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The linear stability of the flow in the annular gap between two infinitely long cylinders,
driven by the constant rotation and harmonic oscillation in the axial direction of the
inner cylinder, is analysed using Floquet theory. Closed form solutions for the basic
flow are derived, both with and without the presence of endwalls. Recent experiments
and theory using the narrow gap approximation have shown that the axial oscillations
significantly stabilize the flow with respect to centrifugal instabilities. However, the
agreement has only been qualitative. The present analysis reproduces the experimental
results to well within experimental uncertainty. We have identified the major source
of discrepency with the previous theory to be due to the lack of global endwall effects
enforcing a net zero axial mass flux. Analysis of the basic flow indicates that the
stabilization is primarily due to waves of azimuthal vorticity propagating inwards
from the cylinder boundary layers due to the axial oscillations.

1. Introduction
The response to external time-periodic forcing of flows which are susceptible

to instabilities has received much attention (e.g. see Davis 1976) because of their
technological importance as well as from a fundamental point of view their rich
dynamics. In general, these systems are very complicated and it is worthwhile studying
relatively simple generic problems in order to isolate particular mechanisms and to
develop and test hypotheses governing their behaviour. The Taylor–Couette flow,
consisting of an incompressible fluid held between two concentric cylinders and
driven by the rotation of one or both of the cylinders, is a good model problem for
such studies. The basic flow solution is known in closed form and its bifurcation
structure has been studied extensively (e.g. see Swinney & Gollub 1985; Chossat &
Iooss 1994). Temporal modulations of the Taylor–Couette flow have also been studied
extensively (e.g. Donnelly, Reif & Suhl 1962; Donnelly 1964; Carmi & Tustaniwskyj
1981; Barenghi & Jones 1989; Murray, McFadden & Coriell 1990). These have only
studied modulations of the angular velocity of the cylinders, where the modulations
either stabilize or destabilize the onset of Taylor vortex flow, depending on the precise
nature of the modulation. However, the degree of stabilization or destabilization has
in all cases been found to be small.

Recently, temporal modulations due to axial oscillations of the inner cylinder have
attracted attention due to the large degree of stabilization achievable. Hu & Kelly
(1995) considered various time-modulations of the Taylor–Couette flow, including
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cases where the outer cylinder remains stationary and the inner cylinder rotates
steadily and translates sinusoidally in the axial direction. Their theoretical study was
performed in the narrow gap limit, where curvature effects are neglected. In the
narrow gap limit, they derive a closed form solution for the basic flow (independent
of the axial and azimuthal directions), and study its stability using Floquet theory.
Their results showed a significant stabilizing effect in the presence of oscillating shear.

Weisberg, Smits & Kevrekidis (1997) studied experimentally for the first time
Taylor–Couette flow with axial oscillations of the inner cylinder. The motivation was
to investigate transition control strategies based on the stabilization observed in the
linear analysis of Hu & Kelly (1995). While the experiments and linear theory both
showed significant stabilizations due to the axial oscillations, the agreement was only
qualitative. The degree of relative stabilization differed between the two studies by a
large factor, and the difference was largest for small frequencies and large amplitudes
of the axial oscillations. Barenghi & Jones (1989) and Murray, et al. (1990) give
sound physical arguments, based on their considerations of Taylor–Couette flow with
a modulation of the cylinder angular velocities, that in the limit of small frequency
and large amplitude, perturbations can grow to a level invalidating linearization of
the problem during some parts of the oscillation period.

It is not clear whether the quantitative discrepency between Hu & Kelly’s linear
results and Weisberg et al.’s experimental results are attributable to a failure of
the linear assumption, or to idealizations in the model (i.e. narrow gap and infinite
cylinder lengths), or to endwall effects, or a combination of some of these. Here,
we also consider the stability of Taylor–Couette flow with axial oscillations of the
inner cylinder using Floquet theory, but include a finite gap (curvature) and model
the global effects of endwalls by introducing a constant axial pressure gradient. We
retain the idealization of infinitely long cylinders. We achieve agreement to well within
experimental uncertainty (< 3%) with all the data of Weisberg et al. corresponding
to the onset of Taylor vortex flow. Our study indicates that at the radius ratio of
0.905 employed in the experiment, curvature effects are not very important. The
global effects of the endwalls, introduced through the constraint of zero axial mass
flux, account for most of the discrepancy between the experiments and the previous
theoretical results. The theory of Hu & Kelly considered an open system, whereas the
experiments of Weisberg et al. had endwalls affixed to the stationary outer cylinder
with seals that allowed the axial motion of the inner cylinder without leakage of fluid
from the annular region. At low frequency of oscillations, the endwall effects become
more important, and with just these effects included in the linear theory we obtain
excellent agreement with the experiments. An analysis of our derived closed form
solution of the time-periodic basic flow indicates that the stabilization effect is due
to waves of azimuthal vorticity propagating into the interior from the inner-cylinder
boundary layer, and when endwall effects are included, waves of azimuthal vorticity
also propagate in from the outer cylinder.

We also note that in narrow windows of parameter space, with large amplitude
and small frequency of the axial oscillations, the bifurcation from the basic state
is nonaxisymmetric and competition between different azimuthal and axial modes
becomes increasingly important. Also, the nature of the frequency going to the zero
limit is highly singular, and this raises interesting issues concerning the mathematical
and computational aspects of this problem.
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Figure 1. Schematic of Taylor–Couette flow with axial oscillations of the inner cylinder.

2. Basic flow
Taylor–Couette flow is the term used to describe fluid motion between two con-

centric rotating cylinders. Here we consider the case where the inner cylinder also
moves axially with speed U sinΩt. The cylinders, of inner radius ri and outer radius
ro, can be independently rotated at angular velocities Ωi and Ωo, respectively. The
annular gap between the cylinders is d = ro−ri. In the axial direction the cylinders are
unbounded, and we assume the flow is periodic in the axial direction. A schematic of
the flow is given in figure 1. The independent non-dimensional parameters governing
this problem are the radius ratio e = ri/ro which fixes the geometry of the annulus,
the Couette-flow Reynolds numbers Rei = dri Ωi/ν and Reo = dro Ωo/ν, where ν is
the kinematic viscosity of the fluid, the axial Reynolds number Rea = dU/ν mea-
suring the amplitude of the velocity of the inner-cylinder axial oscillations, and the
non-dimensional frequency of these oscillations ω = d2Ω/ν.

