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We implemented six confounding adjustment methods: (1) covariate-adjusted regression, (2) propensity score (PS) regression, (3) PS stratification,
(4) PS matching with two calipers, (5) inverse probability weighting and (6) doubly robust estimation to examine the associations between the
body mass index (BMI) z-score at 3 years and two separate dichotomous exposure measures: exclusive breastfeeding v. formula only (n = 437) and
cesarean section v. vaginal delivery (n = 1236). Data were drawn from a prospective pre-birth cohort study, Project Viva. The goal is to
demonstrate the necessity and usefulness, and approaches for multiple confounding adjustment methods to analyze observational data. Unadjusted
(univariate) and covariate-adjusted linear regression associations of breastfeeding with BMI z-score were − 0.33 (95% CI − 0.53, − 0.13) and
− 0.24 (−0.46, − 0.02), respectively. The other approaches resulted in smaller n (204–276) because of poor overlap of covariates, but CIs were of
similar width except for inverse probability weighting (75% wider) and PS matching with a wider caliper (76% wider). Point estimates ranged
widely, however, from − 0.01 to − 0.38. For cesarean section, because of better covariate overlap, the covariate-adjusted regression estimate (0.20)
was remarkably robust to all adjustment methods, and the widths of the 95% CIs differed less than in the breastfeeding example. Choice of
covariate adjustment method can matter. Lack of overlap in covariate structure between exposed and unexposed participants in observational
studies can lead to erroneous covariate-adjusted estimates and confidence intervals. We recommend inspecting covariate overlap and using
multiple confounding adjustment methods. Similar results bring reassurance. Contradictory results suggest issues with either the data or the
analytic method.
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Introduction

Valid causal inference from observational data requires at least
two critical conditions: (i) all confounders are measured and
(ii) are appropriately adjusted for in the analyses. Approaches
such as instrumental variables1 and sensitivity analyses2 can
sometimes be used to account for unmeasured confounders.
However, instrumental variable analysis is not always possible
because acceptable instrumental variables may not exist.3 In
this paper, we focus on the appropriate adjustment of measured
confounders and do not consider issues such as unmeasured
confounders, measurement error, or exposure or outcome
mis-classification.

The classic confounding adjustment method is covariate-
adjusted regression. However, an alternative class of methods is
gaining increasing popularity.4 These methods use the propensity
score (PS), the conditional probability of receiving the exposure of
interest given confounders.5 The PS is effectively a summary
score that incorporates information frommultiple confounders in
a single value. PSs address the ‘curse-of-dimensionality’6: a large
number of confounders relative to the number of observations.

Moreover, PSs can help in assessing overlap in the covariate
space.7 However, despite the increasing use of the PS-based
methods and advanced methodological research in this area,8–12

understanding of how to correctly apply these methods and their
potential impact is still limited.13,14

Our purpose is to explore six confounding adjustment
methods: covariate-adjusted regression,15 PS regression,16 PS
stratification,17 PS matching,5 inverse probability weighting,18,19

and doubly robust estimation.20 These are described succinctly
in Table 1. Other than covariate-adjusted regression, all of
these methods use PSs to adjust for confounding. To demon-
strate the potential effects of adjustment, we compare results
from two early life exposures that we and others have reported
are associated with childhood obesity: breastfeeding status21–24

and delivery type.25,26 In both cases, randomized trials are at
best impractical, though it may be possible to use data from
related trials to gain insight.27 Using these two examples, we
review the strengths and weaknesses of the six confounding
adjustment methods, use PSs to ensure overlap in the covariate
space, examine the impact of choices made during imple-
mentation, discuss lessons learned from implementing them
and identify knowledge gaps.
In this paper, we implement the six methods to adjust for

baseline confounding. We do not intend to infer causality
in either application example for the following two reasons.
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First, the assumption of no unmeasured confounders is
debatable. Second, breastfeeding during the first 6 months of life
is not a one-time decision.24,28 During that period, mothers who
breastfed likely considered multiple times whether to continue
breastfeeding and made the decisions based on multiple factors
that themselves changed over time. Some of these factors may
well affect the childhood obesity outcome. To reduce difficult

methodological issues raised by these relationships, we restricted
our analyses to those who either exclusively breastfed or used
formula only during the first 6 months of life.
We use a continuous outcome for illustration purposes, but

these methods can be applied to other types of outcomes such as
binary outcomes. In fact, with binary outcomes, the PS-based
approaches have more advantages over the covariate-adjusted

Table 1. Comparisons of the six confounding adjustment methods

Methoda Brief summary Strengths Weaknesses

Covariate-adjusted
regression15

Fit multivariable regression
regressing the outcome on the
exposure variable and
confounders

Conventional approach
Results relatively easy to
understand and interpret

Can be implemented in many
statistical packages

Difficult to assess covariate overlap
Limited covariates possible with rare
binary outcomes

Propensity scores (applies
to the five PS-based
methods below)5

Fit logistic regression regressing
exposure on the confounders

Calculate PS as the probability of
receiving the exposure of interest
from this regression

Confounding is removed
conditional on PS

Facilitates the assessment of
covariate overlap

May be possible to adjust for
multiple covariates and
complex non-linear terms even
with rare outcomes

PS regression16 Fit multivariable regression
regressing the outcome on the
exposure variable and the
estimated PS

