(M, R) such that ¢g, (f) # ¢, (f).

Indeed, as T(q1) NT(q2) C TN M, the closed semialgebraic subsets C; := T(g;) \ t of
M\ © are disjoint. Thus, there exists by [8] a bounded semialgebraic function fj €
S(M \ 7, R) such that folc; =i —1. On the other hand, 7\ 7% is a closed semialgebraic
set in R", and we choose a bounded semialgebraic function g € S(R", R) such that
Z(G) = 1\ % denote g := G|m\¢. Clearly, the semialgebraic function fog € S(M \ 7, R)
can be extended by zero to a semialgebraic function f € S(M, R). Observe that

flr@n = Glr@gn folrgy =0 and flrg,) = Glrgy) folrgr) = GlT(g)- Thus, ¢¢,(f) =0
and @, (f) = Gp(p) # 0, because Z(Gr) = tF \ T and p € 7. O

4.B. Basics on real spectra

The proof of Theorem 2 requires some preliminary definitions and notation concerning
real spectra that we summarize here. Denote with A either P(M) or S(M, R), and
with Spec, (A) the real spectrum of A; we refer the reader to [3, §7] for the definition,
notation and main properties of the real spectrum of a unital commutative ring. The
points of Spec,(A) are called prime cones. The support B, :=aN(—a) of a prime
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cone a € Spec,.(A) is a prime ideal of A. As usual, given f € A and « € Spec,.(A), we
write f(a) > 0if f € @ and f(x) > 0if f € a\ (—«a); otherwise, f(a) < 0. Consider the
collection of sets {o € Spec,(A) : g1(w) > 0,..., g-(@) > 0}, where g1,..., 8 € A. Such
a collection constitutes a basis of the spectral topology of Spec,(A). Recall that, if
A =P(M), the zero set of P, is
Z(Py) :=f{x € M : h(x) =0 Vh € Ba},

where M™ is the Zariski closure of M in R". Moreover, if N := Uz;l{gil >0,...,
gis > 0, fi =0} C M is a semialgebraic set with g;;, fi € R[x], then N is the set of
all prime cones o € Spec,(A) satisfying the existence of an index 1 <i < r such that
gi1(@) >0,...,gis(@) >0, fi(e) = 0; of course, N does not depend on the description of
N. Now, if o € Spec, (A), we define

dim(e) := dim(P(M)/By) and  dimg (M) = sup{dim(B) : B C « and B € M}. (4.5)
The Zariski spectrum Spec(A) of A is the collection of all prime ideals of A, and its Zariski
topology has as a basis the collection of sets D(g) := {p € Spec(A) : g & p}, where g € A.
If A=S(M, R), it is well known that Spec,(S(M, R)) is homeomorphic to Spec(S(M, R))
via the support map o — By, (see for instance [22]).

4.C. Proof of Theorem 2
We divide the proof into several steps.

Step 1. Construction of the semialgebraic set No in the statement. Let pg := ker ¢ be the
kernel of ¢, and let (X C R", j) be a brimming semialgebraic pseudo-compactification
of M for po. To simplify the notation, we identify M with j(M). The challenge of this
proof is to find a chain of prime z-ideals py C --- C p1 C po of maximal length in S(M, R)
such that dy(p;) = trdegp (qf(S(M, R)/po)) +i fori =1, ...,d. The construction of such
a chain is quite cumbersome and involves a strong use of real spectra.