In order to compare with experiments and also with some previous work, two
different situations are considered in this paper. In both, the basic flow velocity field
is independent of the axial direction, but in one case the axial pressure gradient is
zero (open flow) and in the other non-zero (enclosed flow). The non-zero axial pressure
gradient in the enclosed flow case represents the presence of endwalls and allows us to
enforce a net zero axial mass flux at any instant in time, not only for the base flow but
also for the perturbed flow. The only experiments on Taylor–Couette flow with axial
oscillations of the inner cylinder known to us are those of Weisberg et al. (1997) which
were carried out in an annulus with fixed endwalls. The large-scale endwall effects
are included in the present analysis via the non-zero axial pressure gradient. Such
an axial pressure gradient has been implemented by Ali & Weidman (1993) in the
linear analysis of Taylor–Couette flow with the inner cylinder travelling axially with a
constant speed and by Edwards et al. (1991) and Sanchez, Crespo & Marques (1993)
for nonlinear computations of the spiral modes in Taylor–Couette flow. Note that we
still have the idealization that the cylinders are infinitely long and that the flow has a
continuous spectrum of axial wavenumbers in both the open and enclosed flow cases.

All variables are rendered dimensionless using d, d2/ν, and ν2/d2 as units for space,
time, and the reduced pressure (p/ρ). The non-dimensional Navier–Stokes equations
are

∂tv + v · ∇v = −∇p+ ∆v, ∇ · v = 0. (2.1)
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The boundary conditions for the general flow described above are

u(ri) = u(ro) = 0, (2.2)

v(ri) = Rei, v(ro) = Reo, (2.3)

w(ri, t) = Rea sinωt, w(ro) = 0, (2.4)

where (u, v, w) are the physical components of the velocity in cylindrical coordinates
(r, θ, z), and ri = e/(1− e), ro = 1/(1− e). In the enclosed case, we have an additional
constraint enforcing net zero axial mass flux∫

S

w(r, θ, z, t)rdrdθ = 0, (2.5)

where S is any constant-z section. The assumption that the flow is periodic in the axial
direction usually means that both the velocity field and the pressure are periodic. But
in fact the pressure appears in the Navier–Stokes equations only as a gradient, and
so it is possible to have an axially periodic pressure gradient while the pressure itself
is not. In particular, the pressure may include a term linear in z. This term appears in
the Navier–Stokes equations as an overall pressure gradient depending only on time.
We express the pressure as p = p1 + p2 z, where p1(r, θ, z, t) is periodic in the axial
direction and p2(t) is the overall axial pressure gradient, depending only on time. This
additional degree of freedom is used to enforce the constraint (2.5). The open flow
case corresponds to p2 = 0.

We look for a basic flow solution that is axisymmetric and independent of the
axial coordinate z, but time dependent due to the external forcing. The Navier–Stokes
equations and incompressibility condition reduce to

∂tu+ uDu− v2/r = −Dp1 + DD+u, (2.6)

∂tv + uDv + uv/r = DD+v, (2.7)

∂tw + uDw = −p2 + D+Dw, (2.8)

D+u = 0, (2.9)

where D = ∂r and D+ = D + 1/r. The incompressibility condition (2.9) together with
the boundary condition (2.2) give u = 0, and equations (2.6)–(2.8) reduce to

Dp1 = v2/r, (2.10)

∂tv = DD+v, (2.11)

∂tw = D+Dw − p2. (2.12)

Equation (2.11) is immediately solved with the boundary conditions (2.3) and gives
the well-known basic solution for Couette flow

v(r) =
ri ro

r2
o − r2

i

[(
ro

r
− r

ro

)
Rei +

(
r

ri
− ri

r

)
Reo

]
, (2.13)

where we have used the fact that the transients in v(r, t) vanish, leaving only the
steady-state solution. Equation (2.10) with (2.13) gives the pressure p1, leaving only
the w-equation to be solved.

In the open flow case, p2 = 0 and the constraint (2.5) does not apply. Equation
(2.12) is linear and the boundary condition (2.4) is harmonic in t, so we look for a
complex solution of the form

w(r, t) = ReaIm(f(r)eiωt) = ReaW (r) sin(ωt+ α(r)), (2.14)
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where W and α are the modulus and phase of f. The equation for f is

f′′ +
1

r
f′ − iωf = 0, f(ri) = 1, f(ro) = 0, (2.15)

whose general solution is a linear combination of the modified Bessel functions of
order zero I0(y), K0(y) with complex argument y = ω1/2reiπ/4. Taking into account
the boundary conditions for f, the desired solution is

f(r) =

∣∣∣∣ I0(y) K0(y)
I0(yo) K0(yo)

∣∣∣∣/ ∣∣∣∣ I0(yi) K0(yi)
I0(yo) K0(yo)

∣∣∣∣ , (2.16)

where yi and yo are the values of y at r = ri and ro respectively. The real and
imaginary parts of I0(y) and K0(y), called Kelvin functions, as well as their modulus
and phase, are special functions whose properties can be found in Abramowitz &
Stegun (1972), along with tables and polynomial approximations useful for their
numerical computation.

The vorticity vector ω = (ξ, η, ζ) of the basic flow is

ω = (0,−Dw,D+v) = (0,−Dw, ζ). (2.17)

The axial vorticity is a constant depending on the angular velocities of the cylinders,
ζ = 2(roReo − riRei)/(ri + ro). The azimuthal vorticity η is a function of r and t given
by

η(r, t) = ReaIm(g(r)eiωt) = ReaG(r) sin(ωt+ β(r)), (2.18)

where g(r) = −f′(r) is given by

g(r) = −ω1/2eiπ/4

∣∣∣∣ I1(y) −K1(y)
I0(yo) K0(yo)

∣∣∣∣/ ∣∣∣∣ I0(yi) K0(yi)
I0(yo) K0(yo)

∣∣∣∣ . (2.19)

The azimuthal vorticity η is now a combination of the modified Bessel functions of
order one I1(y), K1(y), whose real and imaginary parts, as well as their modulus and
phase, can also be found in Abramowitz & Stegun (1972).

