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We use the probabilistic method to obtain versions of the colourful Carathéodory theorem and
Tverberg’s theorem with tolerance.

In particular, we give bounds for the smallest integer N = N(t,d,r) such that for any N points in
R

d , there is a partition of them into r parts for which the following condition holds: after removing
any t points from the set, the convex hulls of what is left in each part intersect.

We prove a bound N = rt + O(
√

t) for fixed r,d which is polynomial in each parameters. Our
bounds extend to colourful versions of Tverberg’s theorem, as well as Reay-type variations of this
theorem.
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1. Introduction

The colourful Carathéodory theorem and Tverberg’s theorem are two gems of combinatorial
geometry. They describe properties of sets of points in R

d , each with a vast number of extensions
and generalizations (for an introduction, see [25]). The purpose of this paper is to show how
an application of the probabilistic method yields robust versions of both results; that is, the
conclusions hold even if a small set of points is removed.

There are many applications of the probabilistic method in discrete geometry. Among some
notable examples are the crossing number theorem [1, 35], the cutting lemma [13, 14] and the
existence of epsilon-nets for families of sets with bounded VC-dimension [20]. Further examples
and an introduction to the general method can be found in [2, 25].

Let us begin with the colourful Carathéodory theorem, due to Bárány [5]. If we let conv(X)
denote the convex hull of a set X ⊂ R

d , it says the following.

Theorem 1.1 (Bárány 1982). Let F1, . . . ,Fd+1 be d +1 families of points in R
d, considered as

colour classes. If 0 ∈ conv(Fi) for each i, there is a colourful choice x1 ∈ F1, . . . ,xd+1 ∈ Fd+1 such
that 0 ∈ conv{x1,x2, . . . ,xd+1}.
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Given a set X ⊂ R
d and a point p, we say X captures p if p ∈ conv(X). We are interested

in versions of the colourful Carathéodory theorem above where the number of colour classes is
allowed to increase. There are two natural variations of this kind, which we discuss in Section 2.
Our main result is Lemma 2.2, which shows the existence of a colourful choice which captures
the origin even if any small subset of points is removed.

Among the numerous consequences of the colourful Carathéodory theorem, there is a strik-
ingly short proof of Tverberg’s theorem by Sarkaria [32], later simplified by Bárány and Onn [9].
For a survey regarding Sarkaria’s transformation, consult [6].

Theorem 1.2 (Tverberg 1966 [37]). Given positive integers d,r and N = (d + 1)(r− 1)+ 1
points in R

d, there is a partition of them into r parts A1, . . . ,Ar such that

r⋂
j=1

conv(Aj) �= /0.

One of the generalizations of this result, also known as Tverberg with tolerance, consists in
finding partitions where the convex hulls of the parts intersect even after any t points are removed.
Stated precisely, it says the following.

Problem 1.3 (Tverberg partitions with tolerance). Given positive integers t,d,r, find the
smallest positive integer N(t,d,r) such that for any set of N(t,d,r) points in R

d, there is a
partition of them into r parts A1,A2, . . . ,Ar such that for any set C of at most t points

r⋂
j=1

conv(Aj \C) �= /0.

We refer to the parameter t as the tolerance of the partition. The first bound for such partitions
was given by Larman [23], showing that N(1,d,2) � 2d + 3. Larman’s result is known to be
optimal up to dimension four [16]. This was later improved by Garcı́a-Colı́n to N(t,d,2) �
(t +1)(d +1)+1 [17, 18]. She also showed that N(t,d,r) � (t +1)(d +1)(r−1)+ t +1 for any
triple (t,d,r). Garcı́a-Colı́n conjectured a bound on N extending her result, which was proved by
Soberón and Strausz [34]: N(t,d,r) � (t +1)(d +1)(r−1)+1.

The Soberón–Strausz bound is known not to be optimal, as shown by Mulzer and Stein for
d = 1 and in some instances for d = 2 [28]. Recently, this was vastly improved by Garcı́a-Colı́n,
Raggi and Roldán-Pensado [19], who showed that for fixed r,d we have N(t,d,r) = rt + o(t).
This settles the asymptotic behaviour of N(t,d,r) for large t, as the leading term matches the one
for the lower bound N(t,d,r) � rt + rd/2, first given in [33].

