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Scaling of the streamwise velocity spectrum φ11(k1) in the so-called sink-flow
turbulent boundary layer is investigated in this work. The present experiments show
strong evidence for the k−1

1 scaling i.e. φ11(k1) = A1U2
τk
−1
1 , where k1 is the streamwise

wavenumber and Uτ is the friction velocity. Interestingly, this k−1
1 scaling is observed

much farther from the wall and at much lower flow Reynolds number (both differing
by almost an order of magnitude) than what the expectations from experiments on a
zero-pressure-gradient turbulent boundary layer flow would suggest. Furthermore, the
coefficient A1 in the present sink-flow data is seen to be non-universal, i.e. A1 varies
with height from the wall; the scaling exponent −1 remains universal. Logarithmic
variation of the so-called longitudinal structure function, which is the physical-space
counterpart of spectral k−1

1 scaling, is also seen to be non-universal, consistent with
the non-universality of A1. These observations are to be contrasted with the universal
value of A1 (along with the universal scaling exponent of −1) reported in the literature
on zero-pressure-gradient turbulent boundary layers. Theoretical arguments based on
dimensional analysis indicate that the presence of a streamwise pressure gradient
in sink-flow turbulent boundary layers makes the coefficient A1 non-universal while
leaving the scaling exponent −1 unaffected. This effect of the pressure gradient on the
streamwise spectra, as discussed in the present study (experiments as well as theory),
is consistent with other recent studies in the literature that are focused on the structural
aspects of turbulent boundary layer flows in pressure gradients (Harun et al., J. Fluid
Mech., vol. 715, 2013, pp. 477–498); the present paper establishes the link between
these two. The variability of A1 accommodated in the present framework serves to
clarify the ideas of universality of the k−1

1 scaling.
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1. Introduction
1.1. Background

The issue of the so-called k−1
1 scaling has attracted a great deal of attention in the

literature on turbulent boundary layers (TBLs) investigated in both the laboratory
(Perry, Henbest & Chong 1986; Nickels et al. 2005) and the atmosphere (Katul &
Chu 1998; Lauren et al. 1999; Högström, Hunt & Smedman 2002). In this paper,
the k−1

1 scaling in a special accelerating laboratory TBL flow, namely the sink-flow
TBL, is examined; similar investigations for laboratory TBL flows have, so far, been
limited to zero-pressure-gradient (ZPG) flows in the literature (Nickels et al. 2005).
Strong experimental evidence for the occurrence of k−1

1 scaling (φ11(k1) = A1U2
τk
−1
1 )

in a relatively low-Reynolds-number sink-flow TBL will be presented. It will also
be shown that although the scaling exponent in the observed sink-flow k−1

1 variations
is universal, the coefficient A1 varies with the distance from the wall. This is to be
contrasted with the universal value of A1 reported in the literature for high-Reynolds-
number (high-Re) ZPG TBL flows (Nickels et al. 2005).

The k−1
1 scaling applies to those large-scale motions or eddies that: (i) contain a

significant amount of the kinetic energy of turbulence (Perry et al. 1986); and (ii)
possess friction velocity Uτ , as the velocity scale over the entire range of their sizes
(Davidson, Nickels & Krogstad 2006); Uτ =√τw/ρ wherein τw is the wall-shear stress
and ρ is the density of fluid. For such motions if there exists sufficient spectral overlap
between motions that scale on the inner flow variables and those which scale on
the outer flow variables then it can be shown that the power spectral density (PSD)
φ11(k1) of streamwise velocity fluctuation u, in the spectral overlap zone, must vary
inversely with the streamwise wavenumber k1, i.e. φ11(k1) ∝ k−1

1 . Inner scaling uses y
and Uτ as the length and velocity scales for turbulent motions whereas outer scaling
uses δ and Uτ for the same (Perry et al. 1986). Here y is the wall-normal distance and
δ is the boundary-layer thickness.

It has been shown that for the k−1
1 scaling of the streamwise spectrum, one necessary

condition is that the kinetic energy of the contributing eddies scales on U2
τ (Davidson

et al. 2006; Davidson & Krogstad 2009). If this is true, then this raises a question
of whether the superstructure-type motions (Hutchins & Marusic 2007b) could, by
themselves, contribute to the k−1

1 scaling in ZPG TBL flows. This is so because
it is known that although the spatial extent of superstructures scales on the outer
length scale δ, the superstructure energy (especially the low-wavenumber hump in the
premultiplied streamwise spectra for a high-Re ZPG TBL flow) does not simply scale
on Uτ (Hutchins & Marusic 2007b). Furthermore, Nikora (1999) has noted that the
presence of coherent structures is not essential for the k−1

1 scaling. This is further
discussed in § 3.1 in some detail.

The PSD φ11(k1) of u is defined (see Perry et al. 1986) by the relation

u2 =
∫ ∞

0
φ11(k1) dk1, (1.1)

where the overbar denotes time-average. The k−1
1 scaling, in the spectral overlap zone,

is given by

k1φ11

U2
τ

= A1, (1.2)

where the coefficient A1 is independent of k1.
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There are a variety of ways in which the k−1
1 scaling may be derived (Perry et al.

1986; Sreenivasan 1989; Nikora 1999; Davidson et al. 2006). The most widely used
approach is the spectral scaling and spectral overlap arguments that use dimensional
analysis (Perry et al. 1986; Nickels et al. 2005); the theory presented in § 4 of the
present paper uses this approach.

1.2. Attached motions in a ZPG flow and a sink flow

It has been emphasized that for observing the k−1
1 scaling, measurements must be

made very close to the wall in a high-Re flow (Nickels et al. 2005). Here we assess
these requirements in the context of sink-flow TBLs using the so-called attached-eddy
model and by making comparison with the existing ZPG data. While the attached-eddy
framework is used as a conceptual template in the present work to bring out aspects
related to sink-flow TBLs in relation to the corresponding ZPG flows, it must be
remembered that this is only one of the many alternatives. For example, Davidson
& Krogstad (2009) have proposed an analytical model for TBL flows that does not
predicate upon the existence of attached eddies. In addition, it has already been
suggested that the superstructures may not contribute to the k−1

1 scaling directly (§ 1.1)
and this further makes the simple arguments presented below particularly relevant.