For the enclosed flow we must solve (2.12) for w and p2. Using (2.14) and the
corresponding expression for p2

p2(t) = ReaIm(p0e
iωt), (2.20)

with p0 a complex constant, the equation for f is now

f′′ +
1

r
f′ − iωf = p0, f(ri) = 1, f(ro) = 0,

∫ ro

ri

rf(r)dr = 0. (2.21)

The last condition comes from the zero axial mass flow (2.5). The solution is a linear
combination of the modified Bessel functions of order zero I0(y), K0(y) plus the
particular solution ip0/ω:

f(r) = AI0(y) + BK0(y) + ip0/ω. (2.22)

A, B, p0 are determined by the three conditions in (2.21). Using the fact that∫ ro

ri

rI0(y)dr = ω−1/2e−iπ/4[ro I1(yo)− ri I1(yi)], (2.23)∫ ro

ri

rK0(y)dr = −ω−1/2e−iπ/4[ro K1(yo)− ri K1(yi)], (2.24)
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Figure 2. Profiles of the axial velocity amplitude W (r) and phase α(r) of the basic flow solutions
for (a) the enclosed flow and (b) the open flow cases, at various oscillation frequencies ω = 10m, for
m as indicated.

and after some algebra we obtain

f(r) =
1

DET

∣∣∣∣∣∣
I0(y) K0(y) 1
I0(yo) K0(yo) 1

ro I1(yo)− ri I1(yi) −ro K1(yo) + ri K1(yi) a

∣∣∣∣∣∣ , (2.25)

p0 =
1

DET

∣∣∣∣ I0(yo) K0(yo)
ro I1(yo)− ri I1(yi) −ro K1(yo) + ri K1(yi)

∣∣∣∣ , (2.26)

DET =

∣∣∣∣∣∣
I0(yi) K0(yi) 1
I0(yo) K0(yo) 1

ro I1(yo)− ri I1(yi) −ro K1(yo) + ri K1(yi) a

∣∣∣∣∣∣ , (2.27)

where a = ω1/2eiπ/4(ri + ro)/2. The azimuthal vorticity η is easily obtained from (2.18),
where g(r) = −f′(r). Equations (2.16) and (2.25) are two families of time-periodic
exact solutions of the Navier–Stokes equations.

The amplitude W (r) and phase α(r) of the axial velocity in (2.14) are displayed
in figure 2 for various ω. The differences between the open and enclosed flows are
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Figure 3. Profiles of the azimuthal vorticity amplitude G(r) and phase β(r) of the basic flow
solutions for (a) the enclosed flow and (b) the open flow cases, at various oscillation frequencies
ω = 10m, for m as indicated.

striking. In the open flow the velocity amplitude shows a monotone decrease through
the gap, almost linear for ω ∼ 1, and exponential for ω � 1. In the large-ω case, the
axial movement of the fluid is confined to a boundary layer near the inner cylinder.
The velocity phase is linear in r, α(r) = −k̃r, showing that the axial velocity induced
by the oscillation of the inner cylinder is a radial wave that propagates from the inner
to the outer cylinder. The time-dependent part of (2.14) is a function of ωt− k̃r, and
the corresponding wave velocity is ω/k̃. In the enclosed flow, a return flow appears in
the outer region of the annular gap. The presence of this return flow is indicated by a
change of π in the phase α(r) of the axial velocity. The axial velocity for ω � 1 does
not go to zero but approaches a value independent of r in the region between the
inner-cylinder and the outer-cylinder boundary layers. The return flow has a constant
phase corresponding to a standing wave outside the inner boundary layer. Figure 3
shows the amplitude G(r) and phase β(r) of the azimuthal vorticity (2.18), which also
differ significantly between the open and enclosed flows. In the open flow the vorticity
amplitude is almost constant for ω ∼ 1, and decays exponentially for ω � 1 while the
phase is linear in r, corresponding to a wave of azimuthal vorticity propagating from
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the inner to the outer cylinder. In the enclosed flow, the azimuthal vorticity amplitude
is very small in the bulk of the return flow, reflecting the fact that the axial velocity is
almost constant, except in a boundary layer of significant vorticity on the outer cylin-
der. The plot of the vorticity phase shows that in the enclosed flow waves of azimuthal
vorticity propagate into the interior from each of the cylinder walls. They meet in the
return flow region, where the amplitude of the azimuthal vorticity is at a minimum. The
return flow and the associated waves of azimuthal vorticity are global and significant
consequences of the endwall effects that are manifested throughout the whole flow.

2.1. Asymptotic expressions for the open flow

In order to compare with the solutions of the basic flow obtained by Hu & Kelly
(1995) in the narrow gap case for the open flow, we need asymptotic expressions for f
and g. The asymptotic expansions of In(y), Kn(y), from Abramowitz & Stegun (1972),
are

In(y) ∼ ey

(2πy)1/2

{
1− 4n2 − 1

8y
+ . . .

}
(| arg y| < π/2), (2.28)

Kn(y) ∼
(
π

2y

)1/2

e−y
{

1 +
4n2 − 1

8y
+ . . .

}
(| arg y| < 3π/2), (2.29)

valid for |y| large, i.e. ω1/2ri � 1; the conditions on the argument of y are clearly
satisfied because arg y = π/4. Taking the first term in these expansions, we obtain for
f and g

f(r) ∼
(ri
r

)1/2 sinh
(
ω1/2(ro − r)eiπ/4

)
sinh

(
ω1/2eiπ/4

) , (2.30)

g(r) ∼
(ωri
r

)1/2 cosh
(
ω1/2(ro − r)eiπ/4

)
sinh

(
ω1/2eiπ/4

) eiπ/4. (2.31)

Since ω1/2ri = ω1/2e/(1 − e), the above expressions are valid not only in the narrow
gap case e→ 1, but also for finite gap values provided that ω1/2 � 1. In Hu & Kelly
(1995) an explicit expression for f is obtained in the narrow gap limit case (e → 1);
our expression (2.30) is the same, except for the term (ri/r)

1/2, which in the narrow
gap case is taken as 1.