Requires PS to be correctly adjusted
for in the regression model

PS stratification17 Estimate treatment effect within
strata having similar PS

Estimate treatment effect by
combining stratum-specific
effects

No additional modeling
assumption

Residual confounding within strata
since subjects have similar but
non-identical PS

PS matching5 Construct matched pairs with
subjects with similar PSs from
each exposure group

Conduct conditional analyses
among the matched pairs to
estimate treatment effect

No additional modeling
assumption

Can estimate either average
treatment effect or average
treatment effect on the treated

Residual confounding due to similar
but non-identical PS within
matched pair

Different matching algorithms with
respective advantages and
disadvantages

Different caliper may affect results
Inverse probability
weighting18,19

Weight each subject by the inverse
of the probability of receiving
observed exposure

Compare the outcomes between
the two exposure groups in the
weighted population

No additional modeling
assumption

Applies easily to settings with
more than two exposure
groups

Can be extended to handle
time-varying exposure and
time-varying confounding

Exposed subjects with very small PSs
or unexposed subjects with very
large PSs have large weights and
may lead to large standard errors

Doubly robust estimation20 Combine the covariate-adjusted
model and the inverse
probability weight using a
complex augmentation term

Gives valid inference if either
model is correct but not
necessarily both

Complex
Subjects with large weights may lead
to large standard errors

PS, propensity score.
aAll methods are subject to bias if covariate overlap is not present. All methods require correct specification of models. For regression, this is the

relationship between the confounders and the outcome. For PS, this is the relationship between the confounders and the exposure. The exception
is doubly robust estimation, for which one of these may be incorrect.

436 L. Li et al.

https://doi.org/10.1017/S2040174414000415 Published online by Cambridge University Press

https://doi.org/10.1017/S2040174414000415


regression approach because it is more challenging to impose a
correct covariate-adjusted regression model for binary outcomes
when the outcome is rare and the number of covariates is large
relative to sample size.

Methods

We begin by describing methods for covariate adjustment in
more detail, then describe the two application examples.

Confounding adjustment methods

Covariate-adjusted regression

In covariate-adjusted linear regression, the outcome is regressed
on the exposure variable and covariates. The validity of results
depends on the correct specification of the regression model,
meaning that all covariates, interactions and quadratic,
logarithmic, etc. functions affecting the exposure-outcome
relationship are included. If these conditions are met, the
parameter associated with the exposure is the difference in the
outcome due to adding the exposure to any set of fixed values of
the other covariates.

PSs

The PS is defined as the individual probability of receiving the
exposure of interest.5 PSs are typically estimated with a logistic
regression model that regresses the exposure variable on
observed confounders; PSs thus replace all of the confounders
with a single value. In addition, PSs facilitate a requirement
for valid covariate adjustment: overlapping covariate values, or
‘common support,’ across the exposure groups. Common
support is required to prevent extrapolation beyond the range
of the data. Covariate overlap is absent, for example, when the
exposure of interest group includes subjects aged 45–65 years
but the control group is limited to those aged 45–55 years. It
can be challenging or tedious to detect poor covariate overlap
when the ranges overlap, but the distribution in the two
exposure groups differs substantially. For example, both groups
might have ages between 45 and 65, but the exposed group
might be 95% over age 55 and the unexposed 95% below
age 55. It is quite difficult to detect this kind of differential
distribution multidimesionally across a large set of covariates.
However, it is relatively simple, as demonstrated below, to
assess overlap using the PS.

After assessing overlap, PSs can be used to adjust for
confounding in several ways: via regression, stratification,
weighting, matching. The validity of each of these methods
depends on a common assumption that the PS model is
correctly specified, in the same sense as in the covariate-
adjusted regression. The goodness-of-fit of the PS model can
be assessed by comparing the distributions of the observed
confounders between the exposure groups after adjusting for
the estimated PSs.17 The confounders should be distributed
similarly between the exposure groups after adjustment.

As confounding can only affect inference if the confounders are
unequally distributed between the exposure groups, valid causal
inference is possible once this similarity is achieved.

Common-support regression

Common-support regression is simply covariate-adjusted
regression conducted among the subset of patients within the
common support. Common-support regression is generally
preferred over covariate-adjusted regression as it avoids extra-
polation into regions where one or the other exposure group
provides little data.

PS regression

In PS regression, we regress the outcome on the exposure and
the PS only. Conditional on the PS, exposure cannot be a result
of confounding, so the exposure effect is un-confounded.
However, analogous to covariate adjustment, the results might
be biased if we do not adjust for PS appropriately in the
regression model, for example, if a required quadratic function
of the PS is omitted.16

PS stratification

In PS stratification,17 the study population is classified into
strata with similar PSs. The exposure effect is estimated within
each stratum and the exposure effects in each stratum are then
pooled to obtain the population-wide average exposure effect.
This approach does not require the additional modeling
assumptions that PS regression does, but the results might be
slightly biased because the PSs within strata are similar but not
identical. Therefore, it is recommended to use more than five
strata when sample size allows.29

