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We show the consistency of the log-periodogram regression estimate of the long
memory parameter for long range dependent linear, not necessarily Gaussian, time
series when we make a pooling of periodogram ordinates+ Then, we study the as-
ymptotic behavior of the tapered periodogram of long range dependent time series
for frequencies near the origin, and we obtain the asymptotic distribution of the
log-periodogram estimate for possibly non-Gaussian observation when the tapered
periodogram is used+For these results we rely on higher order asymptotic properties
of a vector of periodogram ordinates of the linear innovations+ Finally,we assess the
validity of the asymptotic results for finite samples via Monte Carlo simulation+

1. INTRODUCTION

Long memory or long range dependent observations have been found in many
fields of research~e+g+,Robinson, 1994c; Beran, 1994!+ In this paper we consider
semiparametric statistical inference for long range stationary dependent time se-
ries+ In particular we concentrate on the estimate of the memory parameter based
on the regression on the logarithm of the periodogram at Fourier frequencies
close to the origin+ This estimate, proposed initially by Geweke and Porter-
Hudak~1983!, has been very popular among practitioners because of its intuitive
and computational appeal+ At the same time, properties of maximum likelihood
methods have been analyzed extensively for parametric models of long range
dependence Gaussian and linear processes~see, e+g+, Fox and Taqqu, 1986;Dahl-
haus, 1989; Giraitis and Surgailis, 1990!, obtaining equivalent efficiency results
to the weak dependence situation+ However, this approach involves a complete
specification of the dynamics of the process, and if we are only interested in the
estimation of long range dependence characteristics, semiparametric and non-
parametric setups can be robust against any misspecification of the short run
behavior of the time series+

Semiparametric models for long memory focus on some properties of the auto-
covariance sequence~hyperbolic decay! or of the spectral density~singularity at
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the zero frequency!+ They are semiparametric because they do not make explicit
assumptions on the behavior of the autocovariances at short lags or on the spec-
tral density apart from the origin+We set our conditions in the frequency domain
in terms of the spectral density since they are much neater and cover a broader
range of possibilities+We assume that the spectral density satisfies

f ~l! ; Cl22d, asl r 01, (1)

whered [ ~0, 12_! is the self-similarity parameter that governs the degree of strong
dependence of the series+ This is the interval of values ofd for which the series
exhibits long range dependence and is stationary+The basis for the log-periodogram
regression estimate is the least squares estimation of the linear relationship im-
plicit in expression~1! between the spectral density and the frequency in log-log
coordinates with slope22d when the spectral density is estimated by the peri-
odogram at Fourier frequencies close to the origin+

Robinson~1994a, 1995a, 1995b! and Lobato and Robinson~1996! have used
similar assumptions to the ones we employ here to study the asymptotic behavior
of several semiparametric estimates ofd+ Robinson~1995a! justified a modified
version of the procedure proposed by Geweke and Porter-Hudak~1983!, includ-
ing multivariate and pooled periodogram versions+ He proved the consistency
and asymptotic normality of this estimate for Gaussian vector time series, which
may seem very restrictive in view of the weak distribution assumptions under
which the other estimates were investigated+ In this paper we extend his consis-
tency results for linear processes not necessarily Gaussian+ To obtain an asymp-
totically normal estimate we need to taper the data to reduce the leakage in the
periodogram ordinates from the zero frequency pole, and we need to pool the
contribution for several adjacent frequencies to obtain better behaved regressors+

The paper is organized as follows+ In the next section we present our main
assumptions and definitions, discuss related references, and obtain the consis-
tency of the log-periodogram estimate ofd+ The effects of tapering are discussed
in Section 3+ Section 4 is dedicated to the asymptotic normality of the estimate of
d when we use the tapered periodogram+ Finally, we report the results of a brief
simulation exercise centered on the tapering and pooling techniques analyzed
under different distributional settings+All the proofs and some technical Lemmas
are given in the Appendix+

2. CONSISTENCY OF THE LOG-PERIODOGRAM
REGRESSION ESTIMATE

Let $Xt , t 51,2, + + + % be a covariance stationary process with spectral density sat-
isfying ~1!+ Given an observable sequenceXt , t 5 1, + + + ,N, we introduce the dis-
crete Fourier transform at the frequencyl j 5 2pj0N, j integer,

w~l j ! 5 ~2pN!2102 (
t51

N

Xt e
itl j,
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and the periodogram isI ~l j ! 5 6w~l j !62+ Define forJ51,2, + + + , fixed, and some
positive integers, andm ~assuming~m2 ,!0J to be an integer!,

Yk
~J! 5 logS(

j51

J

I ~lk1j2J!D, k 5 , 1 J,, 1 2J, + + + ,m+

The estimate of the memory parameterd considered in Robinson~1995a! is

Zd 5 S(
k

Lk
2D21

(
k

LkYk
~J! ,

whereLk5zk2 Sz, zk522 loglk, and Sz5 $J0~m2 ,!%(k zk+Herem is an integer
smaller thanN and, is a user-chosen trimming number+ In the asymptotics both
numbers tend to infinity with the sample sizeN but more slowly+We suppress in
the notation reference toN or J+

We could substitute the~pooled! periodogram by nonparametric smoothed
consistent estimates of the spectral density as was done in Velasco~1997! for long
range dependent series or in, e+g+,Hassler~1993! for antipersistent series~d , 0!+
However, when we consider inZd fixed averages of the periodogram the analysis
is much more complicated than in that situation+ Here, we have to deal with the
logarithm of a random variable that is not converging asymptotically to any con-
stant and that can take values arbitrarily close to zero+ Nonlinear functions~the
logarithm in particular! of the periodogram of stationary sequences have been
considered under different setups~see, e+g+, Hannan and Nicholls, 1977; Tanigu-
chi, 1979;Chen and Hannan, 1980; von Sachs, 1994; Janas and von Sachs, 1993;
Comte and Hardouin, 1995; and the references given in these sources!+ These
works assume Gaussianity to obtain the main results, except Chen and Hannan,
and Janas and von Sachs, in which the researchers work with linear process
conditions+

These last two references use higher order properties of the asymptotic distri-
bution of the periodogram+ Janas and von Sachs mainly applied the results for
weakly dependent sequences of Götze and Hipp~1983!,making it almost impos-
sible to relax their assumptions for long range dependence situations+ Instead, the
approach of Chen and Hannan~1980! is based on the factorization of the peri-
odogram of the observable sequence in the transfer function of the linear filter,
times the periodogram of the independent and identically distributed~i+i+d+! in-
novations, plus a stochastic error term+ The magnitude of this error depends on
the smoothness of the spectral density and on the number of moments assumed
for the innovations+Obviously the conditions they assumed~(6 j 6d 6aj 6,`, d .
1
2
_ , see Assumption 3, which follows!, rule out any long memory behavior or any
singularity in the spectral density ofXt , but their results are based mainly on the
properties of the periodogram of the i+i+d+ innovations sequence, for which we
assume the same set of conditions as in their Theorem 2~seeAssumption 4,which
follows!+
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A related approach was used by Comte and Hardouin~1995! in a long memory
environment but assuming Gaussianity+We use one of their ideas to avoid a mod-
ification of the estimate ofd in the same spirit as the one proposed by Chen and
Hannan~1980! for a different statistic to account for values ofI ~l j !0f ~l j ! that are
too small+ Here, instead of redefining the periodogram with a truncation, we use
an average of periodogram ordinates+ Then we can use their higher order asymp-
totic approach and the long range dependence results of Robinson~1995b! to
approximate the periodogram ofXt by that of the linear i+i+d+ innovations times
the long memory transfer function+

Tukey ~1967! proposed tapering as an effective bias reduction technique for
spectral inference to avoid leakage from remote frequencies+ Under additional
smoothness conditions on the behavior of the spectral density at the origin, we
study the asymptotic effect of tapering the data prior to calculating the peri-
odogram+ We obtain the asymptotic normality of the estimateZd based on the
tapered periodogram+ Von Sachs~1994! and Janas and von Sachs~1993! also
used tapering for nonlinear functions of the periodogram, but their results do not
apply to long memory time series+ Robinson~1986!, Dahlhaus~1988!, and Hur-
vich and Ray~1995!, among others, have proposed this technique to reduce the
bias of several statistics when possibly nonstationary behaviors of the observed
time series are suspected+

We now introduce some assumptions about the behavior of the spectral density
around the origin, following Robinson~1995a, 1995b!, but do not consider neg-
ative values ofd+ Later we strengthen these assumptions to obtain further results+

Assumption 1+ Xt is covariance stationary and for somed [ @0, 12_!, a [ ~0,2#
and 0, G , `,

f ~l! 5 Gl22d 1 O~la22d !, asl r 01+

Assumption 2+ In a neighborhood~0,«! of the origin, f ~l! is differentiable and

* d

dl
log f ~l!* 5 O~l21 !, asl r 01+

These conditions are standard in long memory research and are satisfied with
a 5 2 by fractional ARIMA models, for which

f ~l! 5
s2

2p
612 eil 622d* a~eil !

b~eil ! *
2

, 2p , l # p,

wheres 2 . 0 anda andb are polynomials of finite degree having no zeros in or
on the unit circle and by the fractional Gaussian noise model with autocovariance
sequence given by

g~ j ! 5
g~0!

2
~6 j 1 162d11 2 26 j 62d11 1 6 j 2 162d11 !, j 5 61,62, + + +
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Instead of Gaussianity we introduce a fourth order stationary linear process con-
dition, with filter coefficients compatible with Assumptions 1 and 2:

Assumption 3+ Xt satisfies

Xt 5 (
j50

`

aj et2j , (
j50

`

aj
2 , `, * d

dl
a~l!* 5 0~l216a~l!6!,

a~l! 5 (
j50

`

aj e
ijl,

asl r 0t, where theet are i+i+d+ with E @et # 5 0, E @et
2# 5 1, andE @et

4# , `+

We assume zero mean for the seriesXt without loss of generality, because we
omit the periodogram at zero frequency in the definition ofZd+ Four bounded
moments are enough for all our consistency results+ We introduce the next as-
sumption following Chen and Hannan~1980!+

Assumption 4+ et has characteristic functionZQ~u! 5 E @eiuet # satisfying

sup
6u6$u0

6 ZQ~u!6 5 d~u0! , 1, ∀u0 . 0, and E
2`

`

6 ZQ~u!6 p du , `,

for some integerp . 1+

The conditions of Assumption 4 are needed to prove the validity of an asymp-
totic approximation for the probability density of the discrete Fourier transform
of the innovationset ~see Lemma 2 in the Appendix!+ The first line is a Cramér
condition+ The second condition is used to approximate the probability density,
and it would not be necessary to approximate the probability distribution func-
tion+ It implies that the probability distribution ofet has a bounded continuous
density~see, e+g+, Feller, 1971, Theorem 3, p+ 509!+

We now proceed to show the consistency of the estimateZd when finite av-
erages~for J fixed! of the periodogram ofXt are used under the linear process
condition of Assumption 3+ We approximate the logarithm of the periodogram
of Xt by that of et , times the transfer function, the error depending on the
properties of the filter$aj % and on the distribution of the linear innovationset ,
but special care is needed because of the singularity of the logarithm function
at the origin+ However we are only able to deal with the caseJ $ 3+ The reason
for this limitation is the following+ To approximate the periodogram ofXt by
that of et we need to consider the inverse moments of the periodogram ofet at
certain Fourier frequencies+ The average ofJ periodogram ordinates of an i+i+d+
sequence is asymptotically distributed as ax2J