It is known that the attached-eddy model leads to: (i) the k−1
1 scaling of the

streamwise spectrum; and (ii) the pure-wall flow with logarithmic mean velocity
profile (Perry & Chong 1982; Perry & Marusic 1995); throughout this paper pure-
wall flow means the TBL flow wherein the wake component of the structure does not
exist, i.e. the wake factor is zero. This implies that one should have a wide range of
attached motions for the k−1

1 scaling to become evident (Nickels et al. 2007). For ZPG
TBL flows, Perry & Marusic (1995) have shown that extra eddies (type-B eddies) that
do not extend physically to the wall (i.e. detached eddies) are required in the model
in addition to the original attached eddies (type-A eddies) of Perry & Chong (1982);
the k−1

1 scaling is however contributed to only by the attached eddies. Further, it is
important to note that only part of the entire range of attached eddy sizes in effect
contributes to the k−1

1 scaling of the spectrum. We shall call these the k−1
1 eddies.

Nickels et al. (2007) have noted that the size of the largest attached eddy contributing
to the k−1

1 range (i.e. the largest k−1
1 eddy) in a ZPG flow is of the order of 0.1δ

and this corresponds to the height from the wall where the mean-velocity log law
region ends. Note that the changeover from log law to wake profile in a ZPG flow is
smooth and therefore it is difficult to ascertain the corresponding wall-normal location
exactly; the estimates for the end of mean velocity log law range from y = 0.1δ to
0.2δ (Marusic et al. 2013).

Consider first the ZPG flow of Nickels et al. (2005) having Reynolds number
δ+ = δUτ/ν = 14 380; here ν is kinematic viscosity of the fluid. For this flow, the
k−1

1 range, spanning over 30 % of a decade in k1, is observed around y/δ = 0.008
(y+ ≈ 100). Let the height, corresponding to the size of the largest k−1

1 eddy in
a ZPG flow, be δ1 (δ1 ≈ 0.1δ). The Reynolds number δ1+, based on thickness of
this region, would then be δ1+ ≈ 0.1δ+ = 1438. Let the height of the measurement
location be δ2 (δ2 = 0.008δ). Hence, the ratio of largest to smallest attached scales
contributing to the k−1

1 scaling in the high-Re ZPG flow of Nickels et al. (2005) is
δ1/δ2 ≈ 0.1/0.008= 12.5.

Consider now the sink-flow TBL which develops downstream in a self-similar
fashion under a favourable pressure gradient (FPG). In this paper, sink-flow TBL
means a TBL flow that has reached the asymptotic state (zero wake factor) while
developing in the sink-flow FPG. It is known that such flow: (i) is a pure-wall flow
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TBL flow Size δ1 of
the largest
k−1

1 eddy

Scale
separation
δ1/δ2 of the
k−1

1 eddies

y+ at δ2 y/δ where k−1
1

scaling is
expected to

emerge

Reynolds
number δ+

ZPG flow ∼0.1δ 10 ∼100 ∼0.01 ∼10 000
Sink flow ∼δ 10 ∼100 ∼0.1 ∼1000

TABLE 1. Expectations from a ZPG flow and a sink-flow TBL based on a decade of scale
separation of the k−1

1 eddies. Here δ2 is the height of the measurement location from the
wall. The beginning of the mean-velocity log law region is assumed to be y+ ∼ 100 for
simplicity.

with the mean-velocity log law starting next to the buffer layer and extending almost
all through the boundary layer up to its mean edge (Jones, Marusic & Perry 2001;
Dixit & Ramesh 2008); and (ii) can be modelled by considering attached eddies (type-
A eddies) alone (Perry & Marusic 1995). Therefore, the size δ1 of the largest k−1

1 eddy
in a sink-flow TBL may be expected to be of order δ itself, i.e. δ1 ≈ δ (and, hence,
δ1+ ≈ δ+). This is to be contrasted with the ZPG flow where δ1 ≈ 0.1δ as mentioned
earlier. In other words, based on the Reynolds number of the largest k−1

1 eddy, a
sink-flow TBL with δ+ = 1438 may be considered to be equivalent (in a limited sense)
to a ZPG flow with δ+ = 14 380. Whether such an equivalence extends to other aspects
of these flows (structural details, for instance) is an interesting question but that is
beyond the scope of the present paper. It follows that for the same scale separation
δ1/δ2 ≈ 12.5 as in the ZPG case, one has to have δ2 ≈ (1/12.5)δ = 0.08δ in the sink-
flow TBL. This value is an order of magnitude larger than δ2 = 0.008δ in the ZPG
flow discussed in the previous paragraph. Note that the beginning of the log law region
is assumed to be about y+ ∼ 100 in both cases; the main conclusion however remains
unchanged by the specific choice of y+. It is interesting to note that the sink-flow
experiments by Jones (1998) show evidence in support of the above arguments; figure
5.13 therein shows that for δ+ values ranging from 723 to 1757, there is indeed a
substantial k−1

1 range at y/δ = 0.11; see also appendix A in this connection. Table 1
summarizes the expectations from a ZPG flow and a sink-flow TBL based on the
above discussion as referenced to a decade of scale separation of the k−1

1 eddies.
The main difference between a high-Re ZPG TBL and the corresponding low-

Reynolds-number (low-Re) sink-flow TBL is thus the manner in which comparable
scale separation for k−1

1 eddies is achieved. In ZPG flows, the upper bound of the
range of k−1

1 eddy sizes is fixed at y ∼ 0.1δ and therefore the lower bound has to be
pushed further down the range by increasing the flow Reynolds number (i.e. small-
scales becoming smaller); in addition there is a certain indirect influence of the
low-wavenumber hump which is discussed in some detail in § 3.1. In sink-flow TBLs,
however, the upper bound itself moves out to y ∼ δ (i.e. large scales becoming larger)
and therefore large-scale separation for k−1

1 eddies is obtained at a relatively lower
Reynolds number and at locations not extremely close (in terms of y/δ) to the wall.