The expression (2.30) exactly satisfies the boundary conditions; both (2.30) and
(2.31) are very good approximations for w and η not only in the asymptotic case
but also for ω1/2ri ≈ 1, as can be seen in figure 4. Expression (2.31) is minus the
derivative of (2.30), treating the factor (ri/r)

1/2 as constant, which is consistent with
the asymptotic approximation. However, for ω1/2ri ≈ 1 it is necessary to treat this
factor as variable, which following differentiation of (2.30) introduces an additional
term −0.5f/r to (2.31). This then gives a good approximation for η even when
ω1/2ri ≈ 1 (see figure 4).

When ω1/2 � 1 we get very simple expressions for the modulus and phase of w
and η:

W (r) ∼
(ri
r

)1/2

e−(ω/2)1/2(r−ri), α(r) ∼ −
(ω

2

)1/2

(r − ri), (2.32)

G(r) ∼
(ωri
r

)1/2

e−(ω/2)1/2(r−ri), β(r) ∼ π

4
−
(ω

2

)1/2

(r − ri), (2.33)

valid throughout the gap, with the exception of a small region near the outer cylinder,
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Figure 4. Comparisons of the azimuthal vorticity amplitude profiles for gap ratio e = 0.5 between
(i) the exact solution (2.19); (ii) the asymptotic solution for ω1/2ri � 1 (2.31); (iii) the asymptotic
solution (2.31) corrected with the −0.5f/r term; (iv) the narrow gap approximation, (ri/r)

1/2 → 1;

and (v) the asymptotic solution for ω1/2 � 1 (2.33), for the open flow case with (a) ω = 100, (b)
ω = 101, and (c) ω = 102.

of width (2/ω)1/2 known as the Stokes length, as can be seen in figure 4. All the
comparisons between the exact solution and the various asymptotic approximations
shown in figure 4 are for a wide gap e = 0.5. Comparisons at e ∼ 0.9 show very
little difference, indicating that a narrow gap approximation is appropriate for a
representation of the basic flow in the experiments of Weisberg et al. (1997).

Expressions (2.32), (2.33) show that the basic flow consists of the basic Couette
flow solution (2.13) with a superimposed oscillating axial velocity. Waves of azimuthal
vorticity propagate throughout the fluid from the inner cylinder to the outer one. The
moduli of these w and η waves decrease exponentially and their phases vary linearly
with r. The oscillatory part is sin(ωt − (ω/2)1/2r + constant), which gives a radial
wavenumber equal to (ω/2)1/2. This dispersion relation gives a group velocity twice
the phase velocity (2ω)1/2. The number of complete oscillations of both w and η
in the gap is given by Nosc = (ω/2)1/2/(2π); therefore in the ω � 1 case we have
a large number of complete periods. However, the damping factor in the gap is
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exp((ω/2)1/2r), and so only one or two complete oscillations (near the inner cylinder)
are significant.

In order to understand the phase adjustment near the outer cylinder it is worth
analysing the special case ro → ∞. This case corresponds to a cylinder rotating and
oscillating axially inside a fluid in a very large container. The previous analysis is
valid with only small changes. Now there is only one length scale, the inner radius
ri. The governing equations (2.1) remain the same, with ri instead of d used as the
length scale. However, the boundary conditions change to

u(1) = 0, v(1) = Rei, w(1, t) = Rea sinωt, v(r →∞) → 0, (2.34)

and the solution for the basic flow is simpler:

u = 0, v = Rei/r, w = ReaIm(f(r)eiωt), η = ReaIm(g(r)eiωt), (2.35)

where now

f(r) = K0(y)/K0(yi), g(r) = ω1/2eiπ/4K1(y)/K0(yi). (2.36)

The asymptotic expressions (2.36) for ω1/2 � 1 are now precisely (2.32)–(2.33). When
the outer cylinder is absent, there is no phase adjustment in order to satisfy the outer
boundary conditions, as expected. We now have a simple r−1 vortex generated by the
rotation of the cylinder at ri = 1 with a superimposed oscillating axial velocity and
damped waves of azimuthal vorticity propagating throughout the fluid.

3. Floquet analysis
In the preceding Section the basic flow was obtained. We now perturb this basic

state by a small disturbance which is assumed to vary periodically in the azimuthal
and axial directions:

v(r, θ, z, t) = vB(r, t) + ei(nθ+kz)u(r, t), (3.1)

p(r, θ, z, t) = pB(r, z, t) + p′(r, t)ei(nθ+kz), (3.2)

where vB = (0, vB, wB) is given by (2.13) and (2.14) and the boundary conditions for
u are homogeneous, u(ri) = u(ro) = 0. In the enclosed case, one may wonder if a
disturbance to the overall axial pressure gradient must also be added. A straightfor-
ward calculation using the incompressibility condition and boundary conditions for
v shows that the perturbed velocity field has a zero axial mass flow at any instant
in time, and therefore the basic flow solution p2 does not change. Linearizing the
Navier–Stokes equations about the basic solution, we obtain

∂tu = −∇p′ + ∆u− vB · ∇u− u · ∇vB. (3.3)

The spatial discretization of the problem, in order to solve (3.3) numerically, is
accomplished by projecting (3.3) onto a suitable basis. The space of divergence-free
vector fields satisfying the boundary conditions of the problem is

V = {u ∈ (L2(ri, ro))
3 | ∇ · u = 0, u(ri) = u(ro) = 0}, (3.4)

where (L2(ri, ro))
3 is the Hilbert space of square-integrable vectorial functions defined

in the interval (ri, ro), with the inner product

〈u, v〉 =

∫ ro

ri

u∗ · v rdr, (3.5)
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where ∗ denotes the complex conjugate. For any u ∈ V and any function p, we have
〈u,∇p〉 = 0. Therefore expanding u in a suitable basis of V :

u =
∑
α

aαuα, uα ∈ V , (3.6)

and projecting the linearized equations (3.3) onto V the pressure term disappears,
and we get a system of ordinary differential equations for the coefficients aα:∑

β

〈ũα, uβ〉ȧβ =
∑
β

〈ũα,∆uβ − vB · ∇uβ − uβ · ∇vB〉aβ. (3.7)

