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Abstract
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1. Introduction

The study of algebras associated to combinatorial objects has attracted a great deal of
attention in the past years. Part of the interest in these algebras arises from the fact
that many properties of the combinatorial objects translate into algebraic properties
of the associated algebras and, furthermore, there are deep connections between these
algebras and symbolic dynamics. As examples of algebras associated to combinatorial
objects we cite graph C∗-algebras, Leavitt path algebras, higher rank graph algebras,
Kumjian–Pask algebras, and ultragraph C∗-algebras, among others (see [1, 2] for a
comprehensive list).

Notice that in the list of algebras we presented above the C∗-algebraic version
of the algebras was immediately followed by the algebraic analogue, except for the
ultragraph case. Ultragraphs (a generalization of graphs, where the range map takes
values on the power set of the vertices) were defined by Tomforde in [17] as a unifying
approach to Exel–Laca and graph C∗-algebras. They have proved to be a key ingredient
in the study of Morita equivalence of Exel–Laca and graph C∗-algebras (see [13])
and their representation theory has been studied in [6]. Very recently, ultragraph
C∗-algebras were connected with the symbolic dynamics of shift spaces over infinite
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alphabets (see [9, 15]) and ultragraphs were the key object behind a new proposal for
the generalization of a shift of finite type to the infinite-alphabet case (see [10] for the
definition and [3, 11] for further developments of the theory).

Due to the exposure above, it is natural to study the algebraic analogue of an
ultragraph C∗-algebra. The formalization of the definition of the algebra was given
in [12], along with a study of the algebra ideals and a proof of a Cuntz–Krieger
uniqueness-type theorem. Furthermore, it was shown in [12] that the class of
ultragraph path algebras is strictly larger than the class of Leavitt path algebras. This
raises the question of which results about Leavitt path algebras can be generalized
to ultragraph path algebras and whether results from the C∗-algebraic setting can be
proved in the algebraic level. Our work is a first step in this direction. Building from
ideas in [8], where Leavitt path algebras are realized as partial skew group rings, we
realize ultragraph path algebras as partial skew group rings. This is also the algebraic
version of the characterization of ultragraph C∗-algebras as partial crossed products
given in [10]. We highlight that the algebraic version we present is more general than
the C∗-algebraic version, since the latter is valid only for ultragraphs with no sinks that
satisfy Condition (RFUM). Furthermore, the algebraic version we present does not rely
on any topological space, rather it relies on a set. In fact, in [10] Condition (RFUM)
was introduced in order to reduce the great technicalities in defining a suitable, and
tractable, zero-dimensional topological space for ultragraph C∗-algebras. In contrast,
the definition of the set necessary in the algebraic setting falls within the grasp of a
wide audience.

The theory of partial skew group rings has been in constant development recently;
see, for example, [5, 7], where simplicity criteria are described, [14], where chain
conditions are studied, and [4] (and the 283 references therein cited), where most of
the recent developments in the theory are compiled. In our case we use partial skew
ring theory to characterize artinian ultragraph path algebras and give simplicity criteria
for these algebras.

Given an ultragraph G, we realize the associated path algebra as a partial skew
group ring in Section 3. For this we consider the free group on the edges of G. In the
graph case (see [8]), the free group of edges acts on a subspace of the functions in a
set X, where X is the set of infinite paths in union with finite paths ending in a sink (a
vertex that emits no edges). To find the correct set X in the ultragraph context is a key
step in our construction. For ultragraphs, a finite path of positive length is a sequence
of edges e1 . . . en such that s(ei+1) ∈ r(ei). The set X is formed by the infinite paths, the
pairs (α, v), where α is a finite path of positive length and v is a sink in the range of
α, and the pairs (v, v), where v is a sink. After precisely defining the set X we proceed
with the definition of the partial action and set up the ground to prove Theorem 3.10,
which gives the isomorphism between the partial skew group ring and the ultragraph
path algebra.

In light of Theorem 3.10, we use the results in [7] to characterize simplicity
of ultragraph path algebras in Section 4. As is the case with Leavitt and graph
C∗-algebras, the criterion for simplicity we obtain coincides with the one for ultragraph
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[3] Simplicity and chain conditions for ultragraph Leavitt path algebras 301

C∗-algebras (the latter is given in [16]). More precisely, we show that (when R
is a field) the ultragraph Leavitt path algebra is simple if, and only if, G satisfies
Condition (L) and the unique saturated and hereditary subcollections of G0 are ∅ and
G0 (this is Theorem 4.7). We remark that, using the tools developed in this section,
we provide a new proof of the Cuntz–Krieger uniqueness theorem for Leavitt path
algebras of ultragraphs (Corollary 4.3). We end the paper in Section 5, where we
apply the results of [14] to characterize artinian ultragraph path algebras.

2. Ultragraphs and partial skew group rings

Leavitt path algebras of ultragraphs were introduced in [12]. Here we recall the
main definitions and relevant results.

Definition 2.1. An ultragraph is a quadruple G = (G0,G1, r, s) consisting of two
countable sets G0,G1, a map s : G1 → G0, and a map r : G1 → P(G0) \ {∅}, where
P(G0) stands for the power set of G0.

Definition 2.2. Let G be an ultragraph. Define G0 to be the smallest subset of P(G0)
that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1, and is closed under finite
unions and nonempty finite intersections. Elements of G0 are called generalized
vertices.

Definition 2.3. Let G be an ultragraph and R be a unital commutative ring. The
Leavitt path algebra of G, denoted by LR(G), is the universal algebra with generators
{se, s∗e : e ∈ G1} ∪ {pA : A ∈ G0} and relations:

(1) p∅ = 0, pA pB = pA∩B, pA∪B = pA + pB − pA∩B for all A, B ∈ G0;
(2) ps(e)se = se pr(e) = se and pr(e)s∗e = s∗e ps(e) = s∗e for each e ∈ G1;
(3) s∗e s f = δe, f pr(e) for all e, f ∈ G;
(4) pv =

∑
s(e)=v ses∗e whenever 0 < |s−1(v)| <∞.

Before we proceed, we quickly remind the reader of the definition of a partial action:
a partial action of a group G on a set Ω is a pair α = ({Dt}t∈G, {αt}t∈G), where, for each
t ∈ G, Dt is a subset of Ω and αt : Dt−1 → Dt is a bijection such that De = Ω, αe is the
identity in Ω, αt(Dt−1 ∩ Ds) = Dt ∩ Dts, and αt(αs(x)) = αts(x) for all x ∈ Ds−1 ∩ Ds−1t−1 .
In case Ω is an algebra or a ring, then the subsets Dt should also be ideals and the maps
αt should be isomorphisms.

Associated to a partial action of a group G in a ring A, the partial skew group ring,
denoted by A oα G, is defined as the set of all finite formal sums

∑
t∈G atδt, where,

for all t ∈ G, at ∈ Dt and δt is a symbol. Addition is defined componentwise and
multiplication is determined by (atδt)(bsδs) = αt(α−t(at)bs)δts.

3. Ultragraph path algebra as a partial skew group ring

Let G be an ultragraph. A finite path is either an element of G0 or a sequence
of edges e1 . . . en, with length |e1 . . . en| = n, such that s(ei+1) ∈ r(ei) for each i ∈
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{0, . . . , n − 1}. An infinite path is a sequence e1e2e3 . . . , with length |e1e2 . . . | = ∞,
such that s(ei+1) ∈ r(ei) for each i ≥ 0. The set of finite paths in G is denoted by G∗

and the set of infinite paths in G is denoted by p∞. We extend the source and range
maps as follows: r(α) = r(α|α|), s(α) = s(α1) for α ∈ G∗ with 0 < |α| <∞, s(α) = s(α1)
for each α ∈ p∞, and r(A) = A = s(A) for each A ∈ G0. An element v ∈ G0 is a sink if
s−1(v) = ∅ and we denote the set of sinks in G0 by G0

s . We say that A ∈ G0 is a sink if
each vertex in A is a sink.

