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Abstract

We realize Leavitt ultragraph path algebras as partial skew group rings. Using this realization we
characterize artinian ultragraph path algebras and give simplicity criteria for these algebras.
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1. Introduction

The study of algebras associated to combinatorial objects has attracted a great deal of
attention in the past years. Part of the interest in these algebras arises from the fact
that many properties of the combinatorial objects translate into algebraic properties
of the associated algebras and, furthermore, there are deep connections between these
algebras and symbolic dynamics. As examples of algebras associated to combinatorial
objects we cite graph C*-algebras, Leavitt path algebras, higher rank graph algebras,
Kumjian—Pask algebras, and ultragraph C*-algebras, among others (see [1, 2] for a
comprehensive list).

Notice that in the list of algebras we presented above the C*-algebraic version
of the algebras was immediately followed by the algebraic analogue, except for the
ultragraph case. Ultragraphs (a generalization of graphs, where the range map takes
values on the power set of the vertices) were defined by Tomforde in [17] as a unifying
approach to Exel-Laca and graph C*-algebras. They have proved to be a key ingredient
in the study of Morita equivalence of Exel-Laca and graph C*-algebras (see [13])
and their representation theory has been studied in [6]. Very recently, ultragraph
Cr-algebras were connected with the symbolic dynamics of shift spaces over infinite

Partially supported by CNPq and Capes-PrInt Brazil.
© 2019 Australian Mathematical Publishing Association Inc.

299

/N
https://doi.org/10.1017/5144678871900020X Published online by Cambridge University Press @ CrossMark


https://orcid.org/0000-0002-8149-9872
https://orcid.org/0000-0002-6554-0898
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S144678871900020X&domain=pdf
https://doi.org/10.1017/S144678871900020X
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alphabets (see [9, 15]) and ultragraphs were the key object behind a new proposal for
the generalization of a shift of finite type to the infinite-alphabet case (see [10] for the
definition and [3, 11] for further developments of the theory).

Due to the exposure above, it is natural to study the algebraic analogue of an
ultragraph C*-algebra. The formalization of the definition of the algebra was given
in [12], along with a study of the algebra ideals and a proof of a Cuntz—Krieger
uniqueness-type theorem. Furthermore, it was shown in [12] that the class of
ultragraph path algebras is strictly larger than the class of Leavitt path algebras. This
raises the question of which results about Leavitt path algebras can be generalized
to ultragraph path algebras and whether results from the C*-algebraic setting can be
proved in the algebraic level. Our work is a first step in this direction. Building from
ideas in [8], where Leavitt path algebras are realized as partial skew group rings, we
realize ultragraph path algebras as partial skew group rings. This is also the algebraic
version of the characterization of ultragraph C*-algebras as partial crossed products
given in [10]. We highlight that the algebraic version we present is more general than
the C*-algebraic version, since the latter is valid only for ultragraphs with no sinks that
satisfy Condition (RFUM). Furthermore, the algebraic version we present does not rely
on any topological space, rather it relies on a set. In fact, in [10] Condition (RFUM)
was introduced in order to reduce the great technicalities in defining a suitable, and
tractable, zero-dimensional topological space for ultragraph C*-algebras. In contrast,
the definition of the set necessary in the algebraic setting falls within the grasp of a
wide audience.

The theory of partial skew group rings has been in constant development recently;
see, for example, [5, 7], where simplicity criteria are described, [14], where chain
conditions are studied, and [4] (and the 283 references therein cited), where most of
the recent developments in the theory are compiled. In our case we use partial skew
ring theory to characterize artinian ultragraph path algebras and give simplicity criteria
for these algebras.

Given an ultragraph G, we realize the associated path algebra as a partial skew
group ring in Section 3. For this we consider the free group on the edges of G. In the
graph case (see [8]), the free group of edges acts on a subspace of the functions in a
set X, where X is the set of infinite paths in union with finite paths ending in a sink (a
vertex that emits no edges). To find the correct set X in the ultragraph context is a key
step in our construction. For ultragraphs, a finite path of positive length is a sequence
of edges e; ... e, such that s(e;;1) € r(e;). The set X is formed by the infinite paths, the
pairs (a, v), where « is a finite path of positive length and v is a sink in the range of
a, and the pairs (v, v), where v is a sink. After precisely defining the set X we proceed
with the definition of the partial action and set up the ground to prove Theorem 3.10,
which gives the isomorphism between the partial skew group ring and the ultragraph
path algebra.

In light of Theorem 3.10, we use the results in [7] to characterize simplicity
of ultragraph path algebras in Section 4. As is the case with Leavitt and graph
C*-algebras, the criterion for simplicity we obtain coincides with the one for ultragraph
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C*-algebras (the latter is given in [16]). More precisely, we show that (when R
is a field) the ultragraph Leavitt path algebra is simple if, and only if, G satisfies
Condition (L) and the unique saturated and hereditary subcollections of G° are () and
G° (this is Theorem 4.7). We remark that, using the tools developed in this section,
we provide a new proof of the Cuntz—Krieger uniqueness theorem for Leavitt path
algebras of ultragraphs (Corollary 4.3). We end the paper in Section 5, where we
apply the results of [14] to characterize artinian ultragraph path algebras.

2. Ultragraphs and partial skew group rings

Leavitt path algebras of ultragraphs were introduced in [12]. Here we recall the
main definitions and relevant results.

DerNiTioN 2.1. An ultragraph is a quadruple G = (G° G', r, s) consisting of two
countable sets G°,G', amap s: G' — G°, and a map r: G' — P(G°) \ {0}, where
P(G°) stands for the power set of G°.

DeriniTioN 2.2. Let G be an ultragraph. Define G to be the smallest subset of P(G?)
that contains {v} for all v € G°, contains r(e) for all ¢ € G, and is closed under finite
unions and nonempty finite intersections. Elements of G° are called generalized
vertices.

DermniTion 2.3. Let G be an ultragraph and R be a unital commutative ring. The
Leavitt path algebra of G, denoted by Lg(G), is the universal algebra with generators
{Se, 55 e € G} U{pa: A € G°) and relations:

(1) po=0,paps = pans. Paus = Pa + ps — pans for all A, B € G°;
Q) Pse)Se = SeDrie) = Se and Do) St = 55 pye) = 55 for each e € G';
(3)  sy5r=0crpre foralle, f €G;

(4) Py = D)=y Ses: Whenever 0 < |s7(v)] < oo.

Before we proceed, we quickly remind the reader of the definition of a partial action:
a partial action of a group G on a set Q is a pair @ = ({D;};e, {@:}ec), Where, for each
t € G, D, is asubset of Q and a; : D;-1 — D; is a bijection such that D, = Q, «, is the
identity in Q, a,(D;-1 N Dy) = D; N Dy, and a(@4(x)) = ays(x) forall x € D1 N Dg-14-1.
In case Q is an algebra or a ring, then the subsets D; should also be ideals and the maps
a; should be isomorphisms.

