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Abstract

This paper investigates asset-liability management problems in a continuous-time
economy. When the financial market consists of cointegrated risky assets, institutional
investors attempt to make profit from the cointegration feature on the one hand, while
on the other hand they need to maintain a stable surplus level, that is, the company’s
wealth less its liability. Challenges occur when the liability is random and cannot be
fully financed or hedged through the financial market. For mean–variance investors,
an additional concern is the rational time-consistency issue, which ensures that a
decision made in the future will not be restricted by the current surplus level. By
putting all these factors together, this paper derives a closed-form feedback equilibrium
control for time-consistent mean–variance asset-liability management problems with
cointegrated risky assets. The solution is built upon the Hamilton–Jacobi–Bellman
framework addressing time inconsistency.

2020 Mathematics subject classification: primary 91G10; secondary 91B70.
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1. Introduction

The 2003 Nobel Memorial Prize was awarded to Granger and Engle for their discovery
of cointegration [19] and generalised autoregressive conditional heteroscedasticity
through time series models. Specifically, the concept of cointegration [18] asserts that
a pair of nonstationary time series can have a stationary linear combination or a lower
degree of integration than the original series. In other words, this is an alternative
description of comovements beyond the conventional correlation coefficient. Cointe-
gration has been applied to a variety of economic models, including the relationships
between capital and output, real wages and labour productivity, nominal exchange rates
and relative prices, consumption and disposable income, long- and short-term interest
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rates, money velocity and interest rates, price of shares and dividends, production and
sales, and many other financial variables.

In finance, cointegration has been an important concept for enhancing asset pricing
and portfolio management. Specifically, Alexander [1] and Alexander et al. [2]
pioneered the use of cointegration in portfolio management, while Duan and Pliska
[17] recognised the application in commodity option pricing. Empirical evidence for
the applications of cointegration included, but was not limited to, exchange rates [3],
stocks [6], global financial indices [25] and commodities [15].

Using the Markowitz [23] mean–variance (MV) criteria and the continuous-time
cointegration model [24], Chiu and Wong [10] established the first MV pairs-trading
rule for cointegrated risky assets. Their work has been useful in insurers’ investment
problems [11], asset-liability management (ALM) [12], robust decision rule [14]
and the mortality hedging [28]. While the framework of Chiu and Wong and the
subsequent extensions are based on a combination of work by Li and Ng [22],
Zhou and Li [30], and Chiu and Li [9], the resulting strategies violate the dynamic
programming principles (DPP) and hence cause the issue of time inconsistency.Time
inconsistency in dynamic MV portfolio problems has recently attracted a great deal
of attention. In particular, Cui et al. [16] showed that time inconsistency could result
in a suboptimal solution. They demonstrated that the classical time-inconsistent MV
problem generates a free cash flow. The performance of the portfolio is unaffected
by the removal of this free cash flow. In other words, there exists a better way
to manage the cash to further improve the portfolio. Therefore, investigating the
time-consistent MV (TC-MV) ALM problem with cointegration represents important
and interesting research. A well-received framework to overcome time inconsistency
is based on the Hamilton–Jacobi–Bellman (HJB) approach, independently developed
by Basak and Chabakauri [4] and Bjork et al. [5]. According to this approach, the
decision is made by the investor in a game that he plays with all of his future-selves.
After his future-self makes a decision, his current-self reacts to locally optimise the
objective function. This induces a backward sequential game among the current-self
and all the future-selves. The current decision becomes a subgame perfect Nash
equilibrium that preserves the DPP. This equilibrium control framework has been
applied to ALM in a regime-switching economy without cointegration [26], cointe-
gration pairs-trading without a liability [13], mortality hedging [27], index hedging
[7] and pairs-trading in a regime-switching cointegration economy [7]. Typically,
Chiu and Wong [13] prove mathematically that the equilibrium MV strategy offers a
statistical arbitrage opportunity in the cointegration financial market. However, they
do not take into account the real situation in which institutional investors usually
encounter uncontrollable random liability and are concerned primarily with their
surplus. To the best of our knowledge, the TC-MV ALM with high-dimensional
cointegrated risky assets and an uncontrollable liability is yet to be considered.
Although a recent work [8] also considers ALM for the same market setting, the
objective is rather different, because that work concentrates on exponential utility
optimisation.
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The TC-MV ALM problem with cointegration is mathematically challenging,
because the risky asset prices’ dynamic contains a high-dimensional mean reversion
term that causes the corresponding stochastic differential equation (SDE) to have
unbounded coefficients. Hu et al. [21] also investigate TC-MV problems with back-
ward SDE approach. Their approach requires that all coefficients in the state process
and hence in the SDE of risky asset prices are bounded. The case of cointegration
clearly violates such a regularity condition. In fact, removing the boundedness condi-
tion is not obvious, as shown in the case of stochastic volatility by Zhou and Li [29].
It is, however, even more challenging with the ALM problem, because the stochastic
liability is typically assumed not to be controllable for infeasible debt financing. In
the literature, the liability risk is projected to the controllable stock portfolio through
correlation between the stock market and the liability. Such a projection becomes
nontrivial once cointegration occurs in the stock market. The investor has to strike
a balance between profiting from the cointegrated pairs trading and ensuring sufficient
cash to settle the liability at the end of the investment horizon.

Therefore, this paper contributes to the literature by introducing the TC-MV HJB
framework to the ALM problem with cointegrated risky assets and an uncontrollable
liability. We derive a closed-form explicit solution to the equilibrium ALM strategy
and the MV efficient frontier describing the trade-off between the expected surplus
and the variance of the surplus. The mathematical contribution is the solution to a
complicated system of high-dimensional matrix differential equations (see Section 4).

The rest of the paper is organised as follows. Section 2 reviews the basic concept of
cointegration and gives details of the formulation of the problem. The corresponding
TC-MV ALM problem is completely solved in Section 3. The analytical result is used
to study the efficient frontier of the ALM problem, and, finally, Section 5 concludes
the paper.

2. Problem formulation

2.1. Cointegration The error-correction model is the basis for constructing our
cointegrated asset-return dynamics in continuous time. By Granger’s representation
theorem [18], the cointegrated vector time series can be expressed as an error
correction model. Cointegration is based on the belief that many nonstationary time
series may form certain long-run relationships.

In a discrete-time model with constant parameters, an error correction dynamic for
the m-component asset price time series with k (1 ≤ k ≤ m) cointegrating factors is
defined as follows:

ln Si,t − ln Si,t−1 = μ +

k∑
j=1

δijzj,t−1 + σi,tεi,t for i = 1, . . . , m,

zj,t = aj + bjt +
m∑

i=1

cij ln Si,t for j = 1, . . . , k,
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where Si,t is the price of asset i at time t for i = 1, . . . , m; (c1j, . . . , cnj) are linearly
independent vectors for j = 1, . . . , k; and the random vector [ε1,t, . . . , εm,t] follows
a multivariate normal distribution with mean zero and constant correlation coeffi-
cient matrix. In the error correction model, the vector of k cointegrating factors,
[z1,t, . . . , zk,t], should be a stationary time series such that each zj,t has a bounded
variance at all time points. A stationary time series can easily be identified within an
autoregressive (AR) model. In the case where k = 1, an AR(1) stationary time series
of {z1,t} takes the form

z1,t = αz1,t−1 + σzεt,

where α < 1. If k = m, then the vector of log-asset prices has already formed a
stationary vector AR(1) time series and hence zj,t = ln Sj,t for all j = 1, . . . , m.