Define the set

X = p∞ ∪ {(α, v) : α ∈ G∗, |α| ≥ 1, v ∈ G0
s ∩ r(α)} ∪ {(v, v) : v ∈ G0

s}.

Remark 3.1. Notice that given a vertex v, the element (v, v) is an element of X if, and
only if, v is a sink.

Definition 3.2. For an element (α, v) ∈ X, we define the range and source maps by
r(α, v) = v and s(α, v) = s(α). In particular, for a sink v, s(v, v) = v = r(v, v). We also
extend the length map to the elements (α, v) by defining |(α, v)| := |α|.

Next we set up some notation necessary to define the desired partial action. Let F
be the free group generated by G1 and denote by 0 the neutral element of F. Let W ⊆ F
be the set

W = {a1 . . . an ∈ F : ai ∈ G
1 ∀i and s(ai+1) ∈ r(ai) ∀i ∈ {1, . . . , n − 1}}.

Remark 3.3. The set W is essentially the same as the set of elements ofG∗ with positive
length, with the difference that W is a subset of a group and G∗ is a set of paths in G.

Notation 3.4. Given an element a ∈ W with length |a|, and an element x = (α, v) ∈ X
with length at least |a|, we use the notation x1 . . . x|a| = a to mean that α1 . . . α|a| =
a1 . . . a|a|. If x ∈ X is such that |x| =∞, that is, x = x1x2x3 . . . , then x1 . . . x|a| = a means
that xi = ai for each i ∈ {1, . . . , |a|}.

Now we define the following sets:

• for a ∈ W, let Xa = {x ∈ X : x1 . . . x|a| = a};
• for b ∈ W, let Xb−1 = {x ∈ X : s(x) ∈ r(b)};
• for a, b ∈ W with r(a) ∩ r(b) , ∅, let

Xab−1 = {x ∈ X : |x| > |a|, x1 . . . x|a| = a and s(x|a|+1) ∈ r(b) ∩ r(a)}
∪ {(a, v) ∈ X : v ∈ r(a) ∩ r(b)};

• for the neutral element 0 of F, let X0 = X;
• for all the other elements c of F, let Xc = ∅.

Define, for each A ∈ G0 and b ∈ W, the sets

XA = {x ∈ X : s(x) ∈ A}

and
XbA = {x ∈ Xb : |x| > |b| and s(x|b|+1) ∈ A} ∪ {(b, v) ∈ Xb : v ∈ A}.
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Remark 3.5. Notice that for each a, b ∈ W, Xab−1 = Xa(r(b)) = Xa(r(a)∩r(b)) and Xr(b) =

Xb−1 . Moreover, for an element b ∈ W and for a sink u ∈ r(b), Xb{u} = {(b, u)}.

The following lemma follows from the definitions of the sets Xc and XA, for c ∈ F
and A ∈ G, and its proof is left to the reader.

Lemma 3.6. Let a, b, c, d ∈ W and A, B ∈ G0. Then we have the following results.

(1) Xa ∩ Xb =


Xa if a = bξ for some ξ ∈ W ∪ {0},
∅ if ai , bi for some i,
Xb if b = aξ for some ξ ∈ W.

(2) Xa ∩ Xc−1 =

{
Xa if s(a) ∈ r(c),
∅ otherwise.

(3) Xa ∩ Xbc−1 =


Xa if a = bξ for some ξ ∈ W and s(ξ) ∈ r(c),
Xbc−1 if b = aξ for some ξ ∈ W ∪ {0},
∅ otherwise.

(4) Xab−1 ∩ Xcd−1 =


Xab−1 if a = cξ for some ξ ∈ W and s(ξ) ∈ r(d),
Xcd−1 if c = aξ for some ξ ∈ W and s(ξ) ∈ r(b),
Xa(r(b)∩r(d)) if a = c,
∅ otherwise.

(5) XA ∩ Xa =

{
Xa if s(a) ∈ A,
∅ otherwise.

(6) XA ∩ Xab−1 =

{
Xab−1 if s(a) ∈ A,
∅ otherwise.

(7) XA ∩ XB = XA∩B and XA ∪ XB = XA∪B.

(8) XbA ∩ Xc =


XbA if b = cξ for some ξ ∈ W ∪ {0},
Xc if c = bξ for some ξ ∈ W and s(ξ) ∈ A,
∅ otherwise.

(9) XbA ∩ Xcd−1 =


XbA if b = cξ for some ξ ∈ W and s(ξ) ∈ r(d),
Xcd−1 if c = bξ for some ξ ∈ W and s(ξ) ∈ A,
Xb(A∩r(d)) if b = c,
∅ otherwise.

(10) XbA ∩ XcB =


XbA if b = cξ for some ξ ∈ W and s(ξ) ∈ B,
XcB if c = bξ for some ξ ∈ W and s(ξ) ∈ A,
Xb(A∩B) if b = c,
∅ otherwise.

Our aim is to get a partial action from F on X. With this in mind, define the
following bijective maps:

• for a ∈ W, define θa : Xa−1 → Xa by

θa(x) =


ax if |x| =∞,
(aα, v) if x = (α, v),
(a, v) if x = (v, v);
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304 D. Gonçalves and D. Royer [6]

• for a ∈ W, define θ−1
a : Xa → Xa−1 as being the inverse of θa;

• for a, b ∈ W with r(a) ∩ r(b) , ∅, define θab−1 : Xba−1 → Xab−1 by

θab−1 (x) =


ay if |x| =∞ and x = by,
(aα, v) if x = (bα, v),
(a, v) if x = (b, v);

• for the neutral element 0 ∈ F, define θ0 : X0 → X0 as the identity map;
• for all the other elements c of F, define θc : Xc−1 → Xc as the empty map.

Remark 3.7. Notice that

XbA = {x ∈ Xb : θb−1 (x) ∈ XA)} = {x ∈ Xb : θb−1 (x) ∈ XA ∩ Xb−1}

= θb(XA ∩ Xb−1 ),

that is, XbA = θb(XA ∩ Xb−1 ).

It is straightforward to check that for all c, t ∈ F, θc(Xc−1 ∩ Xt) = Xct ∩ Xc and θc ◦

θt = θct in Xt−1 ∩ Xt−1c−1 and moreover since X0 = X and θ0 = IdX , then ({θt}t∈F, {Xt}t∈F)
is a partial action of F on X.

Define for each c ∈ F the set F(Xc) of all the functions from X to the commutative
unital ring R which vanishes out of Xc. For the neutral element 0 ∈ F, we denote the
set F(X0) simply by F(X). Notice that each F(Xc) is an R-algebra, with pointwise sum
and product, and, moreover, each F(Xc) is an ideal of the R-algebra F(X). Now, for
each c ∈ F, define the R-isomorphism

βc : F(X−1
c )→ F(Xc)

by βc( f ) = f ◦ θc−1 , whose inverse is the isomorphism βc−1 . So, we get a partial action
({βc}c∈F, {F(Xc)}c∈F) from F to the R-algebra F(X).

To get the desired partial action, we need to restrict the partial action β to the
R-subalgebra D of F(X) generated by all the finite sums of all the finite products
of the characteristic maps {1XA}A∈G0 , {1bA}b∈W,A∈G0 , and {1Xc}c∈F. We also define, for
each t ∈ F, the ideals Dt of D as being all the finite sums of finite products of the
characteristic maps {1Xt 1XA}A∈G0 , {1Xt 1bA}b∈W,A∈G0 , and {1Xt 1Xc}c∈F.