PS matching

PS matching avoids some potential issues in simpler approaches
but is more complex in theory and application. In PS matching,
each exposed and/or unexposed subject is matched with at least
one ‘control’ from the other exposure group with the same PS.
If a matched control is found only for each exposed subject, we
are estimating the average exposure effect among the treated,30

which sometimes is the preferred parameter of interest, but may
be a biased estimate of the exposure effect in the population at
large.30 Matching each exposed and non-exposed case ensures
that the estimate is unbiased for the effect of exposure in the
population at large.
Exact matching is typically infeasible, however, so in practice

matches are required to have only similar PSs. We refer to the
maximum allowable difference in PSs for a matched pair as the
‘caliper.’10 Common choices of caliper include an absolute
value of 0.0516 or 0.2 standard deviations of the logits of PS,
that is, of the log(PS/(1− PS)).10 Subjects without eligible
matches, that is, no control with a PS within the caliper, are
excluded from subsequent analyses. Conditional regression15
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analyses are conducted among the matched pairs, to account
for matching.

Matching can be done ‘with’ or ‘without replacement’7,31;
with replacement means that, for example, a non-exposed
subject may be the control for more than one exposed subject,
and some subjects will likely be included in the analysis
more than once. Matching with replacement reduces bias and
thus is recommended, although a special variance estimator is
required to appropriately account for the correlation due to
duplication.32

In the sense that each PS-matched pair comprises two people
with approximately equal probabilities of exposure, and one is
in each exposure group, PS matching mimics randomization.
Like stratification, PS matching does not require modeling
the PS-outcome relationship. Residual confounding due to
imperfect matching remains a concern for the validity of PS
matching results.

Inverse probability weighting

In inverse probability weighting,18,19 each subject is weighted
by the inverse of the probability of being assigned to their actual
exposure group: 1/PS for exposed subjects and 1/(1− PS) for
unexposed subjects. Confounding is removed in the resulting
weighted ‘pseudo-population’ (7,8) so that linear regression
applied to the pseudo-population estimates the un-confounded
exposure effect.

The inverse probability weighting approach does not require
modeling the PS-outcome relationship. In using the exact PS
value, it avoids the risks of residual confounding within strata
and imprecise matches. Moreover, it can be used without
further modification in settings with multiple exposure groups.
However, the standard error of the treatment effect may be
large, due to large weights for subjects with PSs close to 0 or 1.
Truncating weights or excluding subjects with extremely large
weights may partially address this issue but could diminish the
advantages described above and lead to estimating a different
quantity than the one of interest.16,33

Doubly robust estimation

Doubly robust estimation combines the PS and covariate
adjustment. In covariate-adjusted regression, the association
between covariates and outcome needs to be accurately modeled;
in the PS-based analyses described above, the logistic regression
predicting the exposure needs to be correctly modeled. Doubly
robust estimation is valid if either model is correct but not
necessarily both.20 The original doubly robust approach, which
was proposed in Bang et al.,20 functions by adding to the
inverse probability weighting estimator an augmentation term,
which depends on the predicted outcome from the multi-
variable regression model and the PSs. This term converges to
zero when the PS is correct, but offsets the bias of the inverse
probability weighting estimator when the PS is wrong and
the outcome regression function is correct. This is a complex
procedure. Interested readers are referred to Bang et al.,20

for technical details. A SAS macro is available to implement
this method.34

Table 1 summarizes each of the six methods and their strengths
and weaknesses. Please refer to the online supplementary material
for more details on the implementation of the six methods.

Application examples

We apply the forgoing methods to assess the associations of
breastfeeding and cesarean section with body mass index (BMI)
at age 3.

Study population

Study subjects were participants in Project Viva, a prospective
observational cohort study of pre- and perinatal factors and
maternal and child health.35 Details of recruitment and retention
procedures are available elsewhere.35

We have previously published on the association of both
breastfeeding (16) and cesarean section (17) with 3-year BMI
z-score in Project Viva.

Outcome

At the 3-year Project Viva visit, we measured each child’s height
with a research-standard stadiometer (Shorr Productions,
Olney, Maryland, USA), and weight with a digital scale (Seca
model 881, Seca Corporation, Hanover, Maryland, USA). We
calculated BMI as weight in kg/(height in m)2. The outcome
of interest was the age- and sex-specific BMI z-score at the
participant’s 3-year visit, calculated using US national reference
data.36

Exposure variables

Breastfeeding during the first 6 months of life was assessed by
interviews at 6 months or 1 year postpartum.21 We restricted
our analyses to two subgroups: ‘exclusive breastfeeding’ (infants
whose only liquid energy source was breast milk during the first
6 months of life), and ‘formula only’ (only formula during the
first 6 months). Cesarean section v. vaginal delivery was derived
from hospital medical records.

Covariates

In Tables 2 and 3, we list the potential confounders considered
in the covariate-adjusted regression analyses in the original
publications;21,25 not all were included in the final published
models. These are all baseline covariates measured before either
exposure.