Thus, the sink-flow TBLs could be an attractive framework for investigating the
k−1

1 scaling at: (i) Reynolds number δ+ which is almost an order of magnitude lower;
and (ii) a wall-normal distance y/δ which is almost an order of magnitude larger, than
that required by the corresponding ZPG flow. Furthermore, one expects the large-scale
structures in a sink-flow TBL to be of larger streamwise extent than those in a ZPG
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flow at the same Reynolds number (Dixit & Ramesh 2010). This may render the
k−1

1 scaling observable over a larger extent in the spectral space compared with that in
a ZPG flow.

The present paper is organized in the following fashion. In § 2 experimental
details of the sink-flow set-up are presented. Section 3 presents streamwise velocity
spectra for a sink-flow TBL in addition to the longitudinal structure function data
which is the physical-space counterpart of streamwise spectra. Section 4 presents
theoretical arguments that support the remarkable features of the sink-flow spectra of
§ 3. Section 5 presents conclusions.

2. Sink-flow TBL experiments
Pitot-tube and hotwire-anemometry measurements of sink-flow TBLs with varying

pressure gradients and Reynolds numbers have been carried out in a suction-type
open-circuit wind tunnel facility (test-section cross-section of 1 foot × 1 foot) at the
Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India.
The facility has been described in detail in Dixit & Ramesh (2008, 2010) (henceforth
DR08 and DR10). For the present study of streamwise velocity spectra in a sink-flow
TBL configuration, raw data from the experiments of DR08 and DR10 has been used.

The flow PG1 of DR10, having δ+ = 803 and 1p = −0.0086, is being considered
here since this is the highest-Reynolds-number sink-flow TBL studied therein. Here
1p = (ν/ρU3

τ ) dp/dx is the wall-scaled dimensionless pressure gradient. Each u signal
has been sampled at fs = 10 kHz (sample interval 1t = 1/fs = 1 × 10−4 s) for
T = 61.44 s using a single-wire probe. At the measurement station L4 (see DR08),
δ = 14.1 mm, Uτ = 0.8545 m s−1 and the free-stream velocity U∞ = 19.2 m s−1

giving δ+ = 803, 1p = −0.0086 and Cf = 2(Uτ/U∞)
2 = 0.00396. The acceleration

parameter is K = (ν/U2
∞) dU∞/dx = 7.58 × 10−7. Dimensionless sampling parameters

are 1t+ = 1tU2
τ/ν = 4.87 and TU∞/δ = 83 663. Note that 1t+ = 4.87 is only

marginally larger than the recommended value of ∼3 and the consequent temporal
resolution error is expected to be relatively insignificant (see figure 16 from Hutchins
et al. 2009). The non-dimensional sensor length l+ is 45 and the length-to-diameter
ratio l/d is approximately 160.

3. Experimental results and their discussion
3.1. Streamwise velocity spectra

In the present work, the wavelet transform has been used to obtain the PSD of
streamwise velocity fluctuation by: (i) splitting the parent u signal into 24 equal
parts (duration of each part being approximately 83 663/24 = 3486 boundary-layer
turnover times); (ii) obtaining the PSD for each part by employing the complex-Morlet
wavelet transform (Uddin, Perry & Marusic 1997) using MATLAB; and (iii) ensemble-
averaging all 24 PSDs to form the final spectrum. It has been verified that the wavelet
spectrum so obtained faithfully follows the fast Fourier transform (FFT) spectrum and
is much smoother than the latter. Frequency-to-wavenumber conversion is carried out
by Taylor’s frozen-turbulence hypothesis (k1 = 2πf1/Uc) with the use of local mean
velocity U as the convection velocity Uc.

Figure 1 shows premultiplied spectra in outer and inner scalings. Wall-normal
locations used in figure 1 are required to be free of any substantial viscous effects
since the k−1

1 scaling is considered to be an inviscid expectation (see § 4); this issue
is discussed in some detail at the end of this subsection. The most striking feature
of figure 1 is the presence of a prominent k−1

1 variation seen as a plateau in each
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FIGURE 1. Premultiplied streamwise velocity spectra (using wavelets) for the present sink-
flow TBL (flow PG1 in DR10; δ+ = 803 and 1p = −0.0086): (a) outer scaling and (b) inner
scaling.

spectrum for the wall-normal locations 87 6 y+ 6 130; outside this range of wall-
normal locations (not shown) no k−1

1 variation is observed. Note that each plateau
extends over the same range of wavenumbers in both scalings confirming genuine
spectral overlap. Typical extent of the k−1

1 variation, at y+ = 87, is ∼29 % of a decade
in k1 (0.8 6 k1δ 6 2.3 in figure 1a) which is indeed substantial. In the case of ZPG
flow of Nickels et al. (2005), a similar extent (∼30 % of a decade in k1) is observed
at a much higher Reynolds number δ+ = 14 380. Also note that the k−1

1 range in
figure 1 emerges at y/δ = 0.109, a distance which is substantially farther from the
wall compared with that in a ZPG flow. These observations are consistent with the
arguments of § 1.2 and corresponding expectations outlined in table 1.

Figure 1(a) shows that the spectra showing the k−1
1 range exhibit reasonable collapse

in the outer scaling (to within the experimental uncertainty of ±3 %) towards the
low-wavenumber end (k1δ < 0.3). However, spectra in inner scaling do not collapse
(figure 1b) but in fact exhibit a systematic shift with a crossover around k1y = 0.5.
Also, it is interesting to note that the k−1

1 plateaus of figure 1 do not collapse onto
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one another but instead exhibit a systematic shift. This indicates that while the scaling
exponent −1 is universal, the coefficient A1 is not; A1 varies with the distance from
the wall. As will be shown later, the variation of A1 values in figure 1 is ∼24 % which
is well outside the typical measurement uncertainty of ±3 %. This is to be contrasted
with the high-Re ZPG TBL flows where a universal value for A1 has been observed
(Nickels et al. 2005). The lack of universality of k−1

1 variations in sink-flow TBLs has
been cursorily noted by Jones (1998). Table 2 presents a summary of the experimental
data on ZPG and sink-flow TBLs (see also § 1.2 and table 1 for comparison).