We implement a Petrov–Galerkin scheme, where the basis used to expand the unknown
velocity, {uα}, differs from that used to project the equations, {ũα}. A comprehensive
analysis of the method can be found in Moser, Moin & Leonard (1983) or Canuto
et al. (1988). The divergence-free condition for a velocity field of the form (3.1) is
D+u+ inv/r + ikw = 0, and a basis for V is obtained by taking

u2j−1 = (fj, 0, iD+fj/k), (3.8)

u2j = (0, gj ,−ngj/(kr)), (3.9)

where fj and gj must satisfy the homogeneous boundary conditions fj = f′j = gj = 0
on ri and ro. The vorticity vectors associated with this basis are

∇× u2j−1 = (−nD+fj/(kr),−i(DD+ − k2)fj/k,−infj/r), (3.10)

∇× u2j = (−i(k2 + n2/r2)gj/k, nD(gj/r)/k,D+gj). (3.11)

In the axisymmetric case, n = 0 and the fj construct the Stokes streamfunction

ψ = r

M∑
j=1

a2j−1fj(r)e
ikz, (3.12)

describing the toroidal (meridional) components of the flow and the gj construct the
angular momentum

Γ = rv = r

M∑
j=1

a2jgj(r)e
ikz, (3.13)

describing the poloidal (azimuthal) components of the flow.
Introducing the new radial coordinate x = 2(r − ri) − 1, x ∈ [−1,+1] and us-

ing Chebyshev polynomials Tj , a simple choice for fj and gj , which satisfies the
homogeneous boundary conditions, is

fj(r) = (1− x2)2Tj−1(x), gj(r) = (1− x2)Tj−1(x), (3.14)

where j ranges from 1 to M, the number of Chebyshev polynomials used. In order
to preserve the orthogonality relationships between the Chebyshev polynomials, and
to avoid 1/r factors in the inner products in (3.7), a suitable choice for the projection
basis ũ is

f̃j(r) = r3(1− x2)3/2Tj−1(x), g̃j(r) = r3(1− x2)1/2Tj−1(x). (3.15)

With this choice, all the inner products in (3.7) involve polynomials, except those
containing the axial velocity wB , and therefore can be numerically computed exactly
using Gauss–Chebyshev quadrature (Isaacson & Keller 1966). Finally we obtain a
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system of the form

Gẋ = H(t)x = (A+ B sinωt+ C cosωt)x, (3.16)

where the vector x contains the real and imaginary parts of the coefficients aα in (3.6),
and the matrices A, B , C , G are time independent, with G positive definite; details of
the explicit expressions for G and H are given in the Appendix.

The stability analysis of the basic flow is reduced to the determination of the
growth rates of solutions of the linear system with periodic coefficients (3.16). This
is accomplished using classical Floquet theory (e.g. Joseph 1976; Guckenheimer &
Holmes 1986) and numerical integration. The fundamental matrix of (3.16) is the
solution of the system

GẊ = H(t)X , X (0) = I , (3.17)

where I is the identity matrix. Integrating over a complete period T = 2π/ω, we obtain
the monodromy matrix of the system X (T ), whose eigenvalues γj , j = 1, . . . , 4M, called
Floquet multipliers, control the growth rate of the perturbations. If |γj | < 1 for all
j, all the perturbations decrease after a complete period of the oscillation and the
basic flow is stable. If there exists a j-value such that |γj | > 1, then perturbations of
the corresponding mode grow after a complete period and the basic flow is unstable.
When an eigenvalue crosses the unit circle |γj | = 1, the basic flow undergoes a
bifurcation. The kind of bifurcation depends on the critical eigenvalue γj . If its value
is +1, we have a saddle-node bifurcation or a pitchfork bifurcation depending on the
symmetries of the system; if it is −1, we have a period-doubling bifurcation, and if we
have a pair of complex-conjugate eigenvalues of moduli 1, the bifurcating solution is
quasi-periodic (a kind of Hopf bifurcation for periodic orbits; see Guckenheimer &
Holmes 1986 for details and examples).

The equations and boundary conditions of the problem are invariant to axial
translations and azimuthal rotations. The time-dependent axial oscillations of the
inner cylinder break the reflection symmetry in the axial direction and the invariance to
translations in time. However, due to the harmonic character of the axial oscillations,
the system is invariant under the symmetry operation

z → −z, w → −w, t → t+ π/ω. (3.18)

Hence two solutions related by this symmetry with (n, k) and (n,−k) are essentially
the same. Also, the complex conjugation of a (n, k) perturbation (3.1) gives another
solution with (−n,−k). Therefore, one need only to consider n > 0, k > 0.

Our numerical technique consists of an integration scheme, an eigenvalue finder,
and a continuation procedure in order to obtain curves of critical values of Rei and
k as functions of the system parameters.

The temporal integration of the initial value problem (3.17) over the interval
t ∈ [0, T ] is performed by a second-order implicit method known as the trapezoidal
rule; see Hairer & Wanner (1991) for details concerning its theoretical stability and
convergence properties. Systems of the form (3.17) may exhibit characteristics of
stiff ordinary differential equations. Our solutions obtained by the trapezoidal rule
have been checked for small values of ω and large values of Rea, the frequency
and amplitude of the axial motion respectively, using a fourth-order stiffly accurate
method known as Radau IIA (Hairer & Wanner 1991) and the two results differ
by less than one part in ten thousand. A uniform time step dependent upon Rea,
ω, and the number of radial modes M was used. For M = 10, we determined that
the critical Rei and k could be determined to one part in ten thousand by using
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Figure 5. Critical Rei and k versus Rea in (a) the enclosed flow and (b) the open flow for
e = 0.905, n = 0, and various ω = 10m, m as indicated.

max(40 max(Rea, 20)/ω, 200) time steps in one period over the range of Rea and ω
considered.

4. Results of the Floquet analysis
To begin with, we shall restrict our attention to parameter regimes investigated

experimentally by Weisberg et al. (1997) and theoretically by Hu & Kelly (1995).
Specifically, in this present study we shall only consider flows with the outer cylinder
stationary, i.e. Reo = 0, and a radius ratio e = 0.905 corresponding to Weisberg et
al.’s experimental apparatus. This reduces the problem to one with two externally
imposed parameters representing the amplitude and frequency of the periodic forcing,
Rea and ω respectively. The object is to determine the critical Rei, corresponding to
the lowest rotation rate of the inner cylinder, for a given Rea and ω, at which Taylor
vortex flow does not decay for long times, and the corresponding critical axial and
azimuthal wavenumbers, k and n.