Statistical analyses

For both the breastfeeding and cesarean section examples, we
implemented: (1) crude (univariate) regression; (2) covariate-
adjusted regression using the covariates included in the final
published models; and (3) covariate-adjusted regression with
the larger set of covariates in Tables 2 and 3.
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Table 2. Breastfeeding in first 6 months of life (exclusively breastfed v. formula-fed only)

Observed data Observed data with 0.350< PS< 0.993
Matched pairs (0.350< PS< 0.993, matching

caliper = 0.05)

Exclusively breastfed
(311)

Formula-fed only
(126)

Exclusively breastfed
(223)

Formula-fed only
(53)

Exclusively breastfed
(276)

Formula-fed only
(276)

n (%) P a n (%) P a n (%) P b

Maternal characteristics
Age (years)

< 25 8 (2.6) 13 (10.3) < 0.01 5 (2.2) 1 (1.9) 0.98 8 (2.9) 6 (2.2) 0.48
25 –< 35 198 (63.6) 82 (65.1) 141 (63.2) 34 (64.2) 172 (62.3) 135 (48.9)
⩾ 35 105 (33.7) 31 (24.6) 77 (34.5) 18 (34.0) 96 (34.8) 135 (48.9)

Education level
High school or less 7 (2.3) 18 (14.3) < 0.01 6 (2.7) 2 (3.8) 0.03 9 (3.3) 3 (1.1) 0.63
Some college 41 (13.2) 47 (37.3) 24 (10.8) 12 (22.6) 38 (13.8) 32 (11.6)
BA/BS 112 (36.1) 43 (34.1) 91 (40.8) 25 (47.2) 119 (43.1) 130 (47.1)
Grad school 150 (48.3) 18 (14.3) 102 (45.7) 14 (26.4) 110 (39.9) 111 (40.2)

Race/ethnicity
Black 25 (8.1) 19 (15.1) 0.07 13 (5.8) 3 (5.7) 0.65 15 (5.4) 10 (3.6) 0.34
Hispanic 9 (2.9) 6 (4.8) 8 (3.6) 2 (3.8) 17 (6.2) 20 (7.3)
Other 26 (8.4) 6 (4.8) 14 (6.3) 1 (1.9) 18 (6.5) 5 (1.8)
White 250 (80.6) 95 (75.4) 188 (84.3) 47 (88.7) 226 (81.9) 241 (87.3)

US Born
Yes 260 (85.2) 117 (94.4) 0.03 199 (89.2) 51 (96.2) 0.12 242 (87.7) 233 (84.4) 0.75

House hold income>US $70,000 216 (72.9) 57 (49.1) < 0.01 167 (74.9) 39 (73.6) 0.84 199 (72.1) 242 (87.7) 0.01
Pre-pregnancy BMI (kg/m2)

< 25 224 (72.7) 61 (48.4) < 0.01 157 (70.4) 36 (67.9) 0.10 190 (68.8) 207 (75.0)
25 –< 30 66 (21.4) 37 (29.4) 52 (23.3) 17 (32.1) 70 (25.4) 69 (25.0)
⩾ 30 18 (5.8) 28 (22.2) 14 (6.3) 0 (0.0) 16 (5.8) 0 (0.0)

Gestational weight gain (IOM 2009
guideline)

Inadequate 34 (11.2) 14 (11.2) 0.33 24 (10.8) 5 (9.4) 0.71 33 (12.0) 23 (8.3) 0.26
Adequate 99 (32.6) 32 (25.6) 63 (28.3) 18 (34.0) 79 (28.6) 135 (48.9)
Excessive 170 (56.1) 79 (63.2) 136 (61.0) 30 (56.6) 164 (59.4) 118 (42.8)

Mother herself was breastfed
Yes 129 (44.0) 17 (14.7) < 0.01 92 (41.3) 11 (20.8) < 0.01 110 (39.9) 112 (40.6) 0.97

Maternal glucose tolerance status
Gestational diabetes 10 (3.3) 11 (8.8) 0.07 7 (3.1) 4 (7.6) 0.33 13 (4.7) 14 (5.1)
Impaired glucose tolerance 8 (2.6) 3 (2.4) 5 (2.2) 0 (0.0) 5 (1.8) 0 (0.0)
Isolated hyperglycemia 28 (9.1) 7 (5.6) 21 (9.4) 4 (7.6) 23 (8.3) 10 (3.6)
Normal 261 (85.0) 104 (83.2) 190 (85.2) 45 (84.9) 235 (85.1) 252 (91.3)
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Table 2. (Continued )

Observed data Observed data with 0.350< PS< 0.993
Matched pairs (0.350< PS< 0.993, matching

caliper = 0.05)

Exclusively breastfed
(311)

Formula-fed only
(126)

Exclusively breastfed
(223)

Formula-fed only
(53)

Exclusively breastfed
(276)

Formula-fed only
(276)

Smoking during pregnancy
Former 58 (19.2) 29 (23.8) < 0.01 47 (21.1) 15 (28.3) 0.46 56 (20.3) 122 (44.2) 0.09
During pregnancy 10 (3.3) 24 (19.7) 6 (2.7) 2 (3.8) 10 (3.6) 4 (1.5)
Never 233 (77.4) 69 (56.6) 170 (76.2) 36 (67.9) 210 (76.1) 150 (54.4)

Nullipara 154 (49.5) 39 (31.0) 0.01 101 (45.3) 19 (35.9) 0.21 117 (42.4) 84 (30.4) 0.23
Paternal BMI (kg/m2)

< 25 122 (40.8) 27 (22.7) < 0.01 82 (36.8) 12 (22.6) 0.14 93 (33.7) 81 (29.4) 0.34
25 –< 30 145 (48.4) 65 (54.6) 116 (52.0) 33 (62.3) 149 (54.0) 176 (63.8)
⩾ 30 32 (10.7) 27 (22.7) 25 (11.2) 8 (15.1) 34 (12.3) 19 (6.9)