In a continuous-time economy, the cointegration model [24] becomes

d ln Si,t =

(
μ +

k∑
j=1

δijzj,t

)
dt + σi dŴi,t i = 1, . . . , m, (2.1)

zj,t = aj + bjt +
m∑

i=1

cij ln Si,t j = 1, . . . , k, (2.2)

where Ŵt = (Ŵ1
t , Ŵ2

t , . . . , Ŵn
t )′ is a vector of correlated Wiener process, and n ≥ m,

representing a possibly incomplete market. When k = 1, z1,t in (2.2) follows the
Ornstein–Uhlenbeck process,

dz1,t = (μ1 − ρz1,t) dt + σz1 dŴt
,

where μ1 is a real constant, and ρ and σz1 are positive constants. In general, the
vector of k cointegrating factors, zt = [z1,t, . . . , zk,t], satisfies the stochastic differential
equation (SDE)

dzt = (μz − J · zt) dt + σz dŴt, (2.3)

where J is a k × k positive diagonal matrix, σzσ
′
z is a positive definite matrix of size

k, and μz is a k-dimensional vector. Note that a vector of correlated Wiener processes
Ŵt in (2.3) can be expressed as the product of a correlation matrix and the vector of
independent Wiener processes, Wt.

To simplify the notation, we substitute (2.2) into (2.1) and write

d ln St = (θ(t) −A · ln St) dt + σA dWt,

where ln St is a vector that contains log-prices of m assets, θ(t) is an m-dimensional
vector with each component linear in t, Wt is a vector of uncorrelated Wiener
processes,σAσA

′ represents the m × m variance-covariance matrix, andA is the m × m
coefficient matrix of cointegration.

2.2. The market Consider a financial market in which m + 1 assets are traded
continuously within the time interval [0, T]. These assets are labelled by Si for
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i = 0, 1, 2 . . . , m, with the 0th asset being risk-free. The risk-free asset satisfies the
differential equation

dS0(t) = r(t)S0(t) dt,
S0(0) = R0 > 0,

where r(t) is the time deterministic risk-free rate. The risky assets are defined through
their log-price processes X1(t), . . . , Xm(t), where

Xj(t) = ln Sj(t). (2.4)

The log-prices vector, X(t), satisfies the SDE

dX(t) = [θ(t) −AX(t)] dt + σA(t) dWt t ∈ [0, T], (2.5)

where Wt = (W1
t , . . . , Wn

t )′ is a standard Ft≥0-adapted n-dimensional Wiener process
on a fixed filtered complete probability space (Ω,F ,P,Ft≥0), Wi

t and Wj
t are mutually

independent for all i � j, F = {Ft}t≥0 is the filtration generated by Wt augmented
by the null sets of P, A is an m × m constant matrix of cointegration coefficients,
and σA(t)σA(t)′ is the covariance matrix of assets defined in the Banach space of
R

m×m-valued continuous functions on [0, T]. In line with the literature [30], we assume
that the nondegeneracy condition of σA(t)σA(t)′ ≥ δIm holds for all t ∈ [0, T] and for
some δ > 0. We also assume that r(t), θ(t) and σA(t) are measurable and uniformly
bounded in [0, T].

The risky asset dynamics in (2.5) have appealing financial interpretations and
embrace several interesting classical models as special cases. When A ≡ 0, the Si

with i = 1, 2, . . . , m in (2.4) are reduced to the geometric Brownian motions, and the
corresponding MV portfolio problem has been fully analysed in the literature. If A is
a full rank positive diagonal matrix, then all of the individual assets are stationary and
exhibit mean reversion.

These m risky assets are said to have k cointegrating factors if rank(A) = k, A has
exactly k positive eigenvalues, and θ(t) is linear in t. In such a situation, there exists an
invertible matrix P such that A = P−1ĴP, where Ĵ is a Jordan normal form of A. As
A has k positive eigenvalues, its Jordan normal form is

Ĵ =
(

J 0k×(m−k)
0(m−k)×k 0(m−k)×(m−k)

)
,

where J ∈ Rk×k is the Jordan matrix with a positive diagonal. Let Zt = P · Xt. From
(2.5),

dZt = (Pθ(t) − ĴZt) dt + PσA(t) dWt t ∈ [0, T].

Let zt be a k-dimensional vector collecting the first k components of Zt. Then, zt has
the stochastic process of the form of (2.3) and represents the k cointegrating factors of
the m risky assets.
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2.3. Mean–variance ALM Consider an investor with an initial capital of w0 in the
specified financial market, with cointegration and initial liability of l0. The liability
price process is postulated as

dl(t) = l(t)α̃L(t) dt + l(t)σL(t) dWt,
l(0) = l0,

(2.6)

where α̃L(t) is the appreciation rate of the value of liabilities; and σL(t) is the
volatility, which belongs to C([0, T];Rn×1), a Banach space of Rn×1-valued continuous
functions on [0, T], and satisfies the nondegeneracy condition. The investor is allowed
to continuously adjust his portfolio over a time period [0, T]. Denote Y(t) = w(t) − l(t)
as the surplus. The investor aims to minimise the variance of the terminal surplus,
Y(T), and maximise the expected final surplus.

This paper focuses on the situation where the random liability is uncontrollable,
meaning that the investor cannot trade the liability in the financial market. This
consideration agrees with those in the literature [9, 12, 26].

Let ui(t) be the amount invested in asset i, and let Ni(t) be the number of asset i
in the portfolio of the investor. The wealth of the investor at time t is then defined as
w(t) =

∑m
i=0 ui(t) =

∑m
i=0 Ni(t)Si(t). The portfolio

u(t) = (u1(t), u2(t), . . . , um(t))′

is said to be admissible if u(t) is a nonanticipating and Ft-adapted process such that∫ t
0 u(τ)′u(τ) dτ < ∞ almost surely. Note that here we focus on self-financing portfolios.

This means that no money will be withdrawn from or input into the portfolio. Any
change in the value of the portfolio is due only to changes in the prices of the assets.
Applying Itô’s lemma to w(t) with respect to the cointegrating dynamics (2.5), the
wealth process is given by

dw(t) = [r(t)w(t) + u(t)′αA(t)] dt + u(t)′σA(t) dWt,
w(0) = w0,

(2.7)

where 1 is the column vector with all elements 1, and

αA(t) = θ(t) −AX(t) + 1
2D(σA(t)σA(t)′)1 − r(t)1, (2.8)

in which D(σA(t)σA(t)′) is the diagonal matrix with all diagonal elements equal to
those of σA(t)σA(t)′. By subtracting (2.6) from (2.7), the SDE for the surplus can be
derived as

dY(t) = [r(t)Y(t) + u(t)′αA(t) − αL(t)l(t)] dt + [u(t)′σA(t) − σL(t)l(t)] dWt,
Y(0) = w0 − l0,

(2.9)

where αL(t) = α̃L(t) − r(t). In this paper, a closed-form and explicit solution to the
equilibrium TC-MV ALM strategy is derived, subject to cointegration that embraces
mean reversion as its special case.
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PROBLEM 2.1. The original MV ALM problem under cointegration is formulated as

(P(λ)) min
u(·)

Var(Y(T)) − 2λE[Y(T)]

subject to u(·) ∈ L2
FT

([0, T],Rm),

surplus process with cointegration (2.9),
liabilities process (2.6).

The space L2
FT

([0, T],Rm) represents the set of all Rm-valued, FT -measurable random
variables with finite second moments. For any λ > 0, this problem is equivalent to a
standard utility maximisation problem in which the utility function is given by

E[Y(T)] − 1
2λ

Var(Y(T)).

Thus, the reciprocal of 2λ reflects the risk aversion of the utility function. However,
(P(λ)) in Problem 2.1 is not time-consistent because of the nonseparability of the
variance operator.

3. Time consistency and solution

3.1. Time-consistent HJB

DEFINITION 3.1. A control law u∗ is said to be an equilibrium control or time
consistency control if for every admissible u, a fixed real number τ > 0 and a fixed
and arbitrarily chosen initial point (t, y, x, l), a new control law uτ related to u∗ by

uτ(s, y, x, l) =

⎧⎪⎪⎨⎪⎪⎩
u(s, y, x, l) for t ≤ s < t + τ
u∗(s, y, x, l) for t + τ ≤ s ≤ T

has the property that

lim sup
τ→0+

U(t, y, x, l, u∗) − U(t, y, x, l, uτ)
τ

≤ 0 for all (t, y, x, l) ∈ [0, T] × R3,

where

U(t, y, x, l, u(·)) = Var(Yu(T)|Y(t) = y, X(t) = x, l(t) = l),
− 2λE[Yu(T)|Y(t) = y, X(t) = x, l(t) = l],

and Yu(·) means the surplus process adopting the trading strategy u(·).

