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We examine the dynamics of slender, rigid rods in direct numerical simulation
of isotropic turbulence. The focus is on the statistics of three quantities and how
they vary as rod length increases from the dissipation range to the inertial range.
These quantities are (i) the steady-state rod alignment with respect to the perceived
velocity gradients in the surrounding flow, (ii) the rate of rod reorientation (tumbling)
and (iii) the rate at which the rod end points move apart (stretching). Under the
approximations of slender-body theory, the rod inertia is neglected and rods are
modelled as passive particles in the flow that do not affect the fluid velocity field.
We find that the average rod alignment changes qualitatively as rod length increases
from the dissipation range to the inertial range. While rods in the dissipation range
align most strongly with fluid vorticity, rods in the inertial range align most strongly
with the most extensional eigenvector of the perceived strain-rate tensor. For rods
in the inertial range, we find that the variance of rod stretching and the variance
of rod tumbling both scale as l−4/3, where l is the rod length. However, when rod
dynamics are compared to two-point fluid velocity statistics (structure functions), we
see non-monotonic behaviour in the variance of rod tumbling due to the influence of
small-scale fluid motions. Additionally, we find that the skewness of rod stretching
does not show scale invariance in the inertial range, in contrast to the skewness
of longitudinal fluid velocity increments as predicted by Kolmogorov’s 4/5 law.
Finally, we examine the power-law scaling exponents of higher-order moments of rod
tumbling and rod stretching for rods with lengths in the inertial range and find that
they show anomalous scaling. We compare these scaling exponents to predictions
from Kolmogorov’s refined similarity hypotheses.

Key words: intermittency, isotropic turbulence, particle/fluid flows

1. Introduction
The dynamics of slender rods (or fibres) in turbulence has wide-ranging applications

in environmental and industrial processes (for example, see the review by Voth &
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Soldati (2017)). These applications include aerosols in the atmosphere (Newsom
& Bruce 1994, 1998; Spurny 2000), textile and paper manufacture (Marheineke
& Wegener 2006; Lundell, Söderberg & Alfredsson 2011), the microstructure of
clouds and precipitation (Pruppacher & Klett 2012), the scattering of electromagnetic
radiation (Alyones & Bruce 2015) and plankton hydrodynamics (Dusenbery 2009;
Bordoloi & Variano 2017; Niazi et al. 2017). The focus on rods also follows from the
fact that they are analytically and numerically tractable using slender-body theory (e.g.
Batchelor 1970; Cox 1970; Khayat & Cox 1989; Shin & Koch 2005; Subramanian
& Kock 2005; Guazzelli & Hinch 2011; Lopez & Guazzelli 2017).

More generally, the study of rods, discs and triaxial ellipsoids that follow fluid
trajectories but rotate in response to local velocity gradients has provided a way to
investigate the Lagrangian structure of the smallest scales in turbulence (e.g. Parsa
et al. 2012; Chevillard & Meneveau 2013; Gustavsson, Einarsson & Mehlig 2014; Ni,
Ouellette & Voth 2014; Byron et al. 2015; Ni et al. 2015; Pujara & Variano 2017).
This approach has shown that small rods (or, equivalently, infinitesimal material
lines) strongly align with vorticity (Pumir & Wilkinson 2011; Parsa et al. 2012), and
both rods and vorticity come to align with the Lagrangian fluid stretching direction
(Ni et al. 2014). Herein, we extend this approach to larger scales and rods that are
no longer small enough to follow fluid trajectories. Applications for this include
predicting the motion of large anisotropic particles (e.g. Chen, Jin & Zhang 2015;
Bordoloi & Variano 2017; Ravnik, Marchioli & Soldati 2017; Pujara et al. 2018) and
modelling the subgrid-scale stress tensor in large-eddy simulations (e.g. Sreenivasan
& Antonia 1997; Meneveau & Katz 2000; He, Rubinstein & Wang 2002; Yang, He
& Wang 2008). Studying the dynamics of longer rods also presents an opportunity
to further the understanding of inertial-range dynamics of turbulence.

An important feature of the inertial range is internal intermittency (see e.g. Frisch
1995). In the inertial range, there exists a detailed phenomenology of the energy
cascade and intermittency, where the majority of intermittency models focus on
spatio-temporal variations of a scalar quantity such as the energy dissipation rate
or the enstrophy in the spirit of Kolmogorov’s refined similarity hypothesis (e.g.
Kolmogorov 1962; Oboukhov 1962; Meneveau & Sreenivasan 1991; Chen et al.
1997; Nelkin 1999; Donzis, Yeung & Sreenivasan 2008). This assumes that the local
average of a single scalar captures the relevant fluctuations in the energy cascade at
a given scale and that the structure of the associated fluid motions is not important.
However, as we summarise below, recent work on the structure of turbulent flow at
scales in the inertial range have provided new insights.

