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We are in the midst of a transformation in the way that biodiversity is observed on the planet. The
approach of direct human observation, combining efforts of both professional and citizen scientists,
has recently generated unprecedented amounts of data on species distributions and populations.
Within just a few years, however, we believe that these data will be swamped by indirect biodiversity
observations that are generated by autonomous sensors andmachine learning classificationmodels.
In this commentary, we discuss three important elements of this shift towards indirect, technology-
driven observations. First, we note that the biodiversity data sets available today cover a very small
fraction of all places and times that could potentially be observed, which suggests the necessity of
developing new approaches that can gather such data at even larger scales, with lower costs. Second,
we highlight existing tools and efforts that are already available today to demonstrate the promise of
automatedmethods to radically increase biodiversity data collection. Finally, we discuss one specific
outstanding challenge in automated biodiversity survey methods, which is how to extract useful
knowledge from observations that are uncertain in nature. Throughout, we focus on one particular
type of biodiversity data – point occurrence records – that are frequently produced by citizen
science projects, museum records and systematic biodiversity surveys. As indirect observation
methods increase the spatiotemporal scope of these point occurrence records, ecologists and
conservation biologists will be better able to predict shifting species distributions, track changes
to populations over time and understand the drivers of biodiversity occurrence.

The Necessity: We Have Fewer Data than We Think

With few exceptions, global point occurrence records have historically been generated by direct obser-
vation, where a human in the field records a personal, verified observation of an individual organism
or its sign. The Global Biodiversity Information Facility (GBIF) database (GBIF 2019) is one major
effort to collate such records from a variety of sources. As of the time of writing, this database has
passed 1 billion occurrence records, the vastmajority ofwhich are sourced fromcitizen science efforts.

We would note, however, that these data are not as big as they are often perceived to be. For
example, there were c. 92 million occurrence records added to the GBIF database for the year
2016. Presume, very generously, that none of these observations are overlapping in space.
Assume further that each observation represents a human observing the organism in a
100-m2 area (e.g., a 10-m × 10-m box) for c. 15 minutes, a period during which the observer
was present. Together, these 92 million observations would cover an effective area of 9200 km2

(Fig. 1(a)), which represents c. 0.002% of the Earth’s surface and 0.00000006% of the combined
areas and times at which the planet could be observed. Each of those observations, of course, also
describes only one of the perhaps hundreds or thousands of species that were in that area at the
time of observation.

In our experience, many ecologists are surprised at the limited scope of this coverage. We
suspect that this surprise is driven by our collective habit of making the markers on maps of
these observations much larger than the actual area covered by the observation (Fig. 1(b)).

Even limited data, of course, can be used as the basis formodels that predict species presence or
population sizes in unsampled areas. Such modelling would ideally be based on unbiased, repre-
sentative observations drawn from all possible areas and times of observation. There is evidence,
however, that existing point occurrence data are not representative of habitats in this manner (see
Supplementary Table S1, available online). Additionally, there aremany conservation applications
that are better served by actual species observations, not modelled predictions. Our experience is
that this desire for ‘hard data’ is most common in situations involving management and policy
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decisions, which often involve significant costs, and for questions
involving relatively fine spatial scales, below the resolution at which
many spatial models are believed to apply.

The Promise: An Explosion in Biodiversity Observations,
Starting Today

Indirect, technology-mediated observation approaches, such as cam-
era traps (Steenweg et al. 2017, Buxton et al. 2018), acoustic recorders
(Towsey et al. 2014, Sugai et al. 2018) and satellite imagery (Marconi
et al. 2019), are rapidly becoming familiar to ecologists and conser-
vation biologists. When combined with machine learning classifica-
tion methods that can identify species in the images and recordings
captured by these devices, these tools can produce the same type of
point occurrence records that are generated by human observers.

The first enabler of indirect observation is inexpensive hard-
ware. For example, there have been several efforts to develop
extremely low-cost versions of acoustic field recorders, including

the recently released AudioMoth (Hill et al. 2018), which can be
produced for less than US$50 (Fig. 2(a)). These devices can record
audible frequencies for c. 150–200 hours in the field and, in our
experience, produce results comparable to widely used commercial
field recorders that cost US$850 or more. Interestingly, we note
that no similarly inexpensive automated camera trap equipment
has yet been widely adopted.

The potential scale of indirect data collection enabled by this
inexpensive hardware dwarfs current direct observational methods.
For example, in 2017, the North American Breeding Bird Survey
(BBS) (USGS 2017), one of the largest systematic avian biodiversity
surveys in the world, surveyed 2646 road transects in the USA, each
with 50 stops and a 3-minute point count at each stop. This repre-
sented a total of c. 6600 hours of sampling effort. A set of 50
AudioMoth field recorders, purchased for less than US$2500, can
equal this sampling effort with a single field deployment. While
we are not suggesting that the temporal replication provided by such
recorders can replace the extensive spatial replication of the BBS, we

Fig. 1. (a) The centre dot covers an area of 9200 km2, approximately the estimated total area of the planet covered by Global Biodiversity Information Facility (GBIF) observations
in 2016. (b) Top panel: 10 000 point occurrence records for the continental United States, drawn from the GBIF database in 2016. Points are denoted bymarkers of a size commonly
used in data visualization. These markers cover c. 16% of the continental United States. Bottom panel: Map showing 2.5 arc minute grid cells, with black cells containing an eBird
observation in 2016; 28% of cells in the continental United States are coloured black.