The main results are presented in figures 5 and 6, giving the critical Rei and k
versus Rea and versus ω respectively, for n = 0, in both the enclosed and open
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Figure 6. Critical Rei and k versus ω in (a) the enclosed flow and (b) the open flow for e = 0.905,
n = 0, and various Rea as indicated.

flows. For the parameter ranges considered, we have found that n = 0 is the critical
azimuthal mode, in accord with the narrow gap analysis of Hu & Kelly (1995) and the
experiments of Weisberg et al. (1997), except in some narrow windows of parameter
space corresponding to small ω and large Rea (see below). When instability sets in
via an axisymmetric mode, n = 0, the new state is synchronous with the basic state,
i.e. no new frequency is introduced by the bifurcation. Figures 5 and 6 show that
the degree of stabilization, i.e. the relative difference between critical Rei for a given
Rea and ω and the critical Rei for Rea = 0, is always greater for the enclosed flow.
The critical wavenumber decreases more rapidly for increasing Rea and decreasing ω
in the enclosed flow than in the open flow. The flow under consideration represents
a competition between annular Stokes flow and circular Couette flow. When Rea is
increased, the relative importance of the Stokes flow component is enhanced. When
ω is reduced the influence of the Stokes flow penetrates deeper into the interior (an
increase in the Stokes length (2/ω)1/2) and so also represents a relative increase in
the influence of the Stokes flow component. The annular Stokes flow in the absence
of the circular Couette component is very stable, i.e. the flow is independent of z
for a very large range of Rea and ω. In the range of Rea and ω considered in this
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Figure 7. Stability boundaries in (Rei, k)-space for the enclosed flow with e = 0.905, n = 0, ω = 10,
and Rea as indicated. (b) Detail of (a).
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Figure 8. Stability boundaries in (Rei, k)-space for the enclosed flow with e = 0.905, n = 0,
Rea = 100, and ω as indicated. (b) Detail of (a).

study, we have verified numerically that annular Stokes flow (i.e. the present flow
with Rei = 0) is stable for all k and n considered; von Kerczek & Davis (1974) have
also demonstrated stability over a large region of parameter space for finite planar
Stokes flow. For the Stokes component in the present flow, the least stable of all
the (stable) wavenumbers is at k = 0. The circular Couette flow, in the absence of
axial oscillations, has a preferred axial wavenumber for the onset of Taylor vortex
flow k ≈ π. As the Stokes component of the flow becomes dominant, we observe a
shift from k ≈ π to smaller wavenumbers for the oscillatory Taylor–Couette flow, as
illustrated in figures 5 and 6.

The enclosed flow shown in figures 5 and 6 behaves in a peculiar fashion at large
Rea and small ω, as manifested predominantly in the variations of the critical k
as Rea increases and ω decreases, where we see that there is a rapid increase in the
critical k superimposed on the general trend of decreasing k. This type of behaviour is
indicative of modal interactions, and we investigate this by plotting stability boundary
curves of Rei at onset of sustained Taylor vortex flow versus k for Rea and ω in the
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Figure 9. Stability boundaries in (Rei, k)-space for the enclosed flow with e = 0.905, ω = 10,
Rea = 60, and n as indicated.

range where this modal interaction is apparent. Figure 7 gives these curves for ω = 10
and 60 6 Rea 6 100 corresponding to the rapid change in k indicated in figure 5.
These clearly show that this peculiar behaviour is associated with the development of
a second local minimum in the critical Rei versus k curves. The new local minimum
develops with increasing Rea as an inflection point on the curve appears at Rea ≈ 65
and k ≈ 4. The slope of the curve at the inflection point is positive and decreases with
increasing Rea. When the slope at the inflection point becomes negative, a new local
minimum at a k larger than that corresponding to the inflection point appears. As the
slope continues to become more negative, the local minimum shifts to lower k, and
at Rea ≈ 83 the Rei versus k curve pinches off forming an isolated island of stable
flow (stable to axisymmetric perturbations), as shown in the detail of figure 7(b). This
island decreases in size rapidly with increasing Rea. During the pinch-off phase, the
local minimum and the global minimum are drawn closer together, hence the S-bend
in the critical k (global minimum) curve in figure 5. The local minimum does not
becomes the global minimum (in this parameter regime), but it is extremely influential
in bringing the critical k, corresponding to the global minimum, back closer to π.
Similar behaviour is observed in figure 8 giving the curves of critical Rei versus k
for Rea = 100 and 6 6 ω 6 30 corresponding to the rapid change in k indicated in
figure 6. Note that these modal interactions were not observed in the open flow case
over the same range of Rea and ω.

Although the n 6= 0 azimuthal modes are not dominant over most of the parameter
range investigated, similar modal interactions and pinch-offs occur for n 6= 0 as
illustrated in figure 9, which shows critical Rei versus k curves for n = 0, 1, 2, 3,
and 4, ω = 10, and Rea = 60. In the narrow windows of parameter space where the
pinch-offs occur, we have found that the n 6= 0 modes are the most dangerous. The
pinch-offs have been found to occur in the regions of parameter space where the
critical Rei versus ω or Rea curves appear peculiar. These occur for Rea > 70, and
a narrow wedge in ω ∼ O(10). Figure 10 reproduces the critical Rei and k curves in
figure 6 for Rea = 75 and 100. For Rea = 75 and 5.5 .ω . 10 the n = 1 azimuthal
mode is dominant, and for Rea = 100 and 11.8 .ω . 17.8 the n = 2 azimuthal mode is
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Figure 10. Critical Rei and k versus ω in the enclosed flow with e = 0.905 for (a) Rea = 75 and (b)
Rea = 100, e = 0.905, and various azimuthal modes n as indicated.

dominant. At the points where the azimuthal mode switching occurs, the wavelength
of the dominant mode undergoes a discontinuous jump. For n 6= 0 dominant modes,
the bifurcation is to a quasi-periodic state consisting of the frequency of the basic
flow, ω, and a new frequency ω1 or ω2, corresponding to either n = 1 or n = 2
respectively. This is the Hopf bifurcation for periodic orbits mentioned in §3. For
the parameter ranges considered, these new frequencies varied with Rea and ω. For
Rea = 75 and 5.5 .ω . 10, ω1 ≈ 14, and for Rea = 100 and 11.8 .ω . 17.8, ω2 ≈ 35.