Father US born
Yes 255 (84.7) 103 (90.4) 0.14 192 (86.1) 50 (94.3) 0.10 239 (86.6) 244 (88.4) 0.82

Child characteristics
Female sex 159 (51.1) 66 (52.4) 0.81 117 (52.5) 27 (50.9) 0.84 141 (51.1) 124 (44.9) 0.58
Cesarean section 51 (16.5) 34 (27.0) 0.01 39 (17.5) 9 (17.0) 0.93 47 (17.0) 46 (16.7) 0.96

Mean (S.D.) P a Mean (S.D.) P a Mean (S.D.) P b

Birth weight for gestational age z-score 0.3 (0.9) 0.21 (0.9) 0.34 0.4 (0.9) 0.3 (0.8) 0.56 0.3 (0.9) 0.4 (0.8) 0.77
Gestational age at birth (weeks) 39.8 (1.3) 39.4 (1.5) < 0.01 39.9 (1.4) 39.7 (1.4) 0.25 39.9 (1.4) 39.4 (1.4) 0.13
Census-derived socio-economic status variables, expressed as percent of census tract population (census 2000 data)
% 25 years or older with no high
school diploma

9.3 (8.7) 9.2 (8.5) 0.94 7.9 (7.4) 6.6 (5.5) 0.15 8.3 (7.8) 6.5 (5.3) 0.16

% 25 years or older with college degree
and above

47.2 (20.1) 31.0 (15.1) < 0.01 45.9 (17.9) 38.4 (13.4) < 0.01 43.6 (17.9) 44.7 (14.5) 0.71

% below poverty line (1999 dollars) 10.4 (9.2) 6.1 (6.2) < 0.01 11.1 (9.4) 7.8 (6.1) < 0.01 10.3 (9.2) 9.8 (5.8) 0.17
% households with 1999 income
below $20,000

16.9 (9.7) 18.7 (10.3) 0.09 15.6 (8.8) 15.3 (7.9) 0.85 15.9 (9.3) 15.5 (7.3) 0.79

% household with 1999 income
$150,000 and above

11 (8.6) 14.4 (9.1) < 0.01 10.9 (8.2) 11.2 (5.5) 0.81 11.6 (8.8) 9.9 (5.1) 0.69

PS, propensity score.
Characteristics among all subjects, among subjects with PS in (0.350, 0.993), and among matched pairs (data from Project Viva).
aP-value from χ2-test or t-test.
bP-value from generalized score tests for Type III contrasts from PROC GENMOD to adjust for repeated use of the same subjects since matching was done with replacement.
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Table 3. Delivery mode (cesarean section v. vaginal delivery)

Observed data Observed data (0.095< PS< 0.530)
Matched pairs (0.095< PS< 0.530,

matching caliper = 0.05)

Cesarean section
(280)

Vaginal delivery
(956)

Cesarean section
(224)

Vaginal delivery
(710)

Cesarean section
(934)

Vaginal delivery
(934)

n (%) P a n (%) P a n (%) P b

Maternal characteristics
Age (years)

< 25 16 (5.7) 79 (8.3) 0.33 10 (4.5) 25 (3.5) 0.80 34 (3.6) 35 (3.8) 0.84
25 –< 35 172 (61.4) 586 (61.3) 139 (62.1) 449 (63.2) 614 (65.7) 590 (63.2)
⩾ 35 92 (32.9) 291 (30.4) 75 (33.5) 236 (33.2) 286 (30.6) 309 (33.1)

Education level
High school or less 15 (5.4) 81 (8.5) 0.39 8 (3.6) 29 (4.1) 0.97 27 (2.9) 41 (4.4) 0.60
Some college 60 (21.4) 203 (21.3) 47 (21.0) 141 (19.9) 227 (24.3) 189 (20.2)
BA/BS 107 (38.2) 346 (36.3) 86 (38.4) 274 (38.6) 363 (38.9) 359 (38.4)
Grad school 98 (35.0) 323 (33.9) 83 (37.1) 266 (37.5) 317 (33.9) 345 (36.9)

Race
Black 38 (13.6) 114 (12.0) 0.68 23 (10.3) 58 (8.2) 0.53 77 (8.2) 89 (9.5) 0.91
Hispanic 17 (6.1) 59 (6.2) 13 (5.8) 38 (5.4) 55 (5.9) 44 (4.7)
Other 29 (10.4) 82 (8.6) 19 (8.5) 47 (6.6) 78 (8.4) 80 (8.6)
White 196 (70.0) 698 (73.2) 169 (75.5) 567 (79.9) 724 (77.5) 721 (77.2)

US Born
Yes 219 (79.6) 783 (82.9) 0.18 182 (81.3) 595 (83.8) 0.37 780 (83.5) 777 (83.2) 0.92

Household income >US $70,000 165 (60.7) 578 (65.2) 0.17 144 (64.3) 483 (68.0) 0.30 607 (65.0) 629 (67.3) 0.59
Pre-pregnancy BMI (kg/m2)