By k−1
1 scaling what is usually meant is that the spectra (1.2) measured at different

heights in the flow should collapse onto a single horizontal line over a range of
wavenumbers in both inner as well as outer scalings (Nickels et al. 2005). However,
the present experimental data suggests that the existence of k−1

1 variation of φ11 at
a particular height from the wall and the collapse of such variations from different
heights could well be distinct issues. This is discussed from the viewpoint of spectral
scaling arguments in § 4.

An interesting connection can be made between the present findings and the
argument presented by Sreenivasan (1989) towards the k−1

1 scaling. For a ZPG flow
at sufficiently high Reynolds number, Sreenivasan (1989) argues that the dependence
of the near-wall spectrum on y must vanish in the constant-stress region since not
much distinguishes one layer from another (a local-interaction approximation); this
yields the universal k−1

1 scaling. It is known that for TBL flows in strong pressure
gradients, the constant-stress layer ceases to exist (Townsend 1976). However, one may
view the near-wall region as a stack of subregions where each subregion is sufficiently
thin for the variation of stress to be negligible. Now one may apply the arguments
of Sreenivasan (1989) in a piecewise fashion, to all of the subregions and this would
yield k−1

1 scaling with a non-universal coefficient A1.
Note that there is no hump at low wavenumbers in the sink-flow spectra of figure 1.

This feature appears to be intrinsic to all of the available sink-flow data irrespective
of Reynolds number (see Jones 1998) as will be shown in appendix A; this suggests
that the absence of hump in sink-flow data is not merely a low-Re effect. In moderate-
and high-Re ZPG flows on the other hand, there exists a low-wavenumber hump at
k1δ ≈ 2 in the near-wall spectra (figure 2 of Nickels et al. 2005) and is considered
to be contributed to by the superstructures residing in the log region (Hutchins &
Marusic 2007b). It is known that in TBL flows, the streamwise FPG attenuates
large-scale energy and makes the superstructures less energetic (Harun et al. 2013).
Thus, the generic absence of hump in sink-flow TBLs appears to be an FPG effect.
The wavelengths (λ1 = 2π/k1) contributing to the k−1

1 plateau in figure 1 typically
range from 3δ 6 λ1 6 10δ. The corresponding range in the high-Re sink-flow TBL
of Jones (1998) (see appendix A) is 0.8δ 6 λ1 6 10δ. These wavelengths are much
longer compared with the wavelengths 0.125δ 6 λ1 6 0.314δ that contribute to the
k−1

1 scaling in a high-Re ZPG flow (see figure 3 of Nickels et al. 2005); note that the
wavelengths in the ZPG case are much shorter than the typical streamwise extent of
the superstructures (>6δ, see Hutchins & Marusic 2007b) in line with our contention
that the superstructures are unlikely to contribute to the k−1

1 scaling directly in ZPG
TBL flows (see § 1.1). The presence of long wavelengths contributing to the plateaus
of figure 1 suggests however that the superstructures, although weakened by the FPG,
may be contributing to the k−1

1 scaling in sink-flow TBLs. Interestingly, this suggests
that the superstructure energy in sink flows may scale simply on U2

τ . This aspect
however requires further investigations in sink-flow TBLs. With this, one may now
understand the indirect effect of the low-wavenumber hump on the k−1

1 scaling. In the
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Flow Size δ1 of
largest

k−1
1 eddy

y/δ = δ2/δ
where

k−1
1 scaling is

seen to emerge

Scale
separation
δ2/δ1 of

k−1
1 eddies

Extent of the
k−1

1 scaling as
% of a decade

in k1

Universality
of the

coefficient A1

ZPG flow of NMHC ∼0.1δ ∼0.008 12.5 ∼30 Universal
(δ+ = 14 380) A1= constant
ZPG flow of HMa ∼0.1δ ∼0.012 8.33 ∼10 Universal
(δ+ = 7271) A1= constant
Sink flow of MJ ∼δ ∼0.05 20 ∼100 Non-universal
(δ+ = 1756) A1 = A1(y/δ)
Sink flow PG1 of ∼δ ∼0.109 9.17 ∼30 Non-universal
DR10 (δ+ = 803) A1 = A1(y/δ)

TABLE 2. Experimental data of ZPG and sink-flow TBLs with reference to the k−1
1 scaling. NMHC, Nickels et al. (2005); HM, Hutchins &

Marusic (2007a); MJ, Jones (1998); and DR10, Dixit & Ramesh (2010). a Denotes datasets from the original authors reanalysed here but not
shown in this paper.
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case of a ZPG flow, it is conceivable that with the increase in Reynolds number, the
k−1

1 plateau tends to form and grow to the high-wavenumber end. But, simultaneously,
the low-wavenumber hump also grows due to strengthening of superstructures and
encroaches on the plateau from the low-wavenumber side (Hutchins & Marusic
2007b); this possibly offsets the gain in the width of the plateau. One therefore
needs to reach very high Reynolds numbers before observing a reasonable k−1

1 plateau.
In the case of sink-flow TBLs however, FPG suppresses the outer site and hence the
hump, making the k−1

1 plateau evident at much lower Reynolds numbers.
Before closing this section, we assess the effects of viscosity for the wall-normal

locations of figure 1. It has been suggested that the k−1
1 region in boundary layers

is expected to occur around y+ ≈ 100 (Nickels et al. 2007), i.e. where the widest
range of contributing attached motions exists without strong viscous effects. This
corresponds to the approximate beginning of the logarithmic region in the mean
velocity description. However, the current understanding of ZPG TBLs, channels
and pipes prescribes y+ = 2.6(δ+)

1/2 as the Reynolds-number-dependent outer limit
of the viscosity-dominated near-wall region (Wei et al. 2005; Marusic et al. 2013).
Borrowing this estimate for the present sink-flow case yields y+ > 74 for neglecting
the viscous effects. Another estimate, which is more relevant in FPG situations such
as the present one, comes from the study of Metzger, Lyons & Fife (2008). They
find, based on the mean momentum balance measurements in a TBL flow in sink-flow
FPG, that the viscous effects extend out to the location where the Reynolds shear
stress reaches its maximum. This location, denoted by ypeak+, is observed to vary with
the Reynolds number according to ypeak+ = 4.2(δ+)

1/3 which is the equation of the
dashed line in figure 21(b) of Metzger et al. (2008). This estimate yields y+ > 39 for
the viscous effects to be negligible in the present sink-flow TBL. The approximate
beginning of the mean velocity logarithmic region for the present sink flow (see
DR08 and DR10) is y+ ≈ 70 which is not inconsistent with the above estimates.

