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Low- and mid-frequency wall-pressure sources in
a turbulent boundary layer
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Simultaneous wall-pressure and high-speed particle image velocimetry measurements
were used to identify the coherent structures that generate low- and mid-frequency
wall-pressure fluctuations in a turbulent boundary layer at a friction Reynolds number
of Reτ = 2600. The coherence function between wall pressure and velocity at a range
of wall-normal locations revealed two distinct frequency bands of high coherence that
span the low- and mid-frequency regions of the wall-pressure spectrum. Pressure was
filtered to isolate the frequencies associated with each region of high coherence, and
space–time pressure-velocity correlations were computed using the filtered signals to
expose the motions responsible for the observed pressure-velocity coupling. The resulting
correlation patterns were attributed to very-large-scale motions (VLSMs) and hairpin
packets, revealing that these two types of coherent motions are the dominant sources
of wall-pressure fluctuations at the low and mid frequencies. Although the VLSMs and
hairpin packets are closely related, the mechanisms by which these motions affect wall
pressure were found to be different. The VLSMs were found to cause positive and
negative wall-pressure fluctuations via splatting and lifting of fluid at the wall, respectively.
In contrast, hairpin packets affected wall pressure because of their low-pressure vortex
cores and regions of high-pressure stagnation. The frequency at which the wall-pressure
source changes from the VLSMs to the hairpin packets coincided with the peak of the
wall-pressure spectrum, suggesting that the peak may be a result of the transition between
pressure sources that occurs at the same point in the frequency domain.

Key words: turbulent boundary layers, boundary layer structure

1. Introduction

The fluctuating pressure field induced by a turbulent boundary layer (TBL) can generate
significant noise and vibrations at the wall beneath it. This has the potential to adversely
affect many systems given that TBLs are present in a variety of engineering applications.
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For example, TBL-induced wall-pressure fluctuations are a major source of noise and
vibration in high-speed vehicles (Cockburn & Robertson 1974; Wilby 1996; Arguillat
et al. 2010), resulting in passenger discomfort (Mellert et al. 2008) and the potential
for structural excitation (Leehey 1988). These same wall-pressure fluctuations result in
acoustic scattering at the trailing edges of wing profiles and other similar geometries
(Ffowcs Williams & Hall 1970; Brooks, Pope & Marcolini 1989), leading to additional
noise generation. Improving our knowledge of these fluctuations will undoubtedly assist
engineers in the design process, but is also critical to the development of turbulence
models and flow control strategies. The latter are particularly reliant on knowledge of the
wall-pressure fluctuations because flow control strategies generally demand wall-based
sensing and actuation. There is therefore considerable motivation for the study of the
wall-pressure fluctuations induced by a TBL.

An important feature of mid- to high-Reynolds number TBLs that has yet to be clearly
linked to wall pressure is the presence of ‘very-large-scale motions’ (VLSMs) (Kim &
Adrian 1999) or ‘superstructures’ (Hutchins & Marusic 2007a) in the logarithmic and
wake layers of the flow. These motions are characterized as long, meandering regions of
high and low streamwise velocity fluctuation with lengths greater than approximately three
times the boundary layer thickness δ (Balakumar & Adrian 2007). Their instantaneous
widths and heights are mostly around 0.5δ or less (Dennis & Nickels 2011a), and they
have been observed to extend beyond 20δ in length (Hutchins & Marusic 2007a). Although
the VLSMs are a recent discovery relative to the long history of TBL research, they have
emerged as being critical to the dynamics of the flow. They carry a considerable amount of
kinetic energy and Reynolds shear stress (Balakumar & Adrian 2007; Lee & Sung 2011),
are responsible for modulating the amplitude and frequency of near-wall fluid motions
(Hutchins & Marusic 2007b; Mathis, Hutchins & Marusic 2009; Ganapathisubramani
et al. 2012), and are associated with extreme wall-shear events (Hutchins et al. 2011;
Pan & Kwon 2018). There is evidence that large-scale motions (LSMs), which consist
of the largest of a hierarchy of hairpin packets (Adrian 2007; Smits, McKeon & Marusic
2011), concatenate or merge to form the VLSMs (Kim & Adrian 1999; Balakumar &
Adrian 2007; Lee & Sung 2011; Lee et al. 2014). Consequently, both the VLSMs and the
largest hairpin packets constitute the dominant LSMs in TBLs. Past investigations have
convincingly linked hairpins to the wall-pressure fluctuations (e.g. Ghaemi & Scarano
2013). However, the relationship between wall pressure and the VLSMs has yet to be
established. This gap in our knowledge is the focus of the present work and will be
discussed in more detail in the following paragraphs as we summarize the current state
of our understanding.

Studying the wall pressure beneath a TBL is not straightforward for several reasons. The
solution to the Poisson pressure equation, which is valid for incompressible, Newtonian
fluids, reveals that pressure fluctuations are dictated by the velocity field throughout the
entire domain. The global nature of pressure makes its prediction notoriously difficult
for turbulent flows, since all turbulent motions contribute to the pressure fluctuations
at any given point in the flow. It is also quite difficult to obtain reliable pressure
measurements over a wide range of frequencies in experiments. The low-frequency range
of pressure fluctuations is often corrupted by the background noise in experimental
facilities (Willmarth 1975; Bull 1996; Tsuji et al. 2012) or limited by the frequency
response of the measurement device, while the high-frequency range can be spatially
filtered when pressure transducer dimensions are too large with respect to the length scale
of the smallest pressure fluctuations (Schewe 1983; Lueptow 1995; Gravante et al. 1998).
Additionally, any pinhole-type measurement device will introduce some finite error (Shaw
1960) and also act as a Helmholtz resonator (Tsuji et al. 2007), which has the potential
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to distort measurements. The above are why the first few decades of research on the wall
pressure beneath a TBL did not reach final conclusions regarding even simple single-point
statistics (Bull 1996). It is important to keep these difficulties in mind as we discuss the
relationship between wall pressure and the largest motions in the TBL, as the size of these
motions should place some portion of their influence in the low-frequency range, which is
one of the extremes that is difficult to reliably measure and, therefore, often filtered out of
measurements entirely.

A significant portion of past investigations into the wall pressure beneath a TBL focused
on single-point statistics and pressure-pressure correlations (Willmarth & Wooldridge
1962; Corcos 1964; Bull 1967; Panton et al. 1980; McGrath & Simpson 1987; Farabee &
Casarella 1991; Keith, Hurdis & Abraham 1992; Tsuji et al. 2007; Klewicki, Priyadarshana
& Metzger 2008; Palumbo 2012). The picture that emerges from these studies is as follows.
There are two distinct groups of wall-pressure fluctuations, one containing the low and
mid frequencies and one containing the high frequencies of the wall-pressure power
spectrum. The low and mid frequencies scale with outer-layer variables, and the associated
fluctuations have been found to convect faster, decay slower, and have a larger spanwise
extent than those in the high-frequency group. These characteristics suggest that the low-
and mid-frequency fluctuations are associated with larger pressure-producing eddies in
the outer layer of the flow. In contrast, the high-frequency group of fluctuations scale with
inner-layer variables. The eddies that produce these fluctuations are likely associated with
the turbulence cycle of the inner layer and the small structures resulting from the energy
cascade. The high-frequency pressure fluctuations travel a distance proportional to their
wavelength before decaying completely. This behaviour is not observed for the lowest
frequencies, which appear to decay independent of their wavelength. The wall-pressure
spectrum also features a region that scales with a mix between inner and outer variables,
indicating that the frequencies in this region are a result of the interaction between the inner
and outer scales of the flow. This region falls between the mid and high frequencies and is
referred to as the ‘overlap’ or ‘universal’ region of the wall-pressure power spectrum.

Identifying the fluid motions responsible for the wall-pressure fluctuations has mainly
been pursued using pressure-velocity correlations and conditional averaging. These
techniques were used early on to show that the ‘bursting cycle’ of the inner layer, which
is a series of events consisting of an ejection motion followed by a sweeping motion, was
associated with a distinct wall-pressure pattern (Kim 1983; Thomas & Bull 1983; Kobashi
& Ichijo 1986). The pattern consists of a large wall pressure maximum with smaller
pressure minimums on its upstream and downstream sides. Kim (1983) and Kobashi &
Ichijo (1986) explicitly associated the bursting cycle, and, therefore, the convecting pattern,
with inclined streamwise vortex pairs, while Thomas & Bull (1983) connected the cycle
to the passage of a shear layer that forms on the upstream side of a horseshoe (hairpin)
structure. As we now know, the bursting cycle is a series of ejections and sweeps formed
by hairpin packets (Adrian 2007), which indeed feature both inclined vortex pairs and
shear layer structures. Many of the studies that followed focused on the high-amplitude
pressure peaks (HAPPs) at the wall, which can be positive or negative (Johansson, Her
& Haritonidis 1987; Karangelen, Wilczynski & Casarella 1993; Kim, Choi & Sung
2002; Ghaemi & Scarano 2013). A HAPP is defined as |p| ≥ kprms, where prms is the
root-mean-square value of wall pressure and k is typically 2 to 3. Karangelen et al. (1993)
found that the HAPPs associated with k = 3 are present only 5 % of the time, yet they are
responsible for 49 % of prms, indicating that the fluid motions associated with the HAPPs
are quite important for understanding the fluctuating wall pressure. Ghaemi & Scarano
(2013) measured the time-resolved, three-dimensional pressure field near the wall beneath
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a TBL using tomographic particle image velocimetry (PIV) by integrating the Poisson
pressure equation. Their results, considered along with those of the past investigators,
reveal that negative HAPPs are caused by the low-pressure cores of quasi-streamwise
vortices and hairpin heads, while the positive HAPPs are caused by the stagnation of
shear layers formed when sweeps occur upstream from ejection events caused by hairpin or
partial hairpin vortices. Considering these results along with those of Kim (1983), Thomas
& Bull (1983) and Kobashi & Ichijo (1986), it is clear that hairpins are a significant source
of wall-pressure fluctuations.

Relatively few studies to date have been able to provide a detailed description of the
fluid motions associated with the wall-pressure fluctuations at the lowest frequencies of
the spectrum. The earlier work of Panton et al. (1980) and Farabee & Casarella (1991)
associated the low-frequency fluctuations with relatively passive motions in the outer
layer, but these studies were carried out prior to knowledge of the VLSMs, which have
only been a focus for the last two decades. The more recent study of Beresh, Henfling &
Spillers (2013) employed Taylor’s hypothesis along with an array of pressure sensors to
study the wall-pressure footprint beneath a supersonic TBL at Mach 2. Note that VLSMs
have been observed in a Mach 2 TBL in past experiments at a similar Reynolds number
(Elsinga et al. 2010). Beresh et al. (2013) found that highly elongated, meandering regions
of positive and negative fluctuation were visible in their low-pass-filtered visualizations of
the wall-pressure footprint. However, a regular alternation between positive and negative
fluctuation in the spanwise direction was not observed as would be expected of the
VLSMs. They also found that these highly elongated pressure footprints were much
lower in magnitude than the fluctuations with higher frequencies, suggesting that any
wall-pressure footprints caused by the VLSMs may be quite weak. It therefore may be
the case that the expected alternation was not observed due to issues with transducer
sensitivity. Similarly, Buchmann et al. (2016) investigated the relationship between
velocity and wall pressure beneath a transonic TBL at Mach 0.5–0.8 (Reτ = 5100 to 9500).
They computed space–time pressure-velocity correlations throughout the height of the
boundary layer and found that positive wall-pressure fluctuations are negatively correlated
with streamwise velocity in a wall-attached region extending roughly 4–5δ downstream
from the wall-pressure sensor. This is larger than the minimum length defined for the
VLSMs (Balakumar & Adrian 2007) and also falls just short of the length of the VLSMs
inferred from statistics (Hutchins & Marusic 2007a; Lee & Sung 2011). Such a large
streamwise extension of the correlation was not observed for the negative wall-pressure
fluctuations. Buchmann et al. (2016) concluded that the elongation of these correlations
provides evidence that large-scale structures play an important role in determining the
near-wall pressure field.

To our knowledge, the most thorough investigation into the relationship between wall
pressure and the largest motions in a TBL was performed by Naka et al. (2015), this
time in the incompressible regime (Reτ = 2465 to 6390). These authors extensively
investigated the coupling between velocity and wall pressure as well as between velocity
and field pressure throughout the height of the boundary layer. In agreement with the
results of Buchmann et al. (2016), the space–time pressure-velocity correlations of Naka
et al. (2015) revealed that streamwise velocity is negatively correlated with positive
wall-pressure fluctuation in a highly elongated, wall-attached region downstream from
the pressure measurement location. Once again, such an elongated correlation was not
observed for negative wall-pressure fluctuations. Naka et al. (2015) concluded that this
elongated correlation may be related to the VLSMs, but their primary conclusions focused
on other features of the correlations which were much stronger. More specifically, they
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found that wall-pressure fluctuations occur at the edges of large (O(δ)) organized motions
with strong wall-normal velocity components. Positive wall-pressure fluctuations were
found to be associated with the leading edge of a strong sweeping motion of the splatting
type. Here, ‘splatting’ refers to a downward motion that impacts the wall and spreads
out. Downstream from this sweep exists a region of positive streamwise and wall-normal
velocity, which is a first-quadrant event (in the u–v plane) and, therefore, does not fit the
description of a sweep or an ejection. Conversely, negative wall-pressure fluctuations were
found to be associated with a localized ejection occurring upstream from the pressure
measurement location while another strong sweeping motion occurred downstream. The
sweeping motions associated with both positive and negative wall-pressure fluctuations
were accompanied by quasi-streamwise vortical motions. Naka et al. (2015) suggested by
comparison with the results of Ghaemi & Scarano (2013) that these patterns could be
related to large hairpins. However, counter-rotating quasi-streamwise vortex pairs that act
to induce a sweep between them, which are present in their results for both positive and
negative wall-pressure fluctuations, are not consistent with this notion. Interestingly, Naka
et al. (2015) also found that field pressure, even very close to the wall, could clearly be
linked to the VLSMs, while the wall pressure could not. It is not clear how the VLSMs
could influence the pressure field of the whole boundary layer thickness without affecting
wall pressure.