Definition 3.1 extracted from Bjork [5] asserts that the feedback control minimises
the objective function U(·) locally. When the risk aversion λ is a constant, this
definition of a TC-MV problem is consistent with the definition given by Basak and
Chabakauri [4]. This paper adopts the presentation of Basak and Chabakauri [4],
and readers interested in the connection between the two approaches are referred to
Bjork [5].
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For any given constant λ > 0, consider the utility function

Ut = Var(Y(T)|Ft) − 2λE[Y(T)|Ft].

Using the law of iterated expectations, Basak and Chabakauri [4] showed that a
portfolio policy satisfying

Ut = E[Ut+τ|Ft] + Var(E[Y(T)|Ft+τ]|Ft) t ≥ 0, τ > 0 (3.1)

is a time-consistent policy and obeys the DPP. Hence, we define the time-consistent
solution space of cointegrated assets as

U(t, T) = {u ∈ L2
FT

([t, T],Rn) | conditions (2.9), (2.6) and (3.1) hold}. (3.2)

The time-consistent versions of P(λ) are respectively revised as

min
u∈U(0,T)

Var(Y(T)) − 2λE[Y(T)].

To derive a HJB equation for the value function subject to time consistency, consider
the value function

J(t, Y(t), X(t), l(t)) = min
u∈U(t,T)

Var(Y(T)|Ft) − 2λE[Y(T)|Ft], (3.3)

where U(t, T) is mentioned in (3.2). Notice that J∗ = J(0, w0 − l0, X(0), l0) is the
optimal value function (P(λ)) in Problem 2.1.

Following Basak and Chabakauri [4], an application of Itô’s lemma to e
∫ T

t r(s) dsY(t)
yields

d
(
e
∫ T

t r(s) dsY(t)
)
= e

∫ T
t r(s) ds[(αA(t)′u(t) − αL(t)l(t)) dt + (u(t)′σA(t) − l(t)σL(t)) dWt],

(3.4)

which implies

Y(T) = e
∫ T

t r(s) dsY(t) +
∫ T

t
e
∫ T

s r(τ) dτ(αA(s)′u(s) − αL(s)l(s)) ds

+

∫ T

t
e
∫ T

s r(τ) dτ(u(s)′σA(s) − l(s)σL(s)) dWs,

E[Y(T)|Ft] = e
∫ T

t r(s) dsY(t) + E
[ ∫ T

t
e
∫ T

s r(τ) dτ(αA(s)′u(s) − αL(s)l(s)) ds|Ft

]
,

Var(Y(T)|Ft) = Var
( ∫ T

t
e
∫ T

s r(τ) dτ(αA(s)′u(s) − αL(s)l(s)) ds

+

∫ T

t
e
∫ T

s r(τ) dτ(u(s)′σA(s) − l(s)σL(s)) dWs|Ft

)
.
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Therefore,

J(t, Y(t), X(t), l(t)) = min
u∈U(t,T)

{
Var

( ∫ T

t
e
∫ T

s r(τ) dτ(αA(s)′u(s) − αL(s)l(s)) ds

+

∫ T

t
e
∫ T

s r(τ) dτ(u(s)′σA(s) − l(s)σL(s)) dWs|Ft

)

− 2λE
[ ∫ T

t
e
∫ T

s r(τ) dτ(αA(s)′u(s) − αL(s)l(s)) ds|Ft

]}

− 2λe
∫ T

t r(s) dsY(t), (3.5)

which shows the separable structure of e
∫ T

t r(s) dsY(t), and hence the equilibrium u∗(s)
does not depend on Y(t) for s ≥ t. Owing to the Markovian nature of the economy, u∗(t)
only depends on X(t), l(t) and t for a given constant λ. Then, we define

J(t, Y(t), X(t), l(t)) = J1(t, X(t), l(t)) − 2λe
∫ T

t r(s) dsY(t) and (3.6)

Γ(t, X(t), l(t)) = E
[ ∫ T

t
e
∫ T

s r(τ) dτ(αA(s)′u∗(s) − αL(s)l(s)) ds|Ft

]
, (3.7)

where J1(t, X(t), l(t)) is the first term of equation (3.5).

LEMMA 3.2. The value function J(t, Y(t), X(t), l(t)) defined in (3.3) satisfies

min
u(t)

{
E[dJ|Ft] + Var(d

(
e
∫ T

t r(s) dsY
)
+ dΓ|Ft)

}
= 0, (3.8)

where Γ is defined in equation (3.7). Hence, the optimal time-consistent trading
strategy (P(λ)) in Problem 2.1 is

u∗(t, X(t), l(t)) = e−
∫ T

t r(s) ds
[
λ(σA(t)σA(t)′)−1αA(t) − ∂Γ

∂X
(t, X(t), l(t))

+ (σA(t)σA(t)′)−1σA(t)σL(t)′l(t)
(
e
∫ T

t r(s) ds − ∂Γ
∂l

(t, X(t), l(t))
)]

, (3.9)

where

αA(t) = θ(t) −AX(t) + 1
2D(σA(t)σA(t)′)1 − r(t)1.

PROOF. To simplify the notation, we denote J(t) = J(t, Y(t), X(t), l(t)) and Γ(t) =
Γ(t, X(t), l(t)). The definition of J implies that

J(t) = min
u∈U(t,T)

{Var(Y(T)|Ft) − 2λE[Y(T)|Ft]}

= min
u∈U(t,T)

(E[Var(Y(T)|Ft+τ)|Ft] + Var(E[Y(T)|Ft+τ]|Ft)) − 2λE[E[Y(T)|Ft+τ]|Ft]

= min
u∈U(t,T)

E[Var(Y(T)|Ft+τ) − 2λE[Y(T)|Ft+τ]|Ft] + Var(E[Y(T)|Ft+τ]|Ft)

= min
u∈U(t,t+τ)

E[J(t + τ)|Ft] + Var(E[Y∗(T)|Ft+τ]|Ft) (3.10)
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= min
u∈U(t,t+τ)

E[J(t + τ)|Ft] + Var
(
e
∫ T

t+τ r(s) dsY(t + τ) + Γ(t + τ)|Ft
)

(3.11)

= min
u∈U(t,t+τ)

E[J(t + τ)|Ft] + Var
(
e
∫ T

t+τ r(s) dsY(t + τ) + Γ(t + τ) + (Γ(t) − Γ(t))|Ft
)

= min
u∈U(t,t+τ)

{
Var

(
e
∫ T

t+τ r(s) dsY(t + τ) − e
∫ T

t r(s) dsY(t) + Γ(t + τ) − Γ(t)|Ft
)

+ E[J(t + τ)|Ft]
}

(3.12)

0 = min
u∈U(t,t+τ)

{
Var

((
e
∫ T

t+τ r(s) dsY(t + τ) − e
∫ T

t r(s) dsY(t)
)
+ (Γ(t + τ) − Γ(t))|Ft

)
+ E[(J(t + τ) − J(t))|Ft]

}
. (3.13)

Letting τ→ 0 in equation (3.13),

min
u(t)
{E[dJ|Ft] + Var(d(e

∫ T
t r(s) dsY) + dΓ|Ft)} = 0.

Note that equality (3.10) holds if the trading strategy u∗(·) is time consistent. Equalities
(3.11) and (3.12) hold owing to the definition of Γ. This is because

Γ(t, X(t), l(t)) = E
[ ∫ T

t
e
∫ T

s r(τ) dτ(αA(s)′u∗(s) − αL(s)l(s)) ds|Ft

]
,

= E[Y∗(T)|Ft] − e
∫ T

t r(s) dsY(t),

where Y∗(T) = Y(T)|u=u∗ . To obtain the time-consistent trading strategy u∗(t), equation
(3.8) must be solved. According to (3.6),

dJ = −2λd
(
e
∫ T

t r(s) dsY(t)
)
+ dJ1

E[dJ|Ft] = E
[ − 2λe

∫ T
t r(s) ds(αA(t)′u(t) − αL(t)l(t)) dt + dJ1|Ft

]
.