2 ~up to constants!+ The key point
is that if Z ; x2J

2 , then E @Za2J# , ` for 0 , a , J ~see Lemma 1, which
follows!+ Of course, to approximate the moments of a random variable we need
something more than its asymptotic distribution+ That is why we approximate
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the probability density of the Fourier transform ofet under the regularity con-
ditions of Assumption 4+ We conjecture that a related argument could be used
to construct a proof forJ # 2+

We introduce some more notation+Write Ij 5 I ~l j ! andfj 5 f ~l j ! and, for the
periodogram of theet innovation sequence, Ie, j 5 Ie~l j !+ Let J be a fixed positive
integer+ Define

NIk 5 (
j51

J

Ik1j2J , NIek 5 (
j51

J

Ie,k1j2J , k 5 , 1 J,, 1 2J, + + + ,m+

We suppress the dependence onJ in the notation NIk and NIek+
We can write in the same spirit as in Comte and Hardouin~1995!,

log NIk 5 log fk 1 log 2p NIe,k 1 logS11
dk

2p NIe,k
D, (2)

where the error termdk 5 fk
21 NIk 2 2p NIe,k is analyzed in Lemma 3 making direct

use of some results of Robinson~1995a, 1995b! based on the characteristics of
the linear filtera~l! under Assumptions 1 and 2+ In fact,when approximating the
observed pooled periodogramNIk by that of the innovationsNIe,k we have two types
of errors indk; one is the bias due to the average acrossJ frequencies, fk21 Ij 2
fj

21 Ij , and the other is the stochastic errorfj
21 Ij 2 2pIe, j , for k 1 1 2 J # j # k+

Then, for , increasing withN,we show that both errors are negligible in~2! using
a truncation argument similar to that in Chen and Hannan~1980!,without need of
modifying the definition of the estimate+ Here the main problem is the small
values of NIk and NIe,k,which cause problems because of the logarithm+ The follow-
ing lemma is useful to show that these values will not occur too often if sufficient
pooling is used, i+e+, J is large enough+

LEMMA 1 + Under Assumption4, for J $ 1, kÞ 0 ~modN!, for all 0 , a , J,

E @$ NIe~lk!%
a2J # , `+

We now give sufficient conditions for the consistency ofZd for linear, possibly
non-Gaussian, series under conditions 3 and 4+ First, we introduce the following
condition on the bandwidth numbers+

Assumption 5+ As N r `, for someb . 0, J $ 3,

m102

,J0~J12!2b 1
,~ log N!2

m
1

m

N
r 0+

This assumption imposes quite a high trimming rate inZd, because forJ53, ,
has to grow faster thanm506+ If J is large then, only needs to grow slightly faster
thanm102, which is the condition required by Robinson~1995b! for consistency
and asymptotic normality ofZd+ Then our first result is the following theorem+
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THEOREM 1+ Under Assumptions1–5, with J$ 3, Zd rP d+

The question of whether the asymptotic distribution ofZd remains the same
once Gaussianity is no longer assumed is of evident interest, but the previous
results are not enough to show that+ First, it is necessary to improve the approx-
imation results between the periodogram ordinates of the observable sequence
and of the innovations+ Then, a central limit theorem has to be proved for the
random variable

jN 5 S(
k

Lk
2D21

(
k

Lk log 2p NIe,k

that appears in the proof of Theorem 1+ In the next section we propose tapering as
a way of obtaining the previously mentioned approximation, and then we inves-
tigate the asymptotic distribution ofZd+

3. TAPERED DISCRETE FOURIER TRANSFORM

In the previous section, we obtained the consistency ofZd with a pooling of peri-
odogram ordinates+ However, the bias of the periodogram makes it impossible to
obtain the asymptotic distribution from the proof of Theorem 1, unless we trans-
late the regression to frequenciesl j ,, 11 # j # , 1 m, with m0, r 0 asNr`+
A similar problem was observed for Gaussian series under stronger conditions by
Comte and Hardouin~1995, Propositions 1 and 3!+

Tapering the data is a well known method to reduce the leakage in the peri-
odogram from other frequencies, and in this case it is a very effective way of
reducing the bias of the periodogram+ Tapering gives more relevance to observa-
tions in the central part of the observed sequence, downweighting those obser-
vations at both extremes by means of a smooth positive functionht of time, t 5
1, + + + ,N, 0 # ht # 1+We need to strengthen Assumptions 1 and 2 onf to use these
properties of tapering as in Assumption 3 of Robinson~1994b!, with 1 , a # 2:

Assumption 6+ To further Assumptions 1 and 2, denotingg~l! 5 G6l 622d, we
assume, for some 0, Ea , `, that asl r 01,

f ~l!

g~l!
5 11 Ea 3 la 1 o~la !, 1 , a # 2+

Assumption 6 is satisfied witha 5 2 by the fractional ARIMA and fractional
noise models+ This condition is equivalent to assuming thatf ~l! 5 g~l!h~l!,
with h~0! 5 1 and whereh~l! is even and differentiable with derivative in
Lip ~a 2 1! for 1 , a # 2 around the origin+

Therefore, this assumption is satisfied at frequenciesl j 52pj0N, j 51,2, + + + ,m,
for N big enough+ Then, for frequencies6l 6# l j 02, we can expandf in this way:

f ~l j 2 l! 5 f ~l j ! 2 l 3 f '~l j ! 1 O~l j
22d2a6l 6a !, (3)

50 CARLOS VELASCO

https://doi.org/10.1017/S0266466600161031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466600161031


where the derivative off satisfiesf '~l j ! 5 O~l j
22d21!+ This can be seen heuris-

tically in the following way:making a Taylor expansion off aroundl j ,we are led
to study the difference for6u6# 1 andl [ @l j 02,3l j 02# ,

6lf '~l j 2 ul! 2 lf '~l j !6+ (4)

Now, as we can writef ' 5 h'g 1 g'h, this is not bigger than the sum of the
differences~takingu 5 1 to simplify notation, w+l+o+g+!

6h'~l j 2 l!g~l j 2 l! 2 h'~l j !g~l j !6

1 6h~l j 2 l!g'~l j 2 l! 2 h~l j !g
'~l j !6, (5)

times6l 6+ The first term in~5! is bounded by

6h'~l j 2 l! 2 h'~l j !66g~l j 2 l!61 6g~l j 2 l! 2 g~l j !66h'~l j !6,

and using the mean value theorem and that for these values ofl, g 5
O~l j

22d!,g' 5 O~l j
22d21!, g'' 5 O~l j

22d22!, h 5 O~1!, h' 5 O~l j
a21!, and

6h'~l j 2 l! 2 h'~l j !65 O~6l 6a21!, this is bounded by

O~l j
22dla21 1 l j

22d21l j
a21l! 5 O~l j

22dla21 !,

becausea [ ~1,2# + Similarly, the second term in~5! is bounded by

6g'~l j 2 l! 2 g'~l j !66h~l j 2 l!61 6h~l j 2 l! 2 h~l j !66g'~l j !6

5 O~l j
22d22l 1 l j

a21l j
22d21l! 5 O~l j

22d2a la21 !+

Then~4! is easily seen to beO~l j
22d2a la !,multiplying the last two bounds byl+

We consider the full cosine bell or hanning taper, as suggested by Hurvich and
Ray ~1995! for a related problem+ A generalization of the results in this section
can be possible for many smooth data tapers~see, e+g+,Velasco, 1999, in a related
context!, but the hanning tapering has some desirable features that we use later to
find the asymptotic distribution of the log-periodogram regression estimate with
tapered observations+ Tapering allows us to reduce the bias of the periodogram
for frequencies close to the origin if we assume a spectral density smooth enough
at these frequencies~i+e+, a . 1 in Assumption 6!+ Also, because the tapered
Fourier transform can be written down as a linear combination of three~raw!
Fourier transforms, we can still use the results of Chen and Hannan~1980! as
before, with minor modifications+

The tapered discrete Fourier transform is defined as

wT~l j ! 5 S2p ( ht
2D2102

(
t51

N

ht Xt exp~il j t!,

whereht 5
1
2
_~12cos@2pt0N# ! and the sum of the squared taper weights is(ht

25
3N08+ This is called theasymmetricversion of the cosine bell by Percival and
Walden~1993, p+ 325!+ The usual discrete Fourier transformw~l! is obtained
settinght [ 1, ∀t+

Then, we can write~see Bloomfield, 1976, pp+ 80–84; Percival and Walden,
1993, pp+ 325–326! the tapered Fourier transform atl j ,2# j # N2 2, as a linear
combination of the usual Fourier transform at the frequenciesl j , l j21, andl j11,
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wT~l j ! 5
1

#6
@2w~l j21! 1 2w~l j ! 2 w~l j11!# +

As a consequence, tapering destroys the orthogonality relations between Fourier
transforms at different frequencies if they are too close, even asymptotically,
because the tapered Fourier transforms have a common component at Fourier
frequencies that are less than two basic frequenciesl1 5 2p0N away+ For that
reason we only consider frequenciesl j andlk such thatk , j 2 2,which we may
expect to be uncorrelated, as in the general case+ However, tapering allows us to
obtain much neater results than previously, especially for the expectation of the
periodogram, reducing notably its bias even for frequencies close to a singularity
using expansion~3!+

We now present the equivalent of Theorem 2 of Robinson~1995a! for the
~univariate! tapered Fourier transform+ DefinevT~l! 5 wT~l!0~G102l2d!+

THEOREM 2+ Under Assumption6 @1 , a # 2# , for any sequence of positive
integers j5 j ~N! and k5 k~N! such that2 # k , j 1 2 and j0N r 0 as Nr `,

~a! E @vT~l j !vT~l j !# 5 1 1 O~ j 2a 1 @ j0N# a !,
~b! E @vT~l j !vT~l j !# 5 O~ j 24!,
~c! E @vT~l j !vT~lk!# 5 O~k21!,
~d! E @vT~l j !vT~lk!# 5 O~k21!+

Comparing this with Robinson’s results for the expectation of the periodogram,
the bound in~a! is improved fromO~ log j0j ! to O~ j 2a ! for 1 , a # 2+ This is the
main bias reduction gain+The magnitude of this bound is determined by Assump-
tion 6 and depends on the tapering, which makes all the other contributions of
smaller order+ This is also the reason why we have such an improved bound in
part~b!+This improvement is fundamental to approximate the~tapered and pooled!
periodogram of theXt sequence by the transfer function6a~l!6 times the peri-
odogram of the innovations+

However, the bounds in Theorem 2 do not improve substantially for the cor-
relations between Fourier transforms at different frequencies~ just by a logarithm
factor!, because the frequencies can be arbitrarily close and tapering does not
affect substantially the asymptotic behavior of the periodogram there+ Improved
bounds are possible if we consider explicitly the distance6 j 2 k6 ~see Giraitis,
Robinson, and Samarov, 1997!+

4. ASYMPTOTIC DISTRIBUTION

In this section we derive the asymptotic distribution ofZd, for J $ 3, when we use
the tapered periodograms+ As discussed in the previous section we modify the
definition of Zd in this way: define forJ51,2, + + + , fixed, ~assuming~m2 ,!0~3J!
to be an integer!,