Remark 3.8. From now on we will use the notation 1A, 1bA, and 1t instead of 1XA , 1XbA ,
and 1Xt for A ∈ G0, b ∈ W, and t ∈ F. It follows directly from Lemma 3.6 that

D = span{1A, 1c, 1bA : A ∈ G0, c ∈ F \ {0}, b ∈ W}

and that, for each t ∈ F,

Dt = span{1t1A, 1t1c, 1t1bA : A ∈ G0, c ∈ F, b ∈ W},

where ‘span’ means linear span.

Our aim is to restrict the partial action β to the ideals {Dt}t∈F of D. The next
proposition tells us that βt(Dt−1 ) = Dt for each t ∈ F.
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Proposition 3.9. (1) For all t, c ∈ F, βc(1c−1 1t) = 1c1ct.
(2) For b ∈ W and A ∈ G0, βb(1−1

b 1A) = 1b1bA.
(3) For t = ab−1, with b ∈ W and a ∈ W ∪ {0}, and A ∈ G0,

βt(1t−1 1A) =

{
1t if s(b) ∈ A,
0 otherwise.

(4) For b, c ∈ W and A ∈ G0,

βc(1c−1 1bA) =

{
1c1cbA if s(b) ∈ r(c),
0 otherwise.

(5) For b, c, d ∈ W and A ∈ G0,

βdc−1 (1cd−1 1bA)=


1dc−1 1dξA =1dξA if b = cξ for some ξ ∈ W and s(ξ) ∈ r(d),
1dc−1 if c = bξ for some ξ ∈ and s(ξ) ∈ A,
1dc−1 1dA = 1d(r(c)∩A) if b = c,
0 otherwise.

(6) For a, b, c ∈ W and A ∈ G0,

βc−1 (1c1bA) =


1c−1 1ξA = 1ξA if b = cξ for some ξ ∈ W ∪ {0},
1c−1 if c = bξ for some ξ ∈ W and s(ξ) ∈ A,
0 otherwise.

Proof. To simplify this proof we use the boolean notation, that is, we use the notation
[P] = 1 if P is true and [P] = 0 otherwise.

The first item follows from the fact that θc(Xc−1 ∩ Xt) = Xc ∩ Xct, since βc(1c−1 1t)
(x) = [θc−1 (x) ∈ Xc−1 ∩ Xt] = [x ∈ θc(Xc−1 ∩ Xt)] = [x ∈ (Xc ∩ Xct)] = 1c(x)1tc(x).

To see that the second item holds, note that βb(1b−1 1A)(x) = [θb−1 (x) ∈ (Xb−1 ∩ XA)] =

[x ∈ θb(Xb−1 ∩ XA)] = [x ∈ XbA] = 1bA(x), where the second to last equality follows
from Remark 3.7.

The third item follows from item (6) of Lemma 3.6.
To see that item (4) holds, note that, for x ∈ Xc,

βc(1bA1c−1 )(x) = [θc−1 (x) ∈ XbA ∩ Xc−1 ] = [x ∈ θc(XbA ∩ Xc−1 )]
= [x ∈ XcbA ∩ Xc] = 1c(x)1cbA(x)

and, for x < Xc, βc(1bA1c−1 )(x) = 0 = 1c(x)1cbA(x).
Item (5) follows from item (9) of Lemma 3.6 and the last item follows from item (8)

of the same lemma. �

By the previous proposition we get that, for each t ∈ F, βt(Dt−1 ) ⊆ Dt and,
consequently, βt(Dt−1 ) = Dt for each t ∈ F. So, we may consider the restriction of
the partial action β to the subsets {Dt}t∈F of D. We denote this restriction also by β and
so we get a partial action ({βt}t∈F, {Dt}t∈F) of F in D. Now we are ready to prove the
following theorem.
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Theorem 3.10. Let G be an ultragraph, let R be a unital commutative ring, and
let LR(G) be the Leavitt path algebra of G. Then there exists an R-isomorphism
φ : LR(G)→ D oβ F such that φ(pA) = 1Aδ0, φ(s∗e) = 1e−1δe−1 , and φ(se) = 1eδe for each
A ∈ G0 and e ∈ G1.

Proof. First we show that the sets {1Aδ0}A∈G0 and {1eδe, 1e−1δe−1}e∈G1 satisfy the
relations which define the algebra LR(G).

The first relation of Definition 2.3 follows from item (7) of Lemma 3.6.
To verify the second relation, let e ∈ G1 and note that 1s(e)δ01eδe = 1s(e)1eδe =

1eδe and 1eδe1r(e)δ0 = βe(βe−1 (1e)1r(e))δe = βe(1e−1 1r(e))δe = 1e1er(e)δe = 1eδe, where
the second to last equality follows from item (2) of Proposition 3.9. Moreover,
1r(e)δ01e−1δe−1 = 1e−1δe−1 and 1e−1δe−1 1s(e)δ0 = βe−1 (βe(1e−1 )1s(e))δe−1 = βe−1 (1e1s(e))δe−1 =

βe−1 (1e)δe−1 = 1e−1δe−1 .
Next we verify the third relation of Definition 2.3. Let e, f ∈ G1. Then

1e−1δe−1 1 f δ f = βe−1 (1e1 f )δe−1 f .

If e , f then 1e1 f = 0 and if e = f then βe−1 (1e1 f )δe−1 f = βe−1 (1e)δ0 = 1e−1δ0 = 1r(e)δ0.
To verify the last relation of Definition 2.3, note first that 1eδe1e−1δe−1 = 1eδ0 for

each edge e. Now let v be a vertex such that 0 < |s−1(v)| <∞. Then Xv =
⋃

e∈s−1(v) Xe,
from where 1v =

∑
e∈s−1(v) 1e, and so∑

e∈s−1(v)

1eδe1e−1δe−1 =
∑

e∈s−1(v)

1eδ0 = 1vδ0.

So, by the universality of LR(G), there exists an R-homomorphism φ : LR(G)→
D oβ F such that φ(pA) = 1Aδ0, φ(se) = 1eδe, and φ(s∗e) = 1e−1δe−1 for each A ∈ G0 and
each edge e.

Now we prove that φ is surjective. For each a = a1 . . .a|a| ∈W and d = d1 . . .d|d| ∈W,
we use the notation φ(sa), φ(s∗d), and φ(sas∗d) to denote the elements φ(sa1 ) . . . φ(sa|a|),
φ(s∗d|d|) . . . φ(s∗d1

), and φ(sa1 ) . . . φ(sa|a|)φ(s∗d|d|) . . . φ(s∗d1
), respectively.

Claim 1. For each a, d ∈ W, φ(sa)φ(s∗a) = 1aδ0, φ(s∗d)φ(sd) = 1d−1δ0, and φ(sas∗d)
φ(sd s∗a) = 1ad−1δ0.

The equalities φ(sa)φ(s∗a) = 1aδ0 and φ(s∗d)φ(sd) = 1d−1δ0 follow by induction on
the lengths of a and d and from the first item of Proposition 3.9. To prove the
other equality, write a = eg, where |e| = 1 and |g| = |a| − 1, and suppose by inductive
arguments that φ(sg)φ(s∗d)φ(sd)φ(sg)∗ = 1gd−1δ0. Then

φ(sas∗d)φ(sd s∗a) = φ(se)φ(sg)φ(s∗d)φ(sd)φ(s∗g)φ(se) = φ(se)1gd−1φ(se)
= 1eδe1gd−1 1e−1δe−1 = αe(1e−1 1gd−1 )δ0 = 1e1egd−1δ0 = 1ad−1δ0,

where the second to last equality follows from the first item of Proposition 3.9. So,
Claim 1 is proved.