< 25 161 (57.5) 640 (67.2) < 0.01 131 (58.5) 472 (66.5) < 0.01 611 (65.4) 606 (64.9) 0.56
25 –< 30 63 (22.5) 203 (21.3) 53 (23.7) 164 (23.1) 186 (19.9) 214 (22.9)
⩾ 30 56 (20.0) 109 (11.5) 40 (17.9) 74 (10.4) 137 (14.7) 114 (12.2)

Gestational weight gain (IOM 2009 guideline)
Inadequate 28 (10.0) 118 (12.6) 0.05 21 (9.4) 77 (10.9) 0.28 79 (8.5) 95 (10.2) 0.52
Adequate 70 (25.0) 287 (30.6) 55 (24.6) 206 (29.0) 248 (26.6) 279 (29.9)
Excessive 182 (65.0) 534 (56.9) 148 (66.1) 427 (60.1) 607 (65.0) 560 (60.0)

Mother herself was breastfed
Yes 24 (30.4) 122 (37.0) 0.27 90 (41.7) 278 (41.0) 0.36 394 (43.3) 366 (41.1) 0.64

Maternal glucose tolerance status
Gestational diabetes 14 (5.1) 35 (3.7) 0.11 10 (4.5) 30 (4.2) 0.70 43 (4.6) 45 (4.8) 0.98
Impaired glucose tolerance 14 (5.1) 25 (2.6) 7 (3.1) 14 (2.0) 21 (2.3) 18 (1.9)
Isolated hyperglycemia 21 (7.6) 91 (9.6) 20 (8.9) 74 (10.4) 95 (10.2) 88 (9.4)
Normal 228 (82.3) 796 (84.1) 187 (83.5) 592 (83.4) 775 (83.0) 783 (83.8)
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Table 3. (Continued )

Observed data Observed data (0.095< PS< 0.530)
Matched pairs (0.095< PS< 0.530,

matching caliper = 0.05)

Cesarean section
(280)

Vaginal delivery
(956)

Cesarean section
(224)

Vaginal delivery
(710)

Cesarean section
(934)

Vaginal delivery
(934)

Smoking during pregnancy
During pregnancy 4 (4.9) 30 (8.8) 0.27 2 (3.1) 18 (6.7) 0.26 11 (3.8) 23 (6.7) 0.68
Former 21 (25.9) 66 (19.4) 20 (30.8) 61 (22.8) 80 (27.9) 87 (25.1)
Never 56 (69.1) 245 (71.9) 43 (66.2) 189 (70.5) 196 (68.3) 236 (68.2)

Nullipara 143 (51.1) 442 (46.2) 0.15 116 (51.8) 319 (44.9) 0.07 447 (47.9) 437 (46.8) 0.82
Paternal BMI (kg/m2)

< 25 78 (29.3) 343 (37.4) < 0.01 63 (28.1) 243 (34.2) 0.07 287 (30.7) 308 (33.0) 0.70
25 –< 30 132 (49.6) 454 (49.5) 119 (53.1) 372 (52.4) 521 (55.8) 485 (51.9)
⩾ 30 56 (21.1) 121 (13.2) 42 (18.8) 95 (13.4) 126 (13.5) 141 (15.1)

Father US born
Yes 214 (82.6) 717 (81.4) 0.65 187 (83.5) 587 (82.7) 0.78 751 (80.4) 780 (83.5) 0.41

Child characteristics
Female sex 135 (48.2) 472 (49.4) 0.73 105 (46.9) 350 (49.3) 0.52 490 (52.5) 456 (48.8) 0.44
Exclusive breastfeeding during the first 6 months 51 (18.2) 259 (6.3) < 0.01 42 (18.8) 199 (28.0) 0.09 185 (19.8) 252 (27.0) 0.31

Mean (S.D.) P a Mean (S.D.) P a Mean (S.D.) P b

Birth weight for gestational age z-score 0.3 (1.0) 0.2 (0.9) 0.04 0.3 (1.0) 0.3 (0.9) 0.41 0.2 (1.0) 0.3 (0.9) 0.78
Gestational age at birth (weeks) 39.6 (1.5) 39.7 (1.4) 0.44 39.6 (1.5) 39.7 (1.4) 0.52 39.4 (1.6) 39.7 (1.4) 0.08
Census-derived socio-economic status variables, expressed as percent of census tract population (Census 2000 data)
% 25 years or older with no high school diploma 8.9 (7.7) 9.5 (9.0) 0.25 8.2 (7.3) 8.1 (7.3) 0.87 8.0 (6.7) 8.3 (7.3) 0.65
% 25 years or older with college degree and above 38.5 (18.3) 40.8 (20.4) 0.07 39.2 (18.1) 41.5 (18.8) 0.10 40.6 (18.9) 41.3 (19.0) 0.71
% below poverty line (1999 dollars) 8.3 (8.3) 9.0 (8.7) 0.21 8.6 (8.3) 9.2 (8.4) 0.38 8.5 (7.7) 9.1 (8.3) 0.67
% households with 1999 income below $20,000 17.4 (9.2) 17.7 (10.5) 0.66 16.6 (8.6) 16.3 (8.8) 0.70 16.5 (8.2) 16.5 (8.8) 0.96
% household with 1999 income $150,000 and above 13.1 (8.9) 12.9 (9.8) 0.76 12.4 (8.4) 11.9 (8.1) 0.41 12.3 (8.6) 12.0 (8.0) 0.42