Yk
~T,J! 5 log~ NI T~lk!!, k 5 , 1 3J, , 1 6J, + + + ,m,
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where

NI T~lk! 5 (
j51

J

I T~lk13~ j2J! !, I T~l! 5 6wT~l!62

and

ZdT 5 S(
k

Lk
2D21

(
k

LkYk
~T,J! + (6)

We consider a pooling ofJ tapered periodogram ordinates, and though each of the
tapered Fourier transforms is a linear combination of the Fourier transform at
three adjacent frequencies, this definition of ZdT secures the asymptotic uncorre-
latedness ofNI T~lk! and the asymptotic independence of the regressorsYk

~T,J! at
different frequencies+

Let us introduce the following condition concerning the bandwidth numbers+

Assumption 7+ As N r `, for somea . 0,

1

,
1

,~ log N!2

m
1

m11102a

N
r 0+

The basic difference with respect to Assumption 6 of Robinson~1995a! is the
first condition: we only need the trimming number, to increase withN but in-
dependently ofm, as from Theorem 2 we can control the bias of the periodogram
for closer frequencies to the origin thanks to tapering+ Now we present our main
result+

THEOREM 3+ Under Assumptions3, 4, 6, and 7, if et has moments of all
orders, J $ 3, aJ0~J 1 2! . 1,

m102~ ZdT 2 d! rD NS0,
3J

4
c '~J!D,

wherec '~x! 5 ~d0dx!c~x! 5 ~d0dx! log G~x! is the digamma function+

Notice the trade-off between pooling and the smoothness condition onf ~l!,
allowing for valuesa , 2 whenJ is large enough+ The proof of the theorem is
based on the method of moments+Although for the estimation of the moments of
the logarithm of the innovations~pooled and tapered! periodograms we only
require four bounded moments ofet , this is not enough to approximate the mo-
ments of a normalized infinite average of such periodogram logarithms+Our mo-
ment assumption is then used to approximate with a sufficient degree of accuracy
those moments by means of Edgeworth expansions for the probability density of
the Fourier transform+

For the asymptotic normality proof we do not use any special properties of
tapering or pooling the periodogram, apart from the bound in Lemma 1~pooling!
and Theorem 2~tapering!+ These two devices are used to improve the approxi-
mations and behavior of the periodogram of the long range dependent time series+
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Possibly, under stronger conditions on the dependence of the processXt and0or
its distribution, one or both of these techniques could be dispensed with+

5. SIMULATION WORK

In this section we present a simulation exercise to analyze the techniques of
tapering and pooling in the log-periodogram estimate for non-Gaussian data+ To
that end we simulate 5,000 series following an ARFIMA~0,d,0! model and in-
novations with different distributions, Uniform@2#3,#3# , Exponential with pa-
rameter 1, recentered with zero mean, t5 distribution,which only has four moments,
so Theorem 1 holds, but not Theorem 3, and standard Gaussian for comparison

Table 1. Log-periodogram regression estimatorZd ~d 5 0+45, N 5 256!

m J Bias sd th+sd MSE 90% 95% 99%

Gaussian
30 1 0+0056 0+1416 0+1171 0+0201 83+46 89+50 96+48
30 2 20+0295 0+1189 0+1037 0+0150 84+48 90+70 96+88
30 3 0+0287 0+1309 0+0994 0+0180 77+62 85+20 94+54
45 1 20+0066 0+1104 0+0956 0+0122 85+30 91+06 97+04
45 2 20+0342 0+0962 0+0847 0+0104 83+60 90+00 96+60
45 3 0+0097 0+1012 0+0811 0+0103 81+08 88+42 95+88

Uniform
30 1 0+0024 0+1437 0+1171 0+0207 81+80 88+90 96+64
30 2 20+0325 0+1190 0+1037 0+0152 84+06 90+48 96+76
30 3 0+0241 0+1322 0+0994 0+0181 77+52 85+46 94+38
45 1 20+0098 0+1120 0+0956 0+0126 84+24 90+98 96+78
45 2 20+0374 0+0955 0+0847 0+0105 83+22 89+36 96+34
45 3 0+0059 0+1018 0+0811 0+0104 82+30 88+90 95+70

Exponential
30 1 0+0030 0+1426 0+1171 0+0204 82+40 89+18 96+36
30 2 20+0318 0+1178 0+1037 0+0149 84+48 90+10 96+96
30 3 0+0252 0+1308 0+0994 0+0177 78+16 85+72 94+24
45 1 20+0108 0+1124 0+0956 0+0127 84+34 91+02 96+62
45 2 20+0373 0+0954 0+0847 0+0105 83+44 89+72 96+24
45 3 0+0063 0+1017 0+0811 0+0104 81+88 88+44 95+84

t5
30 1 0+0046 0+1393 0+1171 0+0194 83+70 90+00 96+66
30 2 20+0307 0+1162 0+1037 0+0144 84+84 91+02 97+04
30 3 0+0257 0+1277 0+0994 0+0170 79+04 86+40 95+00
45 1 20+0052 0+1093 0+0956 0+0120 84+94 91+74 97+52
45 2 20+0332 0+0932 0+0847 0+0098 84+60 90+94 96+48
45 3 0+0097 0+0987 0+0811 0+0098 82+74 89+24 96+40

54 CARLOS VELASCO

https://doi.org/10.1017/S0266466600161031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466600161031


Table 2. Log-periodogram regression estimatorZd ~d 5 0+45, N 5 512!

m J Bias sd th+sd MSE 90% 95% 99%

Gaussian
30 1 0+0075 0+1432 0+1171 0+0205 82+82 89+24 96+30
30 2 20+0283 0+1198 0+1037 0+0152 84+54 90+40 96+50
30 3 0+0291 0+1330 0+0994 0+0185 77+22 84+90 94+12
60 1 0+0033 0+0942 0+0828 0+0089 85+10 91+50 97+50
60 2 20+0211 0+0800 0+0733 0+0068 85+50 91+68 97+38
60 3 0+0168 0+0844 0+0703 0+0074 82+10 89+10 96+54
90 1 20+0018 0+0753 0+0676 0+0057 86+32 92+12 97+58
90 2 20+0210 0+0648 0+0599 0+0046 85+22 91+28 97+62
90 3 0+0082 0+0671 0+0574 0+0046 83+86 90+66 97+08

Uniform
30 1 0+0090 0+1411 0+1171 0+0200 83+06 89+70 96+50
30 2 20+0265 0+1171 0+1037 0+0144 84+92 90+84 96+86
30 3 0+0322 0+1303 0+0994 0+0180 77+48 85+38 94+56
60 1 0+0047 0+0940 0+0828 0+0089 85+18 91+48 97+54
60 2 20+0204 0+0798 0+0733 0+0068 86+10 92+14 97+34
60 3 0+0176 0+0843 0+0703 0+0074 82+22 89+04 96+28
90 1 20+0019 0+0751 0+0676 0+0056 86+18 92+02 97+98
90 2 20+0219 0+0638 0+0599 0+0046 85+74 91+72 97+46
90 3 0+0070 0+0663 0+0574 0+0044 84+38 90+62 97+32

Exponential
30 1 0+0088 0+1415 0+1171 0+0201 83+28 89+66 96+68
30 2 20+0274 0+1175 0+1037 0+0145 84+70 90+74 96+90
30 3 0+0309 0+1302 0+0994 0+0179 77+56 85+86 94+40
60 1 0+0048 0+0927 0+0828 0+0086 85+56 92+10 97+62
60 2 20+0202 0+0791 0+0733 0+0067 86+12 91+96 97+78
60 3 0+0183 0+0836 0+0703 0+0073 82+78 89+36 96+54
90 1 20+0025 0+0736 0+0676 0+0054 86+92 92+88 98+14
90 2 20+0220 0+0630 0+0599 0+0045 86+20 92+18 97+78
90 3 0+0070 0+0654 0+0574 0+0043 84+72 91+28 97+24

t5
30 1 0+0069 0+1417 0+1171 0+0201 82+28 89+28 96+54
30 2 20+0278 0+1166 0+1037 0+0144 84+68 90+66 96+82
30 3 0+0299 0+1289 0+0994 0+0175 77+64 85+54 94+54
60 1 0+0038 0+0945 0+0828 0+0089 84+94 91+14 97+50
60 2 20+0202 0+0795 0+0733 0+0067 86+16 91+86 97+48
60 3 0+0173 0+0831 0+0703 0+0072 82+70 89+86 96+74
90 1 20+0033 0+0747 0+0676 0+0056 86+42 92+56 97+68
90 2 20+0224 0+0635 0+0599 0+0045 85+80 91+60 97+48
90 3 0+0064 0+0654 0+0574 0+0043 84+24 91+22 97+60
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Table 3. Log-periodogram regression estimator~taper, d 5 0+45, N 5 256!

Spacing, ZdT No Spacing, ZdT,*

m J Bias sd th+sd MSE 90% 95% 99% Bias sd MSE 90% 95% 99%

Gaussian
30 1 0+0133 0+2536 0+2028 0+0645 82+68 89+54 96+00 0+0067 0+2026 0+0411 90+32 94+52 98+64
30 2 20+0043 0+2642 0+1796 0+0698 74+16 81+64 92+30 20+0181 0+1728 0+0302 91+44 95+34 99+00
30 3 0+0657 0+3115 0+1721 0+1014 63+88 72+02 84+16 0+0191 0+1849 0+0346 87+80 92+76 97+96
45 1 20+0030 0+1970 0+1656 0+0388 84+54 90+18 96+52 20+009 0+1545 0+0240 92+46 96+48 99+20
45 2 20+0200 0+2187 0+1466 0+0482 74+40 81+76 91+58 20+0282 0+1356 0+0192 91+62 96+14 99+16
45 3 0+0209 0+2209 0+1405 0+0492 71+22 79+26 89+72 20+0008 0+1405 0+0198 90+22 95+10 98+94

Uniform
30 1 20+0015 0+2548 0+2028 0+0649 82+78 89+04 95+50 20+0065 0+2033 0+0414 89+98 94+66 98+78
30 2 20+0198 0+2762 0+1796 0+0767 73+02 80+60 90+92 20+0296 0+1737 0+0311 90+84 95+12 99+04
30 3 0+0468 0+3175 0+1721 0+1030 63+10 71+66 83+86 0+0064 0+1863 0+0348 87+34 92+74 98+06
45 1 20+0145 0+1955 0+1656 0+0384 85+00 90+96 96+70 20+0211 0+1535 0+0240 92+62 96+12 99+40
45 2 20+0325 0+2255 0+1466 0+0519 72+64 81+02 91+00 20+0383 0+1347 0+0196 92+24 96+02 99+12
45 3 0+0111 0+2240 0+1405 0+0503 70+38 78+40 89+58 20+0113 0+1397 0+0196 90+22 95+52 98+86
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Exponential
30 1 20+0017 0+2545 0+2028 0+0648 82+94 89+06 95+66 20+0047 0+1980 0+0392 89+98 94+66 98+78
30 2 20+0139 0+2686 0+1796 0+0724 73+86 82+00 91+02 20+0275 0+1686 0+0292 90+84 95+12 99+04
30 3 0+0518 0+3093 0+1721 0+0984 63+78 72+24 84+64 0+0089 0+1806 0+0327 87+34 92+74 98+06
45 1 20+0125 0+1977 0+1656 0+0393 84+52 90+62 96+62 20+0193 0+1534 0+0239 92+62 96+12 99+40
45 2 20+0282 0+2200 0+1466 0+0492 74+24 81+82 91+08 20+0371 0+1341 0+0194 92+24 96+02 99+12
45 3 0+0128 0+2212 0+1405 0+0491 71+14 79+04 89+88 20+0102 0+1385 0+0193 90+22 95+52 98+86

t5
30 1 0+0033 0+2490 0+2028 0+0620 82+84 89+78 96+20 20+0017 0+2000 0+0400 90+80 95+26 98+78
30 2 20+0138 0+2678 0+1796 0+0719 74+38 81+74 91+66 20+0254 0+1718 0+0302 91+16 95+52 98+86
30 3 0+0485 0+3125 0+1721 0+1000 63+80 71+68 84+14 0+0095 0+1828 0+0335 88+10 93+86 98+08
45 1 20+0080 0+1932 0+1656 0+0374 84+76 91+04 97+02 20+0140 0+1538 0+0239 92+30 96+50 99+40
45 2 20+0250 0+2194 0+1466 0+0488 73+80 81+90 91+48 20+0324 0+1350 0+0193 92+14 96+12 99+16
45 3 0+0126 0+2185 0+1405 0+0479 71+10 78+94 90+28 20+0058 0+1390 0+0194 90+94 95+46 99+04
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Table 4. Log-periodogram regression estimator~taper, d 5 0+45, N 5 512!