Claim 2. For each b ∈ W and A ∈ G0, φ(sb)φ(pA)φ(s∗b) = 1bAδ0.

https://doi.org/10.1017/S144678871900020X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871900020X


[9] Simplicity and chain conditions for ultragraph Leavitt path algebras 307

For |b| = 1, note that φ(sb)φ(pA)φ(s∗b) = βb(1b−1 1A)δ0 = 1b1bAδ0 = 1bAδ0, where the
second to last equality follows from item (2) of Proposition 3.9. Now, for |b| > 1, write
b = ed with |e| = 1 and |d| = |b| − 1. By inductive arguments,

φ(sb)φ(pA)φ(s∗b) = φ(se)φ(sd)φ(pA)φ(s∗d)φ(s∗e)
= φ(se)1dAδ0φ(s∗e) = βe(1e−1 1dA)δ0 = 1e1edAδ0 = 1bAδ0,

where the second to last equality follows by similar arguments to the ones used in the
proof of item (2) of Proposition 3.9. So, Claim 2 is proved.

By Remark 3.8, to prove that φ is surjective, it is enough to prove that

{1Aδ0, 1cδ0, 1bAδ0 : A ∈ G0, c ∈ F \ {0}, b ∈ W} ⊆ Im(φ)

and, for each t ∈ F,

{1t1Aδt, 1t1cδt, 1t1bAδt : A ∈ G0, c ∈ F, b ∈ W} ⊆ Im(φ).

Claim 3. {1Aδ0, 1cδ0, 1bAδ0 : A ∈ G0, c ∈ F \ {0}, b ∈ W} ⊆ Im(φ).
Recall that for each A ∈ G0, φ(pA) = 1Aδ0. Moreover, for c ∈ F \ {0} with c = ad−1,

where a, d ∈W ∪ {0}, we get by Claim 1 that 1cδ0 ∈ Im(φ) (for all the other c ∈ F \ {0}
we also have 1cδ0 ∈ Im(φ), since 1c = 0). To finish, notice that, by Claim 2, we get that
1bAδ0 ∈ Im(φ) for each b ∈ W and A ∈ G0. So, Claim 3 is proved.

Claim 4. For each t ∈ F \ {0},

{1t1Aδt, 1t1cδt, 1t1bAδt : A ∈ G0, c ∈ F \ {0}, b ∈ W} ⊆ Im(φ).

First, for e ∈ W, with |e| = 1, recall that 1eδe = φ(e). Now let c ∈ W with |c| > 1, write
c = ed with |e| = 1, and suppose (by inductive arguments on |c|) that φ(d) = 1dδd. Then

φ(sc) = φ(se)φ(sd) = 1eδe1dδd = βe(1e−1 1d)δed = 1e1edδed = 1cδc,

where the second to last equality follows from item (1) of Proposition 3.9.
Analogously, we get that φ(s∗d) = 1d−1δd−1 for each d ∈ W. Now, for c, d ∈ W,

φ(sc)φ(s∗d) = 1cδc1d−1δd1 = βc(1c−1 1d−1 )δcd−1 = 1c1cd−1δcd−1 = 1cd−1δcd−1 ,

where, again, the second to last equality follows from item (1) of Proposition 3.9. So,
we get 1tδt ∈ Im(φ) for each t ∈ F \ {0}.

Now, for t, c ∈ F \ {0}, b ∈W, and A ∈ G0, note that 1t1bAδt = 1bAδ01tδt ∈ Im(φ) and
similarly one shows that 1t1Aδt, 1t1cδt ∈ Im(φ). So, we get that φ is surjective.

It remains to show that φ is injective. To prove this, we will use the graded
uniqueness theorem; see [12, Theorem 3.2]. For each integer number n, define

Fn = span{ fab−1δab−1 : fab−1 ∈ Dab−1 , a, b ∈ W ∪ {0} and |a| − |b| = n}.

Note that D oβ F is Z-graded by the gradation {Fn}n∈Z. Moreover, LR(G) is a Z-graded
ring with the grading

LR(G)n = span{sa pAs∗b : a, b ∈ G∗, A ∈ G0 and |a| − |b| = n}

introduced in [12]. It is easy to see that φ is a graded ring homomorphism. Since
XA , ∅, then φ(τpA) = τ1A , 0 for each A ∈ G0 and τ ∈ R \ {0}. It follows from [12,
Theorem 3.2] that φ is injective and hence an isomorphism. �
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4. Simplicity and maximal commutativity

In this section we use the realization of ultragraph Leavitt path algebras as partial
skew group rings to describe simplicity criteria for these algebras. Recall that from
[7, Theorem 2.3], the algebra D oβ F is simple if, and only if, D is F-simple and
Dδ0 is maximal commutative in D oβ F. Aiming at the simplicity criteria given
for ultragraph C∗-algebras in [16], we will characterize maximal commutativity
in terms of Condition (L) and F simplicity in terms of hereditary and saturated
subcollections G0.

Recall that a cycle in an ultragraph G is a path α = e1 . . . e|α| with |α| ≥ 1 and
s(α) ∈ r(α), and an exit for α is an edge e with s(e) = s(ei) for some i ∈ {1, . . . , |α|}
and e , ei. The ultragraph G satisfies Condition (L) if each cycle α = e1 . . . e|α| has an
exit or if r(ei) contains a sink for some i.

Before we state our next result, we recall the notion of maximal commutativity: the
centralizer of a nonempty subset S of a ring R, which we denote by CR(S ), is the set
of all elements of R that commute with each element of S . If CR(S ) = S holds, then S
is said to be a maximal commutative subring of R.

Theorem 4.1. Let G be an ultragraph. Then Dδ0 is maximal commutative in D oβ F if,
and only if, G satisfies condition (L).

Proof. First suppose that G satisfies condition (L). Suppose, by contradiction, that
there exists x =

∑
atδt, with some t , 0, that commutes with aδ0 for all a ∈ D. Then

there exists t ∈ F \ {0}, and at ∈ Dt with at , 0, such that atδta0δ0 = a0δ0atδt for each
a0 ∈ D. From the last equality,

βt(βt−1 (at)a0) = ata0 (1)

for each a0 ∈ D0. Since at , 0, then t = a, t = b−1, or t = ab−1 with a, b ∈ W.
Notice that, since

Dt = span{1t1c, 1t1bA, 1t1A : c ∈ F, b ∈ W, A ∈ G0},

then, for each ξ ∈ Xt with |ξ| = ∞, there exists an m ∈ N such that, if η ∈ Xt and
η1η2 . . . ηm = ξ1ξ2 . . . ξm, then at(η) = at(ξ).

We now divide the proof into three cases.

Case 1. Suppose that t ∈ W.
If we take a0 = 1t−1 in Equation (1), we get that at = at1t−1 . Hence, the support of at

is contained in Xt ∩ Xt−1 and therefore t is a closed path. If we take a0 = 1t1t−1 , then,
from Equation (1), we have that βt(βt−1 (at)1t) = at1t1t−1 = at and, from Remark 3.8
and Proposition 3.9, we get βt(βt−1 (at)1t) = at1tt. Therefore, at1tt = at. With the same
arguments, if we take a0 = 1t2 , we get at1t3 = at and inductively we get at1tn = at for
each n ∈ N.

Let ξ ∈ Xt be such that at(ξ) , 0. Then at(ξ)1tn (ξ) , 0 for each n ∈ N and so |ξ| =∞.
Let m ∈ N be such that if η ∈ Xt and η1 . . . ηm = ξ1 . . . ξm, then at(η) = at(ξ).
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Since G satisfies condition (L), the closed path t = t1 . . . t|t| either has an exit or some
r(ti) contains a sink.