Chertkov, Pumir & Shraiman (1999) introduced the idea of ‘tetrad dynamics’
where the Lagrangian evolution of four points is studied to understand coarse-grained
velocity gradients. This approach of multi-particle statistics has been used to
understand the effects of small-scale motions on larger-scale motions and how
coarse-grained vorticity aligns in the coarse-grained strain-rate eigenframe (Naso &
Pumir 2005; Luthi et al. 2007; Xu, Pumir & Bodenschatz 2011; Pumir, Bodenschatz
& Xu 2013). Li & Meneveau (2005, 2006) used a heavily simplified model for the
Lagrangian evolution of two-point velocity increments derived from the Navier–Stokes
equation (the ‘advected delta-vee system’) to study the origins of intermittency.
They found that this system was able to reproduce key features of inertial-range
intermittency, such as heavy tails in the probability distribution of transverse velocity
increments and negative skewness of the longitudinal velocity increments, starting
from initial Gaussian conditions. Hamlington, Schumacher & Dahm (2008) and
Leung, Swaminathan & Davidson (2012) examined vortical structures at different
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scales and showed that their shape becomes more worm-like with decreasing scale
and that they align with the most stretching direction of strain at scales several times
larger than the vortical structures. In laboratory experiments, Sinhuber, Bewley &
Bodenschatz (2017) found that oscillations in power-law behaviour for moments of
longitudinal velocity increments occur at fixed multiples of the Kolmogorov length
scale, independent of Reynolds number, revealing the influence of dissipation-range
fluid motions on inertial-range velocity statistics. Danish & Meneveau (2018) used
coarse-grained velocity fields in turbulence and investigated the population fractions
of different flow topologies as a function of scale and connected them to alignment
of coarse-grained vorticity.

We aim to add to this knowledge of inertial-range dynamics by investigating rods
that naturally respond to features in the flow and become aligned by fluid motions
whose scale is near the rod length. We also build on the previous results from
laboratory experiments which investigated the rod tumbling rate (rate of change
of rod orientation (Parsa & Voth 2014)) and the rod stretching rate (longitudinal
velocity increment across the rod (Kramel et al. 2016)) for rods with lengths in the
inertial range. To do so, we use direct numerical simulation (DNS) data of isotropic
turbulence in which we compute the motion of long rods (or, equivalently, rigid
material lines). Along rod trajectories, we record the fluid velocity gradients filtered
at the scale of the particle. We explore how the rods align with these perceived
velocity gradients; this alignment is important in explaining the dynamics of rod
rotation and rod stretching rates as a function of rod length. Because the moments
of rod rotation and rod stretching directly probe the degree of alignment and how it
behaves for rare events, we check whether the refined similarity hypothesis is able
correctly to predict these moments.

The remainder of this paper is organised as follows. In § 2 we show the equations
of rod motion and the methods used to track rods in a turbulent flow. This section
also shows our method for computing the perceived velocity gradients around each rod
as it travels through the flow. In § 3, we discuss the results, starting with properties
of the perceived velocity gradient tensor (§§ 3.1 and 3.2), and how these relate to the
power-law behaviour of rod dynamics in the inertial range (§§ 3.3 and 3.4) and scaling
exponents of their higher-order moments (§ 3.5). We end with the conclusions in § 4.

2. Methods
2.1. Equations of rod motion

Figure 1(a) shows a planar slice of a turbulent fluid velocity field and a rigid, neutrally
buoyant rod of length l and infinitesimal diameter suspended in it. Shin & Koch (2005)
derived the equations of motion for a rod such as this in a turbulent velocity field from
slender-body theory (Batchelor 1970; Cox 1970). Slender-body theory uses matched
asymptotic expansions in which the particle is replaced by a line of forces. In the
limit ln(2l/dr)� 1, where dr is the rod diameter and (l/dr) is the rod aspect ratio,
Shin & Koch (2005) showed that the solution from slender-body theory could be
simplified. To the same order of accuracy, they also showed that rod motion could
be computed using one-way forcing, i.e. the reaction of the rod onto the fluid could
be ignored. This is equivalent to ignoring the inertia of the rod in comparison to
the inertia of the fluid at scale l. For our purposes, the rod can be considered to
be of very small diameter (or very high aspect ratio) so that this approximation is
valid. Under this approximation, we do not account for the influence of rods on the
fluid velocity. We also do not account for the interactions between rods since we are
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FIGURE 1. (Colour online) (a) A rigid, neutrally buoyant rod of length l with orientation
vector p and with velocity of translation up suspended in a fluid velocity field u(x, t).
(b) Locations of velocity samples used to calculate the perceived velocity gradients around
the rod. Large dots are on the surface of a sphere of diameter l and are the 20 vertices
of a regular dodecahedron. Small dots within the sphere are the six vertices of a regular
octahedron.