Associated to a partial action of a group G in a ring A, the partial skew group ring,
denoted by A », G, is defined as the set of all finite formal sums },.; a;0;, where,
for all t € G, a; € D, and 9, is a symbol. Addition is defined componentwise and
multiplication is determined by (a;0,)(bs0s) = a(@—(a;)bs)d;s.

3. Ultragraph path algebra as a partial skew group ring

Let G be an ultragraph. A finite path is either an element of G° or a sequence
of edges ¢; ...e,, with length |e; ...e,| = n, such that s(e;;;) € r(e;) for each i €
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{0,...,n—1}. An infinite path is a sequence ejezes ..., with length |eje; ... | = oo,
such that s(e;;1) € r(e;) for each i > 0. The set of finite paths in G is denoted by G*
and the set of infinite paths in G is denoted by p®. We extend the source and range
maps as follows: r(@) = r(q), s(a) = s(a;) for @ € G* with 0 < |a] < oo, s(a) = s(ay)
for each @ € p™, and r(A) = A = s(A) for each A € G°. An element v € G is a sink if
s7!(v) = 0 and we denote the set of sinks in G° by G¥. We say that A € G° is a sink if
each vertex in A is a sink.
Define the set

szmu{(a,v):aeg*,lalz1,v€G(s)ﬂr(a/)}U{(v,v):veG(S)}.

Remark 3.1. Notice that given a vertex v, the element (v, v) is an element of X if, and
only if, v is a sink.

Derinition 3.2. For an element (@, v) € X, we define the range and source maps by
r(a,v) =v and s(a,v) = s(@). In particular, for a sink v, s(v,v) =v =r(v,v). We also
extend the length map to the elements (e, v) by defining |(@, v)| := |a|.

Next we set up some notation necessary to define the desired partial action. Let F
be the free group generated by G' and denote by 0 the neutral element of F. Let W C F
be the set

W={al...a,,e]i'-":a,'eg1 Viand s(a;y1) € r(a;) Yie{l,...,n—1}}.

Remark 3.3. The set W is essentially the same as the set of elements of G* with positive
length, with the difference that W is a subset of a group and G* is a set of paths in G.

Norarion 3.4. Given an element a € W with length |a|, and an element x = (@, V) € X
with length at least |a], we use the notation X; ... X, = a to mean that @; ... qq =
ap ...ag. If x € X is such that [x| = oo, thatis, x = x;xox3 ..., then x; ... X, = a means
that x; = a; foreachi e {1,...,|al}.

Now we define the following sets:

forae W,let X, ={xeX :x1...xq =a};
forbe W,let X1 ={xe X : s(x) e r(b)};
for a, b € W with r(a) N r(b) # 0, let

Xt ={xeX x| >lal, xi...x4 =aand s(xg1) € r(b) N r(a)}
U{(a,v) e X :ver(a)Nrb);

for the neutral element O of F, let Xy = X
for all the other elements ¢ of F, let X, = 0.

Define, for each A € gﬂ and b € W, the sets
Xa={xeX:s(x)eA}

and
Xpa ={x € X}t |x| > |b| and s(xp+1) € AYU{(b,v) € X}, : v € A}
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Remark 3.5. Notice that for each a,b € W, X -1 = Xa(rt)) = Xaanrpyy and Xy =
X,-1. Moreover, for an element b € W and for a sink u € r(b), Xy = {(b, u)}.

The following lemma follows from the definitions of the sets X. and X4, for c € F
and A € G, and its proof is left to the reader.

Lemma 3.6. Let a,b,c,d € W and A, B € G°. Then we have the following results.

X, ifa=bé for some & € WU {0},
1) X,NnX,=40 if a; # b; for some i,

X, if b= a¢ for some & € W.

(X ifs(a) € (o),
2) XN X = {(Z) otherwise.
X, if a = b¢ for some & € W and s(¢) € r(c),

B) X,NXp1 =3 Xpe—1 if b= aé for some £ € W U {0},

0 otherwise.
X1 if a = c¢ for some & € W and s(¢) € r(d),
Xog-1 if c = a€ for some & € W and s(¢) € r(b),
4 X1 NX,. -1 = .
@ Xa od Xarynr@y fa=c,
0 otherwise.
| X. ifs(a) €A,
G XanXe= {(Z) otherwise.
| Xt T s(a) €A,
©) Xa N Xapr = {(Z) otherwise.

(7Y XanNXp=Xangand X, U Xg = Xaus.
Xpa  if b= cé for some & € WU {0},
B) XpanX.=3X. ifc=DbéforsomeéeWand s(€) €A,

0 otherwise.
Xpa if b = c& for some & € W and s(¢) € r(d),
X1 if c = b¢ for some £ € W and s(€) € A,
9 Xpa N Xog1 = :
) Xoa ! Xpanray fb=c,
0 otherwise.

Xpa if b= cé for some £ € W and s(¢) € B,
X if ¢ = b¢ for some € € W and s(¢) € A,
10) Xpa NXep = X
(10) Xoa B Xpanpy  ifb=c,
0 otherwise.

Our aim is to get a partial action from F on X. With this in mind, define the
following bijective maps:

o forae W,defined,: X, — X, by

ax if |x| = oo,
0.,(x) =< (aa,v) ifx=(a,v),
(a,v) if x = (v,v);
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for a € W, define Ha‘l : X, = X, as being the inverse of 6,;
for a, b € W with r(a) N r(b) # 0, define 6,-1 : X;,-1 = X1 by

ay if |x| = oo and x = by,
Op-1(x) =S (aa,v) if x = (ba,V),
(a,v) if x = (b, v);

for the neutral element O € F, define 6 : Xo — Xj as the identity map;
for all the other elements ¢ of F, define 6, : X.-1 — X, as the empty map.

RemMARrk 3.7. Notice that

Xpa={xeXp: Op-1(x)eXp)}={xeXp: Op-1(x) € X4 N Xp1}
= 0p(Xa N Xp-1),

that iS, XbA = Qb(XA N Xb—l).

It is straightforward to check that for all ¢, € F, 6.(X.-1 N X;) = X.; N X, and 6, o
6, = 6., in X,-1 N X,-1.-1 and moreover since Xy = X and 6y = Idy, then ({6, };cr, {X;}icr)
is a partial action of F on X.