Suppose first that t has an exit, that is, there exists an edge e such that s(e) ∈ r(ti)
for some i and e , ti+1. Let k ∈ N be such that k|t| ≥ m and let η be such that
η = tkt1t2 . . . tiey (for some y). Then we get that 0 , at(ξ) = at(η) = (at1tk+1 )(η) = 0,
which is a contradiction.

Now suppose that r(ti) contains a sink v for some i. Then, again, let k ∈ N be such
that k|t| ≥ m and let η = (tkt1t2 . . . ti, v), which is an element of Xt. Then we have that
0 , at(ξ) = (at1tk+1 )(ξ) = (at1tk+1 )(η) = 0, which is also a contradiction.

So, we conclude that t < W.

Case 2. t = d−1 with d ∈ W.
From Equation (1), we get that βd−1 (βd(ad−1 )a0) = ad−1 a0 and so βd(ad−1 )a0 =

βd(ad−1 a0). Let cd = βd(ad−1 ). Then βd−1 (cd) = ad−1 and so we get the equality

βd(βd−1 (cd)a0) = cda0

for each a0 ∈ D0. Now, by Case 1, we get a contradiction and hence it is not possible
that t = d−1 with d ∈ W.

Case 3. t = cd−1 with c, d ∈ W.
As in Case 1, we get that at = at1tn for each n ∈ N. Hence, since at , 0, we have

that Xtn , ∅ for each n. Therefore, either c = db or d = cb with b ∈ W.
If c = db, then tn = dbnd−1 and so b is a closed path. Let ξ ∈ Xt with |ξ| = ∞ and

at(ξ) , 0. Proceeding from this point as in Case 1, we get a contradiction.
If d = cb for some b ∈ W, then we also get a similar contradiction, by considering

the equality βt−1 (βt(ut−1 )a0) = ut−1 a0 obtained from Equation (1), where ut−1 = βt−1 (at).
So, we proved that if G satisfies condition (L), then D is maximal commutative in

D oβ F. Next we prove the converse.
Suppose that G does not satisfy condition (L). Then there exist a closed path

t = t1 . . . t|t| in G such that t has no exit and r(ti) contains exactly one vertex for each ti.
We show that 1tδt commutes with D0δ0. By Remark 3.8, it is enough to show that 1tδt

commutes with 1cδ0 for each c ∈ F \ {0}, and with 1Aδ0 and 1bAδ0 for each A ∈ G0 and
b ∈ W.

Let A ∈ G0. If r(t) = s(t) ∈ A, then 1Aδ01tδt = 1tδt = βt(1t−1 )δt = βt(1t−1 1A)δt =

βt(βt−1 (1t)1A)δt = 1tδt1Aδ0 and, if s(t) = r(t) < A, then 1Aδ01tδt = 0 = 1tδt1Aδ0.
Now let A ∈ G0 and b ∈ W. Note that 1tδt1bAδ0 = βt(1t−1 1bA)δt and 1bAδ01tδt =

1bA1tδt. If s(b) < r(t), then 1t−1 1bA = 0 = 1t1bA and we are done. Suppose that
s(b) ∈ r(t). Then, by Proposition 3.9, βt(1t−1 1bA) = 1t1tbA. So, it remains to show
that 1t1tbA = 1t1bA. Notice that Xt = {ξ}, where ξ is the infinite path ξ = tt . . . . Then to
verify the desired equality it is enough to show that ξ ∈ XtbA if, and only if, ξ ∈ XbA.
Suppose that ξ ∈ XtbA. Then ξ = tby, where y is a path such that s(y) ∈ A. Therefore,
there exists an n ∈ N such that b = tnt1 . . . ti for some i and note that s(y) = r(ti). Hence,

ξ = tby = ttnt1 . . . tiy = tnt1 . . . titi+1 . . . t|t|t1 . . . tiy = bti+1 . . . t|t|t1 . . . tiy.
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Now note that bti+1 . . . t|t|t1 . . . tiy ∈ XbA, since s(ti+1) = r(ti) = s(y) ∈ A. Similarly, one
shows that if ξ ∈ XbA, then ξ ∈ XtbA. So, 1t1tbA = 1t1bA.

Finally, we show that 1tδt1cδ0 = 1cδ01tδt for each c ∈ F \ {0}. To prove this, it is
sufficient to show that βt(1t−1 1c) = 1t1c for each c ∈ F \ {0}. By Proposition 3.9, we
have that βt(1t−1 1c) = 1t1tc and hence we have to show that 1t1tc = 1t1c. Notice that to
prove this last equality it is enough to show that ξ = tt . . . is an element of Xtc if, and
only if, ξ ∈ Xc. This follows by arguments similar to the previous case, splitting the
proof into cases depending on whether c = a, c = b, or c = ab−1 with a, b ∈ W. �

The next proposition will be useful in the characterization of F-simplicity of D.

Proposition 4.2. Let x0δ0 be a nonzero element of Dδ0 and let I be the ideal generated
by x0δ0 in D oβ F. Then there exist a vertex v ∈ G0 and a nonzero element h ∈ R such
that (h1v)δ0 ∈ I.

Proof. First note that by Remark 3.8,

x0 =

m∑
i=1

αi1aib−1
i

+

n∑
j=1

β j1e jA j +

p∑
k=1

γk1Bk

with ai, bi, e j ∈ W and aib−1
i , 0, A j, Bk ∈ G

0, and αi, β j, γk ∈ R. Let A = {s(ai) :
1 ≤ i ≤ m} ∪ {s(e j) : 1 ≤ j ≤ n}

⋃p
k=1 Bk, which is an element of G0, and note that

1Ax0 = x0. Let ξ ∈ X be such that x0(ξ) , 0 and let v = s(ξ). Then v ∈ A and so
1v(ξ)x0(ξ) = 1A(ξ)x0(ξ) = x0(ξ) , 0. Therefore, 1vx0 , 0.

If v is a sink, then 1vx0 =
∑p

k=1 γk1v1Bk =
∑

k∈{1...p}:v∈Bk
γk1v = h1v. So, (h1v)δ0 ∈ I.

Now suppose that v is not a sink. Let M = max{|ai|, |e j| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Note
that since v is not a sink, then we can write

Xv =

.⋃
c∈J

Xc{u}

.⋃
d∈L

Xd,

where J is the set of all elements c of W such that s(c) = v, |c| < M, and such that
there is a sink u ∈ r(c), and L is the set of all the elements d such that s(d) = v and
|d| = M + 1.

Since 1vx0 , 0, then 1c{u}x0 , 0 for some c ∈ J and some sink u ∈ r(c), or 1d x0 , 0
for some d ∈ L.

Suppose that 1c{u}x0 , 0. Note that for each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, and k ∈
{1, . . . , p}, we have that 1c{u}1aib−1

i
= 0 or 1c{u}1aib−1

i
= 1c{u}, 1c{u}1e jA j = 0 or 1c{u}1e jA j =

1c{u}, and 1c{u}1Bk = 0 or 1c{u}1Bk = 1c{u}. Then

0 , 1c{u}x0 =

( ∑
i:1c{u}1aib

−1
i
,0

αi +
∑

j:1c{u}1e jA j,0

β j +
∑

k:1c{u}1Bk,0

γk

)
1c{u} = h1c{u}.