PS, propensity score.
Characteristics among all subjects, among subjects with PS in (0.095, 0.530), and among matched pairs (data from Project Viva).
aP-value from χ2-test or t-test.
bP-value from generalized score tests for Type III contrasts from PROC GENMOD to adjust for repeated use of the same subjects since matching was done with replacement.
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We fitted logistic regression models to estimate PSs, adjusting
for the covariates listed in Tables 2 and 3. Variable selection in
PS modeling is an important topic. We do not tackle this issue
here. Project Viva collected a much larger set of covariates than
those listed in Tables 2 and 3. In this paper, we only consider
the subset of covariates that were selected by subject matter
experts as potential confounders. Covariate balance was assessed
using the F-test after PS stratification with quintiles.17

Theoretical guidance on determining the common support
is not available, and we determined the common support
region on an ad-hoc basis. We plotted smoothed histograms of
the PSs within each group, based on kernel density estimates.
These plots (Figs 1 and 2) show values of the PS for which each
exposure group has at least a few observations, and we defined
common support as the range of PS over which there are generally
at least five observations in each exposure group.

We implemented the three regression adjustment methods
listed above and PS regression with and without considering
the PS-based common support to directly assess the impact of
limiting covariates to the region of common support. Obser-
vations outside the common support were excluded from other
analyses.

In PS regression, we regressed the outcome on the exposure
variable and the PS. Adding polynomial terms for the PS up to
the fifth order had little impact on the estimated exposure effect
and variance; we report the model with linear adjustment only.
For PS stratification, we used quintiles instead of higher-order
quantiles due to relatively small numbers of formula-only
babies and cesarean section births. In PS matching, we used

two caliper values, 0.05 and 0.01. Each exposed and unexposed
subject was matched to a subject in the other group, if one
existed within the caliper. We used matching with replacement
and accounted for this using the conservative Abadie–Imbens
variance estimator.32 In the breastfeeding example, we found
some subjects with large weights in the inverse probability
weighting and doubly robust approaches, and additionally
recalculated the estimates from these two methods with PSs
truncated at 0.95; truncation near 0 was unnecessary because
subjects with small values had already been removed because of
a lack of common support. Truncation in the cesarean section
example was unnecessary after removing subjects lacking
common support. In doubly robust estimation, we considered
two multivariable regression models with one including all
covariates and the other including published covariates only.
All analyses were done in SAS 9.3 (SAS Institute, Cary, NC,
USA) except PS matching, which was implemented using the
R package ‘Matching’ (R 2.15.2).37

Results

For breastfeeding, there were 437 subjects in the univariate
analyses; 412 had complete data on relevant variables and were
included in the covariate-adjusted regression with published
covariates. Sample size further decreased to 354 in the regres-
sion with a larger set of covariates. For cesarean section, the
corresponding sample sizes were 1236, 1229 and 1019.
For the PS analyses, we first examined the PS overlap

to determine the common support, illustrated in Figs 1 and 2.
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Fig. 1. Breastfeeding in first 6 months of life (exclusively breastfed v.
formula-fed only): PS kernel density estimates and common support.
The solid (exclusive breastfeeding) and dotted (exclusive formula)
curves indicate the within-group smoothed histograms for the PSs,
based on kernel density estimates. The gray horizontal line indicates
a reference at five observations. The vertical lines indicate the
common support, which we define as the interval on which the
within-group kernel density estimates are mostly five or above. Here
is the observed common support (0.350, 0.993).
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Fig. 2. Delivery mode (cesarean section v. vaginal delivery): PS
kernel density estimates and common support. The solid (C-section)
and dotted (vaginal birth) curves indicate the within-group
smoothed histograms for the PSs, based on kernel density estimates.
The gray horizontal line indicates a reference at five observations.
The vertical lines indicate the common support, which we define as
the interval on which the within-group kernel density estimates are
mostly 5 or above. Here the observed common support is (0.095,
0.530).
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For breastfeeding, the common support region was (0.350,
0.993), that is, subjects with PSs ⩽ 0.35 or ⩾ 0.993 were
excluded from further analyses. For cesarean section, the
common support was (0.095, 0.530). In eTable 1 in the sup-
plementary material, we present the descriptive statistics among
those that were within the common support v. those that were
outside the common support.

In Tables 2 and 3, we present the descriptive statistics for the
two examples, respectively. For each example, we present the
statistics among the entire study population, among those
within the common support region, and among the matched
pairs constructed in the common support with a caliper of
0.05. Subjects outside the support were younger, less educated,
more likely to be non-white, less wealthy, heavier, to have
smoked during pregnancy. Because of a poorer PS overlap in
the breastfeeding example than in the cesarean section example,
a larger proportion of subjects fell outside the common support
and thus were excluded. It appears that covariate balance was
improved by restricting to subjects within the common support
region and further improved by PS matching.

In the breastfeeding example, all analyses yielded qualita-
tively similar results, with the exception of the doubly robust
method with all covariates. In addition, the doubly robust
method was sensitive to the choice of covariates in that all
covariates resulted in very different estimates compared with
published covariates. In contrast, in multivariable regression,
the other method that uses multivariable outcome regression,
this choice did not materially affect the results.