Furthermore, one may use the estimates of Reynolds number RλT = λT

√
u2/ν based

on the Taylor microscale λT and the root-mean-square (r.m.s.) velocity fluctuation√
u2 in this connection (see Nickels et al. 2007). Nickels et al. use RλT > 100 as

a sufficient condition to argue that the viscous effects for their data are negligible.
The present sink-flow data show that RλT is in fact of the order of 200 for the
wall-normal locations of figure 1; here λT is estimated from φ11(k1). In addition, as
will be shown in the next subsection, the streamwise intensity follows logarithmic
variation, an inviscid expectation arising from the attached-eddy hypothesis, beyond
y/δ = 0.12 which is consistent with the emerging k−1

1 region around the same wall-
normal location. The above discussion shows that the wall-normal locations of figure 1
are well outside the mean-flow viscous effects. Similarly one may demonstrate that the
wavelengths contributing to the k−1

1 plateaus of figure 1 are more than 10 times the
corresponding Taylor microscales implying that the k−1

1 scaling is indeed contributed
by the inviscid motions.

3.2. Wall-normal variation of streamwise intensity
Figure 2(a) shows the measured variation of streamwise intensity across the present
sink flow TBL. Measurements have been corrected for the spatial resolution error
(l+ = 45 for this flow) using the scheme of Smits et al. (2011). This yields the
error in the normalized intensity to be only ∼6 % of the measured value at y+ = 87
and 4 % at y+ = 130. This is therefore not of much concern in the present context
of the k−1

1 scaling. It is clear that for 0.12 6 y/δ 6 0.72, the variation of intensity
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FIGURE 2. (a) Streamwise turbulence intensity profile corrected for spatial resolution error
(l+ = 45 for this flow) using the scheme of Smits et al. (2011) and (b) variation of the
coefficient A1 in (1.2) with y/δ for spectra of figure 1, in the case of the present sink-flow
TBL (flow PG1 in DR10; δ+ = 803 and 1p =−0.0086). Solid lines are logarithmic fits to the
corresponding data. Vertical dashed-dotted lines in (a) indicate the extent of the logarithmic
fit.

is logarithmic consistent with the predictions of the attached-eddy model (Townsend
1976; Perry & Marusic 1995; Nickels et al. 2007); this supports the expectation
further that the sink-flow TBL is populated by only the attached eddies (§ 1.2). Simple
geometrical arguments for the shape of spectra (87 6 y+ 6 130) of figure 1(a) indicate
that the functional form for the variation of coefficient A1 with height from the wall
may be expected to be the same as that for the intensity. In order to see this, note that:
(i) each spectrum of figure 1(a) encloses an area below it that resembles a trapezium,
the total area being equal to the normalized intensity at that height from the wall; and
(ii) equal areas under the curve represent equal contributions to the intensity. Further,
each trapezium may be imagined to be made up of the central rectangle under the
plateau and the two triangles on its either side. It may be observed that as one moves
outwards from the wall, the major contribution to the change in area under the spectral
curve comes from the change in height A1 of the central rectangle; the width of the
rectangle remains fairly unaltered. Thus, A1 may be expected to be proportional to
the streamwise intensity for 87 6 y+ 6 130 (i.e. 0.109 6 y/δ 6 0.162) in figure 1(a).
Figure 2(b) shows that over this range of wall-normal locations, A1 indeed varies
logarithmically with y/δ.

Comparison with the ZPG data at matched δ+ indicates that the drop of intensity
in a sink flow, with distance from the wall, is more rapid than in a ZPG flow
(see appendix B). This appears to be due to the weakening of the outer energy site
because of the FPG (see Harun et al. 2013) which causes significant spatial transport
of the turbulence kinetic energy (TKE) as compared with the ZPG flow. Thus, in a
sink-flow TBL, the rapid drop of intensity is related to the wall-normal variation of
A1 through spatial transport of TKE. There is however significant spectral transfer of
energy as well and this is exemplified by significant values (of the order of 200) of
the Taylor-microscale Reynolds number discussed before in § 3.1. Furthermore, this
connection between the A1 value and the streamwise intensity appears to be crucial
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FIGURE 3. Normalized longitudinal structure function plotted against dimensionless
streamwise separation for the present sink-flow TBL (flow PG1 in DR10; δ+ = 803 and
1p = −0.0086). Wall-normal locations as in figure 1. Solid lines indicate logarithmic fits as
per (3.2).

to understanding the commonly conceived notion of spectral collapse of k−1
1 variations

(i.e. a universal value for A1) in ZPG flows. Indeed for such flows, the intensity is
almost invariant with the height from the wall (plateau in the intensity profile implying
negligible spatial transport of the TKE) over the range of wall-normal locations where
a universal value for A1 is observed (see Nickels et al. 2007).

3.3. Longitudinal structure function

The authenticity of non-universal A1 values for the k−1
1 scaling observed in figure 1

may be evaluated by making use of the so-called longitudinal structure function
(1u)2(r) which is the spatial counterpart of φ11(k1) (Davidson et al. 2006).

The longitudinal structure function (1u)2(r) is, by definition,

(1u)2(r)= (u(x)− u(x+ r))2 = 2u2(1− f (r)), (3.1)

where r is the streamwise spatial separation between the two measurement locations
lying in the same spanwise and wall-normal plane.

Davidson et al. (2006) have shown that the physical-space equivalent of the spectral
k−1

1 scaling is the logarithmic variation of (1u)2(r) given by

(1u)2(r)= U2
τ [A+ B ln(r/y)]. (3.2)

For ZPG flows, Davidson et al. (2006) have found the values of parameters A and B in
(3.2) to be universal and equal to 2.04 and 1.83, respectively.