Spacing, ZdT No Spacing, ZdT,*

m J Bias sd th+sd MSE 90% 95% 99% Bias sd MSE 90% 95% 99%

Gaussian
30 1 0+0068 0+2605 0+2028 0+0679 81+28 87+70 95+50 0+0019 0+2060 0+0424 89+88 94+48 98+44
30 2 20+0113 0+2687 0+1796 0+0723 73+58 82+26 91+50 20+0222 0+1777 0+0321 90+66 95+04 98+46
30 3 0+0534 0+3143 0+1721 0+1016 62+70 71+50 83+78 0+0138 0+1906 0+0365 86+66 92+58 97+60
60 1 0+0028 0+1670 0+1434 0+0279 84+88 91+04 97+14 0+0004 0+1316 0+0173 92+38 96+58 99+38
60 2 20+0174 0+1817 0+1270 0+0333 76+22 83+66 92+72 20+0167 0+1156 0+0136 92+38 96+32 99+38
60 3 0+0244 0+1989 0+1217 0+0402 69+04 77+56 88+58 0+0073 0+1194 0+0143 90+30 95+40 99+06
90 1 20+0043 0+1301 0+1171 0+0169 86+74 92+80 97+48 20+0062 0+1021 0+0105 93+80 97+40 99+64
90 2 20+0219 0+1445 0+1037 0+0214 76+90 84+64 93+64 20+0199 0+0901 0+0085 93+26 97+04 99+54
90 3 0+0029 0+1434 0+0994 0+0206 74+90 83+38 92+74 20+0014 0+0919 0+0084 92+46 96+38 99+44

Exponential
30 1 0+0149 0+2525 0+2028 0+0640 82+38 88+74 95+88 0+0034 0+2043 0+0418 89+68 94+60 98+68
30 2 20+0009 0+2710 0+1796 0+0734 74+16 81+32 91+38 20+0182 0+1752 0+0310 90+72 94+98 98+82
30 3 0+0692 0+3129 0+1721 0+1027 62+62 71+08 83+66 0+0186 0+1871 0+0353 87+38 92+56 97+94
60 1 0+0068 0+1628 0+1434 0+0266 85+02 91+54 97+50 0+0009 0+1283 0+0165 93+66 97+24 99+52
60 2 20+0137 0+1809 0+1270 0+0329 76+64 83+42 92+60 20+0151 0+1117 0+0127 93+70 97+38 99+50
60 3 0+0302 0+1976 0+1217 0+0400 68+62 77+04 88+10 0+0093 0+1162 0+0136 91+04 95+90 99+38
90 1 20+0023 0+1282 0+1171 0+0164 87+36 92+64 97+88 20+0074 0+1011 0+0103 94+34 97+14 99+70
90 2 20+0215 0+1436 0+1037 0+0211 78+14 84+68 93+44 20+0201 0+0883 0+0082 94+20 97+20 99+52
90 3 0+0066 0+1430 0+0994 0+0205 74+42 82+56 92+94 20+0012 0+0907 0+0082 93+22 96+48 99+34
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Uniform
30 1 0+0141 0+2494 0+2028 0+0624 82+42 89+38 95+90 0+0075 0+2002 0+0402 89+90 95+36 99+26
30 2 20+0059 0+2645 0+1796 0+0700 74+00 82+72 92+12 20+0164 0+1725 0+0300 91+14 95+50 99+18
30 3 0+0617 0+3136 0+1721 0+1022 61+98 71+38 83+20 0+0204 0+1846 0+0345 86+80 93+22 98+18
60 1 0+0064 0+1635 0+1434 0+0268 85+30 91+62 97+50 0+0017 0+1276 0+0163 93+56 97+30 99+66
60 2 20+0146 0+1807 0+1270 0+0329 75+42 83+44 92+90 20+0157 0+1118 0+0127 93+84 97+12 99+66
60 3 0+0291 0+1989 0+1217 0+0404 68+44 76+40 88+30 0+0085 0+1161 0+0135 91+64 96+08 99+32
90 1 20+0005 0+1305 0+1171 0+0170 85+62 92+32 97+72 20+0062 0+1010 0+0102 94+32 97+42 99+62
90 2 20+0207 0+1452 0+1037 0+0215 75+56 83+36 92+84 20+0199 0+0890 0+0083 93+68 97+40 99+50
90 3 0+0073 0+1453 0+0994 0+0212 75+00 82+70 91+98 20+0012 0+0911 0+0083 92+66 96+80 99+54

t5
30 1 0+0099 0+2577 0+2028 0+0665 81+84 88+40 95+36 0+0103 0+2021 0+0410 90+56 95+36 99+00
30 2 20+0051 0+2666 0+1796 0+0711 74+82 82+42 91+76 20+0141 0+1730 0+0301 91+24 95+92 99+22
30 3 0+0656 0+3126 0+1721 0+1020 62+98 70+94 83+52 0+0231 0+1840 0+0344 87+20 93+16 98+50
60 1 0+0040 0+1660 0+1434 0+0276 86+06 91+62 97+40 0+0032 0+1278 0+0163 93+70 97+08 99+38
60 2 20+0135 0+1824 0+1270 0+0335 75+60 83+66 92+80 20+0140 0+1113 0+0126 93+90 97+12 99+54
60 3 0+0283 0+1970 0+1217 0+0396 68+08 77+34 88+38 0+0106 0+1152 0+0134 91+86 96+22 99+30
90 1 20+0033 0+1326 0+1171 0+0176 86+40 92+24 97+56 20+0047 0+1003 0+0101 94+48 97+68 99+68
90 2 20+0190 0+1484 0+1037 0+0224 76+26 83+84 92+56 20+0185 0+0881 0+0081 93+92 97+40 99+70
90 3 0+0058 0+1454 0+0994 0+0212 74+18 82+34 92+46 0+0005 0+0903 0+0082 92+84 96+86 99+48
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purposes+We report only the results ford 5 0+45, the conclusions being similar
for other values in the interval~0, 12_!+We use for the simulations a modification of
the functionarima.fracdiff.sim included in the SPLUS package+

The sample sizes tried areN 5 256 andN 5 512, and the bandwidth numbers
considered arem5 30,45 andm5 30,60,90, respectively, with pooling numbers
J 5 1,2,3 for all cases+We do not perform any trimming, , 5 0, this not being a
decisive choice+ For each of the time series simulated we calculate three different
types of estimate for all the combinations of bandwidth and pooling choices+They
are the nontapered log-periodogram regression estimateZd, the tapered log-
periodogram estimateZdT, as defined previously in~6! with asymptotically inde-
pendent regressors~with “spacing”!, and a modification of this last one, ZdT,*,
considering all possible frequencies between the origin andlm~“no spacing”!,with

NI T~lk! 5 (
j51

J

I T~lk1j2J!, k 5 , 1 J,, 1 2J, + + + ,m,

which we may expect to achieve some efficiency gains from the augmented num-
ber of elements in the regression+

We report in Tables 1–4 the results of the simulations for the three estimates, the
first two tables for nontapered estimates, the other two for tapered data+We give for
all theestimatescalculated thebiasandstandarddeviation~sd!across replications,
the asymptotic standard deviation~th+sd! in the appropriate central limit theorem
~CLT!, the mean square error~MSE!, and the true coverage for the 90%, 95%, and
99% confidence intervals calculated using the previous CLT’s+ For the third esti-
mate we have not provided asymptotic theory, although its consistency could be
shown using the same techniques+ However the analysis of the asymptotic distri-
bution of this estimate is more complicated, because without the additional spac-
ingbetweenregressorswecannotguarantee theirasymptotic independenceandour
approach for ZdT breaks down+ Nevertheless we compute confidence intervals for
this estimate using the asymptotic standard deviation ofZdT, pretending now that
the increment in the variability ofZdT,* caused by the regressors correlation induced
by tapering when all periodograms are used is of about the same magnitude as the
one resulting by the use of a reduced number of periodogram ordinates~though it
also depends onJ in a complicated way as a result of the averaging!+

Following the discussion in Robinson~1995a!, increasingJ may produce as-
ymptotic efficiency gains, becauseJc '~J! is decreasing+ This can be checked in
the column for the theoretical standard deviation, th+sd+However, in practice and
for these sample sizes, the gains are only apparent for the log-periodogram with-
out tapering andJ52,3,both giving similar reductions of the MSE but with larger
standard deviations than the nonpooled estimates~J51!, because of the reduced
number of regressors+When we taper the observations, ZdT is already using a re-
duced number of frequencies whenJ51, so settingJ. 1 always increases the vari-
ance+ The situation is much different when we do not space the regressors inZdT,*,
obtaining efficiency gains with larger values ofJ,with much reduced variances than
ZdT and only slightly smaller than the asymptotic values forZdT+
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In all cases considered, the variability decreases withm as expected, but the
behavior of the bias is not uniform+ For the smallest sample size, and for both
tapered and nontapered periodograms, the minimum values are obtained forJ5
3 and the maximum forJ 5 2+ For n 5 512 the overall result is less clear, but in
most casesJ 5 1 seems to be the less biased option+ In some situations the bias
tends to decrease withm, because for these series the semiparametric model con-
sidered is a good approximation for the entire range of frequencies~0,p!+ The
bias tends to be negative for highm ~all J! and forJ 5 2 ~all m! for almost all
choices of estimates and distributions+

The minimum MSE is then attained for the estimates with biggestm, and with
J 5 2 when tapering and spacing of frequencies are used~ ZdT!, but with J 5 2,3
when no spacing is employed~ ZdT,* !, both values ofJgiving similar results+When
no tapering is used, averaging withJ . 1 seems to be the best option+All equal,
tapering always increases the MSE, especially if spacing of frequencies is used+