Define for each ¢ € F the set F(X,) of all the functions from X to the commutative
unital ring R which vanishes out of X.. For the neutral element O € F, we denote the
set F(Xp) simply by F(X). Notice that each F(X,.) is an R-algebra, with pointwise sum
and product, and, moreover, each F(X,) is an ideal of the R-algebra F(X). Now, for
each ¢ € F, define the R-isomorphism

Be: FXX.H — F(X,)

by B.(f) = f o 6.1, whose inverse is the isomorphism S.-1. So, we get a partial action
UBc}eer, (F (X)) cer) from F to the R-algebra F(X).

To get the desired partial action, we need to restrict the partial action § to the
R-subalgebra D of F(X) generated by all the finite sums of all the finite products
of the characteristic maps {1x,}aego, {1p4}pewacgo, and {1x }.cr. We also define, for
each 7 € F, the ideals D, of D as being all the finite sums of finite products of the

characteristic maps {1x,1x,}aecgo, {1x, 1oa}pewacgo, and {1x,1x }cer.

Remark 3.8. From now on we will use the notation 14, 1,4, and 1, instead of 1x,, 1x,,,
and 1y, for A € G°, be W, and t € F. It follows directly from Lemma 3.6 that

D =span{ly, 1,14 : A€ G% ceF\{0},be W)
and that, for each 7 € F,
D, =span{l,14, 1,1, 1,14 : A€ G°,c € F,b e W},
where ‘span’ means linear span.

Our aim is to restrict the partial action § to the ideals {D;},cr of D. The next
proposition tells us that 8,(D,-1) = D, foreach t € F.
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Prorosition 3.9. (1)  Forallt,c€F, f.(1.11;) =1.1,.
) Forbe Wand A € QO, ,Bb(l;:] 14) = 1,1p4.
(3) Fort=ab™", withbe Wandae W U{0}, and A € G°,

1, ifsb) €A,
Bi(l114) = {0 otherwise.

(4) Forb,ce Wand A € G°,

_JLlelewa i s(b) € r(o),
Beller1pa) = {0 otherwise.
(5) Forb,c,de WandA e QO,
Lo 1aza=1gea if b= c€ for some & € W and s(€) € r(d),

B (Loget 1on) | if c = b€ for some & € and s(€) € A,
-1 (Legmt = X
a CEP T e Laa = Lagonay  ifb=c,

0 otherwise.

(6) Fora,b,ce WandA € G°,

Lilga = 1ga  if' b = € for some € € W U {0},
Be-1(1elpg) =3 1o if ¢ = b€ for some £ € W and s(€) € A,
0 otherwise.

Proor. To simplify this proof we use the boolean notation, that is, we use the notation
[P] = 1if P is true and [P] = O otherwise.

The first item follows from the fact that 6.(X.-1 N X;) = X, N X, since B.(1.-11;)
(1) =[0-1(x) € X N X ] = [x € 0.(Xe NX))] =[x € (Xe N Xe)] = Le(X)11e(x).

To see that the second item holds, note that 8, (1,-114)(x) = [6,-1(x) € (Xp-1 N Xy)] =
[x € 0,(Xp-1 N X4)] = [x € Xpa] = 1p4(x), where the second to last equality follows
from Remark 3.7.

The third item follows from item (6) of Lemma 3.6.

To see that item (4) holds, note that, for x € X,

Be(lpal1)(x) = [6-1(x) € Xpg N X1] =[x € 0:(Xpa N X1)]
= [x € chA N Xc] = lc(x)lch(x)

and, for x & X¢, Bc(1pale1)(x) = 0 = 1o(x)1pa(x).
Item (5) follows from item (9) of Lemma 3.6 and the last item follows from item (8)
of the same lemma. O

By the previous proposition we get that, for each t € F, B,(D;1) C D; and,
consequently, B,(D,-1) = D, for each t € F. So, we may consider the restriction of
the partial action S to the subsets {D,},cr of D. We denote this restriction also by 8 and
so we get a partial action ({8;}er, {Ds}ier) of F in D. Now we are ready to prove the
following theorem.
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Tueorem 3.10. Let G be an ultragraph, let R be a unital commutative ring, and
let Lr(G) be the Leavitt path algebra of G. Then there exists an R-isomorphism
¢ : Lrp(G) — D >g F such that ¢(pa) = 1460, ¢(s,) = 1,161, and ¢(s.) = 1.6, for each
AeGande e G

Proor. First we show that the sets {I400}acgo and {1.6, 1,-16,-1},eq satisfy the
relations which define the algebra Lg(G).

The first relation of Definition 2.3 follows from item (7) of Lemma 3.6.

To verify the second relation, let ¢ € G' and note that Lse)001e0e = 1g)lebe =
1€6e and 1eéelr(e)50 :ﬂe(ﬂefl(le)lr(e))(se :,Be(le*‘ lr(e))ée = leler(e)ée = 1656, where
the second to last equality follows from item (2) of Proposition 3.9. Moreover,
lr(e)éole*‘(se*' = 1,10, and 1,-10,1 1S(e)60 :ﬁe*‘(ﬂe(le*‘)ls(e))de*‘ :ﬁe*‘(lels(e))ae*' =
Be-1(1.)0,-1 = 1,-10,-1.

Next we verify the third relation of Definition 2.3. Let e, f € G'. Then

116,116 = Be1 (11 )61 .

If e # f then lelf =0andife=f thenﬂe-l(lelf)ée_lf =B,1(1)09 = 1,-160 = lr(e)é().

To verify the last relation of Definition 2.3, note first that 1,6,1.,-16,-1 = 1,6¢ for
each edge e. Now let v be a vertex such that 0 < |s™!(v)| < co. Then X, = Uees1(v) Xe
from where 1, = 3 c1() e, and so

Z 1,6,1,16,1 = Z 1,80 = 1,6.

ees~1(v) ees~1(v)

So, by the universality of Lg(G), there exists an R-homomorphism ¢ : Lg(G) —
D g F such that ¢(pa) = 1460, ¢(s.) = 1.0., and ¢(s,) = 1,16, for each A € G° and
each edge e.

Now we prove that ¢ is surjective. Foreacha=a;...ay € Wandd =d,...dy €W,
we use the notation ¢(s,), ¢(s;), and ¢(s,s) to denote the elements ¢(s,,) . .. $(s4,),
¢(sj‘1|d|) e qﬁ(s(’;1 ), and ¢(sg,) ... ¢(Sa\a|)¢(sf1|d‘) e qﬁ(s:!1 ), respectively.