However, the o(t) term hides a twrd(O(r2d2)) factor, where the tower functions twri(α) are
defined by twr1(α) = α and twri+1(α) = 2twri(α). The tower function is unavoidable with the
method they use, as it relies on geometric Ramsey-type results. Our main result is a new upper
bound for N(t,d,r). In our bound, the leading term is also rt for large t, and the bound is
polynomial in r, t,d.
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Theorem 1.4. For positive integers t,d,r, let N(t,d,r) be the optimal number for Tverberg’s
theorem with tolerance. Then, we have

N(t,d,r) = rt + Õ(r2
√

td + r3d),

where the Õ notation hides only polylogarithmic factors in t, d and r.

We should stress that the bound by Garcı́a-Colı́n, Raggi and Roldán-Pensado is quite surpris-
ing by itself. If we are given less than rt points, a trivial application of the pigeonhole principle
shows that any partition of them into r parts has one with at most t points. The removal of these
points shows that the tolerance of any Tverberg partition is at most t −1.

In other words, with a large number of points the effect of the dimension on the combinatorics
behind Tverberg’s theorem with tolerance fades away. Our result reinforces this counterintuitive
claim by showing that, furthermore, one does not need to worry too much about the construc-
tion of the partition; a random one should suffice. For other results in discrete geometry with
tolerance, see [27].

Theorem 1.4 improves all previously known bounds when t is large. If r > d, it can be further
improved to N(t,d,r) = rt + Õ(rd

√
rt + r2d2) (see Theorem 5.1), but both bounds remain rt +

Õ(
√

t) for fixed r,d with the same degree for the polynomial hidden by the Õ notation. The
methods we use can be applied to yield versions with tolerance of several variations of Tverberg’s
theorem. We exhibit this for two classic variations of Tverberg’s theorem. The first is the coloured
Tverberg theorem with tolerance, where the set of points and the desired partitions we want
to obtain are given additional combinatorial conditions. Our main result in this setting is the
following theorem.

Theorem 1.5. Let r, t,d be positive integers with r � 3. Suppose we are given (1.6)t +Õ(r
√

td+
r2d) families of r points each in R

d, considered as colour classes. Then there is a partition of
them into r sets A1, . . . ,Ar, each with exactly one point of each colour, such that even if any t
colour classes are removed, the convex hulls of what is left in each Ai intersect. If r = 2, the same
result holds with 2t + Õ(

√
td +d) families. The Õ notation only hides polylogarithmic factors in

r, t,d.

The result above with a precise constant on the leading term is presented in Theorem 4.2.
The second variation we present is related to Reay’s conjecture. Reay’s conjecture is a relaxa-

tion of Tverberg’s theorem. The aim is, given a set of points in R
d , to find a partition of them into

r parts where the convex hulls of any k parts intersect. We call such partitions a Reay partition.
Tverberg partitions are those for which k = r. It is an open question whether fewer points than
those for Tverberg’s theorem are needed to guarantee such a partition if k < r. For the best bounds
for this problem, see [29, 4].

In Section 5 we show bounds for the number of points that guarantee the existence for Reay
partitions with tolerance. These bounds are smaller than those of Theorem 1.4. This is the first
instance of a Reay-type result where the existence bounds are smaller than its Tverberg counter-
part, albeit neither is known to be optimal. We prove our Tverberg-type results in Sections 3, 4
and 5.
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We conclude by presenting remarks, open problems and algorithmic consequences of our
results in Section 6.

2. Robust Carathéodory results

The goal of this section is to extend the colourful Carathéodory theorem if we are given N colour
classes instead of d + 1. We may try a direct approach and ask, given N colour classes, what
conclusions can be reached if every colour captures the origin. Another option is, given N colour
classes, to extend the contrapositive of the theorem and ask what happens if no colourful choice
captures the origin.