The accuracy of the CLT deteriorates with tapering, because we are effectively
reducing the number of observations in the log-periodogram regression, the true
variability being much larger than predicted by the asymptotics+When no tapering
is used, the asymptotic distribution approximates quite well the true distribution of
the log-periodogram estimate for allmandJ,especially for the largest sample size,
even for thet5 distribution, and it is not easy to distinguish differences across data
distributions in the behavior of the estimates, Gaussianity not necessarily giving
the best performance and the CLTbeing robust to bounded support,asymmetric or
heavy-tailed innovation distributions+When tapering the same conclusions apply,
here the CLT providing a very good approximation for the finite sample behavior
of Zdd,*, though the true variability is slightly overestimated by our heuristic choice+
Wehavenotpursuedothervarianceestimationmethodsusing forexample the~now
autocorrelated! ordinary least squares~OLS! residuals,but this could also be tried+
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APPENDIX

The following is a simplified version of Chen and Hannan’s~1980! Lemma 2, where we
only use the first two terms of an Edgeworth expansion for the probability density of the
Fourier transform ofet , so only four bounded moments are required+
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LEMMA2 + Under Assumption4, the probability distribution function QN of thevector

WN 5 N2102 (
t51

N

Yt ,

where

Yt
' 5 Y '~ j ~1!, + + + , j ~k!! 5 #2et ~costl j ~1! , sin tl j ~1! , + + + ,costl j ~k! , sin tl j ~k!!,

has density qN for all sufficiently large N and

sup
y[R2k

~11 7y74 !*qN~y! 2 (
r50

1

N2r02Pr ~2f : Txn,N!~y!* 5 O~N21 !, (A.1)

where Pr are polynomials in the average of the joint cumulants of Yt ~1# t # N! of order
n 5 ~n1, + + + ,n2k!, Txn,N, multiplied by the2kth multivariate normal densityf and where
P0~y! 5 f~y!+

Proof of Lemma 1. First, from Lemma 2, 2p NIek has the probability density of a12
_x2J

2

distribution with error~using onlyP0! of orderO~~11 7y74!21N2102!+ Also the density of
a x2J

2 is

fx2J
2 ~x! 5

xJ21e2x02

~J 2 1!!2J , 0 # x , `+

It is clear that ifX; x2J
2 thenE @Xa2J# ,` if 0 , a , J+ Thus we only need to check that

the error in the evaluation of the second inverse moment ofNIek using Lemma 2 is bounded+
If we write

NIek 5 (
j51

J

Ie~lk1j2J! 5 (
j51

J

~ yaj
2 1 ybj

2 !

we need

N2102E
R2J

~11 7y74 !21S(~ yaj
2 1 ybj

2 !Da2J
dy , `+ (A.2)

First, defining the setsA5 @21,1# 2J andAc its complementary inR2J, for some 0, C ,
`,

E
R2J

~11 7y74 !21S(~ yaj
2 1 ybj

2 !Da2J
dy

# CE
A
S(~ yaj

2 1 ybj
2 !Da2J

dy 1 C E
Ac

~11 7y74 !21 dy

# const+E
A
S(~ yaj

2 1 ybj
2 !Da2J

dy 1 const+,

because~11 7y74!21 and~(~ yaj
2 1 ybj

2 !!a2J are bounded from above inA andAc, respec-
tively+ Next, to bound the remaining integral, if f~{! denotes the densities of the corre-
sponding distributions, we have
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` . E
0

`

xa2Jfx2J
2 ~x! dx5E

R2JS(j

~ yaj
2 1 ybj

2 !Da2J
fN~0, I2J!~y! dy

. E
A
S(~ yaj

2 1 ybj
2 !Da2J

fN~0, I2J!~y! dy

$ const+E
A
S(~ yaj

2 1 ybj
2 !Da2J

dy,

as the normal density is bounded from below inA, and the lemma follows+ n

LEMMA3 + For dk5 NIk fk
2122p NIe,k, under the conditions of Theorem1 ~no tapering!:

E6dk6 5 O~ @k21 log k#102 !, E @dk
2# 5 O~k21 log k!+

and under the conditions of Theorem3 ~tapering!, 1 , a # 2:

E6dk6 5 O~k2a02 !, E @dk
2# 5 O~k2a !+

Proof of Lemma 3. Denote in either case

Fk 5 NIk fk
21 2 Hk, Hk 5 (

j51

J

Ik1j2J fk1j2J
21 +

Consider first the nontapered case+ By the triangle inequality, E6dk6 # E6 NIk fk
21 2 Hk61

E6Hk 2 2p NIe,k6, where, for j 5 1 2 J 1 k, + + + ,k,

E6Hk 2 2p NIe,k6 # (
j

E6 Ij fj
21 2 2p NIe, j 65 O~ @k21 log k#102 !

from Robinson~1995b, p+ 1637! and using the mean value theorem,

6 NIk fk
21 2 Hk6 # max

j
6 fj21 2 fk

216(
j

I j # Cfk
21k21 NIj ,

soE6 NIk fk
212 Hk65 O~k21!+Next, E6dk62 # 2E6 NIk fk

212 Hk62 1 2E6Hk 2 2p NIe,k62,where
E6Hk 2 2p NIe,k62 5 O~k21 log k! from Robinson~1995b, pp+ 1648–1649! andE6 NIk fk

21 2
Hk62 # C2fk

22k22E NIj
2 5 O~k22!+

When tapering is applied the results follow in the same way, using now part~a! of
Theorem 2 to obtain thatE6Hk 2 2p NIe,k6 5 O~k2a02! andE6Hk 2 2p NIe,k62 5 O~k2a !+

n

Proof of Theorem 1. From Robinson~1995a! and the definition for the summation in
k, we can obtain

(
k

Lk
2 5

4m

J
S11 OS ,~ log N!2

m
DD5

4m

J
~11 o~1!!,

(
k

6Lk6 p 5 O~m!, p $ 1, (A.3)
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and supk6Lk65 O~ log m!+ Hence, under Assumption 1, with the previous properties,

S(
k

Lk
2D21

(
k

Lk log fk 5 d 1 OSFm

N GaD+ (A.4)

Substituting in the definition ofZd and using~A+4!,

Zd 5 S(
k

Lk
2D21

(
k

Lk@ log fk 1 log 2p NIe,k# 1 R

5 d 1 S(
k

Lk
2D21

(
k

Lk log 2p NIe,k 1 O~ @mN21 # a ! 1 R

5 d 1 jN 1 R1 oP~1!,

say+We first show thatR5 op~1! splitting this remainder term into two terms as

R 5 S(
k

Lk
2D21

(
k

Lk$log NIk fk
21 2 log 2p NIe,k% 5 (

NAT

1 (
AT

,

whereAT 5 $k: NIk fk
21 , m2c%, for somec . 0, and letnT 5 the number of elements inAT +

Denote log NIk
*5 log~ NIk fk

21!I$ NIk fk
21 $ m2c%, dk 5 NIk fk

21 2 2p NIe,k+
We first bound the contribution fromNAT + For k [ NAT , with J $ 3, from ~A+5!–~A+7!

E6 log NIk fk
21 2 log 2p NIe,k6

5 E* logS11
dk

2p NIe,k
D*

# E* dk

2p NIe,k
* 1 EF~6 log NIk

*61 6 log 2p NIe,k6!IH6dk0~2p NIe,k!6$
1

2JG
5 OS! log k

k
1 log m3 PH6dk0~2p NIe,k!6$

1

2
J 12«D5 O~k«20+5 log m!,

for any« . 0 becauseE @ NIe,k# , ` andE @ NIe,k
21# , `, so

E*S(
k

Lk
2D21

(
NAT

Lk$log NIk fk
21 2 log 2p NIe,k%*

# S(
k

Lk
2D21

(
NAT

6Lk6E6 log NIk fk
21 2 log 2p NIe,k6

5 OSm21 log2 m(
k

k«20+5D5 O~m«20+5 log2 m!,

which iso~1! with Assumption 5+ For any fixed integerb $ 1

E @6 log NIk
*6b # # ~c log m!b 1 E @6 log NIk fk

216bI$ NIk fk
21 . 1%#

# ~c log m!b 1 E @6 NIk fk
216#

5 ~c log m!b 1 E @62p NIe,k 1 dk6# 5 O~ logb m!, (A.5)
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using Lemma 3 andE @ NIe,k# , `+ Then,

PH6dk0~2p NIe,k!6 $
1

2J # 2E* dk

2p NIe,k
* 5 O~ log k 3 k20+5 !, (A.6)

because from Lemma 3, 0 , a' , J, J $ 3,

E* dk

2p NIe,k
* # E @dk

2#102E @~ NIe,k!22 #102 5 O~ @k21 log k#102 !, (A.7)

becauseE @$ NIe,k%a'2J # , ` from Lemma 1+
We now estimatenT + Following Hannan and Chen~1980! we can show that for any

sequencer r ` asN r `, for all h . 0,

p lim
Nr`

r21m2102 (
k
Hlog 2p NIe,kI$2p NIe,k # h% 2E

0

h

e2x log x dxJ 5 0+

LetnT
' be the number of values ofk for which 2p NIe,k is less than 2m2c, for fixedc. 0+Then

we argue as in that reference that

p lim
Nr`

sup
nT
' log m

rm102 5 0

sonT
' 5 Op~ rm102 log21 m! 5 op~T!, T 5 m102 log2102 m+ Then, NIk fk

21 , m2c implies that
2p NIe,k , 2m2c or 6dk6 $ m2c+ ThennT 5 Op~T!, with c , 1

4
_ +

Then denotingLk 5 ~log NIk fk
21 2 log 2p NIe,k! log102 m, for someC . 0 and any« . 0

fixed asN r `,

PHmax
k[AT

6Lk6 . «J 5 PHmax
k[AT

6Lk6 . « ù nT # CTJ 1 PHmax
k[AT

6Lk6 . « ù nT . CTJ
# PHmax

k[AT

6Lk6 . «0nT # CTJ 1 P$nT . CT %,

whereP$nT . CT % 5 o~1! as N r `+ Then, with Bonferroni’s inequality andLk
1 5

LkI$k [ AT%,

PHmax
k[AT

6Lk6 . «0nT # CTJ # PHmax
k
6Lk

16 . «0nT # CTJ
# CTmax

k
P$6Lk

16 . «0nT # CT %,

noting thatP$6Lk
16. «0nT # CT % 5 0 for all butnT values ofk because6Lk

165 0 for all k
but at mostnT # CT+ Then, becauseP$nT # CT % r 1 asN r `, we can write for some
s . 0 that

P$6Lk
16 . «0nT # CT % # P$6Lk

16 . « ù nT # CT %P$nT # CT %21

# sP$6Lk
16 . « ù nT # CT %

# sP$6Lk6 . «% 5 O~k2J0~J12!1a log m!,
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for eacha . 0 using~A+8!, which follows, J $ 3+ Then maxk P$6Lk
16 . «0nT # CT % 5

O~,2J0~J12!1a log m! and therefore maxk[AT
6Lk65op~1!,m102,2J0~J12!1a log102 mr 0 as

N r ` for somea . 0, with Assumption 5+
Then the contribution fromAT is

*S(
k

Lk
2D21

(
AT

Lk$log Ik
~J! fk

21 2 log 2pIe,k
~J! %*

# S(
k

Lk
2D21

(
AT

6Lk66Lk6 log2102 m

5 OPSm21T log102 m max
k[AT

6Lk6D
5 oP~m2102! 5 oP~1!+

It remains to boundP$6Lk6 . «%+ For « . 0 fixed asN r ` ~any a . 0!, on choosing
Ak r 0 optimally ask r `, J $ 3, «N 5 « log2102 m anda' . 0 small enough,