(3.14)

Applying Itô’s lemma to Γ produces the SDE of Γ as follows:

dΓ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∂Γ

∂t
+

(
∂Γ

∂X

)′
(θ −AX) +

∂Γ

∂l
α̃Ll +

1
2

tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
σ′A lσ′L

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Γ

∂X2

∂2Γ

∂X∂l
∂2Γ

∂l∂X
∂2Γ

∂l2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
σA

lσL

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
dt

+

[(
∂Γ

∂X

)′
σA +

∂Γ

∂l
σLl

]
dWt. (3.15)

Thus,

Var
(
d
(
e
∫ T

t r(s) dsY(t)
)
+ dΓ|Ft

)
= Var

((
e
∫ T

t r(s) ds(u′σA − lσL) +
(
∂Γ

∂X

)′
σA +

∂Γ

∂l
σLl

)
dWt |Ft

)
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= E
[
e2

∫ T
t r(s) ds(u′σAσ

′
Au − 2lu′σAσ

′
L)

+ 2e
∫ T

t r(s) dsu′
(
σAσ

′
A
∂Γ

∂X
+ σAσ

′
Ll
∂Γ

∂l

)
+ Ψ(t, X, l)|Ft

]
dt, (3.16)

where Ψ is a function that only depends on t, X(t) and l(t).
By substituting the terms in (3.14) and (3.16) into equation (3.8), the right-hand

side of (3.8) represents a minimisation of a quadratic form in u. This implies that u∗

satisfies the first-order condition. Hence,

u∗(t, X(t), l(t)) = e−
∫ T

t r(s) ds
[
λ(σA(t)σA(t)′)−1αA(t) − ∂Γ

∂X
(t, X(t), l(t))

+ (σA(t)σA(t)′)−1σA(t)σL(t)′l(t)
(
e
∫ T

t r(s) ds − ∂Γ
∂l

(t, X(t), l(t))
)]

. �

Although the above lemma offers a representation of the TC-MV ALM strategy,
it lacks an explicit expression of the function Γ(t, X(t), l(t)). This is addressed in the
following subsection.

3.2. The function Γ(t, X(t), l(t))

LEMMA 3.3. The function Γ(t, X(t), l(t)) defined in (3.7) takes the form

Γ(t, X(t), l(t)) = λĤ(t,αA(t)) − G(t,αA(t), l(t)), (3.17)

where

Ĥ(t,αA(t)) = EP̂t
[ ∫ T

t
αA(s)′(σA(s)σA(s))−1αA(s) ds

]
, (3.18)

G(t,αA(t), l(t)) = EP̂t
[ ∫ T

t
l(s)e

∫ T
s r(τ) dτ(αL(s) − αA(s)′(σA(s)σA(s))−1σA(s)σL(s)′) ds

]
,

(3.19)

and the probability P̂ is equivalent to P as follows:

dP̂
dP = exp

{ ∫ T

t
−1

2
αA(s)′(σA(s)σA(s)′)−1αA(s) ds

−
∫ T

t
αA(s)′(σA(s)σA(s)′)−1σA(s) dWs

}
.

PROOF. Substituting u∗ from (3.9) into the definition of Γ in (3.7), we obtain

Γ = E
[ ∫ T

t

(
λα′A(σAσ

′
A)−1αA −

(
∂Γ

∂X

)′
αA −

(
∂Γ

∂l

)′
σLσ

′
A(σAσ

′
A)−1αAl

+ le
∫ T

s r(τ) dτ(α′A(σAσ
′
A)−1σAσ

′
L − αL)

)
ds|Ft

]
. (3.20)
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Note that Γ = 0 at t = T . From the SDE of Γ in (3.15),

−Γ = Et

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫ T

t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂Γ

∂t
+

(
∂Γ

∂X

)′
(θ −AX) +

∂Γ

∂l
α̃Ll

+
1
2

tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
σ′A lσ′L

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Γ

∂X2

∂2Γ

∂X∂l
∂2Γ

∂l∂X
∂2Γ

∂l2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
σA

lσL

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ds

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− Et[Γ(T , X(T), l(T))]

= Et

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫ T

t

{
∂Γ

∂t
+

(
∂Γ

∂X

)′
(θ −AX) +

∂Γ

∂l
α̃Ll

+
1
2

tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
σ′A lσ′L

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Γ

∂X2

∂2Γ

∂X∂l
∂2Γ

∂l∂X
∂2Γ

∂l2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
σA
lσL

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
ds

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.21)

Combining (3.20) and (3.21) produces a partial differential equation (PDE) of Γ.
Specifically,

∂Γ

∂t
+

(
∂Γ

∂X

)′
(θ −AX − αA) +

∂Γ

∂l
(α̃L − σLσ

′
A(σAσ

′
A)−1αA)l

+
1
2

tr
(
σ′A
∂2Γ

∂X2σA

)
+

1
2
∂2Γ

∂l2
σLσ

′
Ll2 + tr

(
σ′A
∂2Γ

∂X∂l
σLl

)

+ λα′A(σAσ
′
A)−1αA + le

∫ T
s r(τ) dτ(α′A(σAσ

′
A)−1σAσ

′
L − αL) = 0, (3.22)

with Γ(T , X(T), L(T)) = 0. In fact, ∂Γ/∂X and ∂Γ/∂l are the gradient vectors of Γ with
respect to X and l, respectively. The matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Γ

∂X2

∂2Γ

∂X∂l

∂2Γ

∂l∂X
∂2Γ

∂l2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
denotes the Hessian matrix of Γ, and tr(·) is the trace of a square matrix. By the
Feynman–Kač formula,

Γ(t, X(t), l(t)) = λĤ(t,αA(t)) − G(t,αA(t), l(t)),
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where

Ĥ(t,αA(t)) = EP̂t
[ ∫ T

t
αA(s)′(σA(s)σA(s))−1αA(s) ds

]
,

G(t,αA(t), l(t)) = EP̂t
[ ∫ T

t
le
∫ T

s r(τ) dτ(αL − α′A(σAσA)−1σAσ
′
L) ds

]
,

αA(t) = θ(t) −AX(t) + 1
2D(σA(t)σA(t)′)1 − r(t)1,

and the equivalent probability measure P̂ is defined as

dP̂
dP = exp

{ ∫ T

t
−1

2
αA(s)′(σAσ

′
A)−1αA ds −

∫ T

t
αA(s)′(σAσ

′
A)−1σA dWs

}
. �

Although the above lemma shows an expectation representation for Γ, it is still not
explicit. The next step finds explicit forms for Ĥ and G.

LEMMA 3.4. The expectation Ĥ(t,αA(t)) in (3.18) is equal to a quadratic form of
αA(t):

Ĥ(t,αA(t)) = 1
2αA(t)′K̂(t)αA(t) + N̂′(t)αA(t) + M̂(t),

where

K̂(t) = 2
∫ T

t
(σA(s)σA(s)′)−1 ds, (3.23)

N̂(t)′ = 2
∫ T

t
Θ(s)′

∫ T

s
(σA(τ)σA(τ)′)−1 dτ ds, (3.24)

M̂(t) =
∫ T

t

[
2
∫ T

s
Θ(τ)′

( ∫ T

τ

(σA(ξ)σA(ξ)′)−1dξ
)

dτΘ(s)

+ tr
(
σA(s)′A′

∫ T

s
(σA(τ)σA(τ)′)−1 dτAσA(s)

)]
ds, (3.25)

Θ = θ̇ + 1
2 (Ḋ +AD)1 − (ṙ +Ar)1, (3.26)

and 0i×j is an (i × j)-matrix with all entries 0.