Therefore, (h1c{u})δ0 ∈ I. Since I is an ideal, then 1c−1δc−1 h1c{u}δ01cδc =

hβc−1 (1c1c{u})δ0 = (h1u)δ0 belongs to I.
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Now assume that 1d x0 , 0 for some d ∈ L. Since |d| > |ai|, then 1d1aib−1
i

= 1d or
1d1aib−1

i
= 0 for each i ∈ {1, . . . ,m}, and similarly 1d1e j A j = 1d or 1d1e j A j = 0 for each

j ∈ {1, . . . , n}. Moreover, 1d1Bk = 1d if s(d) ∈ Bk and 1d1Bk = 0 if s(b) < Bk for each
k ∈ {1, . . . , p}. Then

0 , 1d x0 =

( ∑
i:1d1aib

−1
i
,0

αi +
∑

j:1d1e jA j,0

β j +
∑

k:1d1Bk,0

γk

)
1d = h1d

and so (h1d)δ0 ∈ I. Hence, (h1r(d))δ0 = 1d−1δd−1 h1dδ01dδd belongs to I. Then, for each
vertex w ∈ r(d), we get that (h1w)δ0 = 1wδ0(h1r(d))δ0 belongs to I. �

As a consequence of the above proposition, we can provide a new proof of the
Cuntz–Krieger uniqueness theorem for Leavitt path algebras of ultragraphs.

Corollary 4.3. Let G be an ultragraph that satisfies Condition (L), let R be a unital
commutative ring, and let π : LR(G)→ S be a homomorphism such that π(rpA) , 0 for
each A ∈ G0 and nonzero r ∈ R. Then π is injective.

Proof. Let I = ker(π) and suppose that I , 0. Since G satisfies Condition (L), then,
by Theorem 4.1, Dδ0 is maximal commutative. Therefore, by [7, Theorem 2.1],
I ∩ Dδ0 , 0. Let 0 , x0δ0 ∈ I ∩ D0δ0. By Proposition 4.2, there exist a nonzero h ∈ R
and a vertex v such that (h1v)δ0 ∈ I, which is a contradiction. Therefore, ker(π) = 0. �

As in the C∗ setting, the characterization of simplicity of ultragraph Leavitt path
algebras relies on the notion of hereditary and saturated collections. For the reader’s
convenience, we recall these below.

Definition 4.4. Let G be an ultragraph. A subcollection H ⊆ G0 is called hereditary if:

(1) s(e) ∈ H implies that r(e) ∈ H for each e ∈ G1;
(2) A ∪ B ∈ H for all A, B ∈ H;
(3) A ∈ H, B ∈ G0 and B ⊆ A imply that B ∈ H.

Moreover, H is called saturated if for any v ∈ G0 with 0 < |s−1(v)| <∞,

{r(e) : e ∈ G1 and s(e) = v} ⊆ H implies that v ∈ H.

The next lemma is key in the characterization of F-simplicity in terms of existence
of hereditary and saturated subcollections of G0.

Lemma 4.5. Let R be a unital commutative domain and let I be an F-invariant ideal of
D0. Then the collection

H = {A ∈ G0 : h1A ∈ I for some nonzero h ∈ R}

is hereditary and saturated.
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Proof. First we show that H is hereditary. Let e ∈ G1 be such that s(e) ∈ H and let h ∈ R
be a nonzero element such that h1s(e) ∈ I. Then h1e = h1e1s(e) ∈ I ∩ De and, since I is
F-invariant, we have that h1r(e) = hβe−1 (1e) ∈ I and so r(e) ∈ H. Let A, B ∈ H and let
h, k be nonzero elements in R such that h1A ∈ I and k1B ∈ I. Then hk , 0, since R is
a domain. Moreover, hk1A∪B = hk1A + hk1B − hk1A1B ∈ I, since I is an ideal. Finally,
let A ∈ H, and B ∈ G0 with B ⊆ A. Take a nonzero element h ∈ R such that h1A ∈ I.
Note that h1B = h1B1A ∈ I. Hence, B ∈ H and H is hereditary.

Now we show that H is saturated. Let v ∈G0 be such that 0 < |s−1(v)| <∞. Suppose
that for each e ∈ s−1(v), r(e) ∈ H. Then for each e ∈ s−1(v) there is a nonzero he ∈ R
such that he1r(e) ∈ I. Since I is F-invariant, then he1e = heβe(1e−1 ) = βe(he1r(e)) ∈ I.
Define h =

∏
e∈s−1(v) he, which is nonzero since R is a domain. Then h1e ∈ I for

each e ∈ s−1(v) and so h1v =
∑

e∈s−1(v) h1e ∈ I, from where we get that v ∈ H and H
is saturated. �

We can now describe the relation between F-simplicity of D and hereditary and
saturated subcollections of G0.

Theorem 4.6. Let R be a field. Then the algebra D is F-simple if, and only if, the only
hereditary and saturated subcollections of G0 are ∅ and G0.

Proof. Suppose first that the only saturated and hereditary subcollections of G0 are
∅ and G0. Let I ⊆ D be a nonzero F-invariant ideal. We show that I = D. Let J be
the set of all finite sums

∑
atδt with at ∈ Dt ∩ I. Notice that J is nonzero and is an

ideal of D oβ F, since I is F-invariant. Then, by Proposition 4.2, there exist a v ∈ G0

and a nonzero h ∈ R such that h1vδ0 ∈ J. Since J ∩ D0δ0 = Iδ0, then h1v ∈ I. Let
H = {A ∈ G0 : h1A ∈ I for some nonzero h ∈ R}. By Lemma 4.5, H is hereditary and
saturated (and H , ∅, since v ∈ H) and hence H = G0. Then, for each A ∈ G0, there
exists a nonzero element h ∈ R such that h1A ∈ I. Since R is a field, we have that 1A ∈ I
and it follows that I = D0.

Now suppose that D0 is F-simple. Let H ⊆ G0 be nonempty, hereditary, and
saturated. We need to show that H = G0.

Let I be the ideal in D oβ F generated by the set {1Aδ0 : A ∈ H}, that is, I is the
linear span of all the elements of the form arδr1Aδ0asδs with r, s ∈ F, ar ∈ Dr, and
as ∈ Ds. Let J = {a : aδ0 ∈ Dδ0 ∩ I}, which is a nonzero ideal of D. Moreover, J is F
invariant, since if at ∈ J ∩ Dt, then atδ0 ∈ I and βt−1 (at)δ0 = 1t−1δt−1 atδ01tδt ∈ I. Since
D is F-simple, then J = D.

Our next step is to show that {u} ∈ H for each vertex u ∈ G0.
Let u ∈ G0. Then we can write

1uδ0 =
∑

t

xtδt1Atδ0yt−1δt−1 =
∑

t

βt(βt−1 (xt)1At yt−1 )δ0

with At ∈ H. Multiplying the above equation by 1uδ0,

1u =
∑
t∈T

1uβt(βt−1 (xt)1At yt−1 ), (2)
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where T = {t : 1uβt(βt−1 (xt)1At yt−1 ) , 0}. In particular, for each t ∈ T , we have that
1u1t , 0 and 1At 1t−1 , 0.

If u ∈ r(b) for some b ∈ W with {s(b)} ∈ H, then {u} ∈ H, since H is hereditary. If
0 < |s−1(u)| < ∞ and r(e) ∈ H for each e ∈ s−1(u), then {u} ∈ H, since H is saturated.
So, we are left with the cases when there is no path b with {s(b)} ∈ H and u ∈ r(b) and
s−1(u) = ∅, |s−1(u)| = ∞, or 0 < |s−1(u)| < ∞ but r(e) < H for some e ∈ s−1(u). Since
there is no path b ∈ W such that {s(b)} ∈ H and u ∈ r(b), then, for each b ∈ W,

1uβb−1 (βb(xb−1 )1Ayb) = 0

(notice that if b ∈ W is such that u ∈ r(b), then, since H is hereditary, s(b) < A and
hence 1A1s(b)yb = 0). So, each nonzero element t ∈ T is of the form t = ab−1 with
a ∈ W and b ∈ W ∪ {0}.

Case 1. s−1(u) = ∅ and there is no path b with s(b) ∈ H and u ∈ r(b).
For each t = ab−1 ∈ Fwith a ∈W and b ∈W ∪ {0}, we have that 1u1t = 0, since u is a

sink, and so t = ab−1 < T . So, T = {0} and then 1u = 1ux01A0 y0 with A0 ∈ H. Therefore,
u ∈ A0 and so {u} ∈ H.