It is apparent that there are several open questions regarding the coupling between
wall pressure and the largest motions in a TBL. First, there is some evidence that the
VLSMs do in fact influence wall pressure in some way as is indicated by the elongated
features observed in the wall-pressure footprints of Beresh et al. (2013) and the space–time
pressure-velocity correlations of Buchmann et al. (2016) and Naka et al. (2015). However,
a clear connection between wall pressure and the VLSMs has not yet been made and
a mechanism governing the coupling has not been observed or proposed. Second, the
LSMs associated with wall pressure by Naka et al. (2015) seem to be manifestations of the
averaging process of the correlations because it is not straightforward to associate them
with any of the instantaneous coherent structures commonly observed in TBLs. Further
investigation is therefore needed to determine why the space–time pressure-velocity
correlations appear as they do. Finally, the frequency information associated with the
large-scale pressure-velocity coupling has been neglected in past investigations. That is, we
do not know whether any features of the wall-pressure power spectrum can be attributed
to hairpin packets or VLSMs, and we do not know the frequency ranges that these
motions affect. We examine each of these issues in the present work using simultaneous
wall-pressure and high-speed PIV measurements at a friction Reynolds number of Reτ =
δUτ /ν = 2600. Here, Uτ and ν denote the friction velocity and kinematic viscosity,
respectively. Post-processing is employed to account for background noise and Helmholtz
resonance in the wall-pressure measurements to ensure the frequencies of interest are
not corrupted. We begin by comparing pressure and velocity statistics with those of past
investigations to ensure our measurements are reliable. This includes a comparison of
wall-pressure statistics, velocity statistics and space–time pressure-velocity correlations.
The normalized cross-spectra between wall pressure and velocity at a range of wall-normal
locations are then investigated in the form of the magnitude-squared coherence function.
Two distinct frequency bands of high coherence are found to occupy the low-frequency,
mid-frequency and overlap regions of the wall-pressure spectrum. Filters are used to
isolate the wall-pressure fluctuations associated with each band, and the space–time
pressure-velocity correlations are recomputed using the filtered wall-pressure signals to
isolate the motions associated with each band of high coherence. We find that this analysis
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decomposes the correlations into simpler, more interpretable parts which can easily be
associated with known coherent structures.

2. Experiments

Particle image velocimetry snapshots and wall-pressure measurements have been recorded
simultaneously in the TBL that develops along the flat bottom wall of a large two-story
wind tunnel at the University of Alberta. The wind tunnel is capable of free stream speeds
of up to 35 m s−1 and features a turbulence intensity of less than 0.5 % at speeds of 5 m s−1

or more (Gibeau & Ghaemi 2020). The test section has dimensions 2.4 m × 1.2 m × 11 m
(W×H×L) and a contraction ratio of 6.3 : 1. Previous investigations have shown that
the mean free stream velocity remains uniform within ∼1 % across the span (Johnson
& Kostiuk 2000; Gibeau, Gingras & Ghaemi 2020). The side walls of the wind tunnel
are acrylic for optical access, as are some sections of the upper wall. The lower wall
is made primarily of wooden panels, except for the measurement region which is a flat
acrylic section with dimensions 1.2 m × 0.6m (streamwise–spanwise). All gaps between
the floor panels have been filled and sanded to ensure a flat, smooth surface for boundary
layer development. A Cartesian coordinate system is used where x, y and z refer to the
streamwise, wall-normal and spanwise directions, respectively. The associated velocity
components are U, V , and W with fluctuating components u, v and w. Wall-pressure
fluctuation is denoted as p. The origin of the coordinate system is fixed at the wall-pressure
measurement location which is located at centre span 7.75 m downstream from a tripping
device at the end of the contraction. The tripping device consists of a 7-cm-wide strip of
60-grit sandpaper that spans the entirety of the test section. The surface of the sandpaper
features additional randomly placed irregular protrusions with heights that begin at 5 mm
at the upstream edge of the strip and reduce to 1 mm at the downstream edge. There
are therefore more than 1500 trip heights between the end of the tripping device and
the measurement location. The present experiments have been conducted at a free stream
velocity of U∞ = 11.8 m s−1, resulting in the boundary layer parameters displayed in
table 1. The fluid properties used in all calculations are included in the table. Note that the
viscous length scale was determined using the Clauser method with κ = 0.41 and C = 5.0.

2.1. Wall-pressure measurements
An infrasound microphone (1/2-inch Brüel & Kjær 4964) has been selected for the
present wall-pressure measurements. This particular microphone, when paired with the
appropriate pre-amplifier (Brüel & Kjær 2669), is capable of measuring frequencies
between 0.7 Hz and 20 kHz (±3 dB) with a nominal sensitivity of 50 mV Pa−1 and a
dynamic range of 1.1 × 10−4 to 4.0 × 102 Pa. The true sensitivity of the microphone has
been obtained in-house using a constant-frequency calibrator at 1 kHz (Brüel & Kjær
4231). All signals have been recorded at a frequency of 20 kHz using Simulink real-time
via a Speedgoat target machine equipped with a 16-bit input/output module (model
IO135). A total of 10 minutes of microphone-only measurements have been recorded for
determining the single-point wall-pressure statistics. The remainder of the measurements
have been synchronized with velocity as described later in § 2.2.

The measurements of wall-pressure fluctuation have been achieved using a small pinhole
in a thread-on microphone attachment as shown schematically in figure 1. The known
dimensions of the current microphone and attachment as depicted in the figure are
D = 12.05 mm, d = 0.49 mm, L = 1.17 mm and α = 40◦. The value of h is difficult
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Reynolds numbers Reτ 2600
Reθ 6000

Free stream velocity U∞ 11.8 (m s−1)
Boundary layer thickness δ 93.8 × 10−3 (m)
Displacement thickness δ∗ 11.5 × 10−3 (m)
Momentum thickness θ 8.6 × 10−3 (m)
Friction velocity Uτ 0.46 (m s−1)
Viscous length scale λ 36.5 × 10−6 (m)
Shape factor H 1.34
Kinematic viscosity ν 1.68 × 10−5 (m2 s−1)
Density ρ 1.11 (kg m−3)

Table 1. Boundary layer parameters at the pressure measurement location and fluid properties. The viscous
length scale was determined using the Clauser method with κ = 0.41 and C = 5.0. The boundary layer
thickness is defined here as the wall-normal location at which 〈U〉 = 0.995U∞, where 〈· · · 〉 denotes an
ensemble average in time.

D

d
h L

Thread-on

pinhole

attachment

External 

threads for

mounting

Microphone

α

Figure 1. Schematic of the thread-on pinhole attachment for the microphone.

to determine in the present set-up because it depends on the height of the lip around the
microphone diaphragm. This lip sits flush against the attachment during use and, therefore,
its height determines h. We estimate that h is roughly 0.5 mm.

The thread-on attachment has been specially designed for the present experiments.
First, the pinhole is at an angle to ensure that laser light from the PIV measurements
does not pass through the pinhole and heat the diaphragm of the microphone. The
axis of the pinhole was parallel to the spanwise–wall-normal plane of the wind tunnel
during experiments, and our results show no indication that using an angled pinhole
has affected our measurements in any way. Second, the pinhole dimensions have been
chosen to minimize measurement errors. Past work suggests that the length of the pinhole
	(= L/ sin(α) here) must be at least twice its diameter d (Shaw 1960). Furthermore,
the maximum allowable pinhole diameter to avoid attenuation of the high frequencies
is somewhere in the range 12 < d/λ < 18 (Gravante et al. 1998). The present thread-on
attachment satisfies these requirements with 	/d = 3.7 and d/λ = 13.4 at the considered
Reynolds number. Finally, the attachment features external threads so that it can be
mounted to the acrylic floor plate at the test location in the wind tunnel. The attachment
is threaded until it is flush with the floor plate and then locked in placed using a second
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threaded piece. Any remaining gaps between the attachment and floor plate have been
filled and sanded to ensure a flat, smooth surface for the TBL.

The wall-pressure measurements beneath the TBL are contaminated with wind tunnel
background noise and Helmholtz resonance of the pinhole cavity. Both must be corrected
before the measurements can be used for quantitative analyses. The correction process is
briefly described below, and the full details are given in Appendix A.

The amplitude and phase distortion caused by Helmholtz resonance has been corrected
in the frequency domain using the transfer function of the resonator. The resonator has
been modelled as a second-order linear, time-invariant system, and the parameters for this
model were determined by dynamic calibration against a second identical microphone
without a pinhole attachment. Following the removal of the distortions from the signals,
a low-pass filter with a cutoff frequency of 3 kHz was applied to attenuate the high
frequencies that may have been amplified by the procedure. This particular cutoff
frequency falls well into the high-frequency region of the present wall-pressure power
spectrum and so this filter does not remove any of the frequencies relevant to the present
investigation. The reliable range of measurable frequencies is therefore 0.7 Hz to 3 kHz.

The background noise in the wind tunnel has been removed from the measurements
using a Wiener noise cancelling filter. This filter produces an estimate of the background
noise and requires a simultaneous measurement of the noise field along with the
measurement of wall pressure. This has been accomplished using the second microphone,
which was supported in the free stream and fitted with a nose cone. The support structure
for this microphone consists of two pieces: one three-dimensional (3-D) printed and
one machined from aluminium. The overall design goal of this structure was to permit
measurement of the background noise without disturbing the flow. The structure, which is
shown schematically in figure 2, supports the microphone in the free stream at (x, y, z) =
(0, 2.1δ, −5.4δ). Once the background noise has been estimated using the filter, it is
subtracted from the Helmholtz-corrected wall-pressure signal to obtain an estimate of the
true wall pressure p.

2.2. Particle image velocimetry
Three separate PIV experiments have been conducted to capture the velocity field of
the present TBL. The field of view (FOV) associated with each experiment is shown
schematically in figure 2, where each FOV is numbered accordingly. The same laser and
cameras were used for all three experiments. The high-speed laser (Photonics Industries
DM20-527-DH) features two separate cavities. The beam from each cavity is capable of 20
mJ per pulse at 1 kHz. The high-speed cameras (Phantom v611) feature a 1280 × 800-pixel
complementary metal oxide semiconductor (CMOS) sensor with a 20 μm × 20 μm pixel
size and 12-bit resolution. All PIV experiments were seeded with ∼1 μm particles using a
fog generator. The PIV images were preprocessed in two steps using DaVis 8.4 (LaVision
GmbH). First, the minimum of each ensemble was subtracted to reduce the background
noise. Second, the images were divided by the background-subtracted ensemble average
to normalize the intensity counts.

The FOV denoted as FOV1 in figure 2 was used to capture the flow field from the wall to
beyond the height of the TBL for determining δ, δ∗, θ and U∞. These measurements were
therefore not synchronized with wall pressure. A 1-mm-thick laser sheet, formed within
FOV1 using a combination of spherical and cylindrical lenses, was used to illuminate the
particles. A single camera and a 200-mm lens with an aperture setting of f /5.6 resulted in
a cropped FOV of (Δx, Δy) = 47 mm × 140 mm with a resolution of 109.6 μm pixel−1.
A total of 10 000 double-frame images were collected over four sets at an acquisition rate of
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Microphone 2

(with nose cone)

Microphone 1

(behind pinhole)

3-D printed

support

Aluminium

support

Free stream

flow

FOV1 (planar PIV)

FOV2 (planar PIV)

FOV3 (stereo PIV)

y

x

z

2.1δ

5.4δ

Figure 2. Schematic of the experimental set-up. The axes origin is located at the pinhole of microphone 1
and is offset here to not interfere with the fields of view.

25 Hz, corresponding to a total sampling time of 5.0×104δ/U∞. Following preprocessing,
the images were processed in DaVis using a multi-pass cross-correlation algorithm. The
final pass employed 32 × 32-pixel Gaussian-weighted interrogation windows with 75 %
overlap.