PROOF. By Itô’s lemma, the dynamic of αA(t) under the P̂-measure is given by

dαA(t) = Θ dt −AσA dŴt, (3.27)

where Θ is given in (3.26). Applying the Feynman–Kač formula to Ĥ(t,αA) in (3.18)
with respect to (3.27), a PDE governing Ĥ is obtained:

∂Ĥ
∂t
+

(
∂Ĥ
∂αA

)′
Θ +

1
2

tr
(
σ′AA′

∂2Ĥ
∂αA

2AσA

)
+ α′A(σAσ

′
A)−1αA = 0,

Ĥ(T ,αA) = 0.

(3.28)
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Let ĥ(t,αA) = (1/2)αA(t)′K̂(t)αA(t) + N̂(t)′αA(t) + M̂(t), where K̂, N̂ and M̂ are defined
in (3.23), (3.24) and (3.25), respectively. Therefore, ĥ(T ,αA(T)) = 0 = Ĥ(T ,αA(T)),
and

˙̂K + 2(σAσ
′
A)−1 = 0m×m, K̂(T) = 0m×m,

˙̂N′ + Θ′K̂ = 01×m, N̂(T) = 0m×1,
˙̂M + N̂′Θ + 1

2 tr(σ′AA
′K̂AσA) = 0, M̂(T) = 0.

Consider

∂ĥ
∂t
+

(
∂ĥ
∂αA

)′
Θ +

1
2

tr
(
σ′AA′

∂2ĥ

∂αA
2AσA

)
+ α′A(σAσ

′
A)−1αA

= 1
2α
′
A

˙̂KαA +
˙̂N′αA +

˙̂M + (K̂αA + N̂)′Θ + 1
2 tr(σ′AA

′K̂AσA) + α′A(σAσ
′
A)−1αA

= 1
2α
′
A( ˙̂K + 2(σAσ

′
A)−1)αA + ( ˙̂N′ + Θ′K̂)αA +

˙̂M + N̂′Θ + 1
2 tr(σ′AA′K̂AσA) = 0.

Hence, ĥ(t,αA) is the solution of PDE (3.28), and

Ĥ(t,αA(t)) = 1
2αA(t)′K̂(t)αA(t) + N̂′(t)αA(t) + M̂(t). �

LEMMA 3.5. The function G(t,αA(t), l(t)) in (3.19) has the following explicit form:

G(t,αA(t), l(t)) = l(t)e
∫ T

t r(s) ds[e
∫ T

t αL(s) dsep(t)′αA(t)+q(t) − 1],

where

p(t) = −
∫ T

t
(σA(s)σA(s)′)−1σA(s)σL(s)′ ds. (3.29)

q(t) =
∫ T

t

[
p(s)′(Θ(s) −AσA(s)σL(s)′) + 1

2 p(s)′AσA(s)σA(s)′A′p(s)
]
ds. (3.30)

PROOF. Under P̂-measure, the dynamics of l(t) and e
∫ T

t r(s) dsl(t) are given by

dl(t) = l(t)[(α̃L(t) − αA(t)′(σA(s)σA(s)′)−1σA(t)σL(t)′) dt + σL(t) dŴt], (3.31)

d
(
e
∫ T

t r(s) dsl(t)
)
= e

∫ T
t r(s) dsl(t)[(αL(t) − αA(t)′(σA(t)σA(t)′)−1σA(t)σL

′(t)) dt
+ σL(t) dŴt], (3.32)

respectively. After integrating (3.32) from t to T and then taking the expectation of
both sides of (3.32), we have

EP̂[l(T)|Ft] − e
∫ T

t r(s) dsl(t) = EP̂t
[ ∫ T

t
e
∫ T

s r(τ) dτl(s)(αL − α′A(σAσ
′
A)−1σAσL

′) ds
]
.

This is equal to G(t,αA(t), l(t)) according to the expression in (3.19). We conclude that

G(t,αA(t), l(t)) = EP̂[l(T)|Ft] − e
∫ T

t r(s) dsl(t). (3.33)

Next, we find the explicit form of EP̂[l(T)|Ft].
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According to the SDE in (3.31), we have

l(T) = l(t)e
∫ T

t [α̃L−α′A(σAσ
′
A)−1σAσ

′
L−σLσ

′
L/2] ds+

∫ T
t σL dŴs .

This implies that

EP̂[l(T)|Ft] = l(t)EP̂
[
e
∫ T

t [α̃L−α′A(σAσ
′
A)−1σAσ

′
L−σLσ

′
L/2] ds+

∫ T
t σL dŴs |Ft

]
= l(t)EQ

[
e
∫ T

t α̃L−α′A(σAσ
′
A)−1σAσ

′
L ds|Ft

]
= l(t)e

∫ T
t α̃L dsEQ

[
e−

∫ T
t α

′
A(σAσ

′
A)−1σAσ

′
L ds|Ft

]
= l(t)e

∫ T
t α̃L dsG1(t,αA(t)),

where

dQ
dP̂
= exp

{ ∫ T

t
−1

2
σL(s)σL(s)′ ds +

∫ T

t
σL(s) dŴs

}
and

G1(t,αA(t)) = EQ
[
e−

∫ T
t α

′
A(σAσ

′
A)−1σAσ

′
L ds|Ft

]
.

By Itô’s lemma, the dynamic of αA(t) under Q-measure is given by

dαA = (Θ −AσAσ
′
L) dt −AσAdW̃t, (3.34)

where dW̃t = dŴt − σL(t)′ dt. Applying the Feynman–Kač formula to G1(t,αA(t)) with
respect to (3.34), a PDE governing G1 is obtained as follows:

∂G1

∂t
+

(
∂G1

∂αA

)′
(Θ −AσAσ

′
L) +

1
2

tr
(
σAA′

∂2G1

∂αA
2AσA

)
− α′A(σAσ

′
A)−1σAσ

′
LG1 = 0;

(3.35)G1(T ,αA) = 1.

Consider an exponential form G1(t,αA(t)) = ep(t)′αA(t)+q(t), where p(t) and q(t) are given
in (3.29) and (3.30). Simple differentiation shows that

∂G1

∂t
= G1( ṗ′αA + q̇),

∂G1

∂αA
= G1p,

∂2G1

∂αA
2 = G1pp′,

ṗ − (σAσ
′
A)−1σAσ

′
l = 0, p(T) = 0;

q̇ + p′(Θ −AσAσ
′
L) + 1

2 p′AσAσ
′
AA′p = 0, q(T) = 0.

Substituting these formulas into (3.35) yields

G1( ṗ′αA + q̇) + G1p′(Θ −AσAσ
′
L)

+ 1
2 tr(σ′AA

′G1pp′AσA) − α′A(σAσ
′
A)−1σAσ

′
LG1 = 0.

G1
[
α′A( ṗ + (σAσ

′
A)−1σAσ

′
L) +

(
q̇ + p′(Θ −AσAσ

′
L) + 1

2 p′AσAσ
′
AA′p

)]
= 0.
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This verifies that the exponential affine form satisfies the governing equation of (3.35).
In addition, the values of p(t) and q(t) at t = T ensure that G1(T ,αA) = 1. From (3.33),

G(t,αA(t), l(t)) = EP̂[l(T)|Ft] − e
∫ T

t r(s) dsl(t)

= l(t)e
∫ T

t α̃L dsG1(t,αA(t)) − e
∫ T

t r(s) dsl(t)

= l(t)e
∫ T

t α̃L(s) dsep(t)′αA(t)+q(t) − e
∫ T

t r(s) dsl(t)

= l(t)e
∫ T

t r(s) ds[e∫ T
t αL(s) dsep(t)′αA(t)+q(t) − 1

]
. (3.36)

This completes the proof. �

THEOREM 3.6. The function Γ(t, X(t), l(t)) defined in (3.7) takes the form

Γ(t, X(t), l(t)) = λ
[ 1

2αA(t)′K̂(t)αA(t) + N̂′(t)αA(t) + M̂(t)
]

− l(t)e
∫ T

t r(s) ds[e∫ T
t αL(s) dsep(t)′αA(t)+q(t) − 1

]
,

where αA(t), K̂(t), N̂(t), Θ(t), p(t) and q(t) are defined in (2.8), (3.23), (3.24), (3.26),
(3.29) and (3.30), respectively. Besides, the time-consistent trading strategy (P(λ)) in
Problem 2.1 is given by

u∗(t, X(t), l(t))

= λe−
∫ T

t r(s) ds[((σA(t)σA(t)′)−1 +AK̂(t))αA(t) +A′N̂(t)]

+ l(t)e
∫ T

t αL(s) ds+p(t)′αA(t)+q(t)[(σA(t)σA(t)′)−1σA(t)σL(t)′ − A′p(t)]. (3.37)

PROOF. Combining the results in Lemmas 3.4 and 3.5,

Γ(t, X(t), l(t)) = λĤ(t,αA(t)) − G(t,αA(t), l(t))

= λ
[ 1

2αA(t)′K̂(t)αA(t) + N̂′(t)αA(t) + M̂(t)
]

− l(t)e
∫ T

t r(s) ds[e∫ T
t αL(s) dsep(t)′αA(t)+q(t) − 1

]
.

