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Do parasites live in extreme environments ? Constructing
hostile niches and living in them
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S U M M A K Y

We develop the hypothesis that parasites do not invade extreme environments, i.e. hostile hosts, but rather 'create' them.
We argue that parasites may have driven the evolution of the constitutive and adaptive immune system. 'Phis leads to
several implications. First, parasites respond to 'genes to kill' by 'genes to survive* and this triggers an indefinite selection
of measures and counter-measures. Second, these revolutionary arms races may lead to local adaptation, in which parasite
populations perform better on local hosts. Third, the evolution of the immune system, whose responses are predictable,
may allow parasites to specialize, to evade and even to manipulate. Finally we show that the correlations between the
increase in the antibody repertoire, the expansion of MHC loci and parasite pressures support our hypothesis that both
host complexity and parasite pressures can be invoked to explain the diversity of antibodies, T-reeeptors and MIIC
molecules.
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INTRODUCTION

When parasites exploit organisms which live in
extreme environments (for instance at the most
extreme temperatures which are still compatible
with life), their free-living stages are exposed to
extreme conditions. This is one aspect of the
adaptation of parasites to extreme environments. A
different question is: can the environment where
parasites live (i.e. the host) be qualified as extreme or
not ?

In recent years, it has been increasingly perceived
that organisms modify their environments and that
these changes can, in their turn, have consequences
for selective pressures exerted by these environ-
ments. These changes apply to other organisms in
the same ecosystem and to the organisms responsible
for the environmental alteration itself. The way an
organism modifies natural selection for other
organisms sharing its ecosystem relates to the
concept of ecosystem engineers developed by Jones,
Lawton & Shachak (1994, 1997). The way an
organism modifies natural selection for itself is closer
to the concept of niche construction developed by
Odling-Smee, Laland & Feldmann (1996), and by
Laland, Odling-Smee & Feldmann (1996, 2000).

Parasites have already been considered as eco-
system engineers. For instance, Thomas et al. (1998)
and Poulin (1999) have shown that the behaviour of
the cockle Austrovenus stutchburyi was altered by
metacercariae of the trematode Curtuteria australis
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in such a way that parasitized individuals were
unable to bury themselves and remained exposed at
the surface of the sediment. In the area under study
(shores of New Zealand), cockles are one of the
rare hard surfaces where an intertidal community
of benthic invertebrates (limpets, anemones,
bryozoans, barnacles, etc.) can establish. When a
cockle was infected by C. australis, limpets
{Notoacmea helrnsi) were significantly more frequent
and anemones (Anthopleura aureoradiata) less fre-
quent, in relation to the depth at which the substrate
provided by the cockle was available. The trematode
was thus an ecosystem engineer since it modified the
quality of the environment for organisms not directly
involved in the parasite-host association.

PARASITES CONSTRUCT HOSTILE NICHHS

Regarding the influence that an organism may have
on the selective pressures exerted on itself (niche
construction), the best possible example is provided
by parasite-host relationships themselves because
'living in a living environment' always provokes a
dramatic change in the quality of the niche. A living
organism which would otherwise provide the para-
site with a peaceful habitat and an indefinite source
of energy soon becomes a killing machine possessing
an impressive battery of weapons (phagocytic cells,
cytotoxic cells, antibodies, enzymes, etc.) (Frost,
1999).

Parasites do not invade extreme environments.
They 'create' them as we may argue that parasites
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have driven the evolution of the constitutive and
adaptive immune system.1

This has several important evolutionary conse-
quences. One is that parasites respond to 'genes to
kill' by 'genes to survive' (Combes, 1995). This
triggers an indefinite selection of measures and
counter-measures which are probably one of the
main supporting examples of the Red Queen hy-
pothesis (Van Valen, 1973). In their turn, such arms
races provide one of the most likely explanations for
maintenance of sex (see for instance Hamilton,
Axelrod & Tanese, 1990; Ladle, 1992) and for sexual
selection (the quest for ' good genes' which
constitutes the basis of Hamilton and Zuk's 1982
hypothesis).

Second, these coevolutionary arms races and the
short generation times of parasites as compared to
those of their hosts, may lead to local adaptation, in
which parasite populations perform better on local
hosts. Indeed, several mathematical models (Gandon
et al. 1996; Morand, Manning & Woolhouse, 1996)
and empirical studies (Lively, 1989, 1999; Xia,
Jourdane & Combes, 1998; Mone, Mouahid &
Morand, 2000) have shown that parasites are more
compatible or better infective to their local hosts, i.e.
in sympatric conditions, than to geographically
distant hosts, i.e. in allopatric conditions (see Kaltz
& Shykoff, 1998). Although the underlying processes
and mechanisms are still poorly known, they rep-
resent one of the aspects of the survivorship of
parasites in the hostile niche.

H O S T I L E N I C H E A N D H O S T S P E C I F I C I T Y

Bristow (1988) remarked that, in predator-prey
systems, specialization arises when a particular
defence mechanism has been selected in prey, for
instance a thick carapace, the secretion of toxic
substances, or an homochromy with the milieu.
When such adaptations are selected in prey, counter-
adaptations are usually selected in only a small
number of predators and allow them to specialize on
the resource. Combes & The'ron (2000) suggested
that specialization in parasites could be the result of
a similar process: parasites would be specific (in
general) because adaptations necessary to survive in

1 Ectoparasites 'cumulate' classical pressures from the
abiotic and biotic environments with pressures due to
immunologieal responses of the hosts. For instance,
ectoparasites living on the gills of fish are directly affected
by external factors such as water temperature, water
currents, activities of cleaners (Hart et al. 1990). Cleaner
fishes in particular have a strong influence on their client's
ectoparasite load (Grutter, 1996, 1999; Arnal & Cote,
1998). Endoparasites themselves are submitted to factors
that can be qualified as extreme and do not originate in
immunity, such as pi I, enzyme activities, fluid movements,
etc. (Sukhdeo, 1997).

the hostile environments they have 'created' in hosts
are extremely costly. Since immunity is achieved
through different pathways in different host species
(in the same way that different plant species produce
different compounds as an adaptation to combat
herbivorous insects), parasites specialize to survive
in a limited number of these hostile environments. It
does seem that the efficiency of evasion mechanisms
of a parasite or parasitoid is better when it exploits
few host species than when it exploits many (Dupas
& Boscaro, 1999) which is an indirect argument for
the above statement. 'Extreme' environments fol-
lowing infection in hosts have the same evolutionary
consequences as plant defences and trigger the
emergence of specialist parasites.