The FOV denoted as FOV2 in figure 2 was used to capture the coupling between wall
pressure and velocity throughout the logarithmic and lower-wake layers of the TBL. The
same laser sheet from FOV1 was utilized here. A single camera and a 300-mm lens with
an aperture setting of f /8 resulted in a cropped FOV of (Δx, Δy) = 9 mm × 82 mm with
a resolution of 64.4 μm pixel−1. The FOV was cropped to be narrow to allow for longer
sequences of images to be collected, as the high-speed camera memory is limited and
longer sequences are required for convergence of the pressure-velocity cross-statistics.
A total of 120 000 double-frame images were collected over eight sets at an acquisition rate
of 1 kHz, corresponding to a total sampling time of 1.5×104δ/U∞. The 1 kHz acquisition
rate is sufficient for computing the cross-spectra between wall pressure and velocity while
resolving the frequencies of the low-frequency, mid-frequency and overlap regions of the
wall-pressure power spectrum associated with the present TBL as will be shown later in
§ 3.1. The wall pressure and wind tunnel background noise were recorded simultaneously
with the PIV images of FOV2, as were the trigger signals of the laser and camera for later
synchronization. The PIV images were processed in DaVis as described above for FOV1.
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Stereoscopic PIV was conducted in the FOV denoted as FOV3 in figure 2. Two cameras
each with a Scheimpflug mount and a 300-mm lens with an aperture setting of f /11
were used. A 2-mm-thick laser sheet was formed within FOV3 using a spherical lens
and a collimator. A thicker laser sheet was used here to improve the correlation between
double-frame images, as the free stream flow direction is normal to FOV3. Both cameras
were placed in a forward-scattering orientation with respect to the laser sheet with 90◦
between their lines of sight. The cameras were calibrated using a two-step process, which
included a 3-D target calibration followed by a self-calibration using a small set of
particle images (Wieneke 2005). This resulted in a FOV of (Δy, Δz) = 94 mm × 188
mm with an effective resolution of 102.8 μm pixel−1. Note that the usable wall-normal
(Δy) portion of the FOV is roughly 47 mm due to the height of the laser sheet, which
was reduced to retain laser power and obtain a sufficient intensity count in the images.
A total of 21 600 double-frame images were collected over eight sets at an acquisition
rate of 1 kHz, corresponding to a total sampling time of 2.7×103δ/U∞. Wall pressure,
the wind tunnel background noise and the trigger signals were once again recorded
simultaneously with these PIV images for later synchronization. DaVis was used to apply
a multi-pass cross-correlation algorithm to the double-frame images using 48 × 48-pixel
Gaussian-weighted interrogation windows with 75 % overlap for the final pass.

3. Previously established statistics

It is important to verify that the present wall-pressure and velocity measurements are
reliable before moving forward with the primary analyses in § 4. This is accomplished
here by comparing the measurement statistics with those that have been previously
established in the literature. Specifically, we will look at single-point velocity statistics (the
mean profile, Reynolds stresses and power spectra), single-point wall-pressure statistics
(the power spectrum, probability density and root-mean-square value) and space–time
pressure-velocity correlations. The uncertainties associated with the statistics that are
defined by means, root-mean-square values, variances and covariances are estimated in
Appendix B.

3.1. Single-point wall-pressure and velocity statistics
The mean velocity profile and Reynolds stresses, evaluated using each of the three
PIV measurements conducted in the present experimental campaign, are displayed on
semi-logarithmic axes in figure 3. The mean velocity profiles in figure 3(a) are compared
with the logarithmic law of the wall with κ = 0.41 and C = 5.0. The profiles from
the three PIV measurements agree well with one another and with the logarithmic law
up to approximately y/λ = 400. It is also evident that the viscous sublayer (y/λ � 5)
and buffer layer (5 � y/λ � 30) are not captured by the present measurements. This
is not an issue for our investigation because the measurements have been optimized
to capture the largest motions that occupy the logarithmic and wake layers of the
TBL. The Reynolds stresses (excluding the spanwise velocity component) from all three
experiments are shown in figure 3(b). The streamwise normal component from the
hotwire measurements of Hutchins & Marusic (2007a) at Reτ = 2630 is also included
for comparison. It can be seen in the figure that the present measurements conducted
using planar PIV (FOV1 and FOV2) agree well with one another, and 〈u2〉/U2

τ agrees
well with the measurements of Hutchins & Marusic (2007a). In contrast, some deviation
is observed for the stereo-PIV measurements (FOV3). This is attributed to the added
uncertainties associated with stereoscopic calibration, particularly with respect to the
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FOV2 (planar)
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H & M (2007)
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Figure 3. Velocity statistics at the pressure measurement location (x = z = 0) from the three PIV experiments:
(a) mean velocity profiles and (b) Reynolds stresses. The use of 〈· · · 〉 denotes an ensemble average in time.
Here H & M (2007) refers to the hotwire measurements of Hutchins & Marusic (2007a) at Reτ = 2630. The
uncertainties associated with these statistics are estimated in Appendix B.

out-of-plane component (streamwise in this case). Despite this, figure 3(b) reveals that the
Reynolds stresses calculated from stereo-PIV agree reasonably well with those calculated
from planar PIV. However, to remain conservative, the use of the present stereo-PIV
measurements will be used primarily for qualitative analyses.

The power spectral density of streamwise velocity fluctuation as a function of
wavenumber (φu(kx); kx = 2πf /〈U( y)〉) has been computed using both sets of high-speed
PIV data (FOV2 and FOV3) and is displayed in figure 4 for two wall-normal locations
within the logarithmic layer. The spectra have been normalized such that they can be easily
compared with the work of Balakumar & Adrian (2007), who consolidated the spectra
from several investigations of various wall-bounded flows with Reynolds numbers similar
to that of the present TBL. The spectra of figure 4 show excellent agreement with those
shown in Balakumar & Adrian (2007), including the collapse of the curves in the k−1

x
region (roughly k−1.04

x here). We also see good agreement between the spectra from the
planar (FOV2) and stereo (FOV3) data when they are compared at the same wall-normal
location. Note that the increase in spectral densities at higher wavenumbers is associated
with PIV noise. As we will see later, these higher wavenumbers (frequencies) are not
important to the conclusions of the present investigation.

The power spectral density of wall pressure (φp(ω); ω = 2πf ) is displayed in figure 5
using both inner- and outer-layer normalizations. The frequencies displayed range from
0.7 Hz to 3 kHz, which is the reliable range of measurable frequencies as discussed in § 2.1.
The divisions between the low-frequency, mid-frequency, overlap and high-frequency
regions of the spectrum as defined by Hwang, Bonness & Hambric (2009) are included for
reference, revealing that the present wall-pressure measurements capture the frequencies
associated with all four regions. The upper frequency captured by the PIV measurements
as dictated by the Nyquist criterion (≤500 Hz) is also displayed, indicating that the
PIV measurements resolve the frequencies of the low- and mid-frequency regions and
nearly all of the overlap region. The low- and mid-frequency regions collapse over a
range of Reynolds numbers when they are non-dimensionalized using outer-layer variables
(Farabee & Casarella 1991; Tsuji et al. 2007; Klewicki et al. 2008), suggesting that
these frequencies are caused by the motions of the outer layer. Since both the PIV
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Figure 4. Power spectral density of streamwise velocity fluctuation as a function of wavenumber (φu(kx); kx =
2πf /〈U( y)〉) computed from the high-speed PIV measurements of FOV2 and FOV3. Note that y/δ = 0.07 and
0.14 coincide with roughly y/λ = 180 and 360, respectively.
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Figure 5. Power spectral density of wall pressure (φp(ω); ω = 2πf ) normalized using both inner- and
outer-layer variables. The divisions between the four regions of the spectrum are set as defined by Hwang
et al. (2009). The upper frequency resolved by PIV is dictated by the Nyquist criterion.

and wall-pressure measurements capture the entirety of these regions, the synchronized
measurements should resolve the large-scale pressure-velocity coupling relevant to this
investigation.

The spectrum displayed in figure 5 features the characteristics expected for the wall
pressure beneath a TBL (Hwang et al. 2009). More specifically, the spectrum climbs
in magnitude as frequency is increased until a peak is reached in the mid-frequency
region. The spectrum then declines in magnitude and passes through two ranges of
constant proportionality, one in the overlap region and one in the high-frequency region.
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The constant decay in the high-frequency region has been observed in the past to be
approximately ω−5 to ω−6 (McGrath & Simpson 1987; Goody 2004; Palumbo 2012;
Van Blitterswyk & Rocha 2017). The presently observed decay of ω−5.60 shown in
figure 5 is therefore in good agreement with the literature. The same can be said about
the ω−0.65 decay in the overlap region, which is typically observed to be roughly ω−0.7

(McGrath & Simpson 1987; Goody 2004; Tsuji et al. 2007; Van Blitterswyk & Rocha
2017). The behaviour of the low-frequency region is not well established at the moment.
Some attempts at modelling the wall-pressure spectrum suggest that the low-frequency
region should vary with ω2 as discussed by Panton et al. (1980) and Bull (1996), while
another model predicts a ω1.1 to ω1.5 proportionality (Panton & Linebarger 1974). There
is currently some experimental evidence to support the former (Farabee & Casarella
1991; Palumbo 2012), but reliable low-frequency data are difficult to obtain owing to
background noise contamination and frequency response limitations of the available
pressure transducers. As is evident in figure 5, the low-frequency region measured here
grows with ω1.07 and, therefore, shows better agreement with the work of Panton &
Linebarger (1974).

The root-mean-square wall pressure (prms) was calculated by integrating the
power spectral density plotted in figure 5 followed by taking the square root. The
inner-normalized value is prms/ρU2

τ = 3.16, which represents an error of only 1.7 % when
compared with the empirical relation derived by Farabee & Casarella (1991). This relation
is ( prms/ρU2

τ )
2 = 6.5 + 1.86 ln(Reτ /333) for Reτ > 333 and has been found to agree well

with direct numerical simulations and experiments for Reτ up to roughly 20 000 (Tsuji
et al. 2007, 2012). The present wall-pressure fluctuations have a skewness of 0.056 and a
flatness of 4.39, which agree with the values reported by Schewe (1983), Tsuji et al. (2007)
and Naka et al. (2015). The probability density of the present wall-pressure measurements
normalized by prms is plotted on linear and semi-logarithmic axes in figures 6(a) and
6(b), respectively. Here, the dashed line is a Gaussian fit to the data for comparison. The
approximate envelope of values reported by Tsuji et al. (2007) for 5870 ≤ Reθ ≤ 16 700
is also shown on the semi-logarithmic axes in figure 6(b) using a grey outline. Since
the extreme tails of the probability density functions in Tsuji et al. (2007) exhibit large
amounts of scatter, the envelope depicts the range of values that we expect the functions
to fall within. When looking at the probability density on linear axes in figure 6(a), we
can see that the measured density clearly deviates from the Gaussian fit at the peak and for
densities ranging from roughly 0.05 to 0.2. This same deviation is visible in the results of
Schewe (1983) and Tsuji et al. (2007). An even larger deviation from Gaussian behaviour
is visible when looking at the semi-logarithmic axes in figure 6(b). This deviation occurs
at the extreme tails of the distribution and is indicative of the HAPPs in wall-pressure
fluctuation that have been studied in the past (Johansson et al. 1987; Karangelen et al.
1993; Kim et al. 2002; Ghaemi & Scarano 2013). As is evident in the figure, the tails
of the present probability density function fall within the approximate envelope of values
from Tsuji et al. (2007).

3.2. Space–time pressure-velocity correlations
We now employ space–time pressure-velocity correlations along with Taylor’s hypothesis
to investigate the spatial correlation between wall pressure and velocity throughout the
TBL. This is done to compare the present pressure-velocity coupling with the results
of Buchmann et al. (2016) and Naka et al. (2015) and to establish baselines for later
comparison within the present study. Note that Dennis & Nickels (2008) evaluated the
accuracy of using Taylor’s hypothesis to construct spatial fields in a TBL and showed that
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Figure 6. Measured probability density of wall-pressure fluctuations compared with a Gaussian fit of the same
data; shown on (a) linear and (b) semi-logarithmic axes. The grey outline in (b) is the approximate envelope of
values reported by Tsuji et al. (2007) for 5870 ≤ Reθ ≤ 16 700.

the majority of the large-scale errors occur for extrapolations beyond roughly ±3.5δ from
the measurement location. As we will see, the main features of all correlations computed
in this investigation fall within this range and, therefore, we can apply Taylor’s hypothesis
here.

We define the space–time pressure-velocity correlation as

Rpui(Δt, y, z) = 1
ρU3∞

〈p(t)ui(t − Δt, 0, y, z)〉, (3.1)

where ui, i = 1, 2, 3, are the fluctuating velocity components and the use of 〈· · · 〉
denotes an ensemble average in time. We normalize the correlations using ρU3∞ to
remain consistent with Naka et al. (2015). The correlations have also been computed
using only p > 0 and p < 0 to isolate the motions associated with positive and negative
wall-pressure fluctuations. We denote these two conditional cases as R+

pui
= Rpui |p>0 and

R−
pui

= Rpui |p<0.
Equation (3.1) was applied separately to the PIV snapshots from FOV2 and FOV3 and

then Taylor’s hypothesis was used to transform Δt into streamwise distance using the
local convection velocity Uc. Here we set Uc as the mean streamwise velocity at the
corresponding wall-normal location, as the mean has been shown to closely match the
convection velocity for y > 0.05δ (Lee & Sung 2011). This technique was employed to
avoid the non-physical streamwise stretching and compression of the correlations that can
occur when a single convection velocity is chosen for use with Taylor’s hypothesis. Since
each wall-normal location is associated with a different Uc, the streamwise extent of the
correlation at each y is different. Interpolation has therefore been used to form a common
ΔtUc grid for plotting. On this grid, ΔtUc < 0 represents upstream from the pressure
measurement location, while ΔtUc > 0 represents downstream. Finally, the symmetry
(and antisymmetry) of these correlations about the z = 0 plane was exploited to improve
the convergence of the results computed using the stereo-PIV measurements of FOV3.
This was accomplished by flipping each component of the correlation about z = 0, adding
it to the original (or subtracting in the case of antisymmetry), and then dividing the result
by 2. The outcome of this procedure is that the results appear perfectly symmetric (or
antisymmetric) about z = 0 with the benefit of reduced noise.
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Figure 7. Space–time pressure-velocity correlations (Rpui ) as defined by (3.1) calculated using the (a)
streamwise, (b) wall-normal and (c) spanwise velocity components. The superscripts ‘+’ and ‘−’ denote
correlations computed using only p > 0 or p < 0, respectively. The streamwise–wall-normal planes in (a) and
(b) are located at z = 0, while those in (c) are located at z = 0.2δ. The plots in (c) do not cover as much of the
wall-normal distance due to the limitations of FOV3. The uncertainties associated with these correlations are
estimated in Appendix B.