interested in the motion of an ensemble of rods rather than how rods affect each other.
In this framework, the equations of motion for rod translation and rod orientation are,
respectively,

up =
1
l

∫ l/2

−l/2
u ds, (2.1a)

ṗ=
12
l3

∫ l/2

−l/2
s[u− p(u · p)] ds. (2.1b)

The variables in (2.1) are defined in figure 1(a): u is the fluid velocity field, up is the
rod translational velocity (velocity of the rod centre), p is a unit vector that indicates
the rod orientation, ṗ gives the rod rotation rate (we refer to this as the tumbling rate),
and s is a dummy variable that measures distance along the rod from the rod centre.

Equation (2.1a) states that the rod translation velocity is the average of the fluid
velocity sampled by the rod along its length. Equation (2.1b) states that the rod
tumbling is given by integrating the moment about the rod centre of the fluid
velocity component that is perpendicular to the rod orientation. In the limit l→ 0,
the rod translational velocity equals the local fluid velocity and the rod acts as
a fluid tracer. This simplifies (2.1a) to up = u. In this limit, equation (2.1b) can
also be simplified since velocity variations are linear across the rod length. Also,
u in (2.1b) can be replaced by u − up without changing the equation. Thus, the
quantity in square brackets in (2.1b) can be expressed in terms of the local velocity
gradients. The correct expression, which considers the along-rod gradient of the
velocity perpendicular to the rod, is given by [A p − (p · S p)p]s, where A is the
velocity gradient tensor and S is its symmetric part. Since the velocity gradients are
uniform, they can be taken outside the integral, leaving (2.1b) to simplify to Jeffery’s
(1922) equation for tumbling of an infinite-aspect-ratio prolate spheroid:

ṗ= A p− (p · S p)p. (2.2)
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Scale-dependent dynamics of slender rods in isotropic turbulence 469

The first term in this equation is responsible for rod tumbling whereas the second term
serves to keep p to unit length.

In the limit l→ 0, the rod stretching rate is given by the along-rod gradient of
the fluid velocity parallel to the rod, which is given by the expression p · S p. For
longer rods, the stretching rate is given by the integral of p · S p over the rod length
divided by the rod length. The integral of p · S p over the rod length simplifies to the
longitudinal velocity increment between the rod end points,∫ l/2

−l/2
pTS p ds=1ru, (2.3)

where 1ru denotes the fluid velocity increment across the rod length for the velocity
component parallel to the rod.

In this paper, the rod dynamics we focus on are the rod tumbling rate, ṗ, and the
rod stretching rate, 1ru/l.

2.2. Numerical computations
We examine the dynamics of rods of different lengths in homogeneous isotropic
turbulence. The turbulent fluid velocity field is taken from DNS data in the Johns
Hopkins Turbulence Database (Perlman et al. 2007; Li et al. 2008; Yu et al. 2012).
The forced isotropic turbulence dataset consists of velocity and pressure data on a
triply periodic cubic domain where the Taylor-scale Reynolds number is Reλ ≈ 430.
The ratio of the integral length scale, L, to the Kolmogorov length scale, η, is
L≈ 480η, and the ratio of the integral time scale, TL, to the Kolmogorov time scale,
τη, is TL ≈ 45τη.

Rods of length l spanning the range η6 l6 200η (0.002L6 l6 0.42L) are tracked in
the flow. The position and orientation of each rod are tracked by integrating discretised
forms of (2.1) in which the rod is represented by a nine-point stencil. In sensitivity
tests, it was found that using more than nine points to represent the rod gave only
marginally improved accuracy for the variance of rod tumbling (less than 2.5 % even
for the longest rods considered). The integrations are carried out using second-order
Runge–Kutta algorithms with a time step of 0.009τη, which is twice the value of the
time step used in the DNS integration. Rod data are recorded every five integration
steps.

For each rod length, 7500 rods are initialised at random positions and random
orientations and tracked from t=0 to t=2TL. Initial-time statistics show the behaviour
of randomly oriented rods and are calculated as an ensemble average over all rods
at t = 0. Long-time statistics show the behaviour of rods in a statistically steady
alignment with the turbulent flow and are calculated as an ensemble average over all
rods and over time for 40τη 6 t 6 2TL. Rods of all lengths have reached a statistically
steady alignment with the flow by t= 40τη. Rod alignment is discussed in more detail
in the following section.

2.3. Perceived velocity gradient tensor
In addition to tracking rod position and orientation, we also compute velocity
gradients around each rod as it travels through the flow. For rods in the tracer
limit, the relevant velocity gradients are given by the velocity gradient tensor along
Lagrangian fluid trajectories, denoted as A. For longer rods, the relevant velocity
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gradients are given by the ‘perceived velocity gradient tensor’, Ã, along the rod
trajectory. The tensor Ã shows gradients in fluid motion at the rod length scale, l.