For the latter case, a strengthening of the colourful Carathéodory theorem implies that, given
d + 1 colour classes in R

d such that no colourful choice captures the origin, there are two
colours Fi,Fj whose union does not capture the origin (i.e. 0 �∈ conv(Fi ∪Fj)). This was proved
independently in [3] and [22].

Theorem 2.1. Let N,d be positive integers with N � d +1 and let F1, . . . ,FN be sets of points in
R

d, considered as colour classes. If no colourful choice captures the origin, there are N −d +1
colours whose union does not capture the origin.

Even though the result above does not follow from the colourful Carathéodory theorem, it can
be proved with exactly the same arguments as in [3], as noted by Imre Bárány [7]. Later it was
pointed out to the author that the Theorem 2.1 also follows from the main result of [21], which
extends the colourful Carathéodory theorem to matroids. Below we include the proof following
the arguments of [3].

Proof of Theorem 2.1. We may assume without loss of generality that the set of points
⋃

i Fi

is in sufficiently general position; that is, there is no affine hyperplane spanned by d of the points
that contains the origin. Among all colourful choices X , there must be one, X0, which minimizes
dist(conv(X0),0). Let p be the closest point of conv(X0) to the origin. As X0 does not capture
the origin, p must be in a (d − 1)-face of X0. In other words, there must be at most d points of
different colours x1, . . . ,xd whose convex hull contains p.

Let H be the hyperplane orthogonal to the vector p−0, which passes through p. Let H+ be the
closed half-space of H that does not contain the origin. Note that x1, . . . ,xd ∈H+. The minimality
of dist(conv(X0),0) implies that the N −d colours not containing x1, . . . ,xd are contained in H+.
If one of these remaining d colours is also contained in H+, we would have N − d + 1 colours
separated from the origin, as desired.

Let us assume that this does not happen, and look for a contradiction. Thus, we can find
u1, . . . ,ud ∈ R

d \H+ such that ui is of the same colour as xi. Let �1 be a ray starting from the
origin in the direction of p. Let y be a point of some colour which is not represented among the
xi. We consider �2 a ray starting from the origin in the direction of −y. Notice that �2 is contained
in R

d \H+ since y ∈ H+.
The colourful facets spanned by {x1, . . . ,xd ,u1, . . . ,ud} = V are the linear image of a (d −1)-

dimensional octahedron onto R
d , which in turn is a continuous image of the sphere Sd−1. This

implies that these colourful facets must intersect the topological line �1 ∪ �2 in an even number
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of points. The fact that �1 ∪ �2 does not intersect the facets in subfaces follows from the general
position assumption.

As p is one point of intersection, let us see where the other points can be. In H+ we can have
only p, by the construction of V . In the segment [0, p) we can have no point of intersection, or we
would contradict the minimality of dist(conv(X0),0). In �2 we can have no point of intersection,
as the colourful d-tuple sustaining that point would capture the origin once y is included. This
leads to the desired contradiction.

Now assume we are given N colour classes and each captures the origin. We would like to
obtain a colourful choice which does more than simply capturing the origin. For this, we use the
notion of depth.

Given a finite set X ⊂ R
d and a point p ∈ R

d , we define

depth(X , p) = min{|H ∩X | : p ∈ H, H is a closed half-space}.

This is commonly known as Tukey depth or half-space depth [24, 36]. A direct application of
the colourful Carathéodory theorem shows that given N colour classes in R

d , each capturing the
origin, there is a colourful selection X such that depth(X ,0) � 	N/(d +1)
, which is optimal.
However, in many applications of the colourful Carathéodory theorem the colour classes have
few points compared to the dimension. For this situation we obtain the following result.

Lemma 2.2. Let r,N be positive integers and let F1,F2, . . . ,FN be N families of r points each
in R

d, considered as colour classes. If 0 ∈ conv(Fi) for each i, we can make a colourful choice
x1 ∈ F1, . . . ,xN ∈ FN such that for the set X = {x1, . . . ,xN} we have

depth(X ,0) � N
r
−

√
dN ln(Nr)

2
.

For the proof of Lemma 2.2 we need the following lemma, mentioned in [15], for example.