Plots of Rpui , R+
pui

and R−
pui

in streamwise–wall-normal planes are given in figure 7.
The streamwise and wall-normal components of the correlations are plotted at z = 0,
while the spanwise component is at z/δ = 0.2 to match the plane location plotted by Naka
et al. (2015). Note that this plane must be offset in the spanwise direction because Rpw is
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antisymmetric about the z = 0 plane and is therefore zero within it. In general, the shapes,
sizes and magnitudes of the correlations are in good agreement with those of Buchmann
et al. (2016) and Naka et al. (2015), with a few exceptions that will be detailed shortly.

The contours of Rpu in figure 7(a) reveal that p is positively correlated with u directly
above the pressure measurement location throughout nearly the whole boundary layer
thickness and extending upstream to ΔtUc/δ ≈ −3. Two regions of weaker negative
correlation between p and u extend downstream. The first region begins just past the
pressure measurement location and extends at an angle from the wall to reach ΔtUc/δ ≈
2.3 and y/δ ≈ 0.7. The second region sits close to the wall and reaches to ΔtUc/δ ≈ 8
(not entirely shown to keep the figure manageable). These same features are visible in
the correlations of both Buchmann et al. (2016) and Naka et al. (2015), although there
are some differences in the sizes of the features between all three studies. The results
of Naka et al. (2015) suggest that these size differences could be Reynolds number
effects. When we consider R+

pu, the region of positive correlation and the second region of
negative correlation both become larger and more intense, while the first region of negative
correlation disappears. The intensified region of positive correlation now extends across
the range −4 � ΔtUc/δ � 1, making its total streamwise extent ∼5δ. In contrast, the
intensified region of negative correlation extends to roughly ΔtUc/δ ≈ 8.5. The contours
of R−

pu show the opposite change to what was observed for R+
pu; the first region of negative

correlation has grown larger and more intense while the other two regions have become
smaller and weaker. A second region of weak positive correlation has also emerged within
the correlations, this time extending downstream at an angle from the wall to ΔtUc/δ ≈ 5.

Figure 7(b) reveals that the contours of Rpv are nearly antisymmetric about ΔtUc = 0.
The upstream region shows a negative correlation between p and v, while the downstream
region shows a positive correlation which is slightly weaker than the former but
comparable in size. The contours extend to ΔtUc/δ ≈ ±1.5 and appear to reach the
full height of the boundary layer. The same correlation in Naka et al. (2015) shows
more differences between the sizes of the two lobes of correlation but are overall in
good agreement with the present results. Comparison with Buchmann et al. (2016) is not
possible because only the streamwise component of the correlation was reported in their
study. When we consider R+

pv , the upstream region of correlation becomes more intense
and the downstream region less intense; the opposite is true for R−

pv . This too is observed
in the results of Naka et al. (2015). When Rpu and Rpv are considered together, it is evident
that the motions that are most highly correlated with wall pressure generally have u and
v components of opposite sign. This indicates that sweeps and ejections are an important
feature of the pressure-velocity coupling.

Finally, the contours of Rpw at z/δ = 0.2 are given in figure 7(c). The contours indicate
that the spanwise motions associated with wall pressure occupy up to at least y/δ = 0.5.
A region of positive correlation between p and w sits above ΔtUc/δ = 0 and has a total
streamwise extent of ∼1.5δ. The region of positive correlation is attached and inclined
to the wall and sits between two weaker regions of negative correlation, both of which
also have streamwise extents of ∼1.5δ. The upstream region of negative correlation is
away from the wall and extends horizontally across the mid-region of the boundary
layer. The downstream region of negative correlation is narrow, inclined and attached
to the wall. When considering R+

pw, the region of positive correlation and the upstream
region of negative correlation both become stronger, while the downstream region
of negative correlation disappears. When considering R−

pw, the downstream region of
negative correlation becomes stronger, the region of positive correlation becomes smaller,
and the upstream region of negative correlation nearly disappears. These correlations are
again consistent with the results of Naka et al. (2015).
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Figure 8. Visualizations of the vector fields associated with (a–c) R+
pui

and (d–f ) −R−
pui

. The background
colour represents the streamwise component of the correlations and has the same scaling as figure 7(a). The
coloured lines in (a,d) show the locations of the spanwise–wall-normal planes that are plotted directly below.
The vector lengths in (b,c,e, f ) have been altered relative to those in (a,d) to improve the visualizations.

The regions of positive and negative correlation in figure 7(c) feature spanwise motion
in opposite directions. When coupled with the wall-normal component of the correlations,
it is evident that these patterns are associated with quasi-streamwise rotational motions.
For example, when looking immediately downstream from the pressure measurement
location, R−

pui
shows spanwise motion towards z = 0 near the wall, upward motion around

z = 0, and motion away from z = 0 farther from the wall to form a rotational pattern.
The downstream interface between positive and negative correlation in R−

pw is therefore
related to the rotational axes of an inclined vortical motion as is labelled in figure 7(c).
Similarly, the upstream interface between positive and negative correlation in R+

pw is
associated with a vortical motion that is more horizontal. Because of the symmetry of Rpv

and antisymmetry of Rpw (about z = 0), these vortical motions exist as counter-rotating
pairs. This observation also supports the coupling between ejection/sweeping motions and
wall pressure, as these motions are often induced by quasi-streamwise vortices.
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All components of R+
pui

and R−
pui

can be used to visualize the motions and vortical
structures associated with positive and negative wall-pressure fluctuations by forming
vector fields from the correlations. These visualizations are presented in figure 8, where
the background shows the streamwise component of the correlations using the same
colour scaling as figure 7(a). Note that the correlations for negative wall-pressure
fluctuations have been multiplied by −1 so that the vector directions represent the true
flow direction in the visualization. Figure 8(a,d) show the streamwise–wall-normal plane
of the corresponding vector field at z = 0. These subfigures are marked with vertical lines
which represent the locations of spanwise–wall-normal planes that are plotted directly
below. The locations of these planes have been selected to show the most important
features of each field. The vector density has been decimated and the vector lengths in
the spanwise–wall-normal planes have been increased to improve the visualizations.

The visualization of R+
pui

shown in figure 8(a–c) reveals that positive wall-pressure
fluctuations are associated with an elongated high-speed region with a relatively strong
sweeping motion at its leading edge. This sweep is flanked by large low-speed zones and
counter-rotating streamwise vortical motions, both of which can be seen in figure 8(b);
these vortical motions are nearly horizontal as is evident in the correlation patterns of
R+

pw shown in figure 7(c). A first-quadrant event, i.e. a motion with positive u and v,
exists downstream from the large sweep as can be seen in figure 8(a,c). The visualization
of −R−

pui
shown in figure 8(d–f ) indicates that negative wall-pressure fluctuations are

associated with a localized upstream ejection and an elongated downstream sweep. This
particular sweep sits away from the wall over most of its length. Figure 8(e) shows that the
upstream ejection in not associated with counter-rotating vortex pairs, while figure 8(f )
shows that the downstream sweep is; these vortical motions are more strongly inclined
with respect to the wall as is indicated in the patterns of R−

pw shown in figure 7(c).
The motions visualized in figure 8 are consistent with those discussed by Naka et al.

(2015). However, they are not a satisfying description of the large-scale pressure-velocity
coupling because it is difficult to find clear patterns of hairpin packets or VLSMs
by inspection of these visualizations. This is because the correlations represent a
superposition of many coherent structures of varying types, sizes and locations.
We therefore conclude that the flow patterns of figure 8 are manifestations of the averaging
process of the correlations. As we will see in the following sections, decomposing these
correlations using different wall-pressure frequency bands yields simpler parts that are
interpretable in terms of the large-scale coherent structures that are known to exist within
TBLs.

4. Frequency-dependent pressure-velocity coupling

We now move on to the primary analyses of the present work. Our goal here is to scrutinize
the coupling between the fluctuating wall pressure and velocity throughout the TBL as
a function of frequency. As we will see, there are two distinct coupling mechanisms at
the lower frequencies that affect different frequency bands. We first identify these bands
using estimates of the coherence between wall pressure and velocity. We then extract
the space–time pressure-velocity correlations associated with each band to expose the
underlying coherent structures responsible for the observed coupling. The uncertainties
associated with these correlations are estimated in Appendix B.

4.1. Coherence between wall pressure and velocity
The cross-spectrum between wall pressure and velocity will allow us to study the
pressure-velocity coupling as a function of frequency. Here we employ a normalized
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form of the cross-spectral density known as the magnitude-squared coherence, which
will simply be referred to as the coherence moving forward. The coherence between the
fluctuating wall pressure p and a fluctuating velocity component ui is defined as

Cpui(ω, y) = |φpui(ω, y)|2
φp(ω)φui(ω, y)

, (4.1)

where φpui(ω, y) is the cross-spectral density between p(t) and ui(t, 0, y, 0), and φui(ω, y)
is the power spectral density of ui(t, 0, y, 0). Equation (4.1) is estimated here using Welch’s
overlapping segment method. The coherence function is bounded by 0 and 1, with 0
representing no correlation between the two signals at a given frequency. A coherence
of 1 occurs when the two signals are related through a single-input single-output linear,
time-invariant system. The latter will never be realized for a turbulent flow due to the
nonlinearity and multiple inputs of the governing equations, but the coherence will allow
us to probe any coupling that may exist between wall pressure and velocity.

The estimated coherence between wall pressure and the fluctuating velocity components
u and v for the wall-normal range of FOV2 are presented on logarithmic axes in
figure 9(a,b). The power spectral density of wall pressure is included in figure 9(c) with the
frequency axis aligned to those showing Cpui for reference. When looking at figure 9(a), it
is immediately apparent that there are two separate regions of high coherence with distinct
characteristics. We demarcate these two regions using the dotted vertical lines in the figure
at ωδ/U∞ = 0.9 (17.5 Hz) and 8.0 (160 Hz). These demarcations were selected by visual
inspection of the coherence patterns. Note that there is a slight overlap in frequencies
for which the first region of high-coherence transitions to the second and, therefore, the
interface separating the two regions is not a straight vertical line. Despite this, we have
selected the single frequency of ωδ/U∞ = 0.9 as the division between these two regions
to simplify the analysis moving forward. The upper frequency of the second region of
high coherence was selected as the point at which the coherence drops below ∼0.05 in
figure 9(b).

The first coherent region in figure 9(a), defined by ωδ/U∞ < 0.9, reveals high
coherence between p and u for wall-normal locations up to roughly y/λ = 1300 (∼0.5δ).
In contrast, for the same frequencies, the coherence between p and v in figure 9(b) is much
weaker. This suggests that low frequency u occupying half the boundary layer thickness
correlates with low-frequency wall pressure. To estimate the size of the structures
associated with the first coherent region, we assume that the convection velocity of these
structures is the mean velocity at the half-height of the coherent region (y/λ = 650;
y = 0.25δ), corresponding to Uc ≈ 0.82U∞. A pressure disturbance convecting at this
velocity would need to have a wavelength of ∼6δ to produce the upper cutoff frequency
of ωδ/U∞ = 0.9. Note that one full wavelength would be made up of a positive structure
(p > 0) followed by a negative structure (p < 0) to produce a pattern similar to a sinusoid.
The first coherent region therefore seems to be associated with high- and low-pressure
structures occupying up to ∼0.5δ in height and extending more than 3δ in length. This is
consistent with the VLSMs and, for this reason, we will refer to the pressure fluctuations
in the first coherent region as the very-large-scale pressure (VLSP) fluctuations as labelled
in figure 9(c).

We will now consider the second region of high coherence in figure 9 defined by 0.9 <

ωδ/U∞ < 8.0. This region is markedly different than the one associated with the VLSP
fluctuations. First, a higher coherence is observed between p and v than between p and
u, although the latter is still quite strong. Second, the region sits at an angle, with lower
frequencies associated with locations farther from the wall. This is reminiscent of the
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Figure 9. Estimated coherence between wall pressure and velocity fluctuation (Cpui ) as a function of
wall-normal distance as defined by (4.1) for the (a) streamwise and (b) wall-normal velocity components.
Computed using the high-speed PIV measurements from FOV2. The power spectral density (φp(ω)) normalized
by outer-layer variables is shown in (c) with the frequency axis aligned for reference.

attached-eddy hypothesis, as larger attached eddies that extend farther from the wall would
be associated with lower frequencies due to the size of the pressure disturbance that they
produce. Finally, the second region of high coherence between p and v extends farther
from the wall than the coherence of the VLSP, surpassing the maximum captured by FOV2
(∼0.8δ). It is possible that Cpv reaches the full height of the boundary layer, and this is not
observed for Cpu. This suggests that the pressure fluctuations associated with this region
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are stronger than the VLSP fluctuations, as they appear to influence the wall pressure
from a greater wall-normal distance. To estimate the size of the structures associated with
the upper cutoff frequency of the second region of high coherence (ωδ/U∞ = 8.0), we
assume a convection velocity of Uc = 0.74U∞. This is the mean velocity at y/λ = 300,
which is roughly the mid-point of the high-coherence region at the upper cutoff as is
visible in figure 9(b). A pressure disturbance convecting at this velocity would need to have
a wavelength of ∼0.6δ to reproduce the cutoff frequency of ωδ/U∞ = 8.0. We therefore
conclude, using the same logic invoked for VLSP, that the second region of high coherence
seems to be associated with high- and low-pressure structures with streamwise dimensions
ranging from roughly 0.3δ to 3δ. We can consider this range of eddy sizes as being large
scale and, therefore, the wall-pressure fluctuations associated with the second region of
high coherence will be referred to as the large-scale pressure (LSP) fluctuations as labelled
in figure 9(c).