Taking derivatives of Γ(t, X(t), l(t)) with respect to X and l,

∂Γ

∂X
= −λA′(K̂αA + N̂) + l(t)e

∫ T
t αL(s) ds+p′αA+qA′p and

∂Γ

∂l
= e

∫ T
t r(s) ds(1 − e

∫ T
t αL(s) ds+p′αA+q).

Substituting the above derivatives into the expression for u∗ in (3.9),

u∗(t, X(t), l(t)) = λe−
∫ T

t r(s) ds[((σA(t)σA(t)′)−1 +AK̂(t))αA(t) +A′N̂(t)]

+ l(t)e
∫ T

t αL(s) ds+p(t)′αA(t)+q(t)[(σA(t)σA(t)′)−1σA(t)σL(t)′ − A′p(t)]. �
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The optimal ALM strategy given in (3.37) shows that a pairs-trader has to adjust
the allocation on the stock market by observing the variability of her stochastic
liability. When either the liability value or the liability volatility is zero, the stock
allocation strategy is consistent with the literature [13]. However, when the investor
has a stochastic liability, that is, both l(t) and σL are nonzero, an adjustment should be
made based on the sensitivity of Γ with respect to the change in the level of liability. In
our time-consistent setting, the function Γ detailed in Section 3.2 reflects the change
in the objective function associated with the time-consistency constraint. Therefore,
the TC-MV criterion implies a nontrivial adjustment to stochastic liability through the
function Γ, which also captures the feature of cointegration.

4. TC-MV ALM efficient frontier

An important topic in MV problems is the “efficient frontier”, which describes the
trade-off between the expected final surplus and the variance of the final surplus in the
equilibrium strategy.

LEMMA 4.1. Consider the surplus process (2.9) for Y(t) and the liability process (2.6)
for l(t). If the investor employs the equilibrium ALM strategy u∗(t, X(t), l(t)), then the
expected surplus and the variance of the surplus are given as follows:

E[Y∗(T)] = e
∫ T

0 r(s) dsY(0) + λEP̂
[ ∫ T

0
αA(s)′(σA(s)σA(s)′)−1αA(s) ds

]

− (EP̂[l(T)] − e
∫ T

0 r(s) dsl0
)
, (4.1)

Var(Y∗(T)) = λ2E
[ ∫ T

0
αA(s)′(σA(s)σA(s)′)−1αA(s) ds

]

+ E
[ ∫ T

0
e
∫ T

s 2α̃L(τ) dτ+2p(s)′αA(s)+2q(s)

× l2(s)σL(s)′(Im − σA(s)′(σA(s)σA(s)′)−1σL(s)′) ds
]
. (4.2)

PROOF. According to the definition of Γ,

E[Y∗(T)] = e
∫ T

0 r(s) dsY(0) + Γ(0, X(0), l0). (4.3)

Substituting formulas (3.17), (3.18) and (3.33) into (4.3) yields

E[Y∗(T)] = e
∫ T

0 r(s) dsY(0) + λEP̂
[ ∫ T

0
αA(s)′(σA(s)σA(s)′)−1αA(s) ds

]

− (EP̂[l(T)] − e
∫ T

0 r(s) dsl0
)
.
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To calculate Var(Y∗(T)), consider the SDE and PDE of Γ in (3.15) and (3.22):

dΓ =
[
∂Γ

∂t
+

(
∂Γ

∂X

)′
(θ −AX) +

∂Γ

∂l
α̃Ll

+
1
2

tr
{ (
σ′A lσ′L

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Γ

∂X2

∂2Γ

∂X∂l
∂2Γ

∂l∂X
∂2Γ

∂l2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
σA

lσL

) }]
dt +

[(
∂Γ

∂X

)′
σA +

∂Γ

∂l
σLl

]
dWt,

=

[(
∂Γ

∂X

)′
αA +

∂Γ

∂l
σLσ

′
A(σAσ

′
A)−1αAl − λα′A(σAσ

′
A)−1αA

− le
∫ T

s r(τ) dτ(α′A(σAσ
′
A)−1σAσ

′
L − αL)

]
dt +

[(
∂Γ

∂X

)′
σA +

∂Γ

∂l
σLl

]
dWt.

Equation (3.4) shows that

d(e
∫ T

t r(s) dsY∗) = e
∫ T

t r(s) ds[(α′Au∗ − αLl) dt + (u∗′σA − lσL) dWt].

By substituting u∗ in (3.9) into the drift term of e
∫ T

t r(s) dsY∗,

e
∫ T

t r(s) ds(α′Au∗ − αLl) = −
[(
∂Γ

∂X

)′
αA +

∂Γ

∂l
σLσ

′
A(σAσ

′
A)−1αAl

− λα′A(σAσ
′
A)−1αA − le

∫ T
s r(τ) dτ(α′A(σAσ

′
A)−1σAσ

′
L − αL)

]
,

which is a negative value of the drift of Γ. After substituting u∗ in (3.9) into the
volatility of e

∫ T
t r(s) dsY∗,

e
∫ T

t r(s) ds(u∗′σA − lσL) = λα′A(σAσ
′
A)−1σA + le

∫ T
s r(τ) dτ(σLσ

′
A(σAσ

′
A)−1σA − σL)

−
(
∂Γ

∂X

)′
σA −

∂Γ

∂l
σLσ

′
A(σAσ

′
A)−1σAl.

Hence,

d
(
e
∫ T

t r(s) dsY∗
)
+ dΓ

=
[
λα′A(σAσ

′
A)−1σA − e

∫ T
t αL(s) ds+p′αA+qlσL(Im − σ′A(σAσ

′
A)−1σA)

]
dWt.

Integrating both sides from 0 to T and applying the variance operator to them, the
following result holds.

LHS = Var
(
Y∗(T) − e

∫ T
0 r(s) dsY(0) + Γ(T , X(T), l(T)) − Γ(0, X(0), l0)

)
= Var(Y∗(T)).