Lemma 2.3. Let M,d be positive integers. Given a set Y of M points in R
d and a point c ∈ R

d,
there is a family of Md closed half-spaces containing c such that, for any subset Z ⊂ Y , if each
of the half-spaces contains at least t points of Z, then we have depth(Z,c) � t, for any t.

Proof. We may assume that the affine span of Y ∪{c} is R
d . Otherwise, there is a hyperplane

containing Y ∪{c} and we can apply this lemma for a lower dimension. To check the depth(Z,c),
it suffices to check half-spaces whose defining hyperplane goes through c. Given a closed half-
space H+ such that c ∈ H, consider the set M = H+ ∩Y . If we show that there are at most Md

possible subsets M we can get in this way, then the lemma would be proved.
Notice that we may move H continuously without losing c until it contains d − 1 points

y1, . . . ,yd ∈ Y such that c,y1, . . . ,yd−1 are affinely independent and without changing the set M
with the only possible exception of gaining a subset of y1, . . . ,yd−1. Therefore, there are at most
2 ·2d−1 ·

( M
d−1

)
possibilities for M. Here

( M
d−1

)
comes from counting the possible (d −1)-tuples

of Y generating H after tilting; the 2d−1 is the possible number of subsets of y1, . . . ,yd−1 that
could be in M, and the first factor 2 comes from the two possible half-spaces we can consider
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once we have H in its final position. This number is bounded above by Md except for the case
M = 3,d = 2, which can be checked by hand.

The proof of Lemma 2.2 uses the probabilistic method, by making the colourful choice at
random.

Proof of Lemma 2.2. Let λ >
√

dN ln(Nr)/2. For each Fi we are going to choose xi randomly
and uniformly from its r points in order to form our set X .

Given a closed half-space H such that 0 ∈ H, since 0 ∈ conv(Fi), we have that

P(xi ∈ H) � 1
r
.

Thus,

E(|X ∩H|) � N
r

.

Moreover, |X ∩H| = ∑N
i=1 χ(xi ∈ H). This is a sum of independent indicators each of whose

probability of success is at least 1/r. In particular, Hoeffding’s inequality implies that

P

(
|X ∩H| � N

r
−λ

)
� P(|X ∩H| � E(|X ∩H|)−λ ) � exp

(
−2λ 2

N

)
.

We can let XH denote the random variable which is the indicator of the event |X ∩H| � N/r−λ .
Let H be the family of at most (Nr)d half-spaces from Lemma 2.3 with Y = ∪iFi and c = 0.

We have that

E

(
∑

H∈H
XH

)
= ∑

H∈H
E(XH) � ∑

H∈H
exp

(
−2λ 2

N

)
� exp(d ln(Nr))exp

(
−2λ 2

N

)
< 1,

where the last inequality follows from the choice of λ . Thus, there must be an instance of X
where ∑H∈H XH = 0. By the choice of H, we have that depth(X ,0) � N/r−λ , as desired.

One curious aspect of the colourful Carathéodory theorem is the case r = 2. In this instance,
the colour classes are simply the endpoints of d +1 segments each containing the origin. To show
the existence of a colourful choice as the theorem indicates, it suffices to use a non-trivial linear
dependence of the d +1 directions of the segments. The signs of the coefficients indicate which
endpoint should be taken for each segment. Likewise, Lemma 2.2 has a similar version when
r = 2.

Corollary 2.4. Let N,d be positive integers and

t =
⌈

N
2
−

√
dN ln(2N)

2

⌉
−1.

Given a set S of N vectors in R
d, there is an assignment Γ of signs (+) or (−) to the element of

S such that, if any t vectors are removed from S, the remaining vectors have a non-trivial linear
dependence where the signs of all non-zero coefficients agree with Γ.
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3. Robust Tverberg results

Let us restate Theorem 1.4 in the form which we aim to prove. In order to show that the version
below implies the one in the Introduction, it suffices to write N = rt + p, and notice that with
p = Õ(r2

√
td +dr3), the tolerance provided by the result below is at least t.

Theorem 3.1. Let r,N,d be positive integers and

t =
⌈

N
r
−

√
(d +1)(r−1)N ln(Nr)

2

⌉
−1.