Case 2. |s−1(u)| =∞ and there is no path b with {s(b)} ∈ H and u ∈ r(b).
Suppose that 0 < T . Then each t ∈ T is of the form t = ab−1 with a ∈ W and

b ∈ W ∪ {0}. Since |s−1(u)| = ∞, then there exists ξ ∈ X such that s(ξ) , s(a) for
each ab−1 ∈ T . So, we get that 1 = 1u(ξ) =

∑
t∈T 1uβt(βt−1 (xt)1At yt−1 )(ξ) = 0, which is a

contradiction. Hence, 0 ∈ T and so 1ux01A0 y0 , 0. Therefore, {u} ⊆ A0 ∈ H and, since
H is hereditary, we have that {u} ∈ H.

Note that it follows from Cases 1 and 2 and by the fact that H is hereditary, that if u
is a vertex such that |s−1(u)| = 0 or |s−1(u)| =∞, then {u} ∈ H.

Case 3. 0 < |s−1(u)| < ∞, there is an edge e ∈ s−1(u) with r(e) < H, and there is no
path b with {s(b)} ∈ H and u ∈ r(b).

Let us first prove the following claim.

Claim. If e is an edge such that r(e) < H, then there is a vertex v ∈ r(e) such that
{v} < H.

Let w = s(e). Notice that {w} < H, since H is hereditary. Also note that there is no
path d with s(d) ∈ {H} and w ∈ r(d). Therefore, since J = D, proceeding as we did for
u,

1w =
∑
t∈S

1wβt(βt−1 (x′t)1At y
′

t−1 ),

where At ∈ H for each t ∈ S , each 1wβt(βt−1 (x′t)1At y
′

t−1 ) is nonzero, 0 < S because
{w} < H, and each t is of the form t = ab−1 with a ∈ W and b ∈ W ∪ {0}.

For each t = ab−1 ∈ T , let ct = 1wβt(βt−1 (x′t)1At y
′

t−1 ), so that

1w =
∑
t∈S

ct. (3)
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Since 1w1t , 0, then w = s(a) and, since 1At 1t−1 , 0, we have that {s(b)} ⊆ At ∈ H.
Since H is hereditary, then {s(b)} ∈ H and therefore r(b) ∈ H and also r(b) ∩ r(a) ∈ H.
For t = a ∈ W, we get At ∩ r(t) ∈ H.

By multiplying Equation (3) on the left-hand side by 1e−1δe−1 and by 1eδe on the
right-hand side,

1r(e) =
∑

S

βe−1 (1ect). (4)

Notice that for t = a1 . . . a|a|b−1 ∈ S with a1 , e, βe−1 (1ect) = 0. Let M = max{|a| :
ab−1 ∈ S and a1 = e} and let S i = {ab−1 ∈ S : |a| = i and a1 = e} for 1 ≤ i ≤ M. In
particular, note that each element of S 1 is of the form t = eb−1 with b ∈ W ∪ {0}.

If e < S 1, define
A1 =

⋃
ab−1∈S 1

r(e) ∩ r(b)

and, if e ∈ S 1, define

A1 =

( ⋃
ab−1∈S 1,b,0

r(e) ∩ r(b)
)
∪ (r(e) ∩ Ae).

Notice that A1 ⊆ r(e) and that A1 ∈ H, since r(e) ∩ r(b) ∈ H for each eb−1 ∈ S 1 and
r(e) ∩ Ae ∈ H.

From Equation (4), we get 1r(e) =
∑M

i=1
∑

t∈S i
βe−1 (1ect).

Now we show that M > 1. Seeking a contradiction, suppose that M = 1. Then

1r(e) =
∑

eb−1∈S 1

βe−1 (1ecab−1 ).

Since A1 ⊆ r(e), A1 ∈ H, and r(e) < H, we have that A1 is a proper subset of r(e).
So, there is a vertex v such that v ∈ r(e) \ A1. Let ξ ∈ X be such that s(ξ) = v (notice
that by the paragraph just above the statement of Case 3, v is not a sink). Then, for
each t = eb−1 ∈ S 1,

1eb−1 (eξ) = 1e(r(e)∩r(b))(eξ) = 0,

since r(e) ∩ r(b) ⊆ A1. Therefore,

1 = 1r(e)(ξ) =
∑

eb−1∈S 1

βe−1 (1eceb−1 )(ξ) =
∑

eb−1∈S 1

1eb−1 ceb−1 (eξ) = 0,

which is a contradiction. Therefore, M > 1.
Recall now that for each ab−1 ∈ S 2 ∪ · · · ∪ S M , the element a is of the form a =

a1a2 . . . a|a| = ea2 . . . a|a|. We want to show that {s(a2)} < H for some ab−1 ∈ S 2 ∪ S M .
Again seeking a contradiction, suppose that {s(a2)} ∈ H for each ab−1 ∈ S 2 ∪ · · · ∪ S M .
Let A2 be the set of all those vertices (the vertices s(a2)). Notice that A2 ∈ H (since
we are supposing that each {s(a2)} ∈ H and H is hereditary) and that A2 ⊆ r(e) (since
s(a2) ∈ r(a1) = r(e)). So, we get that A1 ∪ A2 ⊆ r(e) and, since A1 ∪ A2 ∈ H and
r(e) < H, there exist a vertex v0 ∈ r(e) \ (A1 ∪ A2). Let ξ ∈ Xwith s(ξ) = v0.
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For each eb−1 ∈ S 1, we get 1eb−1 (eξ) = 0, since s(ξ) < A1, and, for each
ea2 . . . a|a|b−1 ∈ S 2 ∪ · · · ∪ S M , we get 1ea2...a|a|b−1 (eξ) = 0, since s(ξ) , s(a2) (because
s(ξ) < A2). Therefore,

1 = 1r(e)(ξ) =

M∑
i=1

∑
ab−1∈S i

βe−1 (1ecab−1 )(ξ) = 0,

which is a contradiction.
So, there is an element ab−1 ∈ S 2 ∪ · · · ∪ S M (where a = ea2 . . . a|a|) with {s(a2)} <

H. Since s(a2) ∈ r(e), we proved the claim.
Now we prove Case 3.
First write 1u as in Equation (2), that is,

1u =
∑
t∈T

1uβt(βt−1 (xt)1At yt−1 ),

where 1uβt(βt−1 (xt)1At yt−1 ) , 0.
To show that {u} ∈ H, it is enough to show that 0 ∈ T , because in this case 0 , 1u1A0 ,

which implies that u ∈ A0 and, since A0 ∈ H, then {u} ∈ H.
Suppose, by contradiction, that 0 < T . Then each t ∈ T is of the form t = ab−1 with

a ∈ W and b ∈ W ∪ {0}. Recall that for each t = ab−1, r(a) ∩ r(b) ∈ H and, for t = a,
r(a) ∩ Aa ∈ H.