We compute Ã by a least-squares fit to velocity data at sample points within a
region of interest surrounding the rod following Chertkov et al. (1999) and Pumir
et al. (2013). To do this, we use velocity data at 26 points distributed around the
rod centre (figure 1b), where 20 points form a regular dodecahedron that can be
circumscribed by a sphere of diameter l. The remaining six points form a regular
octahedron whose vertices are at the centres of the six faces of the cube formed by
eight vertices of the dodecahedron (orange circles in figure 1b). The orientation of
both polyhedra with respect to the simulation grid is held constant, i.e. it does not
depend on rod orientation. The distribution of these 26 points is chosen because it is
isotropic and most of the data (20 points) are at a distance l/2 from the rod centre.
Additionally, tests with fewer points arranged at the vertices of fewer-sided regular
polyhedra showed that the rod tumbling variance calculated using the perceived
velocity gradients and Jeffery’s equation converged to within 2.5 % after using more
points than the 20 vertices of the dodecahedron. To calculate the perceived velocity
gradients, the fluid velocity at the rod centre is subtracted from the velocity at the
26 sample points. Then, Ã is computed from a least-squares fit (equation (4) in
Pumir et al. 2013). Finally, continuity is imposed by subtracting (1/3)Ãiiδij from the
least-squares solution to make the final Ã trace-free.

Like the velocity gradient tensor, the perceived velocity gradient tensor can be
decomposed into a vorticity vector and a strain-rate tensor. Thus, there are four
key directions associated with Ã: the direction of vorticity, represented by the unit
vector ẽω, and the eigenvectors of the strain-rate tensor, represented by the unit
vectors ẽ1, ẽ2, ẽ3. The most extensional direction is labelled ẽ1 and corresponds to
the most positive eigenvalue, λ̃1. The most compressional direction is labelled ẽ3 and
corresponds to the most negative eigenvalue, λ̃3. The intermediate direction is ẽ2 and
corresponds to λ̃2, which can take either sign. Continuity requires that λ̃1+ λ̃2+ λ̃3=0.
Within the constraints of continuity and the ordering of the eigenvalues, the strain
state can be quantified with a single dimensionless number given by (Lund & Rogers
1994)

s̃∗ =
−3
√

6 λ̃1λ̃2λ̃3

(λ̃1
2 + λ̃2

2 + λ̃3
2)3/2

. (2.4)

Here s̃∗ varies in the range [−1,+1]; s̃∗=+1 is the limit of axisymmetric extension,
where a spherical fluid element evolves into a disc, and s̃∗ = −1 is the limit of
axisymmetric contraction, where a spherical fluid element evolves into rod. The ratio
λ̃2/λ̃1, which varies in the range [−0.5, +1], is also helpful in picturing the strain
state, with λ̃2/λ̃1=−0.5 being the limit of axisymmetric contraction, and λ̃2/λ̃1=+1
being the limit of axisymmetric extension. It is worth noting that the probability
density function (p.d.f.) of λ̃2/λ̃1 at the extreme values vanishes due to kinematic
reasons rather than a lack of existence of such strain states (see Lund & Rogers
1994).

2.4. Lagrangian stretching directions
The time evolution of rod orientation relative to the directions of the velocity gradient
tensor is more intuitive in the Lagrangian framework given by the Cauchy–Green
strain tensors than with respect to the instantaneous velocity gradients given by
Ã. For a fluid element undergoing deformation due to velocity gradients given by
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Ã(t), the deformation gradient tensor, F̃ , is given by integrating the differential
relation dF̃ (t)/dt = F̃ ij(t)Ãjk(t). We calculate F̃ by carrying out this integration using
a fourth-order Runge–Kutta algorithm with the initial condition F̃ (t= 40η)= δij. The
integration is carried out for 40η 6 t 6 2TL during which rods are in a statistically
steady alignment with the flow.

The deformation gradient tensor can be written as F̃ = R̃Ũ or as F̃ = Ṽ R̃, depending
upon whether the deformation is described as stretching (Ũ) followed by rotation (R̃)
or rotation (R̃) followed by stretching (Ṽ ) (see e.g. Gonzalez & Stuart 2009). Thus,
Ũ and Ṽ are the right and left stretch tensors, respectively. Using the inner product of
F̃ with itself, we can isolate the stretching components of the deformation gradient:
C̃R= F̃ TF̃ = Ũ2 or C̃L= F̃ F̃ T

= Ṽ 2, where C̃R and C̃L are the right Cauchy–Green strain
tensor and the left Cauchy–Green strain tensor, respectively. The eigenframes of C̃R

and C̃L provide useful descriptions of fluid strain and we denote the unit vectors in
the most extensional directions (associated with the most positive eigenvalues) of these
tensors as ẽR1 and ẽL1, respectively. Physically, ẽR1 is the direction of greatest fluid
stretching at the initial time being considered and ẽL1 is the direction of greatest fluid
stretching after taking into account the cumulative effect of velocity gradients over 1t.