It is interesting to note that the demarcation between VLSP and LSP coincides with the
peak of the wall-pressure spectrum as is evident in figure 9(c). The location of the peak,
and the different proportionality behaviours on either side, may therefore be associated
with a transition between wall-pressure sources, as Cpui indicates that different motions are
responsible for the wall pressure in the frequency bands on either side of ωδ/U∞ = 0.9.
The nature of these two types of motions will be determined in §§ 4.2 and 4.3. It should
also be noted that the two frequency cutoffs do not coincide with the transition between
any of the regions of the wall-pressure power spectrum shown in figure 5. It can be seen in
the figure that ωδ/U∞ = 0.9 is roughly one-quarter of the way through the mid-frequency
region, while ωδ/U∞ = 8.0 is roughly one-third of the way through the overlap region.

We now investigate the estimated phase between p and ui from the cross-spectral
densities, denoted as ∠φpui(ω). These estimates are given in figure 10 for the same
domain shown for the coherence estimates, and the demarcations for the LSP and VLSP
bands are included for reference. Here, a positive phase indicates that p leads ui, while a
negative phase indicates that p lags ui. The noisy region in the top right corner of both
subfigures is due to the general lack of coherence between p and ui at high frequencies and
wall-normal locations as can be seen in figure 9. A cursory glance at figure 10 makes it
clear that ∠φpu(ω) is always positive in the regions of non-zero coherence, while ∠φpv(ω)

is always negative. This is in agreement with the space–time pressure-velocity correlations
of figure 7, which show that the positive peak of Rpu always exists upstream from the
wall-pressure measurement location (i.e. p leads u), and that the positive peak of Rpv

always exists downstream (i.e. p lags v). Focusing now on the region of high coherence
within the LSP band of figure 9, we can see that figure 10(a) indicates a phase varying from
roughly 0.25π to 0.35π between p and u, while figure 10(b) indicates a phase of roughly
−0.5π to −0.6π between p and v. In contrast, the region of high coherence within the
VLSP band of figure 9 shows different behaviour. Here, we can see a phase of roughly
0.1π to 0.25π between p and u, and a phase of roughly −0.7π to −0.8π between p and v.
These results support the notion that different mechanisms are responsible for the observed
coupling in the LSP and VLSP bands.

We have further evaluated the characteristics of the LSP and VLSP fluctuations by
applying filters to isolate the associated frequencies. A low-pass filter with a cutoff
frequency of ωδ/U∞ = 0.9 was used to isolate the VLSP, and a bandpass filter with
cutoffs of ωδ/U∞ = 0.9 and 8.0 was used to isolate the LSP. These filters were designed
as digital finite impulse response filters with the cutoff frequencies placed at −6 dB
attenuation. The filter slopes were made as steep as possible while keeping the filters
numerically tractable. We refer to these two filtered signals as pLS and pVLS.

918 A18-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

33
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.339


B. Gibeau and S. Ghaemi

y/λ
102

103

y/λ
102

103

(b)

(a)

10–1 100 101

10–1 100 101

ωδ/U∞

∠φ
pu

 (ω
)

∠φ
pv

 (ω
)

0

0

0.1π

0.2π

–0.2π

–0.4π

–0.6π

–0.8π

0.3π

0.4π

Figure 10. Estimated phase between wall pressure and velocity fluctuation (∠φ(ω)pui ) as a function of
wall-normal distance for the (a) streamwise and (b) wall-normal velocity components. Computed using the
measurements from FOV2. A positive phase indicates that p leads ui, while a negative phase indicates that p
lags ui.
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Figure 11. Probability density of the full spectrum of wall-pressure fluctuations compared with that of the LSP
and VLSP fluctuations shown on (a) linear and (b) semi-logarithmic axes. The dashed lines represent Gaussian
fits to the same data. All curves are normalized using prms, the root-mean-square value of the full spectrum of
fluctuations.

The probability density functions of pLS and pVLS are compared with that of the full
spectrum in figure 11. The functions are displayed on linear and semi-logarithmic axes and
are compared with Gaussian fits for reference. The horizontal axes are normalized using
prms of the full spectrum in all cases. Figure 11(a) reveals that the peak probability density
of pVLS is more than four times that of the full spectrum, while the peak for pLS is not
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quite double. This indicates that the wall-pressure fluctuations within these two frequency
bands are lower in magnitude in general, with the pVLS having the lowest magnitudes.
More precisely, the root-mean-square value of pLS and pVLS are 53 % and 20 % of prms,
respectively. This is consistent with the results of Beresh et al. (2013), who found that
low-frequency wall-pressure fluctuations are weaker than high-frequency wall-pressure
fluctuations. Figure 11(a) also reveals that pLS deviates slightly from the Gaussian fit at
the peak, while pVLS does not. Figure 11(b) reveals some deviation from Gaussian at the
extreme tails for pLS, but this is again not observed for pVLS, which appears to adhere to
Gaussian behaviour at all amplitudes. We therefore conclude that the VLSP fluctuations
are Gaussian, while the LSP fluctuations are nearly Gaussian.

4.2. Very-large-scale coupling
In the previous section the coherence function between wall pressure and fluctuating
velocity revealed two distinct frequency bands of high coherence which appear to be
associated with structures with lengths ranging from roughly 0.3δ to 3δ for one band
and lengths greater than 3δ for the other. We therefore refer to these bands as the LSP
and VLSP fluctuations, respectively, and we denote their pressure signals as pLS and pVLS.
Within this section, we further investigate the pressure-velocity coupling associated with
the VLSP band. The coupling observed in the LSP band will be investigated in § 4.3.

We revisit the space–time pressure-velocity correlations computed in § 3.2, but this time
using pVLS in place of p. By using only pVLS to compute the correlations, we are isolating
the motions that cause these fluctuations and, therefore, we are extracting the portion
of Rpui associated with the VLSP band. We define the space–time pressure-velocity
correlation associated with the VLSP band as RVLS

pui
= Rpui |p=pVLS following (3.1) where

pVLS has been isolated using a low-pass filter as described in § 4.1. We also consider the
correlations computed using only pVLS > 0 or pVLS < 0 to isolate the motions associated
with each sign of fluctuation. These conditional cases are denoted as RVLS+

pui
= RVLS

pui
|pVLS>0

and RVLS−
pui

= RVLS
pui

|pVLS<0.
We begin by considering the streamwise–wall-normal slices of RVLS

pui
, RVLS+

pui
and RVLS−

pui
in figure 12. The streamwise and wall-normal components are plotted at z = 0, while
the spanwise component is plotted at z/δ = 0.2. Note that the colourbar scaling is
reduced compared with that of Rpui in figure 7 because the correlations magnitudes are
considerably weaker, especially for the wall-normal and spanwise components. This is
likely because the wall-pressure fluctuations in the VLSP band are five times weaker than
those of the full spectrum as was shown in figure 11.

Figure 12 makes it immediately apparent that the motions most correlated with the
VLSP fluctuations are unlike those captured by the correlations computed using the full
wall-pressure spectrum. The contours of RVLS

pu displayed in figure 12(a) reveal that pVLS
is positively correlated with u over a large streamwise extent of −3.8 � ΔtUc/δ � 1.8
and reaching beyond y/δ = 0.8 in height. A much smaller and weaker region of negative
correlation exists upstream, and a somewhat weaker but highly elongated region of
negative correlation extends far downstream from the positively correlated region. The
entirety of these regions are not shown in figure 12(a) to keep the figure manageable.
However, we note that the upstream region of weak negative correlation exists between
−6.6 � ΔtUc/δ � −4.2, and the downstream region extends to upwards of ΔtUc/δ ≈
12. This latter region of correlation seems to be the source of the highly elongated,
wall-attached region of negative correlation visible in the contours of Rpu and R+

pu
shown in figure 7(a). In contrast to the correlations computed using the full wall-pressure
spectrum, the contours of RVLS+

pu and RVLS−
pu remain largely unchanged relative to RVLS

pu .
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Figure 12. (a) Streamwise, (b) wall-normal and (c) spanwise components of the space–time pressure-velocity
correlations computed using pressure filtered to isolate the VLSP fluctuations (RVLS

pui
= Rpui |p=pVLS ) following

(3.1). The superscripts ‘+’ and ‘−’ denote correlations computed using only pVLS > 0 or pVLS < 0,
respectively. The streamwise–wall-normal planes in (a) and (b) are located at z = 0, while those in (c) are
located at z = 0.2δ. The plots in (c) do not cover as much of the wall-normal distance due to the limitations of
FOV3. The uncertainties associated with these correlations are estimated in Appendix B.

Figure 12(b) reveals a large region of negative correlation in the contours of RVLS
pv . This

region extends through the range −4.3 � ΔtUc/δ � 1.1, exceeds y/δ = 0.8, and has a
different shape overall when compared with that of RVLS

pu . Regions of weaker positive
correlation with similar shapes sit immediately upstream and downstream from this region
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of negative correlation, revealing a clear alternating pattern. The coherence estimates
of figure 9 showed a much higher coherence between pVLS and u than between pVLS
and v. This is also apparent in the present correlations, as RVLS

pv is approximately four
times weaker than RVLS

pu . In addition, the contours of RVLS+
pv and RVLS−

pv also appear to
remain relatively unchanged compared with RVLS

pv , just as was the case for the streamwise
component. The regions of high correlation that overlap between RVLS

pu and RVLS
pv reveal

that the motions most correlated with pVLS feature u and v of opposite sign. However,
these motions are different from sweeps and ejections, which are typically more localized
and intense. Instead, these motions appear to be large-scale high- and low-speed streaks
with relatively weak wall-normal velocity components.

The wall-normal velocity visible in RVLS
pv is supported by the contours of RVLS

pw in
figure 12(c). The near-wall region of strong positive correlation within the subfigure
indicates that there is fluid motion away from z = 0 beneath the high-speed streaks
(splatting) and motion towards z = 0 beneath the low-speed streaks (an influx to replace
the fluid being lifted). Additionally, a region of weaker negative correlation with a similar
streamwise extent exists upstream from the region of positive correlation. A large portion
(∼3–4δ) of these two regions of opposite correlation overlap in the streamwise direction,
forming a region where the spanwise motion near the wall is opposite to the spanwise
motion above it. When considered along with RVLS

pv , which has a comparable magnitude,
it is straightforward to see that the large-scale streaks associated with the VLSP band
are accompanied by quasi-streamwise vortex pairs that are nearly horizontal. Finally,
figure 12(c) reveals that the contours of RVLS

pw are also largely invariant when considering
only positive or negative VLSP fluctuations, just as was the case for the other two
components of the correlation. This suggests that the motions that are responsible for
pVLS > 0 and pVLS < 0 are quite similar but opposite to one another.

To conclude our analysis of the pressure-velocity coupling in the VLSP band,
we form visualizations of the motions responsible for pVLS > 0 and pVLS < 0. The
vector fields associated with RVLS+

pui
and −RVLS−

pui
are presented in figures 13(a–c) and

13(d–f ), respectively. The latter correlation has been multiplied by −1 to capture the
correct flow direction of the associated velocity fluctuations. Figure 13(a,d) show the
streamwise–wall-normal plane of the corresponding vector field at z = 0. These subfigures
are marked with vertical lines which represent the locations of spanwise–wall-normal
planes of the same vector field that are plotted directly below. To improve the
visualizations, the vector density has been decimated and the vector lengths in the
spanwise–wall-normal planes have been increased. The background colour denotes the
streamwise component of the correlations and has the same scaling as figure 12(a).

The average motion associated with pVLS > 0 in figure 13(a–c) is a region of positive
streamwise velocity fluctuation extending ∼5.6δ in the streamwise direction, spanning to
z/δ ≈ ±0.4, and reaching to at least y/δ = 0.8 in height. This motion is accompanied
by a relatively weak negative wall-normal component and is flanked by similar regions
of low streamwise velocity. Quasi-streamwise vortical motions with a slight angle with
respect to the wall are found at the interfaces between the primary high-speed region and
the adjacent low-speed regions. This inclination is apparent from the change in height of
the vortical motions between figure 13(b,c). The average motion associated with pVLS < 0
in figure 13(d–f ) is similar to the one for pVLS > 0, but with an opposite direction of
velocity fluctuation. This low-speed region is also flanked by large opposite motions and
quasi-streamwise vortices. It also appears to be a bit narrower than the motion associated
with pVLS > 0.
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Figure 13. Visualizations of the vector fields associated with (a–c) RVLS+
pui

and (d–f ) −RVLS−
pui

. The background
colour represents the streamwise component of the correlations and has the same scaling as figure 12(a). The
coloured lines in (a,d) show the locations of the spanwise–wall-normal planes that are plotted directly below.
The vector lengths in (b,c,e, f ) have been altered relative to those in (a,d) to improve the visualizations.

The motions visualized in figure 13 can clearly be associated with the VLSMs, as all
visible features are consistent with the statistical appearance of the VLSMs reported in
the literature to date. The observed streamwise extent of the correlations is greater than
the minimum of 3δ defined for the VLSMs (Balakumar & Adrian 2007) and also closely
matches the length of the VLSMs as it appears in statistical measures (∼6δ) (Hutchins &
Marusic 2007a; Lee & Sung 2011). Additionally, the wall-normal and spanwise extents
of the correlations capture the range of heights and widths of the VLSMs measured in
previous work (Dennis & Nickels 2011a). The structure of the correlations also shows
that low-speed VLSMs are flanked by high-speed VLSMs and vice versa, and that the
interfaces between these opposite motions feature counter-rotating streamwise vortical
motions. This exact structure has been observed in statistical representations of the VLSMs
in past investigations (Hutchins & Marusic 2007b; Marusic & Hutchins 2008; Chung &
McKeon 2010; Hutchins et al. 2012), where the counter-rotating vortical motions are often
referred to as ‘roll modes’. It is well accepted at this point that the low-speed VLSMs
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exist between the legs of large hairpins (Kim & Adrian 1999; Elsinga et al. 2010; Dennis
& Nickels 2011b; Lee & Sung 2011). These hairpins exist in packets which induce the
elongated low-speed zones via the ejection of near-wall fluid. The same hairpins also cause
the formation of elongated high-speed zones at the sides of the packets, as the outer regions
of the hairpin legs sweep high-speed fluid towards the wall. This process results in the
observed spanwise staggering of opposite VLSMs. It also explains the weak wall-normal
components and ‘roll modes’ in the correlations, which appear as average motions due to
the continuous presence of hairpins. We can therefore conclude that the pressure-velocity
coupling observed within the VLSP band of figure 9 is a direct result of the VLSMs.