Claim 1. For each a,d € W, ¢(s)¢(s,) = 1ado, ¢(s))P(sq4) = 14160, and ¢(s.s)
¢(SdSZ) = 15111’]60'

The equalities ¢(s,)¢(s;) = 1460 and @(s))d(s4) = 14160 follow by induction on
the lengths of @ and d and from the first item of Proposition 3.9. To prove the
other equality, write a = eg, where |e| = 1 and |g| = |a| — 1, and suppose by inductive
arguments that ¢(s¢)d(s7)P(s1)P(sg)" = 144-160. Then

P(sas)P(5a5q) = P5)P(50)P(5)P(s)P(5)(5e) = Plse)1 g1 P(5e)

= le(selgd-l 16—153—1 = (Ie(le-l lgd—] )50 = lelegd‘160 = lad“(sO’

where the second to last equality follows from the first item of Proposition 3.9. So,
Claim 1 is proved.

Claim 2. Foreachbe W and A € G°, d(sp)P(Pa)P(sy) = 1pa00.
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For |b| = 1, note that ¢(sp)p(pa)P(s,) = Bp(1p-114)00 = 1515460 = 15,60, where the
second to last equality follows from item (2) of Proposition 3.9. Now, for |b| > 1, write
b = ed with |e| = 1 and |d| = |b| — 1. By inductive arguments,

P(sp)P(pa)P(s,) = P(s)P(s)P(Pa)P(5)B(s,)
= P(50)1a609(s;) = Be(1e-1144)00 = 1e1eando = 15400,
where the second to last equality follows by similar arguments to the ones used in the
proof of item (2) of Proposition 3.9. So, Claim 2 is proved.

By Remark 3.8, to prove that ¢ is surjective, it is enough to prove that

{1460, 160, 1pad0 : A € G°,c € F\ {0}, b € W} C Im(9)
and, for each t € F,
(1,146, 1,16, 1,146, : A € G°,c € F,b € W} C Im(¢h).

Claim 3. {1460, 1:.00, 1,460 : A € go, ceF\{0},be W} C Im(¢)

Recall that for each A € G°, ¢(p4) = 146¢. Moreover, for ¢ € F \ {0} with ¢ = ad™!,
where a,d € W U {0}, we get by Claim 1 that 1.6y € Im(¢) (for all the other ¢ € F \ {0}
we also have 1.0y € Im(¢), since 1. = 0). To finish, notice that, by Claim 2, we get that
15460 € Im(¢) for each b € W and A € G°. So, Claim 3 is proved.

Claim 4. Foreacht € F\ {0},
{1146, 1,16, 1,146, : A€ G°,c € F\ {0}, b € W} C Im(8).

First, for e € W, with |e| = 1, recall that 1.6, = ¢(e). Now let c € W with |c| > 1, write
¢ = ed with |e| = 1, and suppose (by inductive arguments on |c|) that ¢(d) = 1,64. Then
B(sc) = P(5)P(5a) = 1ebelaba = Be(1-114)00a = leledded = 1.6,
where the second to last equality follows from item (1) of Proposition 3.9.

Analogously, we get that ¢(s’) = 141641 for eachd € W. Now, for c,d € W,
¢(Sc)¢(sj1) = 1cécld*16d1 :ﬂC(IC’l ldfl)écd*1 = 1clcd*‘60d*‘ = lcdflé‘cdfl’
where, again, the second to last equality follows from item (1) of Proposition 3.9. So,
we get 1,0; € Im(¢) for each t € F \ {0}.
Now, fort,c € F\ {0}, b€ W, and A € G°, note that 1,145, = 1,401,6; € Im(¢) and
similarly one shows that 1,146;, 1,1.6; € Im(¢). So, we get that ¢ is surjective.

It remains to show that ¢ is injective. To prove this, we will use the graded
uniqueness theorem; see [12, Theorem 3.2]. For each integer number 7, define

F, =span{f,,-104-1 : fup-1 € Dyp-1, a,b € WU {0} and |a| — |b| = n}.
Note that D >z F is Z-graded by the gradation {F,},cz. Moreover, Lg(G) is a Z-graded
ring with the grading
Lr(G), = span{s,pas, 1a,be G*,A € G and |a| - |b| = n}
introduced in [12]. It is easy to see that ¢ is a graded ring homomorphism. Since

X4 # 0, then ¢p(tpa) = 14 # 0 for each A € G° and 7 € R\ {0}. It follows from [12,
Theorem 3.2] that ¢ is injective and hence an isomorphism. O
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4. Simplicity and maximal commutativity

In this section we use the realization of ultragraph Leavitt path algebras as partial
skew group rings to describe simplicity criteria for these algebras. Recall that from
[7, Theorem 2.3], the algebra D >z F is simple if, and only if, D is F-simple and
D¢ is maximal commutative in D g F. Aiming at the simplicity criteria given
for ultragraph C*-algebras in [16], we will characterize maximal commutativity
in terms of Condition (L) and F simplicity in terms of hereditary and saturated
subcollections G°.

Recall that a cycle in an ultragraph G is a path @ = e ...e with |a| > 1 and
s(a) € r(a), and an exit for « is an edge e with s(e) = s(e;) for some i € {1,...,|a|}
and e # e;. The ultragraph G satisfies Condition (L) if each cycle @ = e ... e has an
exit or if r(e;) contains a sink for some i.

Before we state our next result, we recall the notion of maximal commutativity: the
centralizer of a nonempty subset S of a ring R, which we denote by Cg(S), is the set
of all elements of R that commute with each element of S. If Cg(S) = S holds, then S
is said to be a maximal commutative subring of R.

Tueorem 4.1. Let G be an ultragraph. Then Doy is maximal commutative in D >g F if,
and only if, G satisfies condition (L).

Proor. First suppose that G satisfies condition (L). Suppose, by contradiction, that
there exists x = )’ a,0,, with some ¢ # 0, that commutes with ady for all « € D. Then
there exists r € F \ {0}, and a; € D, with a; # 0, such that a,6,;a¢00¢ = apdpa,d, for each
ap € D. From the last equality,

BB (aao) = asap (n

for each ag € Dy. Since a; # 0, thent=a,t =b"', ort =ab~! witha,b e W.
Notice that, since

D, = span{l,1., 1,14, 1,14 : c€F,b e W,A € G°},

then, for each & € X; with |£| = oo, there exists an m € N such that, if n € X; and

Mmmz... 0w = &1&2 ... &m, then a,(n) = a(§).
We now divide the proof into three cases.

Case 1. Suppose thatt e W.

If we take ag = 1,-1 in Equation (1), we get that a, = a,1,-1. Hence, the support of a,
is contained in X; N X;-1 and therefore ¢ is a closed path. If we take ay = 1,1,-1, then,
from Equation (1), we have that 5,(5,-1(a;)1;) = a;,1,1,-1 = a; and, from Remark 3.8
and Proposition 3.9, we get B,(8-1(a,)1;) = a,1,,. Therefore, a,1,, = a,. With the same
arguments, if we take ag = 12, we get 4,1 = a; and inductively we get a;1,» = a; for
eachn e N,

Let & € X, be such that @,(¢) # 0. Then a,(£)1,:(¢) # 0 for each n € N and so |£] = oo.
Letm e Nbe such thatifn€ X; and ;... 1, = &1 ... &, then a,(n) = a,(€).
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Since G satisfies condition (L), the closed path # =t . . . #4 either has an exit or some
r(t;) contains a sink.