Sl.a. Initial preparation. Let Zg be the Zariski closure of X, and let ¢ : P(Zg) — S(X, R)
be the inclusion homomorphism. Consider the commutative diagram

Spec, (¢)  ~
Spec, (S(X, R)) ————= X C Spec, (P(Zo))
support L = l support
Spec(¢)

Spec(S(X, R)) ———— = Spec(P(Zy))
where the rows and columns are continuous maps (with respect to the respective
spectral and Zariski topologies), Spec, (¢)(«) = ¢ (@) for each « € Spec,.(S(X, R)), and
Spec(¢)(q) = ¢~ (q) if q € Spec(S(X, R)) (see [3, 7.1.7-8]). As is well known, the map

u = Spec,.(¢) o support*1 : Spec(S(X, R)) — X
is a homeomorphism (see [4, §3]), and, for every chain of prime cones X 5 a C--Ca
in P(Zo),Nu_l(ao) c---C w ' (a,) is a chain of prime ideals in S(X, R). Moreover, for
each o € X, it holds that B = u~ (@) NP(Zp) and

dy(n~" (@) = dim(Z(PBa)), (4.6)

5 A Zar

because by [3, 2.6.6] we have Z(Py) = ﬂfe;rl(a) Zx(f)" .
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We construct now, with the aid of i, a chain of prime ideals of maximal length contained
in po such that the image of each term of the chain under u belongs to M]c. To that end,
let Bp := u(poNSX, R)) € X. As M is dense in X, so is IVI]C in X (by the Artin-Lang
theorem); hence, By is adherent to the constructible set M. By [19, Thm. I], it holds
that

d := dimg, (My.) — dim(Bo) > 0 (4.7)

(see (4.5) for the definitions of the previous dimensions), and M. contains d points
B, ..., Ba such that By S --- S B1 S Po.

S1.b. Reduction to the cased > 1.1f d = 0, then By € M. We have the following diagram:

P(Z0) /T p, = S(X. R)/(po N S(X, R))—= S(M, R)/po———= F

| |

P(Zp)" S(M, R)

where the arrows in the first row preserve orderings. In particular, the prime cone By
is the inverse image of the cone F2. As fg € Mlc, there exist g1,..., &, f € R[x] :=
R[x1,...,x,]such that {g;1>0,...,¢ >0, f =0} C 1\7[1C and g1(Bo) > 0,...,gr(Bo) >0,
f(Bo) =0. Thus, ¢(g1) >0,...,0(g) >0,¢(f) =0; hence, the core p := (¢(1y),...,
¢(my,)) of ¢ satisfies gi(p) >0,...,8@®) >0, f(p) =0, and we conclude that
p € M r CMp. By Lemma 1, ¢ = ¥, : S(M, R) — F is the unique R-homomorphism
from S(M, R) to F whose core is p. Thus, we assume in the following that d > 1.

S1.c. Construction of the chain of prime z-ideals pg < --- C p1 C po in S(M, R) such that
dy (p;) = trdeggr(qf(S(M, R)/po)) +i fori =1,...,d. Consider the chain of prime ideals

B G- ST B S T (Bo) = poNSX, R)
of S(X, R). We claim the following.
(4.C.1) Fori=1,...,d, the ideal p; := u~ ' (B;)S(Mic, R)NS(M, R) is a prime z-ideal
of S(M, R) contained in po such that p; NS(X, R) = u~ ' (B:).

The last part of the claim shows in particular that each p; is a proper ideal. Fix an
equation G € S(X, R) of the clgsed semialgebraic set X \ M., and notice that G & u~'(8;)
fori =1,...,d because B; € M; denote g := G|y . Let us begin by proving the following.
(4.C.2)  The ideal p, := pu= ' (Bi)S(Mic, R) of S(Mc, R) satisfies p, NS(X, R) = n=1(B;)
fori=1,...,d.

Indeed, fix H € p;NS(X, R). There exist H; € u~'(8;) and g; € S(Mic, R) for j =
1,...,r satisfying H = Hig1 + - - - + H,g,. The semialgebraic functions

/. 8 /. 8i8
= and g; =
L+ g1+ +lgrl L+lgil+- -+ gl

can be extended by zero to respective semialgebraic functions G’, G; € S(X, R), so

8

G'H = H\G\ +---+ H,G, e u” ' (B).
Since Z(G') = X \ My, we conclude that G’ ¢ n=1(8;), and therefore H € u=1(8;).
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(4.C.3) We show now that p’ is a prime ideal of S(Myc, R) fori =1, ...,d. Consequently,
pi =p;NS(M, R) is a prime ideal of S(M, R).