2.5. Scale-local time scales
The characteristic time scale for fluid motions at rod length scale l is a ‘scale-local’
time scale. Two such time scales are constructed using two-point fluid velocity
statistics, otherwise known as structure functions (see e.g. Pope 2000). If longitudinal
velocity increments in the flow are denoted as 1Lu, and transverse velocity increments
are denoted as 1Nu, 〈(1Lu)2〉 and 〈(1Nu)2〉 are the second-order longitudinal and
transverse velocity structure functions, respectively. The scale-local time scales are
then given by τL = l/(

√
15〈(1Lu)2〉) and τN = l/(

√
(15/2)〈(1Nu)2〉), respectively,

where 1Lu and 1Nu are evaluated at scale l. Defined in this way, τL and τN transition
smoothly from a value of τη in the limit of l→ 0 to a Kolmogorov (1941, henceforth
K41) scaling in the inertial range, where τL and τN scale as l2/3.

We compute τL and τN from 1Lu and 1Nu taken from velocity data at the 20
vertices of the dodecahedron used to compute Ã. These form 10 pairs of points, where
each pair consists of diametrically opposite points separated by distance l.

2.6. Rod dynamics from Jeffery’s equation and rod tumbling from rod end points
We will refer to rod dynamics, i.e. position, orientation, velocity and tumbling,
obtained by integrating (2.1) as ‘fully resolved’ rod dynamics. These data will be
compared to rod dynamics obtained from two alternative methods, which we now
introduce.

The first alternative method is to compute rod orientation and tumbling via
integration of Jeffery’s equation using the perceived velocity gradient tensor, Ã(t),
along each rod trajectory. This is done by integrating equation (2.2) using a
fourth-order Runge–Kutta algorithm with the same initial conditions as the fully
resolved rod dynamics. Rod orientation and tumbling obtained using Jeffery’s equation
are denoted as pi,J and ṗi,J , respectively.

The second alternative method pertains only to the rod tumbling. In this method, the
rod trajectories and the rod orientation time histories from fully resolved rod dynamics
are used, but an alternative measure of rod tumbling is computed using only the fluid
velocity at the rod end points. If only the rod end points are used, (2.1b) simplifies to
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FIGURE 2. (Colour online) Mean rod alignment with the directions of Ã as a function of
l/η. Symbols are data from fully resolved rod dynamics and dashed lines are data from
integrating Jeffery’s equation. The dotted line is at a value of 1/3, which corresponds to
random alignment.

1r[u− p(u · p)]/l, where 1r[u− p(u · p)] is the transverse velocity increment across
the rod. In other words, the rod tumbling is determined by the increment of the fluid
velocity across the rod length using the component perpendicular to the rod. The rod
tumbling obtained in this way is denoted as ṗi,E.

3. Results
3.1. Rod alignment

Figure 2 shows the rod alignment for fully resolved rod dynamics and rod dynamics
from integrating Jeffery’s equation. Rod alignment is quantified by the inner product
between the rod orientation p and the directions associated with Ã. Mean-square
values close to 1 indicate a propensity for the two vectors to be aligned with
each other and mean-square values close to 0 indicate a propensity for the two
vectors to be orthogonal to each other. Two unit vectors with no correlation in their
alignment would produce a mean-square value of 1/3. The data show that there is a
scale-independent preferred alignment of rods in the tracer limit (l< 5η) that follows
the order ẽω > ẽ2 > ẽ1 (see also Pumir & Wilkinson 2011; Chevillard & Meneveau
2013; Byron et al. 2015; Ni et al. 2015; Pujara & Variano 2017). As the rod length
transitions to the inertial range, rod alignment with ẽω decreases and rod alignment
in the strain-rate eigenframe shifts from being more aligned with ẽ2 to being more
aligned with ẽ1. There appears to be an almost scale-independent preferred rod
alignment in the inertial range (l> 60η) that follows the order ẽ1 > ẽω > ẽ2.