Suppose first that ¢ has an exit, that is, there exists an edge e such that s(e) € r(t;)
for some i and e # t;;;. Let k € N be such that k|| > m and let n be such that
n =ttty ... tiey (for some y). Then we get that 0 # a,(¢) = a;(n) = (a;14:1)(77) = 0,
which is a contradiction.

Now suppose that r(¢;) contains a sink v for some i. Then, again, let kK € N be such
that k|| > m and let n = (f*t,t . .. t;,v), which is an element of X,. Then we have that
0 # ax(é) = (a;14+1)(€) = (a;14+1)(1) = 0, which is also a contradiction.

So, we conclude thatr ¢ W.

Case?2. t=d " withd e W.
From Equation (1), we get that B,-1(B4(as-1)ag) = az-1ap and so Bylaz-1)ag =
Balag-1ap). Let cg = By(ayz-1). Then By-1(cy) = ay-1 and so we get the equality

Ba(Ba1(ca)ap) = cqap

for each ap € Dy. Now, by Case 1, we get a contradiction and hence it is not possible
thatt = d~! withd e W.

Case 3. t=cd ' withc,deW.

As in Case 1, we get that a, = a;1,» for each n € N. Hence, since @, # 0, we have
that X,» # 0 for each n. Therefore, either c =db ord = cb withb e W.

If ¢ = db, then " = db"d~" and so b is a closed path. Let & € X, with |¢| = co and
a;(¢) # 0. Proceeding from this point as in Case 1, we get a contradiction.

If d = cb for some b € W, then we also get a similar contradiction, by considering
the equality S,-1(B:(u,-1)ag) = u-1ag obtained from Equation (1), where u,-1 = SB,-1(a,).

So, we proved that if G satisfies condition (L), then D is maximal commutative in
D >z F. Next we prove the converse.

Suppose that G does not satisfy condition (L). Then there exist a closed path
t =t ...t in G such that ¢ has no exit and r(#;) contains exactly one vertex for each ¢;.
We show that 1,8; commutes with Dydy. By Remark 3.8, it is enough to show that 1,6,
commutes with 1.8, for each ¢ € F\ {0}, and with 146y and 1,48, for each A € G° and
beW.

Let Ae G If r(t) = s(t) € A, then 14601,6, = 1,6, = B;(1,1)8, = B(1,-114)6; =
Bi(Br-1(1)14)0; = 1,6,146¢ and, if s(¢) = r(t) ¢ A, then 1,691,6, = 0 = 1,6,146.

Now let A € G° and b € W. Note that 1,5,1480 = 8;(1,-11,4)5, and 1,4801,6, =
1pals6;. If s(b) ¢ r(¢), then 1,114 =0 = 1,14 and we are done. Suppose that
s(b) € r(t). Then, by Proposition 3.9, B;(1,-1154) = 1;154. So, it remains to show
that 1,154 = 1,1,4. Notice that X; = {£}, where £ is the infinite path € = #¢.... Then to
verify the desired equality it is enough to show that & € X4 if, and only if, & € Xj4.
Suppose that & € X;p4. Then & = thy, where y is a path such that s(y) € A. Therefore,
there exists an n € N such that b = "1, . . . t; for some i and note that s(y) = r(¢;). Hence,

é::lbyzlfnll...tiyztnll...tifiH...l|t|l1...tiy:bli+1...l|t|l1...t,'y.
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Now note that bty ... 1yt ... 1;y € Xpa, since s(ti.1) = r(t;) = s(y) € A. Similarly, one
shows that if &€ € Xj4, then & € Xjpa. So, 1,154 = 1,154.

Finally, we show that 1,6,1.69 = 1.0091,9; for each ¢ € F \ {0}. To prove this, it is
sufficient to show that S8;(1,-11;) = 1,1, for each c € F\ {0}. By Proposition 3.9, we
have that 8,(1,-11.) = 1,1,. and hence we have to show that 1,1,. = 1,1.. Notice that to
prove this last equality it is enough to show that & = #¢. .. is an element of X, if, and
only if, £ € X.. This follows by arguments similar to the previous case, splitting the
proof into cases depending on whether ¢ = a, ¢ = b, or ¢ = ab™! witha,b € W. O

The next proposition will be useful in the characterization of F-simplicity of D.

ProposiTiON 4.2. Let xy0¢ be a nonzero element of Doy and let I be the ideal generated
by xo6¢ in D g F. Then there exist a vertex v € G° and a nonzero element h € R such
that (h1,)d, € I.

Proor. First note that by Remark 3.8,
m n P
Xo = Zailaihlf‘ + Zﬁjle,A,- + Z”‘IB*
=1 k=1

i j=1

with a;, bj,e; € W and a,-bi‘1 #0, Aj, B € G°, and a;,Bj, vk €R. Let A= {s(a):
I1<i<mjU{s(ej):1<j<n} i:l By, which is an element of G°, and note that
laxp = xo. Let £ € X be such that x¢(£) # 0 and let v = s(¢§). Then v € A and so
1(E)x0(&) = 14(E)x0(€) = x0(€) # 0. Therefore, 1,xp # 0.
If v is a sink, then 1,x0 = X, Yilvls, = Zieq1.ppven, Yelv = hl,. So, (h1,)80 € I.
Now suppose that v is not a sink. Let M = max{|a;|,le;|: 1 <i<m,1 < j <n}. Note
that since v is not a sink, then we can write

X, = U Xew U X4,

ceJ delL

where J is the set of all elements ¢ of W such that s(c) = v, |c| < M, and such that
there is a sink u € r(c), and L is the set of all the elements d such that s(d) = v and
|d =M + 1.

Since 1,xp # 0, then 1.x0 # O for some ¢ € J and some sink u € r(c), or 14xp # 0
for some d € L.