Indeed, let ay,a; € S(Mjc, R) be such that aja; € p;. Observe that ﬁ’é}_lg can be
extended by zero to a semialgebraic function A; € S(X, R), so

A1Ar € n7 (BNSM, R)NS(X, R) = ' (B).

Thus, we may assume that A; € u~'(8;), and therefore alm € p;. As % is a unit
in S(Mic, R), we deduce that a; € p;; hence, p; is a prime ideal.
(4.C.4) Now we prove that p; is a prime z-ideal of S(M, R) fori=1,...,d.

Indeed, let f1 € p; =p;NS(M, R) and f, € S(M, R) be such that Zy(f1) C Zu(f2);
hence, Zy (f1) C Zm (f2). As p} is a prime z-ideal (see §1.B) because M. is locally
closed, falm, € p;, and so f> € pyNS(M, R) = p;.

(4.C.5) Let us show next that p; C po fori =1,...,d.
Indeed, let & € p;, H; € w1 (Bi) and gj € S(My) for j =1,...,r such that

h=H181+"'+Hrgr-

As My is open in X, the semialgebraic set Z(le—l— e —|—Hr2)\M1C is closed in X. Pick
By, By € S(X, R) such that Z(B)) = Z(H?+---+ H?)\ M. and Z(B,) = Clx(Z(H? +
S Hrz) N My.). Observe that Z(BBy) = Z(Hl2 R Hrz)7 and, as p; is a prime z-ideal
and (H1|M)2 4+ + (H,|M)2 € p;, we conclude that Bi|y B2|y € p;. Note that Bi|y,, is a
unit in S(Mic); hence, Bi|y € pi, and so Ba|y € p;. Thus, By € p;NS(X, R) = u~ ' (Bi).
By Lemma 1, we know that ¢o j* =evx, j.(py) ©ix,r and we deduce By r(po) =
Y(By) =0, as By e u '(Bi) CpoNS(X,R) C kerg. Therefore, po e CUZ(HE+---+
Hrz) FN M), and by the curve selection lemma there exists a semialgebraic path
o : [0,1] — F" such that

;
(0, 1]) C Z(HE + -+ H)p N Mic.r = Mic p 0| Z(Hj.r) (4.8)

j=1
and «a(0) = pg. By Theorem 4, there exist Ay, A, € S(X, R) such that Ayh — A; € po,

A
A2, £ (p0) # 0, and ¢(h) = -, Thus,

@(Az2|mh) = Az r(po)e(h) = A1 F(po).

By (4.8), the semialgebraic functions H; r o are identically zero, and the semialgebraic
functions g; r oa are well defined on the interval (0, 1] of F. Thus,

-
ArrGo) = lim (Arr o) (0 = fim (ha.r o0 | Tty o0 e 0w | ©
]:

= lim 0 =0;

t—0t
A1, (po)
Az, F(po)
(4.C.6) Finally, we prove that dp(p;) = trdegp(qf(S(M, R)/po)) +i fori=1,...,d.

hence, ¢(h) = = 0, and we conclude that p; C po := ker¢.
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Indeed, as PBg;,, € Pp; and each ‘Pg, := support(f;) is a real ideal, it holds that

dim(Z(Bp,)) > dim(Z(Pp,_,)) (4.9)
fori =1,...,d. Therefore,
, .9) _ , @D .o
dim(Z(PBg,)) = d+dim(Z(Pg,)) =d +dim(Bp) =" dimg,(Mic)
4.5)