4.3. Large-scale coupling
We now move on to investigating the pressure-velocity coupling observed within the LSP
band of figure 9. We denote the wall-pressure fluctuations within the LSP band as pLS,
and we have isolated these fluctuations using a bandpass filter as described in § 4.1. We
compute space–time pressure-velocity correlations using pLS to isolate the portion of Rpui

associated with the LSP fluctuations, and we define this correlation as RLS
pui

= Rpui |p=pLS
following (3.1). The correlations computed using only pLS > 0 or pLS < 0 are also
considered and are denoted as RLS+

pui
= RLS

pui
|pLS>0 and RLS−

pui
= RLS

pui
|pLS<0.

Streamwise–wall-normal planes of RLS
pui

, RLS+
pui

and RLS−
pui

are given in figure 14. To
remain consistent with the previous analyses, the streamwise and wall-normal components
are plotted at z = 0, while the spanwise component is plotted at z/δ = 0.2. We note that
the colourbar scaling is the same as that used to show Rpui in figure 7. When looking
at figure 14 as a whole, it is clear that the overall structure of RLS

pui
is quite similar to

that of Rpui . However, one change that is immediately apparent is that the most elongated,
wall-attached features of Rpui are no longer present. These features can clearly be attributed
to the lower frequencies of the VLSP band as was shown in § 4.2.

The contours of RLS
pu in figure 14(a) feature a region of positive correlation that sits

above the pressure measurement location and reaches upstream to ΔtUc/δ ≈ −1.1 and
to at least y/δ = 0.8 in height. A region of negative correlation begins just downstream
from the pressure measurement location, extending from the wall at an angle to reach
ΔtUc/δ ≈ 2.3 and y/δ ≈ 0.8. An alternation between positive and negative correlation
in the streamwise direction is now visible, as two new regions of weak correlation have
emerged farther upstream and downstream with opposite sign to the regions that are
adjacent. When considering RLS+

pu , the contours closest to the pressure measurement
location enlarge, and the outer regions of weak correlation mostly disappear. For RLS−

pu ,
the region of positive correlation immediately upstream from the pressure measurement
location becomes smaller, and the outer regions of weak correlation enlarge. These outer
regions of correlation have now become quite elongated with streamwise extents of ∼3–4δ.

The contours of RLS
pv in figure 14(b) are nearly identical to those of Rpv in figure 7(b).

Some small differences are found in the magnitudes, but the shapes and sizes do
not change much when only the LSP fluctuations are considered. This remains true
when the correlations are computed using only the positive or negative wall-pressure
fluctuations. Similarly, RLS

pw, RLS+
pw and RLS−

pw in figure 14(c) are quite similar to their
full-spectrum counterparts in figure 7(c). We will therefore not describe these contours
in detail for the sake of brevity. However, we note that the patterns of figure 14(b,c)
reveal that inclined counter-rotating vortex pairs exist downstream from the wall-pressure
measurement location in all cases. These downstream vortices were only present for
negative wall-pressure fluctuations in the full-spectrum correlations.
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Figure 14. (a) Streamwise, (b) wall-normal and (c) spanwise components of the space–time pressure-velocity
correlations computed using pressure filtered to isolate the LSP fluctuations (RLS

pui
= Rpui |p=pLS ) following

(3.1). The superscripts ‘+’ and ‘−’ denote correlations computed using only pLS > 0 or pLS < 0, respectively.
The streamwise–wall-normal planes in (a) and (b) are located at z = 0, while those in (c) are located at z =
0.2δ. The plots in (c) do not cover as much of the wall-normal distance due to the limitations of FOV3. The
uncertainties associated with these correlations are estimated in Appendix B.

The strong similarities between RLS
pui

and Rpui indicate that the dominant
pressure-velocity coupling is primarily a result of the LSP band, even when the full
spectrum of wall-pressure fluctuations is considered. The differences between these two
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ωδ/U∞ f (Hz)

q = 1 0.9–2.7 17.5–53.1
q = 2 2.7–4.4 53.1–88.8
q = 3 4.4–6.2 88.8–124.3
q = 4 6.2–8.0 124.3–160.0

Table 2. Frequency ranges associated with the quartiles of the LSP band.

sets of correlations, which are primarily found in the streamwise component, can be
clearly attributed to the influence of the VLSP band and, therefore, to the VLSMs.
However, the similarities between RLS

pui
and Rpui also reveal that isolating the space–time

pressure-velocity correlations associated with the entire LSP band does not bring us much
closer to understanding the pressure-velocity coupling, as the motions associated with
RLS+

pui
and RLS−

pui
are almost the same as those associated with R+

pui
and R−

pui
. Despite

this, the correlations of figure 14 do provide us with a hint. RLS+
pui

indicates that positive
wall-pressure fluctuations are associated with a localized ejection followed by a localized
sweep, and vice versa for RLS−

pui
. When these motions are considered along with the inclined

vortex pairs evident in figure 14(b,c), we can see that RLS
pui

provides evidence of large
hairpin packets.

Hairpin packets are characterized as streamwise-aligned sequences of full or partial
hairpins (canes, legs and heads) that increase in size with downstream distance. Packets
of various sizes exist, often superimposed to form a hierarchy (Adrian 2007). The inner
region of a hairpin forms ejection motions, while the outer region forms sweeping
motions, and so each convecting hairpin results in a sweep followed by an ejection. It
then follows that a convecting packet forms a longer series of alternating sweeps and
ejections. Recall from figure 9 that the region of high coherence associated with the
LSP fluctuations is reminiscent of the attached-eddy hypothesis. Hairpin vortices are
indeed considered attached eddies because their sizes generally increase with wall-normal
distance. The region of high coherence in conjunction with RLS

pui
therefore suggests that

the pressure-velocity coupling in the LSP band may be caused by the passage of hairpin
packets. To test this notion, we further decompose RLS

pui
into smaller frequency bands in an

attempt to expose the hierarchical organization of the packets.
The frequencies associated with the LSP band have been split into quartiles, with each

containing exactly one quarter of the frequency range. We denote the pressure fluctuations
associated with these quartiles as pLSq , where the subscript q is used to index the qth
quartile of the LSP band. The frequency ranges associated with each quartile are given in
table 2. The quartiles are isolated with filters designed using the same guidelines described
in § 4.1, and then are used to decompose the correlations associated with the LSP band
into simpler parts. We define the space–time pressure-velocity correlations associated
with each quartile of the LSP band as R

LSq
pui = Rpui |p=pLSq

following (3.1). The resulting
correlations are displayed using streamwise–wall-normal planes in figure 15. The planes
containing R

LSq
pu and R

LSq
pv are located at z = 0, while those of R

LSq
pw are located at different

spanwise locations depending on the size of the structures captured by the correlations.
These locations are z/δ = 0.25, 0.2, 0.15 and 0.1 for increasing q. Finally, we note that the
colourbar scaling is different than that of RLS

pui
shown in figure 14.

Figure 15 clearly shows that the application of (3.1) to individual quartiles of the LSP
band has decomposed the correlations into a hierarchy of self-similar structures. The same
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Figure 15. (a) Streamwise, (b) wall-normal and (c) spanwise components of the space–time pressure-velocity

correlations computed using pressure filtered to isolate quartiles of the LSP band (R
LSq
pui = Rpui |p=pLSq

; q = 1,

2, 3, 4) following (3.1). The frequency range associated with each quartile is given in table 2. Here R
LSq
pu and

R
LSq
pv are plotted at z = 0, while R

LSq
pw is plotted at z/δ = 0.25, 0.2, 0.15 and 0.1 for increasing q.
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pattern is visible for each quartile, with the primary difference being its overall size, which
decreases with increasing q. These sizes appear to span roughly one order of magnitude.
In figure 15(a,b), R

LSq
pu and R

LSq
pv reveal the presence of ejections and sweeps occurring

immediately upstream and downstream from the pressure measurement location, just as
was the case for RLS

pui
in figure 14. Specifically, we have a sweep immediately upstream from

the pressure measurement location and an ejection immediately downstream for pLSq > 0,
and vice versa for pLSq < 0. However, the alternating pattern now extends farther upstream
and downstream to produce a longer sequence of ejections and sweeps. These motions are
accompanied by inclined vortical structures as is evident from the contours of R

LSq
pw in

figure 15(c). Since the LSP band is associated with the self-similar flow pattern visible in
figure 15, it is evident that considering the entire LSP range at once averages out much of
the underlying pattern that forms the correlations. It is straightforward to see by inspection
how combining the correlations of each quartile would produce the patterns of RLS

pui
shown

in figure 14.
We have further investigated R

LSq
pui by selecting one quartile of the LSP band and

visualizing the motions associated with pLSq > 0 and pLSq < 0 using vector fields
constructed from the correlations. We used the conditional correlations denoted as
R

LSq+
pui = R

LSq
pui |pLSq>0 and R

LSq−
pui = R

LSq
pui |pLSq<0 for this purpose to isolate the motions

associated with each sign of fluctuation, and we have selected the quartile q = 3 (4.4 <

ωδ/U∞ < 6.2) for the visualization. Given that the patterns of R
LSq
pui are self-similar,

the motions visible in the correlations for q = 3 represent the general behaviour of
all quartiles, just on a different scale. The visualizations associated with RLS3+

pui
and

−RLS3−
pui

are presented in figures 16(a,b) and 16(c,d), respectively. The latter correlation
was multiplied by −1 to capture the correct flow direction of the associated velocity
fluctuations. Figure 16(a,c) show the vector fields in the streamwise–wall-normal
plane at z = 0. The horizontal lines within these subfigures show the location of the
streamwise–spanwise planes plotted in figure 16(b,d). The wall-normal location of these
latter planes (y/δ = 0.09) was selected to best show patterns of the inclined vortical
motions visible in the correlations of figure 15.

The visualizations of RLS3+
pui

and −RLS3−
pui

in figure 16 reveal a significant change within
the long series of sweeps and ejections visible in the correlations. The sweeping motions
are now larger and more intense, while the ejection motions are smaller and less intense.
It is apparent that the contours for both pLS3 > 0 and pLS3 < 0 reveal the same pattern
with only a streamwise shift between the two cases. In the streamwise–wall-normal planes
of figure 16(a,c), we see a series of spanwise vortices that are all rotating clockwise; the
approximate locations of these vortices are marked in the figure. The size and wall-normal
location of these spanwise vortices increases with downstream distance, and each is also
associated with a pair of inclined vortices (also marked) that can be seen in the portion of
the vector fields shown in the streamwise–spanwise planes of figure 16(b,d). These patterns
are consistent with hairpins, as each of these structures features a head (spanwise vortex)
rotating clockwise and legs (inclined vortex pairs) rotating to produce an ejection between
them. Since these structures align in the streamwise direction and increase in size with
downstream distance, the observed pattern can clearly be attributed to hairpin packets.

The vector field associated with pLS3 > 0 shown in figure 16(a,b) reveals that positive
wall-pressure fluctuations occur between two hairpins where an upstream sweep opposes
a downstream ejection to form an inclined shear layer structure. Such inclined shear layers
are known to exist upstream from hairpins just as observed in the figure (Adrian 2007).
In contrast, the vector field associated with pLS3 < 0 shown in figure 16(c,d) reveals
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Figure 16. Visualizations of the vector fields associated with (a) RLS3+
pui

and (b) −RLS3−
pui

. These visualizations
represent the quartile within the LSP band defined by 4.4 < ωδ/U∞ < 6.2. The background colour represents
the streamwise component of the correlations and has the same scaling as figure 15(a). The horizontal lines in
(a,c) show the location of the associated streamwise–spanwise planes plotted directly below. The vector lengths
in (b,d) have been altered relative to those in (a,c) to improve the visualizations. Rotational markers have been
added to clearly show the locations of the vortical motions.

that negative wall-pressure fluctuations occur when the head of a hairpin, which has
a low-pressure core, exists directly over the pressure measurement location. Thus, the
convecting series of hairpins results in the alternation between positive and negative
wall-pressure fluctuation at a frequency that depends on the size and spacing of the
hairpins and the convection velocity of the packet.