Figure 3 shows the variations of (1u)2(r) in the present sink flow TBL for the
four wall-normal locations of interest (see figure 1). Here (1u)2(r) is calculated
directly by delaying the time-series of u and converting the time delay 1t into spatial
distance r using Taylor’s hypothesis r =−Uc1t. Local mean velocity U is used as the
convection velocity Uc (DR10; Davidson et al. 2006). It is clear that each structure
function curve shows a definite region of logarithmic variation implying existence of
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the spectral k−1
1 scaling. However these logarithmic variations show systematic changes

in slope B (intercept A in (3.2) is almost unaltered) with the height from the wall.
This yields strong support for the observed non-universality of coefficient A1 in the
k−1

1 scaling of figure 1.

4. Scaling of the streamwise velocity spectra in TBL flows
Results of § 3 prompt an enquiry into the scaling arguments for streamwise spectra

in smooth-wall-bounded TBL flows. In particular, we would like to assess the issue
of universality of the exponent in the k−1

1 scaling along with the concomitant non-
universality of the coefficient A1. Towards this, we consider the outer and inner scaling
of φ11 respectively as

φ11 = f1(δ,Uτ , k1, ρ, dp/dx), (4.1)
φ11 = f2(y,Uτ , k1, ρ, dp/dx). (4.2)

Here dp/dx is the streamwise pressure gradient as measured at the solid wall
which equals the free-stream pressure gradient dp∞/dx under the boundary-layer
approximation. The present analysis pertains to large eddies of the flow and therefore
fluid viscosity ν does not enter the analysis explicitly. Inclusion of dp/dx in (4.1)
and (4.2) is the main difference between the present scaling arguments and those to
date (Perry et al. 1986; Nickels et al. 2005). Recent experimental studies on TBL
flows with pressure gradients indicate that the large-scale structures in the flow indeed
respond systematically to the applied pressure gradient (DR10; Harun et al. 2013).

Dimensional analysis of (4.1) and (4.2) yields the respective premultiplied spectra

k1φ11

U2
τ

= F1(k1δ,Πδ), (4.3)

k1φ11

U2
τ

= F2(k1y,Πy). (4.4)

Here Πδ = (δ/ρU2
τ ) dp/dx = δ+1p and Πy = (y/ρU2

τ ) dp/dx = y+1p are outer- and
inner-scaled measures of the pressure gradient; observe that Πy = (y/δ)Πδ. Note that
Πδ is the ratio of average streamwise pressure force on the entire TBL flow to the
average shear force at the wall (per unit width of the flow). Similarly Πy is the ratio
of average streamwise pressure force up to height y to the average shear force at the
wall (per unit width of the flow). At a given streamwise station of measurement, Πδ is
a constant and therefore (4.3) and (4.4) yield

k1φ11

U2
τ

= F1(k1δ)|Πδ , (4.5)

k1φ11

U2
τ

= F2(k1y, y/δ)|Πδ . (4.6)

Equation (4.5) implies collapse of outer-scaled spectra measured at different heights
from the wall. On the other hand, (4.6) suggests the lack of collapse of inner-scaled
spectra measured at different heights due to the presence of y/δ. Note that (4.6)
resembles (35) from Perry et al. (1986).

At this point it is important to make a comparison of the present theory, developed
so far, with the model of TBL flow proposed by Davidson & Krogstad (2009). This
model incorporates the low-Re effects for a ZPG TBL flow by accommodating a
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correction term involving the ratio of production P to dissipation ε. In moderate- or
low-Re ZPG flows, where production is not equal to dissipation, this term becomes
important; the inner scaling inherits the effect of outer length scale due to this term
and the inner scaling becomes ‘mixed’ (see § IIC of Davidson & Krogstad 2009).
This bears strong resemblance to the arguments presented above wherein a similar
effect of variation of P/ε is likely to be at work, not so much because of the low
Reynolds number but mainly because of the FPG. Also the constant B in Davidson &
Krogstad’s model (B is proportional to A1 in the present work) is a function of the
Kármán constant κ (a coefficient, to be precise). It has already been shown (DR08)
that κ could become a non-universal function of pressure gradient. In view of this, it
is possible to derive support for the present premise of non-universal k−1

1 scaling from
the Davidson & Krogstad model also. Thus, the present theory seems to accommodate
such detailed aspects in a simple fashion.

Continuing with the present analysis, we observe that in the case of TBL flows with
pressure gradients, the outer scaling (4.5) is parameter-free but the inner scaling (4.6)
is of parametric form, y/δ being the parameter. For the spectrum measured at a given
height y/δ from the wall, right-hand side of (4.6) is simply F2(k1y)|Πδ ,y/δ and then
spectral overlap between (4.5) and (4.6) requires

F1(k1δ)|Πδ = F2(k1y)|Πδ ,y/δ = A1(y/δ)|Πδ . (4.7)

Note that the coefficient A1(y/δ)|Πδ is independent of k1, but depends on the wall-
normal location of measurement in a given flow. Thus in the spectral overlap zone of
TBL flows with pressure gradients, we have

k1φ11

U2
τ

= A1(y/δ)|Πδ , (4.8)

which indicates a universal scaling exponent of −1, i.e. a k−1
1 scaling, however, with a

non-universal coefficient A1 that depends on the wall-normal location of measurement.
Results of § 3.2 indicate that the functional form of A1(y/δ) in the present sink-flow
TBL is logarithmic, i.e. A1 = a ln(y/δ) + b, where a and b are constants for a given
flow.