Fig. 2. (a) Photograph of an AudioMoth, an inexpensive acoustic recording device. (b) Screenshot of the iNaturalist iOS app, demonstrating automated species classification from
a photograph.
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highlight that even small numbers of recorders can generate far
more biodiversity observations than researchers are accustomed
to using when making inference about biodiversity patterns.

The second enabler of these large-scale surveys is software,
specifically pre-trained machine learning models that can extract
species identities from sensor-recorded data. For many applica-
tions, such models already exist and are in general use. For exam-
ple, for acoustic recordings, at least three automated bat
classification software packages have been approved for Indiana
bat surveys by the US Fish and Wildlife Service (USFWS 2019).
Accurate automated bird classification from recordings has proven
to be a more difficult problem (LifeCLEF 2019, Stowell et al. 2019),
particularly in diverse communities, although accuracy may be
very high under some conditions (Priyadarshani et al. 2018).
The commercial ARBIMON platform (Corrada Bravo et al.
2017) provides a user-friendly, cloud-based system that allows
users to create such classification models. For photographs, the
iNaturalist app (iNaturalist 2019) and a recently released
Microsoft AI for Earth photograph classification service
(Microsoft 2019) provide models that identify the species present
in photographs (Fig. 2(b)). Methods specifically designed for auto-
mated photographs taken by camera traps are becoming available
as well (Norouzzadeh et al. 2018). As such models continue to shift
to the cloud, users will be able to process much larger volumes of
data than they could previously on their own computers.

The Challenge: Drawing Conclusions from Uncertain Data

Despite the promise of technology-mediated indirect biodiversity
observations, there are still several key challenges in gathering such
observations. These include the costs of deploying large numbers of
sensors, computational challenges surrounding the storage and
processing of ‘big data’ and issues of survey design for large arrays
of sensors. We wish to specifically highlight one subtler challenge,
however, which we believe is substantially hindering progress: the
need for better approaches for dealingwith uncertainty in these indi-
rect observations.

Machine learning classifiers often appear to be less accurate
than well-trained human observers (although we note that, in prac-
tice, not all observers generating biodiversity data may be ‘well
trained’). A potential advantage of automated classifiers over
human observers, however, is that these classifiers are often able
to provide quantitative estimates of the uncertainty in their iden-
tifications. Examples include non-binary predictions from a neural
net, probabilities from a random forest or confusion matrices from
model testing. In our experience, however, many ecologists and
conservationist biologists are unsure how to draw conclusions
from such uncertain data, particularly when uncertainties are high.
For example, what should we conclude about the distribution or
niche requirements of a species when, across 100 sampling points
with varying habitat conditions, a classifier returns probabilities
anywhere from 1% to 80% that a species was actually present?

A common approach is to choose a threshold (say, 50% or 75%)
in order to convert these probabilities into binary outcomes.
Probabilities below this threshold are either defined as an absence
or as insufficient data. We do not find this approach satisfactory, as
it effectively ignores or discards the information about the
classification accuracy that the model has provided. When such
uncertainty is ignored, our confidence about the drivers of a
species’ presence or absence will generally be too high. When data
are discarded due to low certainty, useful information about these
drivers is effectively being thrown away.

We suggest that the correct approach is to use classifiers and
statistical models that treat uncertainty more explicitly. First,
machine learning classifiers must be specifically designed to return
probabilistic, not binary, estimates of species occurrence in an image
or recording. Second, statisticalmodelsmust be designed to take this
probabilistic classifier output as input data, instead of themore usual
binary presence–absence data. The standard statistical models that
are widely used in ecology and conservation, including generalized
linear mixed models, generalized additive models and generalized
estimating equations (Zuur et al. 2009), are not designed for this type
of input. There are several paths forward, including extending these
existing frameworks using logic similar to weighted least squares or
developing Bayesian hierarchical models that allow input data that
are continuous probabilities rather than a binary observations.
Ultimately, however, such practices will only be widely adopted by
practitioners when accounting for classification uncertainty is no
more difficult than the equivalent analysis that ignores uncertainty.
Although new tools will need to be developed in order to make this
type of analysis accessible,many of the conceptual andmethodologi-
cal pieces needed to create those tools already exist.

Summary

We believe that the fields of ecology and conservation biology
are in the midst of a rapid and discipline-defining shift towards
technology-mediated, indirect biodiversity observation. It is useful
to remember that ecology and conservation biology are not the first
fields to go through such a transition. Urban planners who review
satellite imagery instead of walking city streets, astronomers who
analyse data from automated sky surveys instead of looking
through a telescope and sociologists who analyse online discus-
sions instead of conducting interviews have all confronted many
of the issues raised above and responded in part by opening up
fundamentally new directions in their disciplines.

Finally, for those who remain sceptical of the value of indirect
observations, it is also useful to remember that we can never predict
the advances in methods that may occur in the future. Unlike
humans in the field, automated sensors produce a permanent
visual or acoustic record of a given location and time that is far
richer than a simple note that ‘species X was here at time Y’.
Similar to museum specimens, these records will undoubtedly
be reanalysed by future generations of ecologists and conservation
biologists using better tools than we have available now in order to
extract information and answer questions that we cannot imagine
today. And these future researchers will undoubtedly thank us, as
we thank previous generations of naturalists, for having the fore-
sight to collect as many observations as possible of the rapidly
changing species and habitats on our planet.

Supplementary Material. For supplementary material accompanying this
paper, visit www.cambridge.org/core/journals/environmental-conservation
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