These observations are consistent with the findings of past studies. The earlier
works of Kim (1983), Thomas & Bull (1983) and Kobashi & Ichijo (1986) associated
a negative-positive-negative wall-pressure fluctuation pattern with the bursting cycle.
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According to the present results, two hairpins in succession would cause this
negative-positive-negative pattern. Of course, we now know that the bursting process
is simply a series of ejections and sweeps caused by hairpin packets (Adrian 2007).
Kim (1983) and Kobashi & Ichijo (1986) also associated the pattern with inclined vortex
pairs, while Thomas & Bull (1983) associated it with shear layer and horseshoe structures,
thus providing even more support for our observations. Past studies of HAPPs at the
wall have also drawn conclusions that support the present results. Johansson et al.
(1987) associated positive and negative HAPPs with shear layer structures and sweep-type
motions, respectively. Sweeps are formed by the heads of hairpins, and so both of these
conclusions match what is observed here. Ghaemi & Scarano (2013) concluded that the
HAPPs can be directly tied to hairpin vortices. They found that positive HAPPs are caused
when ejections formed by hairpins are opposed by upstream sweeps to form a shear layer,
and their visualization of this shows remarkable agreement with the patterns of figure 16.
Their measurements of acceleration showed that the lower region of this shear layer
contains a stagnation point, which reveals the source of the increased pressure. They also
found that negative HAPPs are caused by the low-pressure cores of vortical structures,
including hairpin heads. The structures that they found to cause positive and negative
wall-pressure fluctuations are therefore consistent with the present observations. The
excellent agreement between the present results and the literature allows us to conclude
that the pressure-velocity coupling observed within the LSP band of figure 9 is a direct
result of convecting hairpin packets of varying sizes.

5. Further discussion

5.1. Decomposition of the pressure-velocity correlations
Filters were used to isolate the LSP and VLSP fluctuations, and space–time
pressure-velocity correlations were computed using the filtered pressure signals. This
analysis technique was found to decompose the pressure-velocity correlations into simpler
parts that were easy to interpret in terms of the coherent structures that are known to
exist within TBLs. This is in stark contrast to the correlations computed using the full
wall-pressure spectrum, which made it difficult for past investigators to conclusively
identify the sources of the wall-pressure fluctuations (Buchmann et al. 2016; Naka et al.
2015). We believe this is because the full-spectrum correlations act to smear the patterns
caused by motions of varying types, sizes and locations. This analysis was possible
because of the coherence estimates, which clearly showed which frequency bands were
associated with different coupling mechanisms and, therefore, informed the design of
the filters. This technique may be useful for identifying the pressure-velocity coupling
mechanisms in other turbulent flows that feature a large separation of scales and varying
coherent structures.

5.2. Very-large-scale motions and wall pressure
The analysis of § 4.2 has shown that the pressure-velocity coupling observed within the
VLSP band of figure 9 is caused by the VLSMs. Our results indicate that high-speed
VLSMs cause positive wall-pressure fluctuations, while low-speed VLSMs cause negative
wall-pressure fluctuations. This observation is the opposite of what one would expect
when considering the conservation of energy. It then seems that the wall-normal and
spanwise velocity components of these elongated structures are primarily responsible for
the observed low-frequency pressure modulation. This was also noted by Naka et al.
(2015) for the relationship between field pressure and the VLSMs. The observed weak
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splatting and lifting of fluid beneath these high- and low-speed structures appears to be
the mechanism by which wall pressure is affected. The downward motions associated
with high-speed VLSMs transport fluid toward the wall, causing a positive pressure.
Conversely, the upward motions associated with low-speed VLSMs causes a suction
near the wall and, therefore, a negative pressure. The frequency at which this occurs
then depends on the length, convection velocity and meandering of these structures.
We emphasize that the wall-pressure fluctuations associated with the VLSMs are five
times weaker than those associated with the full wall-pressure spectrum in the present
investigation as was discussed in § 4.1. This is likely because the wall-normal component
associated with the VLSMs is relatively weak. This also explains the lower coherence
between wall pressure and the wall-normal velocity component observed within the VLSP
band.

The correlations associated with the VLSMs indicate that their peak pressure effect is
shifted towards the front of the structure. This was also observed in the VLSP band of
the phase plots shown in figure 10, which indicate that wall pressure leads streamwise
velocity fluctuation. The reason for this phase delay is not clear at the moment, but it
is interesting to discuss this point in terms of the pressure gradients within the VLSMs.
Since the peak wall pressure is shifted towards the front of the structure, the streamwise
pressure gradient at the wall is of the same sign over most of the length of a VLSM. For a
high-speed VLSM, there is an adverse pressure gradient at the wall over most of the length
because the highest wall pressure is observed near the front of the structure. In contrast,
there is a favourable pressure gradient at the wall over most of the length of a low-speed
VLSM because the minimum wall pressure is observed near the front of the structure.
This may explain the mechanism by which the VLSMs act to modulate the amplitude
and frequency of the near-wall motions as has been shown in previous studies (Mathis
et al. 2009; Ganapathisubramani et al. 2012). These works have shown that high-speed
VLSMs amplify the near-wall turbulence, while low-speed VLSMs suppress it. This is
consistent with the pressure gradients observed here, as adverse pressure gradients are
known to increase turbulence, while favourable pressure gradients are known to reduce it.
It is also interesting to note that these studies have found the opposite modulation effect
farther away from the wall in the latter half of the logarithmic layer. When looking at the
results of Naka et al. (2015), who associated field pressure with the VLSMs, it seems that
the peak field pressure occurs near the back of the highly elongated structures visible in
their correlations. This suggests that the streamwise pressure gradient within the VLSMs
changes direction away from the wall, and would also explain the different modulation
effects observed at the wall and farther from it.

5.3. Hairpin packets and wall pressure
In § 4.3 we showed that the pressure-velocity coupling of the LSP band can be attributed to
convecting hairpin packets. The mechanism by which hairpin packets affect wall pressure
found in our results is not new to the community. However, there are a few novel insights
to note. First, we have shown that hairpin packets beyond the logarithmic layer (y/δ � 0.2
here) affect wall pressure by the same mechanism as the smallest hairpins very close to the
wall (y/λ � 60) by comparison with the results of Ghaemi & Scarano (2013). However,
the present results indicate that the lower-frequency wall-pressure fluctuations associated
with these larger hairpins are relatively weak, while the results of Ghaemi & Scarano
(2013) reveal that the smaller hairpins near the wall are capable of causing HAPPs. It then
seems to be the case that the smaller hairpins cause stronger wall-pressure fluctuations,

918 A18-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

33
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.339


Low- and mid-frequency wall-pressure sources in a TBL

presumably because they are closer to the wall. The agreement between the present results
and those of Ghaemi & Scarano (2013) also implies that the region of high coherence
between wall pressure and velocity that is associated with the hairpin packets should
extend to frequencies that are higher than what is observed here. This would likely be the
case if the resolution of our velocity measurements was improved, as they currently limit
the spatial and temporal scales that can be resolved. In fact, there is evidence to support this
within the coherence plots of figure 9, which show an extension of the region associated
with the hairpins to higher frequencies, but with a much lower magnitude. Second, we
have shown that the lowest frequency that can be associated with the hairpins in the present
study coincides with the peak of the wall-pressure spectrum. This suggests that the peak
is a lower limit to the frequencies that are affected by hairpin packets, although it is likely
that this is not a hard cutoff and that the hairpins may have some diminishing influence at
lower frequencies. This needs to be confirmed over a range of Reynolds numbers and by
other investigators. Despite this, both of these points have implications for those looking
to model the wall-pressure fluctuations by taking advantage of the hairpin paradigm (eg.
Ahn, Graham & Rizzi 2010).

5.4. Conceptual model of the low- and mid-frequency wall-pressure sources
According to the present results, the low- and mid-frequency regions of the wall-pressure
spectrum shown in figure 5 are captured by the VLSP band and the first two quartiles
of the LSP band. This indicates that the dominant wall-pressure sources contributing to
these two regions are the VLSMs and the largest hairpin packets which extend beyond
the logarithmic layer. This agrees well with previous works showing that the low-
and mid-frequency regions of the spectrum scale with outer-layer variables (Farabee &
Casarella 1991; Tsuji et al. 2007; Klewicki et al. 2008). It is now accepted in the literature
that the largest hairpin packets generally exist around the low-speed VLSMs (Kim &
Adrian 1999; Elsinga et al. 2010; Dennis & Nickels 2011b; Lee & Sung 2011). We also
know that the VLSMs are staggered in the spanwise direction and meander as they convect
downstream. These structural consistencies allow us to formulate a conceptual model
for the dominant low- and mid-frequency wall-pressure sources and their mechanisms.
A schematic of this conceptual model is presented in figure 17. The schematic shows the
VLSMs staggered in the spanwise direction with the interfaces between adjacent structures
featuring vortical motions, which are a result of the continuous presence of hairpins (full
and partial) around the elongated low-speed structures. The inner ejections and outer
sweeps of these hairpins induce the weak wall-normal components of the VLSMs, which
cause the low-frequency modulation of wall pressure via splatting and lifting at the wall.
The same hairpins feature low-pressure heads and form regions of stagnation between one
another, and, therefore, they influence wall pressure at a higher frequency as they convect
downstream. The superposition of these two mechanisms then leads to the wall-pressure
fluctuations of the low- and mid-frequency regions of the spectrum. We emphasize that
this conceptual model is meant to describe the predominant low- and mid-frequency
wall-pressure sources that originate from coherent structures. Since we are dealing with
turbulence, we expect some proportion of the fluctuations at these frequencies to originate
from large motions that are less coherent.

6. Summary and conclusions

We have employed simultaneous pressure and high-speed PIV measurements to
investigate the wall-pressure fluctuations caused by the largest motions within a TBL at
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Figure 17. Simplified schematic showing the coherent structures that contribute to the low- and
mid-frequency regions of the wall-pressure spectrum (ωδ/U∞ � 4 in the present work).

Reτ = 2600 (Reθ = 6000). Post-processing of the pressure measurements was used to
remove the wind tunnel background noise using a Wiener filter and to correct signal
distortion caused by Helmholtz resonance.

The normalized cross-spectra between wall pressure and velocity throughout the TBL
was studied using an estimate of the magnitude-squared coherence function. Two distinct
regions of high coherence between wall pressure and velocity were identified. The first
region spanned from the lowest frequencies up to the peak of the wall-pressure spectrum
and reached to approximately y/λ = 1300 (∼0.5δ) in the wall-normal direction. A much
higher coherence was observed for the streamwise component of velocity relative to the
wall-normal component. The second region of high coherence spanned from the peak of
the wall-pressure spectrum to approximately one-third of the way into the overlap region.
A higher coherence was observed here for the wall-normal velocity component, although
the streamwise component was also quite strong. The region exceeded the wall-normal
extent of our measurements and was oriented at an angle, with lower frequencies being
associated with distances farther from the wall, thus suggesting that attached eddies
may be responsible for these wall-pressure fluctuations. We termed the frequency bands
containing the first and second regions of high coherence the VLSP and LSP bands after
estimating the streamwise extent of the eddies associated with the fluctuations. We applied
filters to isolate each of these bands, and then computed space–time pressure-velocity
correlations using the filtered pressure signals to identify the motions responsible for the
observed pressure-velocity coupling.
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The pressure-velocity correlations computed to isolate the LSP band revealed that the
observed pressure-velocity coupling is a result of convecting hairpin packets with sizes
spanning at least an order of magnitude to reach well beyond the end of the logarithmic
layer. Positive wall-pressure fluctuations were observed when the sweep from the head
of an upstream hairpin opposes the ejection from between the legs of the downstream
hairpin. This process forms an inclined shear layer and a region of stagnation, which leads
to the positive pressure. Conversely, negative wall-pressure fluctuations were observed
when the low-pressure head of a hairpin exists directly over the pressure measurement
location. A convecting hairpin packet therefore results in the alternation between positive
and negative wall-pressure fluctuation, and the frequency at which this occurs depends on
the size and spacing of the hairpins and the convection velocity of the packet. The lowest
frequency that could be attributed to the hairpin packets seems to coincide with the peak
of the wall-pressure spectrum, although it is possible that the hairpins may have some
diminishing influence at lower frequencies.

The pressure-velocity correlations associated with the VLSP band reveal patterns
that can be easily attributed to the VLSMs. High-speed VLSMs were found to cause
positive wall-pressure fluctuations, while low-speed VLSMs were found to cause negative
wall-pressure fluctuations. Although the streamwise component of these structures is the
dominant motion, it appears that the weaker wall-normal component is responsible for
the observed low-frequency wall-pressure modulation. The weak downward motion of the
high-speed VLSMs appears to push fluid into the wall to cause a positive pressure as
is evident from the splatting that occurs beneath these structures. In contrast, the weak
lifting motion of the low-speed VLSMs seems to cause a suction and, therefore, a negative
pressure as fluid is lifted away from the wall. This is accompanied by an influx of fluid
that occurs near the wall beneath these low-speed structures. The alternation between
splatting and lifting that occurs beneath the VLSMs as they convect downstream therefore
appears to be the mechanism by which they modulate low-frequency wall pressure. The
correlations also reveal that the local extrema of wall pressure occurs near the front of
the VLSMs, indicating that the streamwise pressure gradient at the wall is in the same
direction over most of the structure length. These pressure gradients at the wall are
consistent with the amplitude and frequency modulation that has been observed to occur
beneath the VLSMs (Mathis et al. 2009; Ganapathisubramani et al. 2012).

The demarcation between the LSP and VLSP bands observed here coincides with the
peak of the wall-pressure power spectrum. It then follows that the change in behaviour of
the spectrum at this extremum may be caused by the transition between pressure sources
that occurs at this point in the frequency domain. Frequencies lower than that of the
peak location are associated primarily with the VLSMs, while higher frequencies (up
to a point) are associated primarily with hairpin packets. More experiments at various
Reynolds numbers are needed to confirm whether the demarcation between LSP and VLSP
always occurs at the spectral peak, but this information could be useful to those developing
models for the low-frequency behaviour of the spectrum, which remains unresolved at this
point. Given what we have learned in the present investigation, it seems that the roll-off
of the low-frequency range of the wall-pressure spectrum could be caused by the length
distribution of the VLSMs populating the TBL, as the longest motions causing the lowest
frequencies would be more rare and would therefore contribute less to the power spectral
density.