The agreement in figure 2 between data from fully resolved rod dynamics and data
from integrating Jeffery’s equation using Ã shows that Ã captures the flow features that
are responsible for rod tumbling. This is not surprising given that velocity increments
separated by length l have the greatest weight in determining the rod tumbling rate
in (2.1b) and also in computing Ã. The p.d.f.s of alignment (not plotted) show that
alignment in fully resolved rod dynamics tends to be slightly more skewed than in
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FIGURE 3. (Colour online) Properties of S̃ as a function of l/η: (a) p.d.f.s of the strain
state, s̃∗; (b) p.d.f.s of the ratio of eigenvalues λ̃2/λ̃1; (c) mean value of s̃∗; and (d) mean
value of λ̃2/λ̃1.

rod data obtained from Jeffery’s equation, but the net effect of this difference on the
mean alignment value is small, as seen in figure 2. Having checked that Ã is able to
reproduce the statistics of rod orientation, we can proceed to understand rod alignment
in terms of the properties of Ã.

Figure 3 shows how the properties of the perceived strain-rate tensor, and in
particular the strain state, change with scale. At the smallest scale (l = η), the
data are similar to those in Lund & Rogers (1994). The most likely strain state
for all scales is s̃∗ = +1 (axisymmetric extension), but the likelihood of s̃∗ = −1
(axisymmetric contraction) increases with increasing scale. This changing distribution
of the strain state provides at least a partial explanation for changing rod alignment
with ẽ1: with increasing l/η, strain states tend towards one dominant direction of
stretching, which improves rod alignment with this direction. In other words, there
is less competition for rod alignment between ẽ1 and ẽ2 allowing rods to be more
aligned with ẽ1.

The effects of a time delay on rod alignment are shown in figure 4. Figure 4(a)
shows that rods have a maximum in alignment with ẽR1 for some positive value of
1t. For longer rods, the maximum value is higher and occurs at smaller multiples
of the scale-local time scale τN . The maxima in figure 4(a) indicate that, for a
strain-rate tensor S̃ at a given time t0, the strongest alignment of rods with the most
stretching direction of S̃(t0) occurs with some optimum time delay at t0 +1t. When
rod alignment is computed with respect to ẽL1, figure 4(b) shows that it reaches a
steady-state plateau. For longer rods, the plateaued alignment is weaker, but it is
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FIGURE 4. (Colour online) Alignment of rods with the most stretching direction of the
right and left Cauchy–Green strain tensors as a function of the time delay. (a) Mean
alignment between rods and ẽR1. (b) Mean alignment between rods and ẽL1. The dotted
lines are at a value of 1/3, which corresponds to random alignment.

reached in smaller multiples of τN . Rod alignment with ẽL1 shows the rod response
to the cumulative effects of the strain-rate tensor over a time 1t. Ni et al. (2014)
showed that tracer rods approach perfect alignment with eL1 given a large enough
1t, consistent with the fact that rod orientation in the tracer limit is driven only by
the term A p (2.2). In contrast, figure 4(b) shows that rods outside of the tracer limit
do not reach perfect alignment with ẽL1. With increasing rod length, the decreasing
plateau of alignment with ẽL1 indicates that fluid motions at scales smaller than l
prevent perfect rod alignment with ẽL1. This is confirmed by the alignment of eL1
with pJ , where rod orientations are obtained from integrating Jeffery’s equation and
fluid motions at scales smaller than l are removed in Ã from coarse-graining. In this
case, we find that plots of 〈(ẽL1 · pJ)

2
〉 against 1t/τN (not shown) collapse for rods

of all lengths and show an approach towards perfect alignment.
In figures 2 and 4, the statistics of rod alignment are weakly non-monotonic with

increasing l/η. In figure 2 the mean rod alignment with ẽ1 becomes stronger in the
inertial range with a ‘bump’ at l≈ 60η. Figure 4(a) shows a similar variation in the
maximum rod alignment with ẽR1 as a function of l/η. The monotonic variation in the
properties of S̃ in figure 3 show that this ‘bump’ cannot be explained by the p.d.f. of
s̃∗. More likely, it is caused by the changing structure of time correlations for the
elements of Ã as a function of l/η.

3.2. Vorticity alignment

The alignment of vorticity in the strain-rate eigenframe of S̃ is an important property
of Ã for turbulent flow. Figure 5 shows how this alignment changes with l/η using
the same statistical measures as in the previous section. In figure 5(a), we see that the
alignment between ẽω and ẽ1 increases with increasing scale, whereas the alignment
between ẽω and ẽ2 decreases with increasing scale. The orthogonality between ẽω and
ẽ3 also decreases with increasing scale. These results are consistent with previous
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FIGURE 5. (Colour online) Alignment of vorticity in the strain-rate and Cauchy–Green
eigenframes as a function of scale. (a) Mean alignment of ẽω within the perceived strain-
rate eigenframe. (b) Mean alignment between the ẽω and ẽR1. (c) Mean alignment between
the ẽω and ẽL1. The dotted lines are at a value of 1/3, which corresponds to random
alignment.