RHS = Var
( ∫ T

0

(
λαA(t)′(σA(t)σA(t)′)−1σA(t)

− e
∫ T

t α̃L(s) ds+p(t)′αA(t)+q(t)l(t)σL(t)(Im − σA(t)′(σA(t)σA(t)′)−1σA(t))
)

dWt

)
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= λ2E
[ ∫ T

0
αA(s)′(σA(s)σA(s)′)−1αA(s) ds

]

+ E
[ ∫ T

0
e
∫ T

s 2α̃L(τ) dτ+2p(s)′αA(s)+2q(s)l2(s)σL(s)′

× (Im − σA(s)′(σA(s)σA(s)′)−1σL(s)′) ds
]
. �

LEMMA 4.2. The expectation E[
∫ T

0 αA(s)′(σA(s)σA(s)′)−1αA(s) ds] takes the quadratic
form of αA(0):

1
2αA(0)′K(0)αA(0) + N′(0)αA(0) +M(0),

where

K(t) = 2
∫ T

t
eA

′(t−s)/2(σA(s)σA(s)′)−1eA(t−s)/2 ds, (4.4)

N(t)′ = 2
∫ T

t
Θ(s)′

( ∫ T

s
eA

′(s−τ)/2(σA(τ)σA(τ)′)−1eA(s−τ)/2 dτ
)
eA(t−s) ds, (4.5)

M(t) =
∫ T

t
N(s)′Θ(s) +

1
2

tr(σA(s)′A′K(s)AσA(t)) ds. (4.6)

PROOF. By Itô’s lemma, the dynamic of αA(t) under the P-measure is given by

dαA(t) = (Θ −AαA) dt −AσA dŴt, (4.7)

where Θ is given in (3.26). Applying the Feynman–Kač formula toH(t,αA), where

H(t,αA) = E
[ ∫ T

t
αA(s)′(σA(s)σA(s)′)−1αA(s) ds|Ft

]
,

with respect to (4.7), a PDE is obtained forH as

∂H
∂t
+

(
∂H
∂αA

)′
(Θ −AαA) +

1
2

tr
(
σ′AA′

∂2H
∂αA

2AσA

)
+ α′A(σAσ

′
A)−1αA = 0, (4.8)

H(T ,αA) = 0.

After differentiating (4.4–4.6) with respect to t, we have

K̇(t) − K(t)A−A′K(t) + 2(σA(t)σA(t)′)−1 = 0m×m, K(T) = 0m×m,

Ṅ(t)′ − N(t)′A + Θ(t)′K(t) = 0, N(T) = 0m×1

Ṁ(t) + N(t)′Θ(t) + 1
2 tr(σA(t)′A′K(t)AσA(t)) = 0, M(T) = 0.

Consider the quadratic form

h(t,αA) = 1
2αA(t)′K(t)αA(t) + N(t)′αA(t) +M(t). (4.9)
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Clearly, h(T ,αA(T)) = 0 = H(T ,αA(T)). Also, the differentiation shows that

∂h
∂t
=

1
2
α′AK̇αA + Ṅ′αA + Ṁ,

∂H
∂αA
= KαA + N̂,

∂2H
∂αA

2 = K.

Besides,

∂h
∂t
+

(
∂h
∂αA

)′
(Θ −AαA) +

1
2

tr
(
σ′AA

′ ∂
2h

∂αA
2AσA

)
+ α′A(σAσ

′
A)−1αA

= 1
2α
′
AK̇αA + Ṅ′αA + Ṁ + (K̂αA + N̂)′(Θ −AαA)

+ 1
2 tr(σ′AA′KAσA) + α′A(σAσ

′
A)−1αA

= 1
2α
′
A(K̇ −A′K − KA + 2(σAσ

′
A)−1)αA + (Ṅ′ − N′A + Θ′K)αA

+ Ṁ + N′Θ + 1
2 tr(σ′AA′KAσA) = 0.

This verifies that the quadratic form (4.9) satisfies the governing equation of (4.8).
Therefore,

H(t,αA(t)) = 1
2αA(t)′K(t)αA(t) + N(t)′αA(t) +M(t). �

THEOREM 4.3. The variance of Y∗(T) in (4.2) is a combination of a quadratic form
and an exponential form of αA(0):

Var(Y∗(T)) = λ2( 1
2αA(0)′K(0)αA(0) + N′(0)αA(0) +M(0)

)
+ l20Λ,

where

Λ = e
∫ T

0 2α̃L(s) ds
∫ T

0
e2(p(s)μ̃(s)+p(s)′Σ̃(s)p(s)+q(s))+

∫ s
0 σL(τ)σL(τ)′ dτ

× σL(s)(Im − σA(s)′(σA(s)σ′A(s))−1σA(s))σL(s)′ ds, (4.10)

μ̃(t) = e−AtαA(0) +
∫ t

0
e−A(t−s)Θ̃(s) ds, (4.11)

Θ̃(t) = Θ(t) − 2AσA(t)σL(t)′, (4.12)

Σ̃(t) =
∫ t

0
e−A(t−s)AσA(s)σA(s)′A′e−A′(t−s) ds, (4.13)

Θ(t) is defined in (3.26), and K(t), N(t) and M(t) are presented in Lemma 4.2.

PROOF. Combining Lemma 4.1 and Lemma 4.2, we have

Var(Y∗(T)) = λ2
(1
2
αA(0)′K(0)αA(0) + N′(0)αA(0) +M(0)

)

+ E
[ ∫ T

0
e
∫ T

s 2α̃L(τ) dτ+2p(τ)′αA(τ)+2q(τ) dτ

× l2(s)σL(s)′(Im − σA(s)′(σA(s)σA(s)′)−1σL(s)′) ds
]
.
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Then, the rest of the proof obtains an explicit form of

E
[ ∫ T

0
e
∫ T

s 2α̃L(τ) dτ+2p(τ)′αA(τ)+2q(τ) dτ

× l2(s)σL(s)′(Im − σA(s)′(σA(s)σA(s)′)−1σL(s)′) ds
]
.

From the SDE of l(t) in (2.6), we have

l(t) = l0e
∫ t

0

(
−σLσ

′
L/2+α̃L

)
ds+

∫ t
0 σL dWs and

l2(t) = l20e
∫ t

0 (−σLσ
′
L+2α̃L) ds+

∫ t
0 2σL dWs .

Therefore,

E
[ ∫ T

0
e
∫ T

s 2α̃L(τ) dτ+2(p(s)′αA(s)+q(s))l2(s)σL(s)′(Im − σA(s)′(σA(s)σA(s)′)−1σL(s)′) ds
]

= l20E
[ ∫ T

0
e
∫ T

s 2α̃L(τ) dτ+2(p(s)′αA(s)+q(s))e
∫ s

0 (−σLσ
′
L+2αL) dτ+

∫ s
0 2σL dWτ

× σL(s)′(Im − σA(s)′(σA(s)σA(s)′)−1σL(s)′) ds
]

= l20e
∫ T

0 2α̃L dsE
[ ∫ T

0
e2(p(s)′αA(s)+q(s))e

∫ s
0 −σLσ

′
L dτ+

∫ s
0 2σL dWτ

× σL(s)′(Im − σA(s)′(σA(s)σA(s)′)−1σL(s)′) ds
]
. (4.14)

By Girsanov’s theorem, (4.14) can be simplified as follows.

l20e
∫ T

0 2α̃L dsE
ˆ̂P
[ ∫ T

0
e2(p′αA+q)+

∫ s
0 σLσ

′
L dτσ′L(Im − σ′A(σAσ

′
A)−1σ′L) ds

]
, (4.15)

where ˆ̂P is a probability measure which is equivalent to P such that

d ˆ̂P
dP = exp

{ ∫ s

0
−2σL(τ)σL(τ)′ dτ +

∫ s

0
2σL(τ) dŴτ

}
(4.16)

with d ˆ̂Ws = dWs − 2σL(s)′ ds, and ˆ̂Ws in (4.16) is the Wiener process under ˆ̂P-measure.
By Itô’s lemma, the dynamic of αA(t) under ˆ̂P-measure is given by

dαA = (Θ −AαA − 2AσAσ
′
L) dt −AσAd ˆ̂Wt

= (Θ̃ −AαA) dt −AσAd ˆ̂Wt,

where Θ̃(t) = Θ − 2AσA(t)σL(t)′. Thus,

αA(t) = e−A(t)αA(0) +
∫ t

0
e−A(t−s)Θ̃(s) ds −

∫ t

0
e−A(t−s)AσA(s)d ˆ̂Ws, (4.17)
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and αA(t) follows a normal distribution with mean μ̃(t) and variance-covariance matrix
Σ̃(t), where

μ̃(t) = e−AtαA(0) +
∫ t

0
e−A(t−s)Θ̃(s) ds,

Σ̃(t) =
∫ t

0
e−A(t−s)AσA(s)σA(s)′A′e−A′(t−s) ds.