Suppose that 1.,,x9 # 0. Note that for each i€ {1,...,m}, je{l,...,n}, and k €
{1,..., p}, we have that lc{u}laibi‘l =0or IC[u}la,-bl.‘l = lc{u}, lc[u}lejAj =0or 1c{u}lejAj =
lc{u}a and 10{,4}13/( =0or lc{ullBk = 15{14}' Then

Oilc{u}xo=( Do D B+ ) Vk)lc{m:hlc{ul-

i:]"“‘)luihi’l #0 jildu}lngjiO k:l(-(u)lgkio

Therefore, (hle)00 € 1. Since [ is an ideal, then 1.16.1hl.y001c0, =
hB-1 (1100 = (h1,)d0 belongs to 1.
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Now assume that 14x0 # O for some d € L. Since |d| > |a;|, then 141,,-1 = 14 or
ldlaib;l =0foreachi€{l,...,m}, and similarly 1,1,A;=150r 141,A; = 0 for each
jefl,...,n}. Moreover, 1,15 =1, if s(d) € By and 1,15, = 0 if s(b) ¢ By for each
ke{l,...,p}. Then

0¢1dx0:( Z a; + Z Bj+ Z yk)1d=h1d

iyl o1 #0 Jlalea #0 kilg15,#0

and so (h1,)d¢ € 1. Hence, (hl,4))00 = 14164-1h1400146,4 belongs to 1. Then, for each

vertex w € r(d), we get that (h1,,)6¢ = 1,,00(h1,4))d0 belongs to 1. O
As a consequence of the above proposition, we can provide a new proof of the

Cuntz—Krieger uniqueness theorem for Leavitt path algebras of ultragraphs.

CoroLLARY 4.3. Let G be an ultragraph that satisfies Condition (L), let R be a unital
commutative ring, and let m : Lg(G) — S be a homomorphism such that n(rps) # 0 for
each A € G° and nonzero r € R. Then n is injective.

Proor. Let I = ker(rr) and suppose that I # 0. Since G satisfies Condition (L), then,
by Theorem 4.1, D¢y is maximal commutative. Therefore, by [7, Theorem 2.1],
INn D6y #0. Let 0 # x90g € I N Dydy. By Proposition 4.2, there exist a nonzero & € R
and a vertex v such that (h1,)dy € I, which is a contradiction. Therefore, ker() = 0. O

As in the C* setting, the characterization of simplicity of ultragraph Leavitt path
algebras relies on the notion of hereditary and saturated collections. For the reader’s
convenience, we recall these below.

DeriniTion 4.4, Let G be an ultragraph. A subcollection H € GV is called hereditary if:

(1) s(e) € H implies that r(e) € H for each e € G';
(2) AUBeHforallA,Be H,
(3) A€H,Be@G’and BC A imply that B € H.

Moreover, H is called saturated if for any v € G° with 0 < [s~'(v)| < oo,
{re):e€ G and s(e) = v} CH implies that v € H.

The next lemma is key in the characterization of F-simplicity in terms of existence
of hereditary and saturated subcollections of G°.

Lemma 4.5. Let R be a unital commutative domain and let I be an F-invariant ideal of
Dy. Then the collection

H={A¢e QO : hl, € I for some nonzero h € R}

is hereditary and saturated.
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Proor. First we show that H is hereditary. Let e € G' be such that s(e) € H and leth € R
be a nonzero element such that /1y, € I. Then hl, = hl,1y,) € I N D, and, since I is
F-invariant, we have that A1,y = hB.-1(1,) € I and so r(e) € H. Let A, B € H and let
h, k be nonzero elements in R such that 411, € I and klg € I. Then hk # 0, since R is
a domain. Moreover, hklup = hkls + hklg — hkl1p € I, since [ is an ideal. Finally,
let A€ H, and B € G° with B C A. Take a nonzero element 4 € R such that hl4 € I.
Note that hl1g = hlpl, € I. Hence, B € H and H is hereditary.

Now we show that H is saturated. Let v € G be such that 0 < |s~'(v)| < c0. Suppose
that for each e € s!(v), r(e) € H. Then for each e € s~!(v) there is a nonzero h, € R
such that A.1,,) € 1. Since I is F-invariant, then A1, = hBc(1,-1) = Be(helre) € 1.
Define i = [],es-1(y) he» Which is nonzero since R is a domain. Then 21, € I for
each e € s~'(v) and so hl, = Diees\(vy h1e € I, from where we get that v € H and H
is saturated. O

We can now describe the relation between F-simplicity of D and hereditary and
saturated subcollections of G°.

THEOREM 4.6. Let R be a field. Then the algebra D is F-simple if, and only if, the only
hereditary and saturated subcollections of G° are 0 and G°.

Proor. Suppose first that the only saturated and hereditary subcollections of G° are
0 and G°. Let I C D be a nonzero F-invariant ideal. We show that 7 = D. Let J be
the set of all finite sums ) a;6; with a, € D; N I. Notice that J is nonzero and is an
ideal of D <4 F, since [ is F-invariant. Then, by Proposition 4.2, there exist a v € G°
and a nonzero & € R such that hl1,69 € J. Since J N Dyoy = 16y, then hl, € I. Let
H={A€@G": hl, €I for some nonzero h € R}. By Lemma 4.5, H is hereditary and
saturated (and H # 0, since v € H) and hence H = G°. Then, for each A € G°, there
exists a nonzero element i € R such that 214 € I. Since R is a field, we have that 14 € 1
and it follows that I = Dy.

Now suppose that D, is F-simple. Let H C G be nonempty, hereditary, and
saturated. We need to show that H = G°.

Let I be the ideal in D >3z F generated by the set {1400 : A € H}, that is, I is the
linear span of all the elements of the form a,d,140¢pa;0; with r, s € F, a, € D,, and
as € Dg. Let J ={a : ady € D6y N I}, which is a nonzero ideal of D. Moreover, J is F
invariant, since if a, € J N Dy, then a,6¢ € I and B,-1(a;)0y = 1;-16,-1a,691,6; € I. Since
D is F-simple, then J = D.

Our next step is to show that {u} € H for each vertex u € G°.

Let u € G°. Then we can write

160 = D xi814,003r10,1 = O Bi(Brr () 14,y0-1)60
t

t

with A, € H. Multiplying the above equation by 1,0y,
L= ) LB (6 1aye ), @)

teT
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where T = {t : 1,6,(B;-1(x;)14,y-1) # 0}. In particular, for each t € T, we have that
1,1, #0and 14,1, #0.

If u € r(b) for some b € W with {s(b)} € H, then {u} € H, since H is hereditary. If
0 < |s~!(u)| < o and r(e) € H for each e € s~'(u), then {u} € H, since H is saturated.
So, we are left with the cases when there is no path b with {s(b)} € H and u € r(b) and
sV ) =0, |s~H(u)| = o0, or 0 < |s~'(u)| < oo but r(e) ¢ H for some e € s~ (u). Since
there is no path b € W such that {s(b)} € H and u € r(b), then, foreach b € W,

LBy (Bp(xp-1)14y5) =0

(notice that if b € W is such that u € r(b), then, since H is hereditary, s(b) ¢ A and
hence 14154y, = 0). So, each nonzero element ¢ € T is of the form ¢ = ab™! with
ac€e WandbeWu{0}.