data (Luthi et al. 2007; Pumir et al. 2013; Danish & Meneveau 2018) where Ã was
computed using different coarse-graining methods. In figure 5(b), we see that vorticity
reaches a peak alignment with eR1 after a time delay of 1t≈ 3τN , almost independent
of the scale l/η (Xu et al. 2011; Pumir et al. 2013). The initial growth in alignment of
vorticity with eR1 is consistent with previous arguments for the evolution of vorticity
in the tracer limit, i.e. it is caused by the vortex stretching term in the dynamical
equation of A (Chevillard & Meneveau 2011; Ni et al. 2015). Outside the tracer limit,
the curves are nearly scale-independent when time is made dimensionless by the scale-
local time scale, τN . This shows that small-scale motions do not affect the alignment
of coarse-grained vorticity with eR1. In figure 5(c), we see that vorticity alignment with
eL1 increases with time until it reaches a plateau. The plateau’s value decreases with
increasing scale, which shows that smaller scales disrupt the alignment of vorticity
with the direction of greatest stretching given by the cumulative deformation of the
strain-rate tensor.
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The above results point towards a partial analogy between infinitesimal rods and
vorticity in turbulent flows. As pointed out previously (Pumir & Wilkinson 2011),
the vortex stretching term, S ω, in the vorticity evolution equation has an analogous
term in Jeffery’s equation for evolution of rod orientation, S p. However, unlike rods,
vorticity is an active vector that is coupled to the strain rate in its evolution equation
and affected by viscosity (e.g. Guala et al. 2005; Luthi, Tsinober & Kinzelbach
2005; Pumir & Wilkinson 2011). Hence, unlike rods, vorticity does not reach perfect
alignment with eL1 in the tracer limit. With increasing l/η, the action of fluid
motions at scales smaller than l on dynamics at scale l leads to decreasing plateaus
of alignment with eL1 for both rods and coarse-grained vorticity, but the effects of
smaller scales on coarse-grained vorticity are more complex since the vorticity also
affects the velocity field. This makes the dynamics of rods and vorticity diverge even
further with increasing l/η, as indicated by the decreased alignment between rods
and vorticity in figure 2.

3.3. Lower-order moments of rod tumbling
The rod tumbling rate is best characterised in terms of its variance, 〈ṗiṗi〉, since the
mean of any single component of the rod tumbling vector is zero due to flow isotropy.
For randomly oriented rods, the rod tumbling variance can be derived from (2.1b) to
be (see Olson & Kerekes 1998; Shin & Koch 2005):

〈ṗiṗi〉τ
2
N =

16/5
l[1− RNN(l)]

∫ l

0

[
1−

3s
l
+

(
2s
l

)3
]

RNN(s) ds, (3.1)

where RNN is the dimensionless transverse velocity correlation function.
In the tracer limit, equation (3.1) simplifies to 〈ṗiṗi〉τ

2
N = 4/15 (Shin & Koch

2005) since the transverse velocity correlation can be written in terms of the velocity
gradients, whose variance can in turn be written in terms of the mean dissipation
rate in isotropic turbulence (Pope 2000). In the inertial range, K41 parametrisations
can be used to simplify (3.1). From K41 theory, RNN = 1 − (2/3u2

rms)C2(〈ε〉l)2/3 and
τN = (l2/〈ε〉)1/3/

√
10C2, where C2 is a universal constant and is set to 2.0 here.

From these expressions, equation (3.1) simplifies to 〈ṗiṗi〉τ
2
N = 108/350 for rods in

the inertial range. The inertial-range result can also be expressed in terms of the
Kolmogorov scales as 〈ṗiṗi〉τ

2
η = (108/35)C2(l/η)−4/3, revealing that rod tumbling

variance for randomly oriented rods in the inertial range should scale as 〈ṗiṗi〉 ∼ l−4/3.
Parsa & Voth (2014) derived this expression and also provided a physical argument:
rod tumbling in the inertial range is driven primarily by turbulent motions of size l
and thus the rod tumbling variance should scale as the inverse square of the turnover
time of these turbulent motions.

Figure 6(a) shows that the initial-time data (randomly oriented rods) agree well
with the prediction from K41 theory (〈ṗiṗi〉τ

2
η = (108/35)C2(l/η)−4/3) in the inertial

range (l > 60η). These data are examined more closely in figure 6(b), where they
are made dimensionless using the scale-local time scale τN . There is good agreement
with the predictions in the tracer limit: 〈ṗiṗi〉τ

2
N = 4/15 for l < 5η. In the transition

to the inertial range, there is a non-monotonic variation (or ‘bump’) before the data
show agreement with the inertial-range prediction: 〈ṗiṗi〉τ

2
N = 108/350 for l > 100η.

The non-monotonic variation between the tracer limit value and the inertial-range
value shows that transverse velocity increments, which are used to compute τN , start
to show inertial-range scaling at lower values of l/η compared to rod tumbling.
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FIGURE 6. Variance of rod tumbling calculated from (i) fully resolved rod data, 〈ṗiṗi〉

(circles), (ii) Jeffery’s equation, 〈ṗiṗi〉J (dashed line), and (iii) rod end points, 〈ṗiṗi〉E (thick
line). Initial-time data are shown in grey and long-time data in black. (a) Variance of rod
tumbling made dimensionless by τη (dotted line is (108/35)C2(l/η)−4/3). (b) Variance of
rod tumbling made dimensionless by τN .