Suppose we are given a set X of N points in R
d. Then there is a partition of X into r parts

A1,A2, . . . ,Ar such that for any set C of at most t points, we have

r⋂
j=1

conv(Aj \C) �= /0.

Since Tverberg’s theorem can be deduced using the colourful Carathéodory theorem, it should
come as no surprise that variations of the latter often translate to variations of both. The result
above is the consequence of applying Lemma 2.2.

Proof. Let S be a set of N points in R
d , S = {a1, . . . ,aN}. Let u1,u2, . . . ,ur be the vertices of a

regular simplex in R
r−1 centred at the origin. Notice that any linear combination β1u1 + · · ·+βrur

gives the zero vector if and only if β1 = · · · = βr.
We construct the points bi = (ai,1) ∈ R

d+1, and for each i consider the family

Fi = {bi ⊗u j : 1 � j � r} ⊂ R
(d+1)(r−1),

where ⊗ denotes the standard tensor product. Notice that the barycentre of each Fi is the origin
in R

(d+1)(r−1). Thus, we may apply Lemma 2.2 and obtain a colourful choice xi = bi ⊗ u ji
for

each i such that for the set X = {x1, . . . ,xN} we have depth(X ,0) � t +1. If we remove any set C
of at most t points, we still have depth(X \C,0) � 1. In other words, 0 ∈ conv(X \C).

Consider the sets I j = {i : ji = j} and Aj = {ui : i∈ I j}. The sets A1,A2, . . . ,Ar form the partition
of S induced by X . Given any set C ⊂ {1, . . . ,N} = [N] of at most t indices, we know that there
are coefficients {αi : i ∈ [N]\C} of a convex combination such that

∑
i∈[N]\C

αibi ⊗u ji
= 0.

If we factor each u j, we get(
∑

i∈I1\C

αibi

)
⊗u1 +

(
∑

i∈I2\C

αibi

)
⊗u2 + · · ·+

(
∑

i∈Ir\C

αibi

)
⊗ur = 0.

The choice of u1, . . . ,ur implies that

∑
i∈I1\C

αibi = · · · = ∑
i∈Ir\C

αibi.
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Using the fact that the last coordinate of each bi is equal to 1, by a simple scaling we can assume
that ∑i∈I j\C αi = 1 for each j. If we look at the first d coordinates, we have

∑
i∈I1\C

αiai = · · · = ∑
i∈Ir\C

αiai,

where each expression is a convex combination. If we define C′ = {ui : i ∈ C}, the convex
combinations above translate to

r⋂
j=1

conv(Aj \C′) �= /0,

as desired.

4. Coloured Tverberg with tolerance

One of the most important open problems around Tverberg’s theorem is a long-standing conjec-
ture by Bárány and Larman, also known as the coloured Tverberg theorem [8].

Conjecture 4.1. Let r,d be positive integers. Suppose F1, . . . ,Fd+1 are families of r points each
in R

d, considered as colour classes. Then there is a partition of them into r sets A1,A2, . . . ,Ar

such that each part has exactly one point of each colour and
r⋂

j=1

conv(Aj) �= /0.

This conjecture has only been verified for d = 2 by Bárány and Larman [8], whose paper
also included a proof for the case r = 2 by Lovász, and when r + 1 is prime [11, 12]. One
relaxation which gives a positive result is if we are given (r− 1)d + 1 colour classes instead of
d +1 [33], where we can impose further conditions on the coefficients of the intersecting convex
combinations. Another is if we allow each colour class to have 2r− 1 points instead of r [10],
although in this case the sets Ai do not form a partition.

Given a family of sets Fj of r points, each considered colour classes, we will say that a partition
of their union into r sets A1, . . . ,Ar is a colourful partition if each Ai has exactly one point of each
Fj. We show a version of Tverberg’s theorem with tolerance which holds for coloured classes.

Theorem 4.2. Let r, t,d be positive integers. There is a constant cr that depends only on r such
that the following hold. Given crt + Õ(r

√
td + rd) colour classes of r points each in R

d, there
is a colourful partition of them into r sets A1, . . . ,Ar such that, even if we remove any t colour
classes, the convex hulls of what is left in each Ai still intersect. The Õ(·) notation only hides
polylogarithmic factors in r, t,d. Moreover, cr → e/(e−1) ∼ 1.581 . . . as r → ∞.