To summarize, the inner-scaled streamwise spectra (4.6) acquire parametric form
(dimensionless distance from the wall being the parameter) on account of the
existence of mean streamwise pressure gradient and thus fail to collapse in inner
scaling (0.08 6 k1y 6 1 in figure 1b). The outer-scaled spectra (4.5) however remain
parameter-free (k1δ < 2.3 in figure 1a) and hence exhibit collapse in outer scaling
(k1δ < 0.4 in figure 1a). The overlap of these spectral descriptions, in the form of a
k−1

1 scaling (4.8), inherits parametric form from the parent inner scaling. This explains
the observed non-universality (y/δ dependence) of the spectral coefficient A1 (the shift
of plateaus in figure 1) in the present sink-flow data. Note that ZPG flow is a special
(degenerate) case of the present scaling arguments wherein we trivially have Πδ = 0 as
dp/dx = 0. Owing to this, the parametric form of inner scaling (4.6) vanishes, leading
to a universal value of the coefficient A1 in the k−1

1 scaling for high-Re ZPG flows.

5. Conclusions
The present study investigates, experimentally and theoretically, the k−1

1 scaling in
sink-flow TBLs. It is found that a substantial k−1

1 scaling range (∼30 % of a decade
in k1) becomes apparent in the present experimental sink-flow data at much lower
Reynolds number and much farther from the wall in comparison with the ZPG TBL
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flows reported in the literature. Further, the coefficient A1 in the k−1
1 scaling is found to

be non-universal for the present sink-flow TBL. Results for the longitudinal structure
function offer further support for these observations. The non-universality of A1 in the
present sink-flow k−1

1 scaling is to be contrasted with the universal value reported for
A1 in the literature on high-Re ZPG flows. Scaling arguments based on dimensional
analysis suggest that the streamwise pressure gradient does not affect the exponent −1
in the spectral scaling but renders the coefficient A1 non-universal, i.e. A1 varies with
the height from the wall. The universality of A1 in high-Re TBL flows is a natural
consequence of the present theory; in that sense the present work clarifies ideas of
universality of the k−1

1 scaling.
Streamwise turbulence intensity is found to exhibit logarithmic variation over large

part of the present sink-flow TBL. The rapid drop of intensity with the distance from
the wall in a sink-flow TBL, as compared with a ZPG flow at matched δ+, results
in non-universal values of the spectral coefficient A1. The structural reason for this
appears to be the FPG-induced weakening of the superstructures and, hence, the outer
energy site in sink-flow TBLs.
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Appendix A. Low-Re effects on the k−1
1 scaling in sink-flow TBLs

In this appendix, we present the high-Re sink-flow spectral data of Jones (1998). We
also examine the low-Re effects and estimate the lowest limiting sink-flow Reynolds
number for observing a discernible k−1

1 scaling range.
Figure 4 shows the spectra at different wall-normal locations in the sink-flow TBL

of Jones having δ+ = 1756. Although this flow has not quite reached the asymptotic
sink-flow state (see appendix B), it exhibits all the essential spectral features that
are required to demonstrate the unique character of sink-flow TBLs. Raw voltage
signals have been reprocessed to generate the spectra shown in figure 4(a,b); a
Savitzky–Golay filter has been used to smooth the spectra. All of the interesting
features, elaborated in § 3 in the context of the present sink flow, are exhibited by
these spectra as well. These features include: (i) the collapse of spectra for low
wavenumbers in the outer scaling; (ii) the lack of collapse (with a cross-over) in the
inner scaling; (iii) the shifting of plateau levels with y/δ; (iv) the presence of long
wavelengths (up to 10δ in figure 4) contributing to the k−1

1 scaling range; and (v) the
absence of the low-wavenumber hump. The most striking feature of figure 4 is the
existence of k−1

1 scaling over a full decade of scale separation. As mentioned before,
the lack of universality of the k−1

1 scaling alluded to in §§ 3.1 and 3.2 was cursorily
noted by Jones (1998) also.

To examine the low-Re effects, we consider two more sink-flow TBLs from the
study of DR08 having δ+ = 525 and 664, respectively, in addition to the present sink-
flow TBL having δ+ = 803 and the sink flow of Jones (1998) having δ+ = 1756. These
flows respectively have 1p = −0.0129, −0.0104, −0.0086 and −0.0033. Therefore,
Πδ = δ+1p values for these flows are −6.7725, −6.9056, −6.8972 and −5.7948,
respectively, which are reasonably close to each other (to within 16 %). The last value
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FIGURE 4. Premultiplied streamwise spectra for the sink-flow TBL of Jones (1998). For this
flow δ+ = 1756, K = 2.7 × 10−7 and 1p = −0.0033. (a) Outer scaling and (b) inner scaling.
Alternate wall-normal locations are shown to avoid clutter and clarify the shift of plateaus.

is slightly lower compared with the remaining values which could either be a genuine
trend or it could be due to the fact that the flow of Jones (1998) is somewhat away
from the asymptotic sink-flow state. However, for the present discussion, this variation
in Πδ can be neglected since it does not affect the results of this appendix in a
major way. The theory presented in § 4 indicates that the spectral coefficient A1 in the
k−1

1 scaling is a function of y/δ provided that Πδ = constant. Given this, one may plot
the spectra at matched y/δ (see (4.8)) across different sink flows as shown in figure 5.

Figure 5 shows that as the Reynolds number is increased from δ+ = 525 to 803,
the k−1

1 plateau appears at δ+ = 803. For lower Reynolds numbers, there is hardly
any plateau in the spectrum (although there is an increasing tendency towards it)
indicating the absence of k−1

1 scaling due to insufficient attached scale separation.
Note that the peak value of the pre-multiplied PSD and the area under the curve,
which is the broadband inner-scaled streamwise intensity, both reduce with this initial
increase of Reynolds number without appreciable broadening of the spectral width;
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FIGURE 5. Low-Reynolds-number effects in the sink-flow streamwise spectra. Comparison
of spectra with different Reynolds numbers at matched y/δ = 0.109. Spectra for δ+ = 525,
664 and 1756 are smoothed by applying Savitzky–Golay filter to the FFT spectra. The
spectrum for δ+ = 803 is from figure 1.

the peak transforms progressively into a plateau due to growing proportion of the
low-wavenumber energy. However, following the appearance of the k−1

1 plateau at
δ+ = 803, further increase in Reynolds number thereon results in: (i) extension of
the k−1

1 plateau to higher wavenumbers without appreciable change in the value of
A1 (consistent with (4.8)); and (ii) collapse of spectra at low wavenumbers (consistent
with (4.5)). From these observations, it is apparent that the minimum sink-flow TBL
Reynolds number δ+ showing a discernible k−1

1 scaling range lies between 664 and
803.