Case 1. s~'(u) = 0 and there is no path b with s(b) € H and u € r(b).

Foreacht =ab~! e Fwitha e Wand b € W U {0}, we have that 1,1, = 0, since u is a
sink, andsot=ab~! ¢ T. So, T = {0} and then 1, = 1,xo 14,0 with Ag € H. Therefore,
ueApandso {u} € H.

Case 2. |s™'(u)| = oo and there is no path b with {s(b)} € H and u € r(b).

Suppose that 0 ¢ 7. Then each ¢ € T is of the form ¢t = ab™' with a € W and
be WU{0}. Since |s~'(u)| = oo, then there exists & € X such that s(&) # s(a) for
each ab™' € T. So, we get that 1 = 1,(£) = 3er 1,B:(B-1 (x)14,y-1)(€) = 0, which is a
contradiction. Hence, 0 € T and so 1,x914,y0 # 0. Therefore, {u} C Ay € H and, since
H is hereditary, we have that {u} € H.

Note that it follows from Cases 1 and 2 and by the fact that H is hereditary, that if u
is a vertex such that |s~' ()| = 0 or |s~'(u)| = co, then {u} € H.

Case 3. 0 < |s™'(u)| < oo, there is an edge e € s~'(u) with r(e) ¢ H, and there is no
path b with {s(b)} € H and u € r(b).
Let us first prove the following claim.

Claim. If e is an edge such that r(e) ¢ H, then there is a vertex v € r(e) such that
(vl ¢ H.

Let w = s(e). Notice that {w} ¢ H, since H is hereditary. Also note that there is no
path d with s(d) € {H} and w € r(d). Therefore, since J = D, proceeding as we did for
u,

L= D LBBA DY),
teS
where A, € H for each t € S, each IWB,(,Bfl(x;)lA/y;,l) is nonzero, 0 ¢ S because
{w} ¢ H, and each 7 is of the form r = ab™! witha € W and b € W U {0}.
Foreacht=ab™' € T,letc; = 1,,8,(B, (x))1a,y/-,), so that

1, = Z cr. 3)

teS
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Since 1,,1; # 0, then w = s(a) and, since 14,1,-1 # 0, we have that {s(b)} CA; € H.
Since H is hereditary, then {s(b)} € H and therefore r(b) € H and also r(b) N r(a) € H.
Fort=ae W,wegetA,Nr() € H.

By multiplying Equation (3) on the left-hand side by 1,-16,-1 and by 1.6, on the
right-hand side,

Lo = ) Ber(Lecy). @)
N

Notice that for t = ay ...aqub™"' € S with a; # e, Bo-1(1.¢;) = 0. Let M = max{|a] :
ab'eSanda; =e} and let S;={ab' €S :|al=ianda; =€} for 1 <i<M. In
particular, note that each element of S ; is of the form ¢ = eb™" with b € W U {0}.

Ife¢ S, define

Al = U r(e) N r(b)

ab €S

and, if e € S {, define

A1:( g r(e)ﬁr(b))U(r(e)ﬂAe).

ab'eS 1,b+0

Notice that A; C r(e) and that A; € H, since r(e) N r(b) € H for each eb~! € S| and
r(e)NA, € H.

From Equation (4), we get 1, = Zf‘ﬁl 2uses Be1 (1ecy).

Now we show that M > 1. Seeking a contradiction, suppose that M = 1. Then

Lio= . Ber(leCap).

eb! €S

Since A; C r(e), A; € H, and r(e) ¢ H, we have that A, is a proper subset of r(e).
So, there is a vertex v such that v € r(e) \ A;. Let & € X be such that s(¢) = v (notice
that by the paragraph just above the statement of Case 3, v is not a sink). Then, for
eacht=eb ' €Sy,

Lep-1(€€) = 1ogenrmny(e€) = 0,

since r(e) N r(b) C A;. Therefore,

1= lr(é’)(‘gj) = Z ﬁe‘l(leceb‘l)(éj) = Z 1eb‘lceb‘1(e'§:) =0,

eb~leS, eb~leS,

which is a contradiction. Therefore, M > 1.

Recall now that for each ab™! € S, U --- U S, the element a is of the form a =
aiay...a, = eay...ay,. We want to show that {s(ay)} ¢ H for some ableS,USy.
Again seeking a contradiction, suppose that {s(a,)} € H foreachab™ € S, U---U S y,.
Let A, be the set of all those vertices (the vertices s(a,)). Notice that A, € H (since
we are supposing that each {s(a,)} € H and H is hereditary) and that A, C r(e) (since
s(ap) € r(ay) = r(e)). So, we get that A} U A, C r(e) and, since A} U A, € H and
r(e) ¢ H, there exist a vertex vy € r(e) \ (A} U Ap). Let & € Xwith s(¢) = vyp.
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For each eb™' €5, we get 1,1(e£) =0, since s(¢) ¢ A;, and, for each
ea ... awb‘l €SV~ USy, we get 1, q,01(€€) = 0, since s(£) # s(az) (because
5(&) ¢ A,). Therefore,

M
1= L@ =Y > fer(lecy)E) =0,
i=1 ab-'eS;
which is a contradiction.

So, there is an element ab™! € S, U--- U S, (Where a = eas . . . a) with {s(ay)} ¢
H. Since s(a,) € r(e), we proved the claim.

Now we prove Case 3.

First write 1, as in Equation (2), that is,

L= D LB ()1 a,y0),
teT
where 1,5,(8;-1(x;)14,y-1) # 0.

To show that {u} € H, it is enough to show that O € T', because in this case 0 # 1,14,
which implies that u € Ay and, since Ay € H, then {u} € H.

Suppose, by contradiction, that 0 ¢ T. Then each ¢ € T is of the form ¢ = ab™! with
a€ W and b € W U {0}. Recall that for each t = ab™", r(a) N r(b) € H and, for t = a,
rl@yNA, e H.

Let M =max{lal : ab™' € T,a € W,b € W U {0}}.