It should be noted that the adaptation of Sarkaria’s methods described in [33] in combin-
ation with Theorem 1.4 gives a coloured version similar to the one above. This would have
much stronger conditions on the coefficients of the convex combinations that give the point of
intersection, but would require rt + o(t) colour classes instead of crt + o(t). The value cr also
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satisfies the bounds c2 � 2 and cr � 1.6 for r � 3. To prove Theorem 4.2, we need the following
lemma.

Lemma 4.3. Let r be a positive integer and consider [r] = {1,2, . . . ,r}. Suppose that we are
given r forbidden values v1,v2, . . . ,vr not necessarily distinct in [r]. The probability that a random
permutation σ satisfies σ(i) �= vi for all i is maximized when all the vi are different.

Proof. Let Sr be the set of all permutations σ : [r] → [r]. For each permutation σ ∈ Sr, let n(σ)
be the number of indices i such that σ(i) = vi. If the forbidden values are not all different, we can
assume without loss of generality that v1 = v2. Thus, there is at least one number τ ∈ [r] which is
not forbidden. Consider a new list of forbidden values (τ,v2, . . . ,vr), and let m(σ) be the number
of indices i such that σ(i) is the ith element of the new list. Let F : Sr → Sr be the bijection such
that F(σ) = σ if σ(1) �= v1 and σ(1) �= τ , and F switches the values of σ−1(v1) and σ−1(τ)
otherwise. If n(σ) = 0, then m(F(σ)) = 0, but there may be permutations with n(σ) �= 0 and
m(F(σ)) = 0. Thus, if we repeat this process until every pair of forbidden values is different, the
number of permutations σ with n(σ) = 0 only increases, as desired.

It is known that the probability p(r) that a random permutation of [r] has at least one fixed
point tends to 1−1/e as r → ∞. Thus, the lemma above implies that, given at least one forbidden
value for each element in [r], the probability that a random permutation of [r] hits at least one of
them is at least p(r).

We say that a family of r sets F1, . . . ,Fr in R
d is a coloured r-block if

• each Fi has r points,
• each Fi captures the origin, and
• all points in the r-block are coloured with one of r possible colours in such a way that each

Fi has exactly one point of each colour.

Given a coloured r-block, we say that a subset of its points is a colourful choice if it has exactly
one point of each colour and exactly one point of each Fi. Given a family of coloured r-blocks,
we say a subset of their union is a colourful choice if its restriction to each r-block is also a
colourful choice.

Corollary 4.4. Let r,d be positive integers. Suppose that we are given a coloured r-block in
R

d and a closed half-space H containing the origin. If we pick a random colourful choice, the
probability that we have at least one point in H is at least p(r).

Proof. Let F1, . . . ,Fr be the sets in the block. It suffices to notice that each colourful choice
corresponds to a permutation σ : [r]→ [r] so that σ(i) = j if and only if the point chosen from Fi

is of colour j. Then, if we forbid all points in H (at least one forbidden point from each Fi), we
have reduced the problem to the lemma above.

Theorem 4.5. Let r,N,d be positive integers. Suppose we are given N coloured r-blocks in
R

d, all using the same r colours. Then there is a colourful choice M such that each half-space
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containing the origin contains points of at least t different r-blocks, as long as

t � p(r)N −
√

dN ln(Nr2)
2

.

Proof. Let λ >
√

dN ln(Nr2)/2 and let H be a closed half-space containing the origin. For
each coloured r-block B we choose independently at random a coloured choice XB; their union
is a random coloured choice X for the whole family. Let xB = χ(XB ∩H �= /0). Then

• E(xB) � p(r),
• ∑B xB is the number of coloured r-blocks whose colourful choice has at least one point in H,

so E(∑B xB) � p(r)N,
• for B �= B′, xB and xB′ are independent.