P$6Lk6 . «% # PH* dk

2p NIe,k
* . «NJ 1 PH* dk

2p NIe,k
* . 12 e2«NJ

# PH* dk

2p NIe,k
* . «NJ 1 PH* dk

2p NIe,k
* . «N02J

# 2P$62p NIe,k6 , 2Ak0!«N% 1 2P$6dk6 . Ak!«N02%

5 O~«N
~a'2J!02Ak

J2a'1 «N
21Ak

22k21 log k! 5 O~«N
22k2J0~J12!1a !+ (A.8)

Then to prove the consistency of the estimateZd we only need to calculate the first two
moments of the random variablejN+ To evaluate the moments of logNIe,k, we approximate
the probability densityqN~y! with Chen and Hannan’s Lemma 2+ This result uses some
results in Bhattacharya and Rao~1976! to approximate the density of the Fourier transform
we~l! of the sequenceet + These researchers employed a finite fifth moment ofet to get a
stronger result+ For our purposes Lemma 2 is enough+

Set 4p NIek 5 (j51
J ~ yaj

2 1 ybj
2 !, whereyaj andybj correspond to the sine and cosine com-

ponents, respectively, of 4pIe, j + Now, from Chen and Hannan~1980, Lemma 2!,

P1~2f : Txn,N!~y! 5 (
6n653

Txn,N

v! )
j51

2k S ]

]yi
Dnj

f~y!, v! 5 )
j

vj!+

As 6n65 3 the terms inP1 are of one of the following types when we are considering the
joint distribution inR4J of the sine and cosine components 4p NIe,k and 4p NIe,k' ,k Þ k' ~up
to constants!+

1+ H3~ ys!f~y!, whereHi are the Hermite polynomials of orderi ands [ $1, + + + ,4J%,

Hi ~x!f~x! 5 ~21! i S ]

]x
Di

f~x!, x [ R+

Then this term is odd in the componentys of y ~becauseH3 is odd andf is even!+
2+ H2~ ys!H1~ yr !f~y!, yr Þ ys andr,s [ $1, + + + ,4J%+ Then this term is odd inyr +
3+ H1~ ys!H1~ yr !H1~ yu!f~y!, yr , ys, yu all different+ Then this term is odd inys, yr ,

andyu+
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If k5 k', we consider only a distribution inR2J, and the typical terms ofP1 are as follows+

1+ H3~ ys!f~y!, wheres [ $1, + + + ,2J%+ Then this term is odd in the componentys of y+
2+ H2~ ys!H1~ yr !f~y!, r Þ s andr,s [ $1, + + + ,2%+ Then this term is odd in the compo-

nentyr +

Then we have

E @ log 2p NIek# 1 log 2 5E
R2J

logS(
j

~ yaj
2 1 ybj

2 !DqN~y! dy

5E
R2J

logS(
j

~ yaj
2 1 ybj

2 !D @f~y! 1 N2102P1~y!# dy 1 O~N21 !

5 c~J! 1 log 21 O~N21 !,

because*0
`~ log x!h0~1 1 x5! dx , ` and*0

`~x log x!he2x dx , `, for all h $ 0+ Here
c~z! 5 d0dzlog G@z# is the digamma function+ The contribution fromP1~y! is 0 because
the interval of integration is~2`,`! andP1 is always odd in one component ofy and the
log term is even in all the components+

Consider now the covariance terms+ DenoteEk 5 E @ log 2p NIek# + Then, ~k Þ k' !,

Cov@log 2p NIek, log 2p NIek' #

5E
R4JFlogS(

j

~ yaj
2 1 ybj

2 !D2 EkGFlogS(
j '

~ yaj '
2 1 ybj '

2 !D2 Ek'G
3 @f~y! 1 N2102P1~y!# dy 1 O~N21 !

5 N2102E
R4JFlogS(

j

~ yaj
2 1 ybj

2 !D2 EkG
3 FlogS(

j '
~ yaj '

2 1 ybj '
2 !D2 Ek'GP1~y! 1 O~N21 !

5 O~N21 !,

asf~y! is the density of the standard normal density inR4J ~with uncorrelated compo-
nents! and because the contribution fromP1 cancels out by the same argument as before+
The variance is

Var@ log 2p NIek# 5E
R2JFlogS(

j

~ yaj
2 1 ybj

2 !D2 EkG2
qN~y! dy

5E
R2JFlogS(

j

~ yaj
2 1 ybj

2 !D2 EkG2
@f~y! 1 N2102P1~y!# dy 1 O~N21 !

5 c '~J! 1 O~N21 !,

reasoning as before+ Then, using~A+3!, it is immediate thatE @jN# 5 O~N21! and that

Var@jN# 5
J

4m
c '~J! 1 O~N21 ! 1 o~m21 ! ;

J

4m
c '~J!+

ThereforejN 5 oP~1! with Assumption 5, and the theorem is proved+ n
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Proof of Theorem 2. We use exactly the same method as in Robinson~1995a! or in
Theorem 4 of Velasco~1999!+ These proofs are based on the properties of the Dirichlet
kernelDN~l! 5 (t51

N eitl and the Fejér kernelKN~l! 5 ~2pN!216DN~l!62+ The spectral
kernel for the tapered periodogram, corresponding to the Fejér kernelKN~l! for the raw
periodogram, is

KN
T~l! 5

1

2p ( ht
2 *(

t51

N

ht exp$itl%*
2

5
1

2p ( ht
2
6DN

T~l!62,

whereDN
T~l! is the equivalent of the Dirichlet kernelDN~l! in the nontapered case+

Obviously

DN
T~l j ! 5

1

#6
$2DN~l j ! 2 DN~l j21! 2 DN~l j11!%+

It can be seen thatKN
T~l! is even, positive, integrates to one and satisfies~see, e+g+,Bloom-

field, 1976;Hannan, 1970, p+ 265! supl,N 6KN
T~l!65O~min$N,N256l 626%!, l [ @2p,p# ,

where this property follows from supl,N 6DN
T~l!65 O~min$N,N226l 623%!+ This implies

that the tapered periodogram has improved asymptotic properties with respect to the usual
periodogram, because the tails of the kernelKN

T~l! decrease much faster with the fre-
quency and with the sample size than the tails of the Fejér kernel~with boundO~N216l622!!,
though they are no longer orthogonal+ However, using the properties of the Dirichlet
kernelDN~l!, we have that, for 3 # j 1 k # N 2 3,

E
2p

p

DN
T~l j 2 l!DN

T~l 1 lk! dl 5 0+ (A.9)

We consider the same intervals of integration as in Robinson~ 1995a! to analyze the bias
of the tapered periodogram in

E @6wT~l j !62 # 2 f ~l j ! 5E
2p

p

@ f ~l! 2 f ~l j !#KN
T~l j 2 l! dl+

We only analyze here in detail the interval@l j 02,3l j 02# ~for details see Velasco, 1999!+
Using~3!,

*E
l j 02

3l j 02

@ f ~l! 2 f ~l j !#KN
T~l j 2 l! dl*

5 *E
2l j 02

l j 02

@ f ~l j 2 l! 2 f ~l j !#KN
T~l! dl*

5 *E
2l j 02

l j 02

@l 3 f '~l j ! 1 O~l j
2a22d6l 6a !#KN

T~l! dl*

5 OSl j
2a22dE

2l j 02

l j 02

6l 6aKN
T~l! dlD ,
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becauseKN
T is even and we integrate in a symmetric interval around 0+ Now, with a [

~1,2# ,

E
2l j 02

l j 02

6l 6aKN
T~l! 5 2HE

0

N21

1E
N21

l j 02J laKN
T~l! dl

5 OSNE
0

N21

la dl 1 N25E
N21

l j 02

la26 dlD5 O~N2a !,

and therefore this integral isO~l j
2a22d 3 N2a ! 5 O~ f ~l j ! 3 j 2a !+ The analysis of the

covariances between tapered Fourier transforms ofXt follows the same lines as in Rob-
inson~1995a! and Velasco~1999!+ The additional termO~ @ j0N# a ! that shows up in the
theorem when we normalize with respect toGl j

22d ~instead of with respect tof ~l j !! fol-
lows as in Robinson~1995a!+ n

Proof of Theorem 3. We do this in three steps+
First. We argue that all the previous results concerning the asymptotic distribution of
NIej , j [ $ j~1!, j~2!, + + + , j~k!%, still go through for the tapered versionNIe, j

T if j~1! 1 2 ,
j~2!, + + + , j~k21! 1 2 , j~k!+

The reason is the following: the results of Chen and Hannan~1980! are based on the
exact uncorrelatedness of the discrete Fourier transform of the i+i+d+ sequence ofet at
different Fourier frequencies, so the periodogram ordinates are approximately indepen-
dent+Therefore, the real and imaginary components of the tapered Fourier transforms ofet

are still exactly uncorrelated if we consider only one periodogram ordinate of every three,
as we did in the definition ofZdT+ Then an equivalent Edgeworth expansion for the density
of the vector of real and imaginary components ofNIe,k

T is valid as before, because each of
the tapered Fourier transforms in a~fixed! linear combination of three Fourier transforms
with valid Edgeworth expansions for their densities+

Second.Following the proof of Theorem 1 we obtain, a # 2,

ZdT 5 d 1 S(
k

Lk
2D21

(
k

Lk log 2p NIe,k
T 1 O~ @mN21 # a ! 1 RT

5 d 1 jN
T 1 RT 1 oP~m2102 !,

say, using Assumption 7+ Hence, the asymptotic distribution ofm102~ ZdT 2 d! can be ap-
proximated by that ofm102jN

T if RT 5 op~m2102!, where

RT 5 S(
k

Lk
2D21

(
k

Lk$log NIk
Tfk

21 2 log 2p NIe,k
T % 5 (

NAT

1 (
AT

with the same definitions as in the proof of Theorem 1 but with tapered observations+
Then fork [ NAT , we have that fora . 1 and« . 0 sufficiently small,

E*S(
k

Lk
2D21

(
NAT

Lk$log NIk
Tfk

21 2 log 2p NIe,k
T %*

# S(
k

Lk
2D21

(
NAT

6Lk6E6 log NIk fk
21 2 log 2p NIe,k

T 6

5 OSm21 log2 m(
k

k«2a02D 5 O~m«2a02 log2 m! 5 o~m2102 !,
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with Assumption 7, because from~A+10!–~A+12! we obtain, J $ 3, for any« . 0,

E6 log NIk fk
21 2 log 2p NIe,k

T 6

# E* dk

2pIe,k
T * 1 EF~6 log NIk

*61 6 log 2p NIe,k
T 6!IH6dk0~2pIe,k

T !6$
1

2JG
5 OSk2a02 1 log m3 PH6dk0~2pIe,k

T !6$
1

2J
12«D5 O~k2a02 log m!+

As in the nontapered case, for any fixed integerb $ 1,

E @6 log Ik
*6b # 5 O~ logb m!+ (A.10)

Then, for a [ ~1,2#

PH6dk0~2p NIe,k
T !6 $

1

2J # 2E* dk

2p NIe,k
T * 5 O~k2a02 !, (A.11)

because, using Lemma 3,

E* dk

2p NIe,k
T * # E @dk

2#102E @~Ie,k
T !22#102 5 O~k2a02 !, (A.12)

becauseE @$ NIe,k
T %a'2J # , `, from Lemma 1, 0 , a' , J+

We now estimatenT + As before, let nT
' be the number of values ofk for which 2p NIe,k