4.1. Comparison with experiments

The only experiments on Taylor–Couette flow with axial oscillations of the inner
cylinder known to us are those of Weisberg et al. (1997). The geometry of the
experimental apparatus consisted of a radius ratio e = 0.905 and aspect ratio Λ =
length of cylinders/d = 150, and had stationary rigid endwalls at both ends of
the cylinders. The experiments were all conducted with a stationary outer cylinder
(Reo = 0). Owing to mechanical constraints, the two driving parameters Rea and ω
were coupled by a linear relationship Rea = Cω, but the constant C could be varied
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Figure 11. Critical Rei versus ω for various Rea, defined by the relationship Rea = Cω with C as
indicated, compared with the corresponding experimental data of Weisberg et al. (1997) (symbols).
(b) Detail of (a).

in different sequences of experiments, thus making a large range of parameter space
accessible.

In comparing our Floquet analysis to the experiments, we make some idealizations.
Specifically, we idealize the finite aspect ratio Λ = 150 as Λ = ∞ and we only include
the global effects of the endwalls via a time-periodic but spatially constant pressure
gradient term, i.e. the enclosed flow formulation. We do however include fully the
curvature effects, using e = 0.905. All of Weisberg et al.’s data for the critical value of
Rei are presented in figure 11 by open symbols, each different symbol corresponding
to different constants C as indicated. The solid lines are our Floquet analysis results.
It is clear that the agreement is uniformly to within 1% for all the data, even for the
smallest ω and largest Rea values. This is particularly good, as the uncertainties in
the experiments were estimated to be . 3%.

4.2. Comparison with a narrow gap approximation

Hu & Kelly (1995) present their results from a Floquet analysis of the open flow in
the narrow gap limit for the degree of stabilization due to the axial oscillations of
the inner cylinder in terms of a scaled relative critical Taylor number. The Taylor
number is related to Rei by

Ta =
4(1− e)

1 + e
Re2

i , (4.1)

for e < 1. They present their results in the form Trel = (Tac − Ta0)/(Ta0Re
2
a) versus

β, where Tac is the critical Taylor number for a given Rea and ω, Ta0 is the critical
Taylor number for Rea = 0, and β = (ω/2)1/2. Hu & Kelly find that for Re 6 30, the
curves of Trel versus β are almost the same. In figure 12, we present Hu & Kelly’s data
for Rea = 30 along with our results from figure 5, including the n 6= 0 modification
in the enclosed flow from figure 10, translated into Trel versus β. It is clear that the
narrow gap approximation is everywhere close to the open flow solution. Both the
finite and narrow gap open flows grossly underestimate the level of stabilization in
comparison to the experimental results (which the enclosed flow matches to within
1%, see figure 11), and the disagreement is greatest for small ω.

In the open flow, there exists a distinguished frequency above which increases in
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Figure 12. Trel versus β for the open narrow gap results of Hu & Kelly (1995) with Rea = 30
(circles), and the enclosed narrow gap results of Hu & Kelly (private communication) with Rea = 30
(squares), together with the results from the present investigation of the open and enclosed flows
for Rea as indicated.

Rea augments the degree of relative stabilization Trel , and below which increases in
Rea decreases Trel . The frequencies that give the most stabilization in absolute terms
for a given Rea are very close to this distinguished frequency. The degree of relative
stabilization decreases markedly as Rea increases and ω → 0, whereas for large ω
the degree of relative stabilization is independent of Rea. In contrast, the enclosed
flow does not have a corresponding distinguished frequency. The degree of relative
stabilization continues to increase as both Rea increases and ω decreases, up to the
point where the modal interactions and switches come into play. The flattening of
the curves for Rea = 75 and 100 suggests a saturation of the degree of stabilization
as ω → 0.

4.3. The singular limit ω → 0

Two interesting limits in parameter space are worth further consideration. The limit
Rea → 0, for any ω, is well behaved and simply corresponds to the usual Taylor–
Couette flow. For e = 0.905, Rei → 134.9 as Rea → 0. This is the point from where
all the curves in figure 5 emanate. The corresponding value of k is 3.129. The other
limit is ω → 0 for any Rea. This limit is singular.

From a physical point of view, the singularity of the ω → 0 limit is related to
the fact that the period (2π/ω) of the oscillation becomes infinite. During a part
of the period disturbances may be amplified and grow to amplitudes where the
linearization is no longer valid. Depending on the size of initial perturbations, these
large amplification rates may be viewed as transient instabilities in experiments or
nonlinear numerical computations (Davis 1976; Barenghi & Jones 1989; Murray et
al. 1990). From a mathematical point of view, the ω → 0 limit results in a degenerate
bifurcation where the structure of the normal form describing the bifurcation at the
critical Rei must, to leading order, be determined by a nonlinear balance (Davis &
Rosenblat 1977).
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Figure 13. (a) log10(Emax(t)) versus ωt and (b) log10(|∂Emax/∂t|) versus ωt for Rea = 100 and ω as
indicated in the enclosed flow, and (c) the corresponding log10 of the absolute values of the maxima
and minima of ∂Emax/∂t over a period for the various ω in (b).