Funding. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC) (Alexander Graham Bell Canada Graduate Scholarship – Doctoral) and of Future Energy Systems
(project T14-P05).
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Appendix A. Wall-pressure signal correction

Various steps are necessary for correcting the microphone signal that captures wall
pressure using the thread-on pinhole attachment shown in figure 1. The amplitude
and phase distortion caused by Helmholtz resonance must be corrected, and the wind
tunnel background noise must be removed. The procedure implemented in the present
investigation to correct the wall-pressure signal is detailed here.

A typical Helmholtz resonator can be modelled using a second-order transfer function
for a linear, time-invariant (LTI) system (Tsuji et al. 2007), which has a frequency response
G( f ) defined by

|G( f )| =
⎡⎣(1 −

(
f
f ∗

)2
)2

+
(

2ξ f
f ∗

)2
⎤⎦−1/2

, (A1a)

∠G( f ) = − tan−1
[

2ξ( f /f ∗)
1 − ( f /f ∗)2

]
, (A1b)

where f ∗ and ξ are the resonant frequency and damping ratio of the resonator, respectively.
Given that the pinhole system can be modelled as LTI, the vector of true input pressure
p0(t) and the vector of pressure sampled behind the pinhole pp(t) are related through a
convolution with the impulse response of the system

pp(t) = g(t) ∗ p0(t), (A2)

where the impulse response vector g(t) and the frequency response vector G( f ) are related
through the discrete Fourier transform as G( f ) = F{g(t)}. If G( f ) and pp(t) are known
and G( f ) is not zero anywhere, then p0(t) can be obtained by employing the convolution
theorem for Fourier transforms,

p0(t) = F−1
{F{pp(t)}

G( f )

}
. (A3)

The parameters of G( f ) must be determined and the function must be sampled and
arranged appropriately to obtain G( f ) prior to utilizing (A3). The parameters have been
determined for the present pinhole system using dynamic calibration against a second
identical microphone, which will be referred to as the reference. A quasi-anechoic chamber
that is similar to the one used by Naka (2009) has been constructed for this purpose and
is shown in figure 18. The pinhole and reference microphones were placed parallel to each
other facing a loudspeaker within the chamber as is shown in the figure. Sound waves with
frequencies ranging from 1 Hz to 5 kHz were generated and recorded by both microphones
simultaneously. The Fourier coefficients of the recorded signals were used to estimate
the amplitude and phase response of the pinhole resonator which were then used to fit
G( f ), resulting in f ∗ = 2200 Hz and ξ = 0.29. This resonant frequency agrees reasonably
well with the theoretical value of 2340 Hz that is obtained using the dimensions of the
pinhole attachment described in § 2.1. The measured response and the fit model are shown
in figure 19. The plot reveals that the model captures the response of the pinhole well,
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(a) (b)

(c)

Figure 18. Photographs of (a) the quasi-anechoic chamber, (b) the externally supported loudspeaker and
(c) the externally supported microphones. The microphone on the right in (c) is the reference and the
microphone on the left is fitted with the pinhole attachment that is to be calibrated.

but the phase response slightly deviates from that of the model for frequencies beyond
f ≈ 2000 Hz, and the amplitude response deviates for frequencies beyond f ≈ 3000 Hz.
Moreover, both responses show some differences at f ≈ 1500 Hz. These discrepancies may
be attributable to the geometry of the current pinhole and microphone cavity, as they do not
exactly match the standard Helmholtz resonator. Similar differences between the measured
response and the second-order system were also reported by Tsuji et al. (2007). As we will
see shortly, these discrepancies do not significantly affect the signal correction. Moreover,
the range of frequencies relevant to our main conclusions (<160 Hz) falls completely
outside the range affected by Helmholtz resonance (>500 Hz) according to the results of
the dynamic calibration.

The application of (A3) has the potential to amplify high-frequency noise, which is
undesirable. A low-pass filter must be applied after the correction to account for this.
To select the cutoff frequency of this filter, we consider the spectra of wall-pressure
fluctuations presented by Tsuji et al. (2007). Their spectra indicate that frequencies beyond
f ν/U2

τ ≈ 0.25 have decayed several orders of magnitude with respect to the beginning of
the high-frequency range, and so frequencies at or above this value are much higher than
those relevant to the present investigation. We define f ν/U2

τ = 0.25 as the cutoff frequency
of the low-pass filter, which corresponds to roughly 3 kHz in the present TBL. Therefore,
a low-pass filter with a cutoff frequency of 3 kHz is applied following the removal of
Helmholtz resonance from the signals using (A3).

The Helmholtz correction has been tested in the quasi-anechoic chamber using a white
noise signal containing frequencies up to 3 kHz. The pinhole signal, before and after
correction, is compared with the reference signal in figure 20, and it is evident that the
reference and corrected signals match quite well. The correlation coefficient between the
two signals is 0.97, in contrast to 0.58 prior to correction. We therefore conclude that the
corrected pinhole measurements can reliably capture pressure fluctuations between 0.7 Hz
and 3 kHz, which is sufficient to capture the relevant pressure fluctuations in the present
TBL.
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Figure 19. Measured frequency response of the pinhole resonator compared with the second-order model
given by (A1).
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Figure 20. Sample signal of white noise containing frequencies up to 3 kHz: (a) the pinhole microphone
signal pp(t) compared with the reference microphone signal pr(t) and (b) the Helmholtz-corrected signal p0(t)
compared with pr(t).

Finally, the background noise of the wind tunnel must be removed from the
wall-pressure measurements. This has been achieved using a Wiener noise cancelling filter
as outlined by Hayes (1996), which requires a simultaneous measurement of the noise field
along with the wall pressure. This has been accomplished using the second microphone
supported in the free stream as described in § 2.1 and shown in figure 2. The Wiener noise
cancelling filter is posed as an estimation problem of the form

p0(t) = p(t) + pb(t), (A4)
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where, in the present case, p0(t) is a vector containing the Helmholtz-corrected signal
measured through the pinhole, p(t) is a vector containing the true wall pressure and pb(t)
is a vector containing the background noise. The filter provides an estimate for pb(t) so
that it can be subtracted from p0(t) to obtain an estimate for the true wall pressure,

p̂(t) = p0(t) − p̂b(t). (A5)

The ‘hat’ notation used here denotes an estimate. It is important to note that simply
subtracting the measurement of the noise field does not fully remove the background
noise from the wall-pressure signal. This can be due to many reasons, for example,
slight differences between the microphones, different propagation paths between the noise
sources and microphones, or leakage of the boundary layer fluctuations into the noise field
signal. For this reason, we distinguish between the vector of background noise pb(t) and
the vector containing the noise field signal pn(t). The latter is the signal recorded by the
microphone in the free stream.

The Wiener filter is applied as a digital filter whose coefficients c, which represent
the impulse response of the filtering system, are obtained by solving the following set of
Wiener-Hopf equations:

Rpnc = rp0pn . (A6)

Here Rpn is a Toeplitz matrix containing the autocorrelations of pn(t) and rp0pn is a vector
containing the cross-correlations between p0(t) and pn(t). We can expand the compact
notation of (A6) to better see the contents,⎡⎢⎢⎢⎢⎢⎢⎢⎣

rpn(0) rpn(1) . . . rpn(m − 1)

rpn(1) rpn(0) . . . rpn(m − 2)

rpn(2) rpn(1) . . . rpn(m − 3)

...
...

...

rpn(m − 1) rpn(m − 2) . . . rpn(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c(0)

c(1)

c(2)

...

c(m − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

rp0pn(0)

rp0pn(1)

rp0pn(2)

...

rp0pn(m − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A7)

Note that m is the selected filter order. As is evident in (A7), the filter coefficients can be
obtained using only the noise field signal pn(t) and the Helmholtz-corrected pinhole signal
p0(t). The estimated background noise p̂b(t) is then obtained through a convolution of the
filter coefficients with the noise field signal

p̂b(t) = c ∗ pn(t). (A8)

The background noise can then be subtracted following (A5) to obtain the estimated
true wall-pressure signal. The Wiener noise cancelling filter has been implemented in
the present investigation using a filter order of m = 16 000. The order of this filter was
selected by iterating until the power spectrum converged. Figure 21 shows the power
spectral density of wall pressure before and after the estimated background noise has been
subtracted. It is evident in the figure that the majority of the background noise in the
present wind tunnel occurs at the lower frequencies as is expected. The power spectral
density obtained from directly subtracting the noise field signal is also shown, and it
reveals that the background noise is not fully removed in this case, thus justifying the
use of the Wiener filtering technique.

Appendix B. Estimation of uncertainty

Here we estimate the uncertainties associated with the statistics from our analyses that
are represented by means, root-mean-square values, variances and covariances. We first
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Figure 21. Power spectral density of wall pressure φp( f ) without background noise treatment (p0(t)), after
subtracting the noise field signal (p0(t) − pn(t)), and after subtracting the background noise estimated using
the Wiener filter (p0(t) − p̂b(t)).

distinguish between random uncertainty and bias uncertainty because they propagate
differently into these statistical quantities. It is common to estimate the uncertainty
associated with an instantaneous PIV measurement as being a displacement of 0.1 pix.
As discussed by Sciacchitano (2019), this ‘universal constant’ for PIV uncertainty is likely
overly simplistic, as uncertainty depends heavily on the characteristics of each experiment.
However, analyses dedicated to evaluating PIV uncertainty typically return uncertainties
of around 0.1 pix (Raffel et al. 2018), and so for the sake of simplicity, we have adopted
this value here for the random uncertainty associated with the PIV processing algorithm.
The bias uncertainties associated with particle time response and laser pulse timing have
been ignored because they are negligible at the flow speed considered in this investigation.
The bias uncertainty associated with planar calibration has been estimated as 1 pix across
the total calibration distance. This distance was around 1000 pix for the planar calibrations
of our experiments, resulting in a calibration uncertainty of around 0.1 % for FOV1 and
FOV2. In contrast, we considered a much larger calibration uncertainty of 2.8 % for the
stereo-PIV measurements of FOV3 due to the difficulties associated with stereoscopic
calibration. This value was determined by evaluating the change in the mean velocity
profile across the span of FOV3 (∼2δ) in comparison to the more reliable planar PIV
measurements of FOV2. To estimate the uncertainty of the instantaneous wall-pressure
measurements, we assumed that the error in instantaneous pressure was due only to the
calibrator, as the noise associated with the hardware chain is negligible in comparison.
According to the manufacturer data, the uncertainty associated with the calibrator is ±0.2
dB. When considered with the nominal calibration pressure of 94 dB, this leads to a
calibration uncertainty of 2.3 % for instantaneous pressure.

We have employed the equations documented by Sciacchitano & Wieneke (2016)
to estimate the uncertainties stemming from the statistical convergence of the means,
root-mean-square values, variances and covariances. These methods consider the fact
that the present time-resolved measurements are not independent by including an
‘effective number of independent samples’ in the computations. Once these convergence
uncertainties were obtained, the calibration and random uncertainties discussed above
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〈U〉 〈u2〉 〈v2〉 〈uv〉
FOV1 0.2 % 4.2 % 9.8 % 2.8 %
FOV2 0.2 % 2.2 % 2.0 % 0.9 %
FOV3 3.1 % 11.2 % 12.9 % 7.5 %

Table 3. Estimated total uncertainties associated with the mean velocity and Reynolds stresses computed
from the PIV measurements conducted in the present investigation.

Rpu Rpv Rpw RLS
pu RLS

pv RLS
pw RVLS

pu RVLS
pv RVLS

pw

All p 4.7 % 3.6 % 16.4 % 2.6 % 2.1 % 9.2 % 2.5 % 4.9 % 17.7 %
p > 0 4.7 % 3.4 % 15.4 % 2.5 % 1.9 % 8.4 % 2.4 % 4.4 % 16.0 %
p < 0 4.1 % 3.2 % 14.8 % 2.4 % 1.8 % 8.0 % 2.2 % 4.3 % 14.9 %

Table 4. Estimated total uncertainties associated with the pressure-velocity correlations shown in figures 7,
12 and 14. These uncertainties are given as a percentage of the upper colourbar value used to display each
respective correlation.

were propagated through the statistical quantities of interest to obtain the remainder of the
estimated total uncertainty. Note that we assumed that the random errors between different
measurements (e.g. between u and v or between u and p) are uncorrelated.

The estimated total uncertainty in prms was found to be 2.4 %. The estimated total
uncertainties associated with the mean velocity and Reynolds stresses are shown in table 3
as a percent of the statistical quantity in question. Since the convergence uncertainty
depends on individual statistics, the estimated total uncertainties are a function of
wall-normal distance. Therefore, to arrive at the values displayed in table 3, we averaged
the total uncertainty values across a wall-normal range extending from y/δ = 0.02 to
0.5 (roughly y/λ = 50 to 1300). The estimated total uncertainties associated with the
pressure-velocity correlations of figures 7, 12 and 14 are presented in table 4. The values
in the table represent the average uncertainty across the entire FOV used to show each
correlation and are given as a percentage of the upper colourbar value used to display
each correlation. For example, Rpu in figure 7(a) is displayed using a colourbar range of
−2 × 10−5 to 2 × 10−5. Table 4 indicates that the average uncertainty of the correlations
displayed in this contour plot is 4.7 % of 2 × 10−5.

Note that the bulk of the present analyses were conducted using the measurements from
FOV2, which have the lowest uncertainties overall. Only FOV1 was used to determine
δ, δ∗, θ and U∞, while FOV3 was used to obtain the pressure-velocity correlations as a
function of z or w; these correlations suffer from higher uncertainties due to the larger bias
associated with stereoscopic calibration.
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