T is
less than 2m2c, for any fixedc , 1

4
_ , so nT

' 5 Op~ rm102 log21 m! for any increasing se-
quencer andnT 5 Op~ rm102 log21 m!+

Denoteg 5 ~aJ0~J1 2! 2 1!02. 0+Now we can proceed in a simpler way than without
tapering+ DenotingLk 5 ~log NIk

Tfk
21 2 log 2p NIe,k

T !g2a, for any « . 0 fixed and for any
a . 0 such thata , g,

PHmax
k
6Lk6 . «J # (

k

P$6Lk6 . «% 5 OS,2~g2a! (
k

ka2122gD 5 O~,2a ! 5 o~1!,

using~A+13!, which follows+ So maxk6Lk65 op~1!+ Then fora . 0 small enough

*S(
k

Lk
2D21

(
AT

Lk$log NIk
Tfk

21 2 log 2p NIe,k
T %*

# S(
k

Lk
2D21

(
AT

6Lk66Lk6,a2g

5 OPSrm2102,a2g max
k[AT

6Lk6D
5 oP~ rm2102,a2g ! 5 oP~m2102 !+

The bound forP$6Lk6. «% follows as~A+8!, because for any« . 0 fixed withN ~and any
a . 0!, on choosingAk r 0 ask r ` optimally anda' . 0 small enough, «N 5 «,a2g ,
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P$6Lk6 . «% # 2P$62p NIe,k
T 6 , Ak0!«N% 1 2P$6dk6 . Ak!«N%

5 O~«N
~a'2J!02Ak

J2a' 1 «N
21Ak

22k2a ! 5 O~«N
22ka2122g !+ (A.13)

Third. Denoting byjN
T,* and log 2p NIe,k

T,* the corresponding random variables when the
et are Gaussian with the same first two moments, we follow related arguments to those
of Robinson~1995a!; we show that the moments of all orders ofm102jN

T converge to
those ofm102jN

T,* that are bounded, from the proof of Theorem 3 of Robinson~1995a!+
Next, the uncorrelatedness of the real and imaginary components ofNIe,k

T,* for different
frequencies implies the independence and equal distribution~due to the Gaussianity! of
NIe,k
T,* and of log NIe,k

T,* at different frequencies+ Therefore, m102jN
T,* is a sum of i+i+d+ vari-

ables with bounded moments and by the Lindberg–Feller CLT it is asymptotically nor-
mal ~the first two moments can be obtained from the proof of Theorem 1!+ Because
each moment of the variatem102jN

T,* is bounded uniformly inN, all these moments
converge to those of the corresponding normal distribution+ Hence, as all moments of
m102jN

T converge to those ofm102jN
T,* , m102jN

T is easily found asymptotically normal
distributed by the method of moments+

Therefore, it only remains to prove that the moments of all orders ofm102jN
T converge

to those ofm102jN
T,* , so there is not influence from the higher order cumulants ofet , but this

is Lemma 4+ n

LEMMA 4 + Under the assumptions of Theorem3, the moments of all orders of m102jN
T

converge to those of m102jN
T,* as Nr `+

Proof of Lemma 4. To make our arguments clearer we consider in an initial stage the
nontapered and nonpooled~J51! case+After this,we will show that the same conclusions
apply for the tapered case for anyJ . 1+

Following the arguments of the second part in the proof of Theorem 1, we can check
that the moments and cross moments of all orders of log 2p NIe,k

T ,k5,13J, + + + ,mconverge
to those we would obtain if theet’s were actually Gaussian, with errorO~N21!, because
*0
`~log x!a~1 1 x4!21 dx , ` for all a $ 0+
However, this result is not enough to approximate the moments ofm102jN

T, which is an
~increasing! weighted sum of the log 2p NIe,k

T +Whenet has bounded moments of all orders,
we can obtain an Edgeworth expansion for the density of the Fourier transform ofet of any
orders fixed, under the same assumptions of Lemma 2+ In Chen and Hannan~1980! the
second termP2 is presented, although it is not totally correct in their notation+ The exact
shape of these higher order terms in a general Edgeworth approximation is fundamental
for our proof, and we dedicate some space to that+

Edgeworth Approximation.The validity of an Edgeworth approximation for the real
and imaginary components of the discrete Fourier transform ofet of any orders. 1,when
enough moments exist, follows from Lemma 2 of Chen and Hannan~1980!, because their
proof generalizes immediately for any order of approximation, not just 2+ For anys 5
0,1, + + + , fixed, we can obtain that the vectorWN ~see Lemma 2! has densityqN for all
sufficiently largeN and

sup
y[R2k

~12 7y7s!*qN~y! 2 (
r50

s

N2r02Pr ~2f : Txn,N!~y!* 5 O~N2~s11!02 !, (A.14)
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wherePr are polynomials with coefficients depending on the joint cumulants ofYt , Txn,N,
multiplied by the 2kth standard multivariate normal densityf ~given the covariance
structure of the discrete Fourier transforms!+ Following Bhattacharya and Rao~1976!,
we find thatPr~2f : Txn,N! 5 EPr~2D : Txn,N!f, where, for nonnegative integer vectors
n 5 ~n~1!,n~2!, + + + ,n~2k!! of 2k dimensions,

Dn 5 S ]

]y1
Dn~1!

{{{ S ]

]y2k
Dn~2k!

,

with

EPr ~z: Txn,N! 5 (
n51

r 1

n! H (
j1, + + + jn

*
xj1~z!

j1!

xj2~z!

j2!
{{{

xjn~z!

jn! J
5 (

n51

r 1

n! H (
j1, + + + jn

*S(**
xn1

{{{ xnn

n1! {{{ nn!
zn11{{{1nnDJ + (A.15)

The summation(* is over alln-tuples of positive integers~ j1, + + + , jn! satisfying

(
i51

n

ji 5 r, j i 5 1,2, + + + , r ~1 # i # n!, (A.16)

and the(** denotes summation over alln-tuples of nonnegative integral vectors
~n1, + + + ,nn! satisfying 6ni 6 5 j i 1 2, ~1 # i # n!, where we use the usual multivariate
notation, 6ni 6 5 (j51

2k ni ~ j ! ~for details see Bhattacharya and Rao, 1976!+ In particular,
EP0 [ 1,

EP1~z: Txn,N! 5
x3~z!

3!
5 (
6n653

Txn,N

n!
zn,

EP2~z: Txn,N! 5
x4~z!

4!
1

1

2! Sx3~z!

3! D2

,

EP3~z: Txn,N! 5
x5~z!

5!
1

x4~z!x3~z!

3!4!
1

1

3! Sx3~z!

3! D3

,

and in general

xr ~z! 5 (
6n65r

Txn,N

n!
zn,

whereni! 5 ni ~1!! {{{ ni ~2k!!, 0! 51+ ThenPr~y! is a polynomial in the components ofy
~timesf!, with coefficients that are functions of the joint cumulants ofYt of ordern ~i+e+,
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of the components in the vectorYt with exponent inn different from zero!, Txn,N, and of the
Hermite polynomials of ordern,Hn~y!, obtained from~the derivatives of! f~y!+ Follow-
ing the discussion in the proof of Theorem 1 and the preceding comments, we stress some
properties that we will use later+

Using~A+14! the first term of the expectations of functions of the periodogram ofet is
always exactly equal to the Gaussian expectation, so we only need to concentrate on
the higher order terms of an approximation up to a finite order to be determined later+

When6n6 is odd, the polynomial functionHn~y! is odd in at least one of the components
of y+ Then, all the summands inPr with r odd also will be odd in at least one of the
components ofy+ As we are going to consider the expectation of even functions ofy
~i+e+, logarithm of the periodogram minus a constant!,we need to consider only terms
Pr with r even~r 5 0,2, + + + !+

The cumulants Txn,N are exactly zero in many situations~i+e+, for many vectorsn!, be-
cause of the special nature of the vectorWN, because(t51

N eitlk 5 0,∀kÞ 0~modN!+
In other cases these cumulants are different from zero only under linear restrictions on
some of the frequencies~l j ~1!, + + + ,l j ~2k!! of the periodogram ordinates that we are con-
sidering in each moment+

Moments.Because(k Lk [ 0, in contrast with the proof of Theorem 1, we substitute
now in the definition ofjN the actual mean of log 2pIe,k by the mean it would have in the
Gaussian case, c~J!, obtaining~without need to make explicit the log 2 adjustment!, with
J 5 1,

jN 5 S(
k

Lk
2D21

(
k

Lk~ log 2pIe,k 2 c~1!!+

Denote byEs andEs
* thesth moments ofm102jN

T andm102jN
T,* , respectively+ Then, for s5

3,4, + + + ,

Es 5 ms02S(
k

Lk
2D2s

(
j51

s

(
p

cp (
k~1!

(
k~2!Þ

+ + + (
k~ j !Þ

Lk~1!
p~1! Lk~2!

p~2! + + +Lk~ j !
p~ j !

3 EF)
q51

j

~ log Ie,k~q!
T 2c~1!! p~q!G , (A.17)

where the indexk~i ! Þ means that the summation is for all the values ofk~i ! Þ
k~1!, + + + ,k~i 2 1! ~so we only make explicit frequencies that are always different! and
the sum inp is for all vectors of positive integers~ p~1!, + + + , p~ j !! such that(i51

j p~i ! 5
s, andcp is a combinatorial number that depends only onp+ Obviously, when j 5 s, all
p~i ! 5 1 and whenj 5 1, p~1! 5 s+ Recall also that~(Lk

2 !21 5 O~m21!+
The key idea is to substitute each of the expectations in~A+17! by an integral overR2j,

approximating the true probability density of the vector of periodogram ordinates by a
2j-dimensional Edgeworth expansion of the form~A+14!+ The first term~in N0! of the
Edgeworth approximation always gives the corresponding Gaussian expectationEs

*

whereas the odd terms cancel out, so
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Es 2 Es
* 5 ms02S( Lk

2 D2s

(
j51

s

(
p

cp (
k~1!

(
k~2!Þ

{{{ (
k~ j !Þ

Lk~1!
p~1! Lk~2!

p~2! {{{ Lk~ j !
p~ j !

3 E
R2j
H(

r52

r max

Pr ~y!N2r02 1 O~N2~r max11!02 !~11 7y74 !21J
3 )

q51

j

~ log~ ya,k~q!
2 1 yb,k~q!