The growth rates of initial disturbances at the bifurcation point, at any time t
during the period of the external forcing, can be obtained. We do this by computing
the eigenvalues of the matrix X (t) from the system (3.17) and at each time step we
obtain the modulus of the largest eigenvalue, Emax(t). The instantaneous growth rate
is given by ∂Emax/∂t at time t. Figure 13 plots log10 Emax and log10 |∂Emax/∂t| for
Rea = 100, e = 0.905 and various ω = 2n, n ∈ [1, 6]. As ω decreases, the growth rates
increase dramatically. This is reflected in figure 13(c), plotting log10 of the maximum
positive and negative growth rates over the period versus ω. Note that the variations
in the growth rates at these bifurcation points are approximately symmetric over the
period, i.e. growth of disturbances is accounted for, almost symmetrically, by decay
of disturbances over the whole period. The linear Floquet analysis for determining
the critical Rei is valid, no matter how large the maximum growth rate becomes,
so long as it is finite and the initial disturbances are sufficiently small that they
are not amplified beyond the limit where nonlinearities come into play. However, in
any physical experiment or floating point computation, there is always a minimum
threshold of noise or round-off error, so that in the limit ω → 0, the instantaneous
growth rates become so large that linear theory no longer applies. Given the low
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values of ω obtained in the experiment of Weisberg et al. (1997), ω ∼ 0.5, and the
agreement with the present Floquet analysis (figure 11), this suggests that the noise
level in the experiments is very low.

5. Conclusions
The stabilization of Taylor–Couette flow by the axial oscillation of the inner

cylinder, observed experimentally by Weisberg et al. (1997), has been studied by
means of Floquet theory. We have derived a closed form solution for the basic flow,
independent of the axial and azimuthal directions, in an annulus of infinite length but
of a finite gap, in two flow situations. These two represent an annulus with (enclosed)
or without (open) endwalls. When the presence of endwalls is included in the analysis,
agreement for the critical rate of rotation of the inner cylinder, Rei, for the onset
of centrifugal instability with the experiments of Weisberg et al. is achieved to well
within experimental uncertainty. The open flow stabilizes the Taylor–Couette flow
to a significantly lesser degree. For the gap considered here and in the experiments,
curvature effects are small.

In the open flow, there is a distinguished frequency above which increases in the
amplitude of the axial oscillation, Rea, result in increases of the degree of relative
stabilization, Trel . For oscillations at frequencies below this frequency, increases in
Rea decreases Trel . In contrast, for the enclosed flow no such distinguished frequency
exists, Trel is increased with increasing Rea for all ω, except in a narrow window
of parameter space with Rea large and ω small. In this parameter regime, beyond
that reported in the experiments and specifically for Rea > 70 and ω ∼ 10, we have
found narrow windows where interactions and switching between different axial and
azimuthal modes takes place. These modal interactions have only been observed for
the enclosed flow and are related to a saturation of the Trel versus ω relationship as
ω → 0.

The analysis of the basic flow suggests that the stabilization is due to waves of
azimuthal vorticity propagating out from the boundary layer on the inner cylinder in
both the open and enclosed flows. Further, for the enclosed flow, waves of azimuthal
vorticity also propagate inwards from the outer cylinder. These waves act to nullify the
azimuthal vorticity associated with the onset of centrifugal instability of the circular
Couette flow.

We would like to express our appreciation to Professor Lex Smits and Dr Arel
Weisberg for the discussions and making their experimental data available, and to
Professor Bob Kelly and Dr Hsiang-Cheng Hu for providing their narrow gap data
for figure 12. We also like to thank Alvar Meseguer for producing figure 1. This work
was partially supported by NSF grant DMS-9512483, DGICYT grant PB94-1209,
and during F.M.’s visit to Penn State by DGICYES grant PR95-425.

Appendix
The linear system (3.7) is of the form gȧ = h(t)a where a is a complex vector and

g, h are the complex matrices

gj,l = 〈ũj , ul〉,
hj,l = 〈ũj ,∆ul − vB · ∇ul − ul · ∇vB〉.
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The real version (3.16) of this system, is obtained introducing a real vector x

aj = x2j−1 + ix2j ,

and real matrices G , H given by

G2j,2l = G2j−1,2l−1 = Regj,l ,

G2j,2l−1 = −G2j−1,2l = Imgj,l ,

H2j,2l = H2j−1,2l−1 = Rehj,l ,

H2j,2l−1 = −H2j−1,2l = Imhj,l .

Introducing the basis (3.8), (3.9) in the expansion (3.6), we have

u =

N∑
j=1

a2j−1u2j−1 + a2ju2j ,

and after some algebra we obtain the non-zero elements of these matrices:

G4i−3,4j−3 = G4i−2,4j−2 = 〈D+f̃iD+fj + k2f̃ifj〉,

G4i−2,4j−1 = −G4i−3,4j =
〈n
r

D+f̃igj

〉
,

G4i−1,4j−2 = −G4i,4j−3 =
〈n
r
g̃iD+fj

〉
,

G4i−1,4j−1 = G4i,4j =

〈(
k2 +

n2

r2

)
g̃igj

〉
,

H4i−3,4j−3 = H4i−2,4j−2 =

〈
D+f̃i

(
D+D− k2 − n2

r2

)〉
D+fj

+k2f̃i

〈(
D+D− k2 − n2

r2

)
fj

〉
,

H4i−3,4j−2 = −H4i−2,4j−3 =
〈(
kwB +

n

r
vB

)
(D+f̃iD+fj + k2f̃ifj)

−kw′BD+f̃ifj
〉
,

H4i−3,4j−1 = H4i−2,4j =

〈
n

r

(
kwB +

n

r
vB

)
D+f̃igj +

2k2

r
vBf̃igj

〉
,

H4i−3,4j = −H4i−2,4j−1 =

〈
−nD+f̃i

(
D+D− k2 − n2

r2

)
1

r
gj + 2n

k2

r2
f̃igj

〉
,

H4i−1,4j−3 = H4i,4j−2 =
〈
−n
r

(
kwB +

n

r
vB

)
g̃iD+fj

+

(
nk

r
w′B − k2D+vB

)
g̃iD+fj

〉
,

H4i,4j−3 = −H4i−1,4j−2 =

〈
−n
r
g̃i

(
D+D− k2 − n2

r2

)
D+fj + 2n

k2

r2
g̃ifj

〉
,

H4i−1,4j−1 = H4i,4j =

〈
g̃i

(
k2DD+gj +

n2

r2
D+D

1

r
gj

)
−
(
k2 +

n2

r2

)2

g̃igj

〉
,

H4i−1,4j = −H4i,4j−1 =

〈(
k2 +

n2

r2

)(
kwB +

n

r
vB

)
g̃igj

〉
,
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where a k2 factor has been introduced, and 〈 〉 means integration with respect to r:

〈f〉 =

∫ ro

ri

f(r)rdr.
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