> dim(Bq) = dim(Z(PBg,))-
We deduce that dim(Z(Pg,)) = d +dim(Z(Pg,)), and so
dim(Z(Pg,)) = dim(Z(Pg,)) +i

fori =1,...,d. By (4.6),

dx (™' (B) = dim(Z(Bg,) = dim(Z(Bg) +i = dx (™" (Bo)) +i-

As p; is a z-ideal and p; NS(X, R) = 1~ (B;), we obtain by (1.B.1) that
dx (™ (Bi) = trdegr(af(S(X, R) /™" (B)))
< trdegp@f(S(M, R)/pi) = dm (p) < dx (™" ());
that is, dp(p;) = dx(w™'(B:)). Now, since X is a brimming semialgebraic pseudo-
compactification of M for pg, we conclude by (1.B.2) that
du(pi) = dx (™' (B)) = dx(u™' (Bo) +i

trdegp (qf(S(X, R)/(poNS(X, R)))) +i = trdegr (qf(S(M, R)/po)) +1i.
S1.d. Pick f € py such that dim(Z(f)) = dm(p1), and define Ny := Z(f). By [8], the map
¥ :S(M,R) = S(No, R), f+— fln, is an epimorphism. Since p; is a z-ideal and f €
p1, we obtain keryy C p; C po. Therefore, q; := p;/keryr is a prime ideal of S(Ny, R) =
S(M, R)/keryy and S(M, R)/p; = S(No, R)/q; for i =0, 1. Using the fact that p; is a
z-ideal, one proves directly that q; := p;/ker ¢ is a z-ideal of S(Np, R). Thus,

trdeg (qf(S(No, R)/q0)) + 1 = trdegr (qf(S(M, R)/po)) + 1 = dp(p1) = dim(Np).

We claim that (Ty := Clx(No), Jlz,) s a brimming pseudo-compactification of No for qo.
Indeed, consider the commutative diagram

S(X,R) ———— S(Ty, R)

S(M,R) ——— S(Ny, R)

where the rows are epimorphisms and the columns are monomorphisms. Since qg :=
po/ ker ¢, we obtain

S(To, R)/(@oNS(Tp, R)) = S(X, R)/(poNS(X, R)),
and conclude that
qf(S(To, R)/(q0 NS(To, R))) = qf(S(X, R)/(poNS(X, R)))
= qf(S(M, R)/po) = qf(S(No, R)/q0).
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Step 2. Construction of the semialgebraic set N in the statement. By Lemma 3.1,
there exist an appropriately embedded semialgebraic set N C R" and a surjective semi-
algebraic map H : T :=CI(N) — Tp := Cl(Ng) whose restriction h:= H|y : N = Ny
is a semialgebraic homeomorphism. Then it holds that T s a brimming pseudo-
compactification of N for h*(qp); i.e.,

qf(S(T, R)/h*(q0) NS(T, R)) = qf(S(N, R)/h*(q0)). (4.10)

Indeed, H induces an injective homomorphism H* : S(Tp, R) — S(T, R) that makes
the following diagram commutative:

S(Ty, —~ S(T. R)

S(No. R) — 2~ S(N. R)

Thus, we get the following inclusion of fields:
af(S(No, R)/q0) = af(S(To, R)/q0NS(To, R)) C af(S(T, R)/h*(q0) NS(T, R))
C qf(S(N, R)/h*(q0)) = qf(S(No, R)/q0),
and, comparing transcendence degrees, we conclude that equality (4.10) holds.

Step 3. Construction of the (core) point p € F" in the statement. Consider the
R-homomorphism @ : S(N, R) = F such that ¢ =poh*oi* where i*:S(M, R) —
S(No, R), g+ gln, is the homomorphism induced by the inclusion i : Ng < M. Let
p = (@(ry),...,9(T,)), where w; : R" — R is the projection onto the ith coordinate. By
(1.B.2), we have

dim(Np.p) = dim(Tr.p) > dr(p) = trdegg qf(S(T, R)/h*(q0) NS(T, R))
= dim(No) — 1 = dim(N) — 1 > dim(Nr ) — 1.

If p e Nr (which includes the case dr(p) = dim(Nry)) or if dr(p) = dim(Nrp) —1
and p &€ Nr, we deduce by Lemma 1 that ¢ =1, :S(N,R) — F is the unique
R-homomorphism from S(N, R) to F whose core is p. O
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