In § 3.2, it was argued that the variation of spectral coefficient A1 with y/δ in a
given sink flow (Πδ = constant) is expected to be logarithmic, i.e. A1 = a ln(y/δ) + b.
Equation (4.8), on the other hand, indicates that in general A1 = A1(y/δ,Πδ). It is
therefore reasonable to expect that the parameters a and b in the logarithmic variation
of A1 would be functions of Πδ, i.e. A1(y/δ,Πδ) = a(Πδ) ln(y/δ) + b(Πδ). Figure 6
shows variations of A1 in the wall-normal direction for two sink-flow TBLs; A1 values
for the flow of Jones are taken from figure 4 and those for the present sink flow are
taken from figure 2(b). Figure 6 demonstrates that A1 indeed varies logarithmically in
both the sink flows and the parameters of this variation are could well be functions of
Πδ as discussed before. Figure 6 indicates that the rate of variation of A1 with y/δ,
i.e. slope a(Πδ) decreases as the Reynolds number is increased. This is consistent with
the expectation of a universal value for A1 in the limit of infinite Reynolds number
(see § 5). More data on sink-flow TBLs, covering a wide range of Reynolds numbers,
is however required to confirm this observation.

Appendix B. Pressure-gradient effect and the logarithmic intensity
distribution in sink-flow TBLs

Figure 2(a) shows that the drop of intensity in the present sink-flow TBL is indeed
logarithmic over 0.12 6 y/δ 6 0.72. The purpose of this appendix is to demonstrate
that the drop of intensity in sink-flow TBL is more rapid as compared with a ZPG
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FIGURE 6. Logarithmic variation of the spectral coefficient A1 (see (4.8)) in sink-flow TBLs
at two different Reynolds numbers. Each thick line is a fit to the corresponding data according
to A1 = a ln(y/δ)+ b.

TBL at matched Reynolds number δ+ and this is distinctively an FPG effect and
not a low-Re effect. Towards this the experimental results of Harun et al. (2013) are
important. This study investigates ZPG, FPG and APG layers at matched δ+. Figure
2(b) from Harun et al. clearly shows that in the case of FPG flow, the plateau or
bump in the intensity distribution is suppressed and the intensity drop is steeper than
in the ZPG flow at matched δ+. Note that the suppression of intensity bump leads to
a tendency towards logarithmic variation of intensity as the pressure gradient is made
favourable. This is true despite the fact that the FPG layer of Harun et al. is not a
precise sink-flow layer and has much milder FPG than the present sink flow. This
indicates that, at matched δ+, the steep drop of intensity due to the suppression of the
bump is a pressure-gradient effect. The structural reason for this is considered to be
FPG-induced weakening of the superstructures and hence the outer energy site in the
TBL flow (Harun et al. 2013).

To illustrate this point in the present sink-flow case, consider figure 7 which shows
the wall-normal distribution of the streamwise intensity for the present sink flow
(δ+ = 803) compared with the ZPG intensity distributions at three different Reynolds
numbers (δ+ = 614, 1014 and 1163). Note that the δ+ values of 614 and 1014 for
the ZPG flow are on either side of the sink flow δ+ value of 803. With Reynolds
number, the ZPG distributions exhibit systematic growth of the intensity bump in the
neighbourhood of y+ = 200. The intensity profile for a ZPG flow with δ+ = 803 must
therefore lie between the profiles for δ+ = 614 and 1014. Such a profile however
would be markedly different from the sink-flow profile, i.e. at matched δ+ = 803. This
illustrates dramatic effect of FPG in making the outer site less energetic and causing
the intensity to drop steeply (logarithmically in the sink-flow case, to be precise). An
appeal to the TKE equation would suggest that the suppressed outer site is consistent
with enhanced spatial transport of the TKE from the inner to the outer site and this
appears to be responsible for the wall-normal variation in the value of the spectral
coefficient A1 (see § 3.2).

It is also instructive to appeal to the high-Re sink-flow data of Jones (1998) in the
present context. Figure 8 shows the sink-flow intensity profiles with δ+ = 1092 and
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FIGURE 7. Comparison of wall-normal distributions of the streamwise intensity in three ZPG
flows and the present sink flow. Sink flow profile is corrected for the spatial resolution (l+)
effect by employing the scheme of Smits et al. (2011); the profile beyond y+ = 100 however
has negligible l+ effect. ZPG flows with δ+ = 614 and 1163 are our own measurements and
that with δ+ = 1014 is from Hutchins & Marusic (2007a). Lines connecting the symbols are
for visual aid only.
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FIGURE 8. Wall-normal variations of the streamwise intensity in sink-flow TBLs of Jones
(1998). The profiles are corrected for the spatial resolution (l+) effect by employing the
scheme of Smits et al. (2011); profiles beyond y/δ = 0.1 have negligible l+ effect. Solid lines
indicate a logarithmic fit to the data between wall-normal positions marked by dashed-dotted
vertical lines.

1756 from the study of Jones (1998). As may be noted, the overall trend of intensity
variation in both plots is identical to that of figure 2(a). The profiles of figure 8 show
distinct logarithmic variations of intensity over a considerable part of the boundary
layer. None of the profiles indicate the presence of a strong bump or plateau in the
intensity which is typical of ZPG flows. It therefore appears that the sink-flow FPG
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suppresses the outer site just to the extent that the intensity varies logarithmically.
Flow with δ+ = 1756 (figure 8b) shows a small bump in the intensity but this is
perhaps due to the fact that this flow has not attained the asymptotic sink-flow state:
the wake factor is still ∼0.1 and not zero as it is expected to be in an asymptotic
sink-flow TBL (Jones 1998).

On the whole, the evidence presented above convincingly demonstrates that the
steep (in general) and logarithmic (in particular, for sink flows) drop of intensity is not
an artifact of the low Reynolds number but is distinctively an FPG effect.
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