Let M = max{|a| : ab−1 ∈ T, a ∈ W, b ∈ W ∪ {0}}.
By hypothesis, there is an edge e0 ∈ s−1(u) such that r(e0) < H. By the previous

claim, there is a vertex v1 ∈ r(e0) such that {v1} < H. It follows from the paragraph
immediately after Case 2 that 0 < |s−1(v1)| <∞. Since H is saturated, there is an edge
e1 ∈ s−1(v1) such that {r(e1)} < H. By applying the previous argument repeatedly, we
get a path e0 . . . eM such that s(ei) = vi and {vi} < H for each i ∈ {1, . . . , M}. Let ξ ∈ X
be such that s(ξ) ∈ r(eM). Then e0e1 . . . eMξ ∈ X and, for each t = ab−1 ∈ T ,

1ab−1 (e0e1 . . . eMξ) = 1a(r(a)∩r(b))(e0e1 . . . eMξ) = 0,

since s(e|a|) < H and r(a) ∩ r(b) ∈ H. The same holds for t = a ∈ T . So, 1t(e0 . . . eMξ) =

0 for each t ∈ T . Finally,

1 = 1u(e0 . . . eMξ) =
∑
t∈T

1uβt(βt−1 (xt)1At yt−1 )(e0 . . . eMξ)

=
∑
t∈T

1uβt(βt−1 (xt)1At yt−1 )(e0 . . . eMξ)1t(e0 . . . eMξ) = 0,

which is a contradiction. Therefore, 0 ∈ T and Case 3 is proved.
So, we get that {u} ∈ H for each u ∈ G0.
To end the proof, notice that, by [17, Lemma 2.12], any A ∈ G0 can be written as⋂

e∈X1

r(e) ∪ · · · ∪
⋂
e∈Xn

r(e) ∪ F,

where X1, . . . , Xn are finite subsets of G1 and F is a finite subset of G0. Since H
is hereditary and {s(e)} ∈ H, we have that r(e) ∈ H for each e ∈ G1. The result now
follows from the fact that H is hereditary. �
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We can now prove the simplicity criteria for the Leavitt path algebra of an ultragraph
G, LR(G), via partial skew group ring theory.

Theorem 4.7. Let G be an ultragraph and R be a field. Then LR(G) is simple if, and
only if,G satisfies condition (L) and the unique saturated and hereditary subcollections
of G0 are ∅ and G0.

Proof. By Theorem 3.10, LR(G) and D oβ F are isomorphic algebras. By [7,
Theorem 2.3], the algebra D oβ F is simple if, and only if, D is F-simple and Dδ0

is maximal commutative in D oβ F. The result now follows from Theorems 4.1
and 4.6. �

In [16, Theorem 3.11], Tomforde gave a complete combinatorial description of
ultragraphs such that the associated ultragraph C∗-algebra is simple. Since this
description is obtained based only on the description of simplicity via hereditary and
saturated collections, the theorem above implies that we have the same description for
LR(G). For the reader’s convenience, we state the theorem below, but for this we need
to recall a few definitions.

For an ultragraph G and v,w ∈ G0, the notation w ≥ v means that there is a path α
with s(α) = w and v ∈ r(α). Also, G0 ≥ {v} means that w ≥ v for each w ∈ G0. The
ultragraph G is said to be cofinal if for each infinite path α = e1e2 . . . , and each vertex
v ∈G0, there is an i ∈ N such that v ≥ s(ei). Moreover, for v ∈G0 and A ⊆G0, we write
v→ A to mean that there are paths α1, . . . , αn such that s(αi) = v for all 1 ≤ i ≤ n and
A ⊆

⋃n
i=1 r(αi).

Theorem 4.8. Let G be an ultragraph and R be a field. Then LR(G) is simple if and
only if:

(1) G satisfies condition (L);
(2) G is cofinal;
(3) G0 ≥ {v} for every singular vertex v ∈ G0;
(4) if e ∈ G1 is an edge for which the set r(e) is infinite, then for every w ∈ G0 there

exists a set Aw ⊆ r(e) for which r(e) \ Aw is finite and v→ Aw.

Proof. The proof of this theorem relies only on the fact that the only hereditary and
saturated subcollections of G0 are ∅ and G0. So, the proof given in [16, Theorem 3.11]
applies. �

5. Chain conditions

In [14], chain conditions were described for partial skew groupoid rings. As an
application, a new proof of the criterion for a Leavitt path algebra to be artinian is
given. Namely, a Leavitt path algebra associated to a graph E is artinian if and only
if E is finite and acyclic (a graph (ultragraph) is called acyclic if there are no cycles
in the graph (ultragraph)). Building from the ideas in [14], we show that this same
criterion is true for ultragraph Leavitt path algebras. In our proof we will use that any
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ultragraph Leavitt path algebra of a finite acyclic ultragraph is isomorphic to a Leavitt
path algebra of a finite acyclic graph, a result we state precisely below.

Let G = (G0,G1, r, s) be a finite ultragraph. Enumerate G0, say

G0 = {v1, . . . , vn}.

Define a map c : G1 → {0, 1}n by c(e) = (yi), where

yi =

1 if vi ∈ r(e),
0 if vi < r(e).

Consider the graph F = (G0,F 1, r, s), where the set of edges F 1 consists of all edges
defined as follows: for each edge e ∈ G1 and i ∈ {1, . . . , n} such that c(e)i = 1, let fei

be the edge such that s( fei ) = s(e) and r( fei ) = vi. We can now state the following
proposition, a proof of which is left to the reader.

Proposition 5.1. Let G be a finite ultragraph, that is, suppose that G0 and G1 are
finite, and let F be the associated graph as defined above. Then LR(G) is isomorphic
to LR(F ). Furthermore, if G is acyclic, then F is acyclic.

We end the paper with the characterization of artinian ultragraph Leavitt path
algebras. Recall that a ring is left (right) artinian if it satisfies the descending chain
condition on left (right) ideals, and artinian if it is both left and right artinian.

Theorem 5.2. Let R be a field and let G be an ultragraph. Consider LR(G),
the ultragraph Leavitt path algebra of G. Then the following five assertions are
equivalent:

(1) G is finite and acyclic;
(2) LR(G) is left artinian;
(3) LR(G) is right artinian;
(4) LR(G) is artinian;
(5) LR(G) is unital and semisimple.

Proof. All we need to prove is that (2) ⇒ (1). The other implications follow from
Proposition 5.1 and [14, Theorem 5.2].

(2) ⇒ (1) The proof of this implication will follow closely the proof of [14,
Theorem 5.2] for Leavitt path algebras. We include it here for completeness.

Suppose that LK(E) � D oβ F is left artinian. By [14, Theorem 1.3], we get that
Dg = {0} for all but finitely many g ∈ F, and D is left artinian.

Assume that there exists an infinite path p = e1e2e3 . . . in G. Then the ideals De1 ,
De1e2 , De1e2e3 , . . . are all nonzero, which is a contradiction. Therefore, there is no
infinite path in G and hence G must be acyclic.
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Next we prove that G is finite. Notice that if G0 = {v1, v2, v3, . . .} is infinite, then⊕
v∈E0\{v1}

LR(G)v ⊇
⊕

v∈E0\{v1,v2}

LR(G)v ⊇
⊕

v∈E0\{v1,v2,v3}

LR(G)v ⊇ · · ·

is a descending chain of left ideals of LR(G) that never stabilizes (since every pair of
vertices in G0 are orthogonal idempotents). Hence, LR(G) is not left artinian, which is
a contradiction. Therefore, G0 is finite.

We finish the proof of showing that G1 is finite. Since G0 is finite, it is enough to
prove that G0 contains no infinite emitter. Seeking a contradiction, suppose that there
is a vertex v ∈ G0 which is an infinite emitter. Since G0 is finite, there must exist some
u ∈G0 such that the set I = {e ∈ E1 | s(e) = v and u ∈ r(e)} is infinite. If u is a sink, then
(u, u) ∈ Xe−1 for all e ∈ I and hence De−1 is nonzero for infinitely many e ∈ I, which is
a contradiction. Suppose that u is not a sink. Then there exists a path η ∈ X such that
s(η) = u. Hence, Xe−1 contains η for each e ∈ I. Therefore, De−1 is nonzero for infinitely
many e ∈ I, which is a contradiction. �
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[5] D. Gonçalves, ‘Simplicity of partial skew group rings of abelian groups’, Canad. Math. Bull. 57(3)

(2014), 511–519.
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