Hence, expression (4.15) becomes

l20e
∫ T

0 2α̃L ds
∫ T

0
E

ˆ̂P[e2p′αA(s)]e2q+
∫ s

0 σLσ
′
L dτσ′L(Im − σ′A(σAσ

′
A)−1σ′L) ds

= l20e
∫ T

0 2α̃L ds
∫ T

0
e2p′μ̃(s)+2p′Σ̃(s)pe2q+

∫ s
0 σLσ

′
L dτσ′L(Im − σ′A(σAσ

′
A)−1σ′L) ds. �

Theorem 4.3 not only offers an explicit expression for the variance of the surplus
subject to the optimal ALM strategy but also shows the difficulty of making statistical
arbitrage profit when an investor faces uncontrollable stochastic liability. When the
liability is absent, Chiu and Wong [13] rigorously prove that the TC-MV portfolio
strategy leads to statistical arbitrage in the sense of Hogan et al. [20]: (i) there is
a long-term expected profit; (ii) the ruin probability diminishes to zero in the long
run; and (iii) the time-averaged portfolio variance diminishes to zero in the long
run. However, Theorem 4.3 clearly shows that the variance will grow exponentially
according to the volatility of the liability. This immediately rules out the possibility
of diminishing time-average variance. In other words, statistical arbitrage fails for
investors who have an uncontrollable stochastic liability. Actually, Chen et al. [7] also
show that statistical arbitrage hardly occurs if the cointegration feature encounters
regime switching. Here, we note that liability is also a factor preventing statistical
arbitrage with cointegration.

THEOREM 4.4. The TC-MV efficient frontier of the final surplus Y(T) is

Var(Y∗(T)) − l20Λ =
E
[ ∫ T

0 < αA(s),αA(s) > ds
]

(
EP̂

[ ∫ T
0 < αA(s),αA(s) > ds

])2
× (E[Y∗(T)] − e

∫ T
0 r(s) dsY0 + G(0,αA(0), l0)

)2,

where < αA,αA >= α
′
A(σA(s)σA(s)′)−1αA, and G(0,αA(0), l0), Λ are defined in Lemma

3.5 and equation (4.10), respectively. Indeed,

E
[ ∫ T

0
< αA(s),αA(s) > ds

]
=

1
2
αA(0)′K(0)αA(0) + N′(0)αA(0) +M(0),

EP̂
[ ∫ T

0
< αA(s),αA(s) > ds

]
=

1
2
αA(0)′K̂(0)αA(0) + N̂′(0)αA(0) + M̂(0),
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where (K(0), N(0), M(0)) and (K̂(0), N̂(0), M̂(0)) are defined in Lemma 4.2 and
Lemma 3.4, respectively.

PROOF. The result follows by combining (4.1) and (4.2) through eliminating λ. �

Although the surplus variance is increased compared with the case of zero liability,
Theorem 4.4 presents a good feature in that the efficient frontier when adopting the
optimal ALM maintains a bullet-shaped curve. More specifically, the expected surplus
and the surplus’s variance form a quadratic relationship, retaining the feature of class
MV results even in a cointegration economy.

We use an example to demonstrate the use of the analytical result and the form of
the ALM efficient frontier.

EXAMPLE 4.5. Consider two risky assets whose log-asset values at time t are X(t) =
[x1(t) x2(t)]′ with initial values [ln 1 ln 2] and constant parameters

θ =

(
0.1
0.2

)
, σA =

(
0.2 0 0
0 0.2 0

)
, A = 1

2

(
1 1
1 1

)
.

Clearly, z(t) = x2(t) + x1(t) is a cointegrating factor that exhibits mean reversion with
a mean-reverting speed of 1. A risk-free asset is available in the market, which derives
the risk-free interest rate to be 3%. It is assumed that the appreciation rate α̃L and
volatility σL of liability are 0.08 and ( 0 0 0.3) , respectively. We are interested in the
corresponding MV ALM problem with expected terminal wealth Y , over an investment
horizon of 6 months (T = 1/2). We first find the values of (K̂(0), N̂(0), M̂(0)) and
(K(0), N(0), M(0)). According to Lemma 3.4,

K̂(0) = 2(σAσ
′
A)−1T = 25

(
1 0
0 1

)
,

N̂(0) = (σAσ
′
A)−1ΘT2 = −0.125

(
1
1

)
,

M̂(0) =
T3

3
Θ′(σAσA

′)−1Θ +
T2

2
tr
(
σ′AA′(σAσ

′
A)−1AσA

)
= 0.0279,

where

Θ =
1
2
A (D(σAσA)1 − r1) = −0.01

(
1
1

)
.

From Lemma 4.2,

K(0) = 2
∫ 0.5

0
e−

1
2A
′s(σAσA

′)−1e−
1
2As ds

= 25(1 − e−0.5)
(
1 1
1 1

)
+ 12.5

(
1 −1
−1 1

)
,
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N(0) = 2
∫ 0.5

0
Θ′
( ∫ 0.5

s
e

1
2A
′(s−τ)(σAσA

′)−1e
1
2A(s−τ) dτ

)
e−As ds

= −0.5(1 − e−0.5)
(
1
1

)
,

M(0) =
∫ 0.5

0
N(s)′Θ +

1
2

tr(σA
′A′K(s)AσA) ds = 0.1067.

Applying Theorem 4.4,

E
[ ∫ T

0
< αA(s),αA(s) > ds

]
=

1
2
αA(0)′K(0)αA(0) + N′(0)αA(0) +M(0) = 0.1851,

EP̂
[ ∫ T

0
< αA(s),αA(s) > ds

]
=

1
2
αA(0)′K̂(0)αA(0) + N̂′(0)αA(0) + M̂(0) = 0.1924,

with αA(0) = [0.09 − ln(
√

2) 0.19 − ln(
√

2)]′. Substituting the values of αA, αL, σA

and σL into the expressions for Λ and G,

G(0,αA(0), l0) = l0e0.5(0.03)[e0.5(0.08−0.03) − 1] = l0(e0.04 − e0.015),

Λ = eα̃L

∫ 0.5

0
e(σLσL)′sσL(I3 − σA

′(σAσA
′)−1σA)σL

′ ds

= e0.08(e0.045 − 1).

Suppose that the initial wealth and liability level are x0 = 10 and l0 = 6, respectively.
Recalling T = 1/2, the efficient frontier is

Var(YT )|u∗ = σ2
Y(T) = 0.6267[Y − (e0.015w0 − e0.04l0)]2 + 0.0499l20
= 0.6267(Y − 3.9063)2 + 1.7964,

which is clearly not a straight line on the plane of (σY(T), Y) but shows a bullet-shaped
curve. When the liability is absent, the problem is converted into the TC-MV portfolio
problem with cointegrated assets. The corresponding efficient frontier appears as a
quadratic relationship between the expected surplus and the variance of the surplus.
Specifically,

σ2
Y(T) = 0.6267[Y − e0.015w0]2

= 0.6267(Y − 10e0.015)2,

which is a straight line on the mean–standard-deviation plane. Note that

Y = 1.2632σY(T) + 10e0.015.

Therefore, the ALM problem generates market incompleteness through the nontraded
liability, making the efficient frontier no longer a straight line.
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5. Conclusion

This paper derives a TC-MV strategy for asset-liability management, when the risky
assets exhibit the cointegration property and the liability is uncontrollable. The derived
closed-form solution enables us to understanding statistical arbitrage, subject to the
liability risk. Using the TC-MV ALM strategy, statistical arbitrage hardly occurs,
because the uncontrollable liability leads to exponential growth in the variance of
the surplus. However, the efficient frontier for the surplus still displays a bullet-shape
curve, showing consistency with the classic result in the MV portfolio management
literature, even in an economy with cointegrated risky assets. A numerical example
is given to demonstrate the applications of the TC-MV ALM strategy. Possible future
research includes the incorporation of jump risk and an extension to open-loop controls
with cointegration.
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