By hypothesis, there is an edge ey € s~!(u) such that r(ey) ¢ H. By the previous
claim, there is a vertex v; € r(eg) such that {v;} ¢ H. It follows from the paragraph
immediately after Case 2 that 0 < |s~!(v;)| < co. Since H is saturated, there is an edge
e € s7'(v)) such that {r(e;)} ¢ H. By applying the previous argument repeatedly, we
get a path ey ... ey such that s(e;) =v; and {v;} ¢ H foreachie{l,...,M}. Leté e X
be such that s(€) € r(ey). Then ege; ...eyé € X and, foreacht=ab™' € T,

lab*' (606] PPN er) = la(r(a)ﬁr(b))(eoel e er) = 0,

since s(ey) ¢ H and r(a) N r(b) € H. The same holds fort =a € T. So, 1,(ep . ..ené) =
0 for each t € T'. Finally,

1= 1Tyeo...end) = Y LB (x)ay)eo . .. ené)

1T
= > LBBr )y e .. ené)leo. .. ené) =0,
teT
which is a contradiction. Therefore, 0 € T and Case 3 is proved.
So, we get that {u} € H for each u € G°.
To end the proof, notice that, by [17, Lemma 2.12], any A € QO can be written as

ﬂr(e)u--'uﬂr(e)UF,

ecX; e€X,
where Xi,..., X, are finite subsets of G' and F is a finite subset of G°. Since H
is hereditary and {s(e)} € H, we have that r(e) € H for each e € G'. The result now
follows from the fact that H is hereditary. O
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We can now prove the simplicity criteria for the Leavitt path algebra of an ultragraph
G, Lr(G), via partial skew group ring theory.

THeOREM 4.7. Let G be an ultragraph and R be a field. Then Lg(G) is simple if, and
only if, G satisfies condition (L) and the unique saturated and hereditary subcollections

of G° are 0 and G°.

Proor. By Theorem 3.10, Lg(G) and D =g F are isomorphic algebras. By [7,
Theorem 2.3], the algebra D >z F is simple if, and only if, D is F-simple and D¢
is maximal commutative in D =g F. The result now follows from Theorems 4.1
and 4.6. |

In [16, Theorem 3.11], Tomforde gave a complete combinatorial description of
ultragraphs such that the associated ultragraph C*-algebra is simple. Since this
description is obtained based only on the description of simplicity via hereditary and
saturated collections, the theorem above implies that we have the same description for
Lg(G). For the reader’s convenience, we state the theorem below, but for this we need
to recall a few definitions.

For an ultragraph G and v, w € G°, the notation w > v means that there is a path «
with s(@) =w and v € r(@). Also, G° > {v} means that w > v for each w € G°. The
ultragraph G is said to be cofinal if for each infinite path @ = eje; ..., and each vertex
v € GY, there is an i € N such that v > s(e;). Moreover, for v e G° and A C G°, we write
v — A to mean that there are paths «/, ..., a, such that s(a;) = v forall 1 <i <n and
Ac UL, r(a).

THEOREM 4.8. Let G be an ultragraph and R be a field. Then Lg(G) is simple if and

only if:

(1) G satisfies condition (L);

(2) @G is cofinal;

3)  G° > (v} for every singular vertex v € G°;

(4) ife € G is an edge for which the set r(e) is infinite, then for every w € G° there
exists a set A,, C r(e) for which r(e) \ A, is finite and v — A,,.

Proor. The proof of this theorem relies only on the fact that the only hereditary and
saturated subcollections of go are @ and go. So, the proof given in [16, Theorem 3.11]
applies. O

5. Chain conditions

In [14], chain conditions were described for partial skew groupoid rings. As an
application, a new proof of the criterion for a Leavitt path algebra to be artinian is
given. Namely, a Leavitt path algebra associated to a graph E is artinian if and only
if E is finite and acyclic (a graph (ultragraph) is called acyclic if there are no cycles
in the graph (ultragraph)). Building from the ideas in [14], we show that this same
criterion is true for ultragraph Leavitt path algebras. In our proof we will use that any
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ultragraph Leavitt path algebra of a finite acyclic ultragraph is isomorphic to a Leavitt
path algebra of a finite acyclic graph, a result we state precisely below.
Let G = (G°, G, r, 5) be a finite ultragraph. Enumerate G°, say

G'={v,...,v).

Define amap c : G! — {0, 1}" by c(e) = (y;), where

|1 ifv;er(e),
Yi= 0 ifv; ¢re).

Consider the graph 7 = (G°, !, r, 5), where the set of edges ' consists of all edges
defined as follows: for each edge e € G' and i € {1,...,n} such that c(e); = 1, let Jei
be the edge such that s(f,) = s(e) and r(f,,) = v;. We can now state the following
proposition, a proof of which is left to the reader.

ProposITION 5.1. Let G be a finite ultragraph, that is, suppose that G° and G' are
finite, and let ¥ be the associated graph as defined above. Then Lg(G) is isomorphic
to Lr(F). Furthermore, if G is acyclic, then F is acyclic.

We end the paper with the characterization of artinian ultragraph Leavitt path
algebras. Recall that a ring is left (right) artinian if it satisfies the descending chain
condition on left (right) ideals, and artinian if it is both left and right artinian.

THEOREM 5.2. Let R be a field and let G be an ultragraph. Consider Lg(G),
the ultragraph Leavitt path algebra of G. Then the following five assertions are
equivalent:

(1) G is finite and acyclicy

(2) Lg(G) is left artinian;

(3) Lg(G) is right artinian;

4) Lg(G) is artinian;

(5) Lg(G) is unital and semisimple.

Proor. All we need to prove is that (2) = (1). The other implications follow from
Proposition 5.1 and [14, Theorem 5.2].

(2) = (1) The proof of this implication will follow closely the proof of [14,
Theorem 5.2] for Leavitt path algebras. We include it here for completeness.

Suppose that Lg(E) = D =g F is left artinian. By [14, Theorem 1.3], we get that
D, = {0} for all but finitely many g € F, and D is left artinian.

Assume that there exists an infinite path p = e;eye3 ... in G. Then the ideals D,,,
De,e)» Dejesess - - - are all nonzero, which is a contradiction. Therefore, there is no
infinite path in G and hence G must be acyclic.
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Next we prove that G is finite. Notice that if G° = {v|, v2, v3,...} is infinite, then

P wev2 P wev2 P wewa--

veEO\{v;} veEO\{vy 1) VEEO\{v),v2,v3)

is a descending chain of left ideals of Lg(G) that never stabilizes (since every pair of
vertices in G° are orthogonal idempotents). Hence, Lg(G) is not left artinian, which is
a contradiction. Therefore, G° is finite.

We finish the proof of showing that G' is finite. Since G° is finite, it is enough to
prove that G° contains no infinite emitter. Seeking a contradiction, suppose that there
is a vertex v € G° which is an infinite emitter. Since G° is finite, there must exist some
u € G such that the set I = {e € E' | s(¢) = v and u € r(e)} is infinite. If u is a sink, then
(u,u) € X, for all e € I and hence D,-1 is nonzero for infinitely many e € I, which is
a contradiction. Suppose that u is not a sink. Then there exists a path n € X such that
s(n) = u. Hence, X,-1 contains 1 for each e € I. Therefore, D,-1 is nonzero for infinitely
many e € I, which is a contradiction. O
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