Inverse probability weighting, PS matching with a caliper of
0.05, and doubly robust estimation with published covariates
yielded notably wider CIs than the other methods. The greater
standard errors for the inverse probability weighting method

were likely driven by the few formula-only babies whose PSs
were close to 1 and whose weights were thus large. PS trunca-
tion at 0.95 helped to reduce the standard error. For PS
matching, the selection of caliper affected CI width. The CI
width was, surprisingly, narrower with a smaller caliper, despite
a smaller sample size. A similar result was seen for the doubly
robust estimation (Fig. 3).
For cesarean section, the estimated difference in BMI

between cesarian and vaginally delivered children was remark-
ably consistent across adjusted methods, and the widths of the
CIs differed less than in the breastfeeding example (Fig. 4). The
caliper choice had little impact. The CIs from PS matching
were the widest, likely due to the conservative variance
estimate.32

Discussion

We implemented several confounding adjustment methods to
examine the associations of exclusive breastfeeding and cesarean
section with 3-year BMI z-score: naïve covariate-adjusted
regression, covariate-adjusted regression among all study sub-
jects and among those within the common support, PS
regression, PS stratification, PS matching, inverse probability
weighting and doubly robust estimation. Each of the six
methods has its own advantages and disadvantages and none is
uniformly superior to others. Analysts need to select the
method(s) that suit their data setting and pay close attention to
the implementation caveats we illustrated in this paper via the
two empirical examples.
One important observation is that accounting for covariate

overlap can have a substantial impact, even on results from
multivariable regression. In the breastfeeding example, restricting
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Fig. 3. Breastfeeding in first 6 months of life (exclusively breastfed v. formula-fed only): difference in 3-year body mass index (BMI) z-score.
The last column indicates the ratio of each CI width to the CI width from the covariate-adjusted regression with published covariates
approach.
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the sample to those within common support attenuated the
point estimate from multivariable regression by 18%, from
− 0.28 to −0.23. In the cesarean section example, point esti-
mates and CIs were more similar, presumably because the
proportion of overlap was greater. In addition, the definition of
the common support region may affect the results from all
methods. The breastfeeding effect estimate and CI both varied
widely with various definitions of the common support region
(data not shown). The impact is likely to be bigger when the
sample size is relatively small and PS overlap is relatively poor.

Second, inverse probability weighting and doubly robust esti-
mation may have large standard errors. Truncating PS at a
minimum value, for example, 0.05, and a maximum value,
for example, 0.95 may partially address this problem, but it
may introduce bias. For breastfeeding, the CI width for inverse
probability weighting and doubly robust estimation with multi-
variable regression with published covariates decreased by 35%
(from 0.77 to 0.50) and 47% (from 0.90 to 0.48), respectively,
after PSs were truncated at 0.95. For cesarean section, PSs were
bounded away from 0 and 1 and thus the weights were not large
in either exposure group. The other methods do not use these
weights and thus are not subject to this issue.

Third, the selection of caliper is important for PS matching.
For breastfeeding, the point estimate remained the same when
the caliper decreased from 0.05 to 0.01, but the 95% CI width
decreased by 19% (from 0.74 to 0.60). We do not recommend
drawing conclusions based on an arbitrary criterion of whether
the 95% CI includes or excludes the null value. However, it is
worth noting that if such an arbitrary criterion was used,
different inference would have been obtained depending on
which caliper was used.

Fourth, the doubly robust method in theory should result in
estimates similar to either the covariate-adjusted regression or

inverse probability weighting. In this example, however, the
finite-sample performance of this method in the breastfeeding
example is inconsistent with its large sample, theoretical property.
Thus, the corresponding results should not be used to derive
inference in this case. The failure of the doubly robust method
here could be due to the small sample size, particularly the small
number of formula-fed babies, and relatively poor overlap
between the two exposure groups.
The six methods considered in this paper all assume there is

no unmeasured confounding. The focus of this paper is on how
to appropriately adjust for measured covariates. If residual
confounding bias is a concern, there exist multiple sensitivity
analyses methods38–42 that extend these confounding adjust-
ment methods to assess how the results may vary as the amount
of residual confounding bias exists. This is beyond the scope of
this paper.
In summary, we compared several of the many existing

confounding adjustment methods. For cesarean section, both
the point and interval estimates were remarkably robust to
method selection and implementation. This finding brings
reassurance but does not guarantee the accuracy or precision of
the estimated mean difference. The results for breastfeeding
were less similar across analyses. However, apart from doubly
robust estimation, all other analyses yielded qualitatively similar
results.
We recommend assessing covariate overlap and limiting

covariates to the region of common support no matter which
confounding adjustment method is used. In addition, we
recommend conducting analyses with multiple methods and
varying implementation factors to help identify potential
issues. One particular method can be pre-specified as the
primary analysis and others viewed as sensitivity analyses.
Consistency or inconsistency among the results should be
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Fig. 4. Delivery mode (cesarean section v. vaginal delivery): difference in 3-year body mass index (BMI) z-score. The last column indicates the
ratio of each CI width divided by the CI width from the covariate-adjusted regression with published covariates approach.
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assessed by point and interval estimates, not by whether P-
values were above or below the 0.05 cut-off. More work is
needed to guide implementation of each method, including
how to select the common support; whether and how to
truncate PS weights; and how to select the PS matching caliper.
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