Thus, after applying Hoeffding’s inequality we get

P

(
∑
B

xB � p(r)N −λ
)

� exp

(
−2λ 2

N

)
.

Notice that among all the coloured r-blocks we have Nr2 points. Thus, to find the depth of 0 from
a subset it is sufficient to check a family H of at most (Nr2)d half-spaces. If we call a half-space
H bad if less than p(r)N − λ of the r-blocks have a point in it, the probability that there is at
least one bad half-space is at most

∑
H∈H

exp

(
−2λ 2

N

)
= (Nr2)d exp

(
−2λ 2

N

)
= exp

(
d ln(Nr2)− 2λ 2

N

)
< 1.

Thus, there is at least one colourful choice with no bad hyperplanes.

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We will show that given N colour classes of r points each in R
d , we

can find a colourful partition of them into r sets A1, . . . ,Ar so that, even if we remove any r colour
classes, the convex hulls of what is left in each Ai still intersect as long as

t � p(r)N −
√

(d +1)(r−1)N ln(Nr2)
2

−1.

This implies the result in the theorem with cr = 1/(p(r)).
Let n = (r− 1)(d + 1). If we apply the Sarkaria transformation to the original set of points,

notice that each colour class of r points is represented by r2 points in R
n. Moreover, we can

introduce r colours in R
n and colour points of the form (x,1)⊗ui with colour i. This turns the r2

points in R
n into a coloured r-block. Notice also that for a colour class in R

d , assigning each of
its points to a different Ai corresponds to a colourful choice in its corresponding coloured r-block
in R

n. Thus, we can use Theorem 4.5 to finish the proof.

5. Reay partitions with tolerance

Let R∗ = R∗(d,r,k) be the smallest integer such that among any R∗ points in R
d , there is a partition

of them into r parts such that the convex hulls of any k parts intersect. We call such partitions Reay
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partitions. Tverberg’s theorem asserts that R∗(d,r,r) = (d +1)(r−1)+1. However, there are no
cases known for which R∗(d,r,k) < R∗(d,r,r). In 1979 [30] Reay conjectured that R∗(d,r,k) =
(d + 1)(r− 1)+ 1 for any r � k � 2. Reay’s conjecture remains open. There have been several
advances improving lower bounds for R∗ [4, 29].

It is natural to extend Reay partitions to the setting with tolerance. We define the integer
R = R(t,d,r,k) as the smallest R such that among any R points in R

d , there is a partition P of
them into r parts with the following property. For any set C of at most t points and any k-tuple K
of parts of P , even if the points of C are removed, the convex hulls of what is left in each part of
K intersect.

Theorem 5.1. For any positive integers t,d,r,k with r � k, we have that

R(t,d,r,k) = rt + Õ(r
√

dkrt + r2dk).

Moreover, an application of Helly’s theorem shows that N(t,d,r) = R(t,d,r,d + 1), so the
bounds above improve Theorem 1.4 if r is large.

Proof. Suppose we are given M points in R
d . We can colour them randomly and independently

with one of r colours. Let us bound the probability that a given k-tuple of colours can be separated
if we remove t points. In other words, we want to bound from above the probability that there is
a set of at most t points such that after removing them, the convex hulls of what is left in each
part of the k-tuple do not intersect.

We apply Sarkaria’s trick, but use only k vectors u1, . . . ,uk in R
k−1 instead of r vectors in R

r−1.
Every point ai ∈ R

d is represented by the set Fi made by the k points of the form (ai,1)⊗u j for
1 � j � k. If our chosen k-tuples consist of the first k colours, then assigning a colour to ai

corresponds to possibly choosing an element of Fi as follows:

• if ai is coloured with colour j and j � k, then we choose (ai,1)⊗u j,
• if ai is coloured with some colour j � k +1, we do not make a choice from Fi.

This turns our partition in R
d into a colourful choice X in R

(k−1)(d+1), where some classes Fi may
not have an element selected.

The tolerance with which the convex hulls of our k-tuple intersect is equal to depth(X ,0)−1.
With a computation similar to those for the proof of Theorem 1.1, we get that for any λ > 0

P

(
depth(X ,0) <

M
r
−λ

)
� exp

(
(d +1)(k−1) ln(Mr)− 2λ 2

M

)
.