The immune response to a given parasite implies
a rather precise cascade of specific and non-specific
mediators within a denned temporal sequence (see
Davey, 1990). This means that immune responses
are predictable, which allows parasites to specialize,
to evade and even to manipulate (see Frost, 1999).

Host specificity can thus be the result of building
a hostile niche and living in it.2

P A R A S I T E S A N D T H E I R l i V I i R - K V O L V I N C

H O S T I L E EN V I R O N M E N T

The sophistication of immune systems has obviously
increased from 'lower' to 'higher' organisms. This
is especially true when MHC molecules, T-receptors
and the antibody repertoire of vertebrates are con-
sidered. This 'ever-evolving hostile environment'
might have had two different causes, acting in
parallel. (1) Through evolution, the increasing
complexity of free-living organisms has provided
pathogens with an increasing diversity of niches
opened to colonization, the result of which was an
increasing diversity of parasites. Klein (1991) argued
that, in order to have an impact on MHC evolution,
a parasite must coevolve over a long period of time,
also emphasising which parasites may play this role.
We may argue that it is not a parasite species nor a
parasite group per se (say trypanosomes as exempli-
fied by Klein, 1991) that is responsible for MHC
evolution, but rather a community of parasite
species, i.e. parasite species richness (but see
Paterson, Wilson & Pemberton, 1998). By using
parasite species richness as an indicator, Morand
(2000) showed that helminth species richness is low-
in reptiles and amphibians (from 3-7 to 6-7 parasite
species per host species) and high in birds (14-0) and
mammals (12-0) (Poulin & Morand, 2000; Morand,

2 This does not mean that specialization always arises
from the hostility of the niche. For instance specialization
may occur from a 'lock-and-key' relationship between two
anatomical features of the host and the parasite (see
Morand et al. 2000 for a positive relationship be-
tween gopher hair-shaft diameter and louse head-groove
width).
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Fig. 1. Correlation between the increase of the antibody
repertoire, expansion of MHC loci and parasite richness
in vertebrates.

2000) (Fig. 1). Although the helminths are not the
only pathogens that may have an effect, we may
expect a co-variation in parasite diversity, in such a
way that host species harbouring a high species
richness of helminths should also harbour a high
diversity of protozoans, bacteria or viruses.

The high diversity of parasites was responsible for
increasing pressures on immune systems, which
responded by more and more sophisticated weapons,
especially in vertebrates (Klein, 1991). Lower verte-
brates possess fewer specific antibodies than birds
and mammals, respectively fewer than 500000 as
compared with between 10' and 1()9 (Du Pasquier,
1982; see Frost, 1999). Similarly, the emergence of
the MHC in the lower vertebrates was followed by
dramatic expansion and duplication of MHC genes
in birds and mammals (Klein, 1991). MHC genes
are not neutral and their persistence and the level of
their polymorphism can be explained by balancing
selection caused by parasites and pathogens
(Takahata, 1990). Other comparative studies should
be carried out both inter- and intra-specifically in
order to confirm the hypothesis of a parasite-driven
force. In response to the evolving immune systems (a
'Red Queen' process...), pathogens acquired
adaptations to escape recognition, using for example
antigens similar to host self antigens, to provoke
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immunosuppression or to provoke non-specific lym-
phocyte polyclonal activation, which results in the
dilution of the specific response against the parasite
(Reina-San-Martin, Cosson & Minoprio, 2000).

(2) However, it is probable that pathogens were
not alone in being responsible for the complexity of
immune systems. We may hypothesize that antigenic
diversity increased in proportion to structural com-
plexity of organisms and that the development of the
immune system also has been influenced by the
necessity to become tolerant to an increasing number
of self antigens.

In the current state of knowledge, we think that
the correlations between the increase in the antibody
repertoire, the expansion of MHC loci and parasite
pressures (Fig. 1) support the hypothesis that both
host complexity and parasite pressures can be
invoked to explain the diversity of antibodies, T-
receptors and MHC molecules.

CONCLUSION

As a rule, extreme environments and/or hostile
environments are defined on the basis of the difficulty
of maintaining life and are thus characterized by a
low diversity in term of species richness (see for
instance Vernon, Vannier & Trehen, 1998). Contrary
to this, living in a hostile niche seems to promote
both specialization and diversification in parasites.
Poulin (1992) and Sasal, Desdevises & Morand
(1998) found that high host specificity is correlated
with high species diversity in fish parasites.

Finally, it must be stressed that the notion of the
extreme environment is somewhat anthropo-
morphic. For an animal adapted to live in a desert
(usually referred to as an extreme environment), it
can be lethal to be transported to a temperate climate
(supposed to be not extreme). Once an organism is
adapted to an environment, this is the environment
where its fitness is best, whether we qualify it as
extreme or not. It is the same for parasites. It might
be concluded that it is more comfortable to live
inside a polar bear than on the pack ice. The polar
bear does live in an extreme environment. Its
parasites do not.
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