2 ! 2 c~1!! p~q! dy (A.18)

~with rmax# s to be determined later!+Then we need to check that the contribution from all
higher order terms withr $ 2 in ~A+18! is negligible+ First, for s fixed, we study all the
terms in~A+18! with different values ofj+

Consider first the terms in~A+18! for which j # 1 1 s02+ Using ~A+3! and that
*0
`~ log x!b~1 1 x4!21 dx , `, b $ 0, the contribution toEs 2 Es

* of each of the higher
order termsPr , r . 0, is O~m2s021jN21! 5 O~mN21! 5 o~1!, just using the order of
magnitude of the error term of an Edgeworth approximation with onlyP0 andP2, because
the termP1 cancels out+

Therefore,we only need to consider terms wherej . 11s02+ The main idea to deal with
these terms is the following+ Because we havej . 1 1 s02 summands, there should be
some of them, h, say, with exponentp~i ! 5 1+ In fact h $ 2j 2 s $ 3+ Then, whenever
h . 0 the leading term in the approximation for the corresponding expectation~the Gauss-
ian part! is exactly zero~i+e+, Es

*5 0!, given the uncorrelatedness of the discrete Fourier
transform at Fourier frequencies~even in the non-Gaussian case!+We will argue that this
orthogonality property of the first~Gaussian! term is transferred to some extent to the
higher order terms+ The reason is that for each periodogram ordinate~i+e+, for each pair of
variables iny!, some of the contributions from the higher order terms in~A+14! are still the
Gaussian ones given byf~ ya!f~ yb! ~i+e+, we have not taken derivatives w+r+t+ those vari-
ables!, given null contribution for the whole expectation when this periodogram ordinate
has exponentp~i ! 51+ ~The same argument is valid for any exponentp~i ! odd, but we do
not need it+!

We illustrate this idea with an example+ ConsiderP2, with

EP2~z: Txn,N! 5 (
6n654

Txn,N

n!
zn 1

1

2S (
6n653

Txn,N

n!
znD2

,

5 (
6n654

Txn,N

n!
zn 1

1

2 (
6n653

S Txn,N

n! D2

z2n

1
1

2 (
6n653

(
6n ' 653,nÞn '

Txn,N

n!

Txn ',N

n '!
zn1n '+

When we substitutezby 2D, to obtainP2, we observe that in each of the terms of the last
expression we take at most 4, 3, or 6 derivatives, respectively,with respect to the vector of
2j componentsy+ Therefore, all but at most 4, 3, or 6 functionsf~ yi ! in f [ f~ y1! {{{
f~ y2j ! are not affected by the differential operator+

Then, for each periodogram ordinate, with frequencyl j ~i !, and each of the terms inP2

~with n, 2n or n andn ' !, we obtain the following+
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If a periodogram has exponentp~i ! 5 1 and neither of its two components iny is
included inn ~or in n ' !, then we have in~A+18! an integral of the form

E
R
E
R

@ log~ ya
2 1 yb

2! 2 c~1!#f~ ya!f~ yb! dya dyb [ 0, (A.19)

and this term does not contribute, because the whole integral is zero because the
variablesya andyb do not appear in any other factor of this particular summation term
in ~A+18!+

For any exponentp~i !, if any component of the vectory is included inn ~orn ' ! with odd
coordinate, then this term inP2 will be odd in that variableya, say, and again the
contribution of these terms is null, because the periodogram is even in its real and
imaginary components+

In conclusion, we need at least two derivatives with respect to one of the two variables
that havep~i ! 51, that is, only the terms inPr that consider Hermite polynomials with an
even number in the order vector corresponding to one of the two variables withp~i ! 5 1
have contribution different from zero+

In the particular case ofP2 we only need to consider the following generic vectorsn+
When6n65 4, only those vectorsn with coordinates 0, 2, or 4+ For the6n65 3 terms, any
combination is valid from this point of view, because all the terms are squared, and for the
6n6, 6n ' 65 3 terms, coordinates 1 or 3 are allowed inn only if they coincide with another
coordinate 1 or 3 inn ', so that we always take an even number of derivatives w+r+t+ to any
of the variablesyi + However the number of such terms is limited byr+

Then with 6n6 5 4, the maximum number of frequencies affected by the derivative,
MNFA, say~in the sense that we are taking an even number of derivatives w+r+t+ any of the
components of the periodogram at this particular frequency!, is 2, and with6n65 3 and0or
6n ' 65 3 this number is 3+ Consider the different possible situations for the sames fixed+

For j 5 s, p~i ! 5 1 ∀i+ Then forP2, the contribution whens . 3 is zero, because there
always will be at least one integral equal to zero by~A+19!, as none of its components is
included in the differentiation~i+e+, there are at least four possible orthogonal conditions
like ~A+19!, and only three can be destroyed by the differentiation off!+Whens5 3 and
j 5 3 we obtain that any term will contributeO~m302N21!+

When j 5 s 2 1, so there are at leasts 2 2 exponentsp~ i ! 5 1, the contribution of
P2 for s . 5 is zero, for s 5 3, is O~m102N21!, for s 5 4, O~mN21!, and for s 5 5,
O~m302N21!+

In general, for any j . 1 1 s02, becauseh $ 2j 2 s there are only terms inP2 that
contribute toEs if

min h 5 2j 2 s# MNFA 5 $2@if 6n654# ,3@if 6n653#%,

and when6n65 4 their contribution is of orderO~mj2s02N21! 5 O~mN21! 5 o~1!, and
when 6n6 5 3 is of orderO~mj2s02N21! 5 O~m302N21!+ Although we could assume
thatm302N21 r 0 asN increases, to make this last boundo~1!, the consideration of the
form of the cumulants when6n6 5 3 will allow us to obtain the same results with just
mN21~ log m!c r 0, any finite c . 0, implied by the assumptions of the lemma+
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Cumulants.The preceding bounds have been constructed forP2 considering that three
frequencies were affected in the term corresponding to cumulants with6n65 3+ The ques-
tion is,when are these cumulants different from zero? For any three frequenciesl j1,l j2,l j3

~possibly repeated!, the cumulantxn,N, 6n65 3 is of any of the following four types, with
k3 being the third cumulant ofet +

~i!
k3

N (
t51

N

costl j1 costl j2 cos tl j3,

~ii !
k3

N (
t51

N

costl j1 costl j2 sin tl j3,

~iii !
k3

N (
t51

N

costl j1 sin tl j2 sin tl j3,

~iv!
k3

N (
t51

N

sin tl j1 sin tl j2 sin tl j3+

Now using the orthogonality of the Dirichlet kernelDN at Fourier frequencies, the cumu-
lants xv,N with 6n6 5 3 will only be different from zero if there is a linear restriction
between the frequenciesl j1,l j2,l j3+ ~This same holds for any odd-order6n6 cumulant but
not for even-order cumulants as a result of symmetries+! Then, all the bounds have to be
multiplied bym21 log m, because one of the summations(k in ~A+18! cancels out because
of the linear restriction with the other~two! summation~s!, and sup6Lk65 O~ log m!+ Fi-
nally, we obtain a contribution ofO~m102N21 log m! 5 o~1!, for any term with6n65 3+

Let us now study the contribution from a generic polynomialPr , r $ 4+We only need to
consider expansions up tor # rmax5 2@~s21!02# ~where@{# means integer part!, because
the bound in~A+18! due to the error term in the Edgeworth expansion withP2@~s21!02# is
immediatelyo~1! from the exponentN212@~s21!02# in it and the boundedness of the corre-
sponding integral+

Now from ~A+15!, the different terms inPr will include terms with combinations of
cumulants

kr12,kr11k3,kr k4, + + + ,~k4! r02, + + + ,~k3! r,

corresponding to all possible combinations of frequencies in the vectory+
We will only need to consider combinations of cumulants of the form~k4! ~r2a!02~k3!a,

for evena, 0 # a # r when the MNFA is nowr 1 a02, which requires at leasta02 restric-
tions fork3~1! Þ 0, + + + ,k3~a! Þ 0+ The reason is that with~k4! r02 we maximize the number
of frequencies affected without any restrictions, and, on the other hand, with ~k3! r we
maximize the number of frequencies affected, in general,with and without restrictions+We
show subsequently that any other combination of higher order cumulants will always
provide a smaller MNFA or more restrictions than this combination+

Denoting by NRES the~minimum! number of linear restrictions necessary to make the
cumulants considered different from zero, the contribution to~A+18! of these terms is of
order, for fixed s, j . 11 s02,
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m2s02 (
j

s

mj (
r

N2r02I$2j 2 s # MNFA%~m21 log m!NRES

5 OSmax
a

m2s02 (
j

s

mj (
r

N2r02I$2j 2 s# r 1 a02%~m21 log m!a02D
5 OSmax

a, j
mj2s02 (

r

N2r02I$2j 2 s# r 1 a02%~m21 log m!a02D
5 OSmax

r
ma041r02N2r02~m21 log m!a02D 5 OSmax

r
mr02N2r02D 5 o~1!,

with a 5 0, so the contribution is always negligible+

The last three points that need justification are the choice of cumulants, the tapering,
and the pooling:

Cumulants.Let us check that we do not need to consider other sets of cumulants+ Con-
sider the case with maximum number of frequencies affected,without restrictions: ~k4! r02,
so we have the typical term with contribution of the largest order of magnitude without
restrictions+ We check that the introduction ofb $ 1 restrictions among the frequencies
lk~i !, i 5 1, + + + , j cannot generate terms of larger order of magnitude inPr than the one
corresponding to~k4! r02 ~for any j ands fixed!+

Seeking the least favorable situation, the newb restrictions will be used to maximize the
number of frequencies affected by the differentiation, substituting a certain number of
powers ofk4 in ~k4! r02 with a generic term in the odd-order cumulants~to take advantage
of the restrictions! such as

~kc1
!2~kc2

!2 {{{ ~kcb
!2,

where theci $ 3 are odd, possibly equal+ This will increase MNFA by(i ci , and the
reduction in the exponent ofk4, to satisfy~A+16!, is of magnitude(i ~ci 2 2!+ This reduc-
tion will lower MNFA ~by the contribution ofk4! in 2(i ~ci 2 2! units+ The global effect
on MNFA is finally

DMNFA 5 (
i51

b

ci 2 2 (
i51

b

~ci 2 2! 5 4b 2 (
i51

b

ci +

Therefore in a generic bound~for any j ! for the contribution of these terms, O~mj2s02 3
m2NRESN2r02! 5 O~mMNFA 02m2NRESN2r02! ~because 2j 2 s# MNFA!, the net effect of
introducing the newb restrictions isO~~ log m!bmj ! where

j 5 DMNFA 02 2 b 5

4b 2(
i

ci

2
2 b 5 b 2

1

2 (
i

ci +

Becauseci $ 3, the final effect is~ignoring the logarithm term! at most of order
O~mb23b02! 5 O~m2b02! 5 O~1!, so the term with biggest contribution is that with
~k4! r02, i+e+, a 5 0+
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Tapering.An equivalent Edgeworth expansion for the real and imaginary components
of tapered Fourier transform ofet is valid, because they are fixed linear combinations of
the components of the usual Fourier transform+Also, because we consider frequencies that
are 3Jl1 apart, at least, we guarantee the uncorrelatedness fo the different variables iny+
In this way the Edgeworth expansion is based again on the standard normal density, so the
differentiation process is performed separately for each variable iny+ Furthermore, the
comments about the restrictions to obtain odd-order cumulants different from zero apply
equally in the tapered case, because for the frequencies considered, DN

T has the same or-
thogonality properties asDN+

Pooling.The difference is that each pooled periodogram~tapered or not! depends on 2J
components of the basic vectory instead on just 2~single periodogram! as before+ This
does not affect any of the results, because we have only used the fact that in each summand
of ~A+18! there arej different log NIe,k functions, but not that the vector of variablesy ~in the
Edgeworth expansion required to approximate each expectation! was of dimension 2j ~2jJ
now!+The same comments about the differentiation to obtain the Hermite polynomials and
the cancellation of integrals go through here again, as we have considered the cases where
just differentiation~an even number of times! w+r+t+ to one single component of the peri-
odogram destroys the orthogonality condition~A+19!+ n
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