So the probability that there is a k-tuple with tolerance smaller than M/r−λ −1 is at most(
r
k

)
exp

(
(d +1)(k−1) ln(Mr)− 2λ 2

M

)
.

Thus, by choosing

λ >

√
1
2

[
(d +1)(k−1) ln(Mr)+ ln

(
r
k

)]
,
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we know there is an instance where this does not happen. If we check how large M must be to
guarantee that the given tolerance is at least t, we get the asymptotic bound of the theorem. One
should note that ln

(r
k

)
� k ln(r/k) = Õ(k), which reduces the number of terms we get in the final

expression.

We should stress that the lower bound mentioned in the Introduction, N(t,d,r) � rt + rd/2,
extends to Reay’s setting. This is because the construction has the property that for every partition
into r parts, there is a set of t points such that their removal makes one of the parts separable from
the rest of the set by a hyperplane. In other words,

N(t,d,r) = R(t,d,r,r) � R(t,d,r,k) � R(t,d,r,2) � rt +
rd
2

.

6. Remarks

It would be interesting to see if in Theorem 4.2 the constant cr ∼ 1.582 . . . could be replaced by
1, namely, determining if the following result holds.

Conjecture 6.1. Let r,d be fixed positive integers. There is an integer M = M(t,d,r) = t(1 +
o(1)) such that, given any M families of r points each in R

d, there is a colourful partition
A1, . . . ,Ar of them such that for any family C of at most t colours

r⋂
j=1

conv(Aj \C) �= /0.

This may seem counterintuitive at first sight, as we are removing almost all the points. One of
the novel methods to obtain colourful Tverberg results is the ‘constraints’ method by Blagojević,
Frick and Ziegler [10]. It is tempting to use Theorem 1.4 with the constraints method to tackle the
conjecture above. However, since the tolerance given by Theorem 1.4 is at most a (1/r)-fraction
of the total number of points, Conjecture 6.1 seems out of reach.

Theorem 1.4 does not improve the previous bounds for N(t,d,r) for low values of t. It is still
possible that Larman’s result is optimal.

Problem 6.2 (Larman [23]). Let d be a positive integer. Determine if there is a set S of 2d +2
points in R

d with the property that, for any partition A,B of S, there is a point x ∈ S such that

conv(A\{x})∩ conv(B\{x}) = /0.

Finally, the topological versions of Tverberg’s theorem with tolerance remain open, even in
the cases where r is a prime number or a prime power.

Problem 6.3. Let r, t,d be positive integers. Given an integer n, let Δn denote the n-dimensional
simplex, with n + 1 vertices. Find the smallest integer N∗ = N∗(t,d,r) such that the following
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holds. Given any continuous map f : ΔN∗ → R
d, there is a partition of the vertices of ΔN∗

into r
sets A1, . . . ,Ar such that, for any set C of at most t vertices,

r⋂
j=1

f ([Aj \C]) �= /0,

where [X ] denotes the face spanned by X, for any set of vertices X.

So far, not even the Soberón–Strausz bound N∗ � (t + 1)(r − 1)(d + 1) is known to hold.
The only bound at the moment is N∗ � (t + 1)(r−1)(d + 1)+ t, when r is a prime power. This
follows from taking t + 1 topological Tverberg partitions, as removing t vertices leaves one of
the partitions unaffected.

If one is interested in non-deterministic algorithms that yield Tverberg theorems with toler-
ance, the proof of our results can be extended to the following.

Theorem 6.4. Let N, t,d,r be positive integers and let ε > 0 be a real number. Given N points
in R

d, a random partition of them into r parts is a Tverberg partition with tolerance t with
probability at least 1− ε , as long as

t +1 � N
r
−

√
1
2

[
(d +1)(r−1)N ln(Nr)+N ln

(
1
ε

)]
.

The advantage of the result above is that generating the partition is trivial, taking time N. The
problem of finding Tverberg partitions, in both its deterministic and non-deterministic versions,
is interesting. See, for instance, [15, 26, 28, 31].

References
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