Physically, this means that considering only the velocity increments across the rod
length underpredicts the rod tumbling variance at transition scales for randomly
oriented rods.

The long-time values of rod tumbling variance are significantly lower than the
initial-time values because rods of all lengths show preferential alignment with the
fluid vorticity, which suppresses their tumbling (Parsa et al. 2012). The behaviour of
rod tumbling variance for rods in statistically steady equilibrium with the turbulent
flow, i.e. the long-time data, shows a non-monotonic variation, similar to the
initial-time data. Though its size and location are changed, the cause of the ‘bump’ in
the long-time data is again the difference between transverse velocity increments and
the transverse velocity correlation function, where both quantities are now evaluated
in the frame of the rod. This is demonstrated by the fact that data from using only
the rod end points (ṗi,E) show a monotonic increase from the dissipation range to the
inertial range without a ‘bump’.

The configuration of alignment in figure 2 is responsible for reducing the size of
the ‘bump’, meaning that preferential rod alignment causes the value of 〈ṗiṗi〉τ

2
N to be

flatter in the inertial range and improves the agreement with the 〈ṗiṗi〉 ∼ l−4/3 scaling.
Rod alignment is not accounted for in Parsa & Voth’s (2014) physical argument that
rod tumbling in the inertial range is driven primarily by turbulent motions of size l,
but it appears that preferential rod alignment causes the rod tumbling variance to better
agree with predictions made from this argument.

3.4. Lower-order moments of rod stretching
The p.d.f.s of rod stretching are shown in figure 7(a) with their moments shown in
figure 7(b–e). In most cases, the rod stretching has been made dimensionless with
the scale-local time scale τL. In this dimensionless form, the longitudinal velocity
increments across the rod are normalised by longitudinal velocity increments in
random orientations, thereby making the effects of rod alignment explicit.

The initial-time mean of rod stretching, 〈1ru/l〉, vanishes due to fluid
incompressibility, but the long-time value of 〈1ru/l〉 is not zero because rods
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FIGURE 7. (Colour online) Statistics of rod stretching as a function of l/η: (i) from fully
resolved rod data, (1ru/l) (triangles), and (ii) from Jeffery’s equation, (1ru/l)J (dashed
lines). Initial-time data are shown in grey and long-time data in purple. (a) P.d.f.s of the
long-time values of (1ru/l)τL from fully resolved rod data. (b) Mean value, 〈1ru/l〉τL.
(c) Skewness value, Skew(1ru/l). (d) Variance value normalised by the Kolmogorov
time scale, Var(1ru/l)τ 2

η with the dotted line showing C2(l/η)−4/3. (e) Variance value
normalised by scale-local time scale, Var(1ru/l)τ 2

N with the dotted line as labelled.

show preferential alignment in the perceived strain-rate eigenframe. The effects of
preferential rod alignment on the mean rod stretching can be observed in figure 7(b).
It shows that 〈1ru/l〉τL increases non-monotonically from a value of approximately
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0.12 in the tracer limit to a value of approximately 0.18 in the inertial range, with
a small ‘bump’ at l ≈ 100η. The tracer limit result is in agreement with previous
data (Girimaji & Pope 1990). Given that rod stretching is achieved by strain at
the scale of the rod length, it is not surprising that the non-monotonic variation in
〈1ru/l〉τL reflects the non-monotonic variation in alignment between p and ẽ1 in
figure 2. In particular, the location of the ‘bump’ in the mean rod stretching from
Jeffery’s equations, 〈1ru/l〉JτL, almost exactly matches the location of the ‘bump’ in
〈(ẽ1 · p)2〉.

Figure 7(c) shows the skewness of rod stretching, which is defined as Skew(a) =
〈(a − 〈a〉)3〉/〈(a − 〈a〉)2〉3/2. Since the mean stretching is zero for randomly oriented
rods, the initial-time value of skewness is equivalent to the third-order longitudinal
velocity structure function in the inertial range and to the third moment of longitudinal
velocity gradients in the tracer limit. In this case, the data show agreement with
Kolmogorov’s 4/5th law in the inertial range, 〈1ru3

〉/〈1ru2
〉

3/2
≈ −(4/5)C−3/2

2 , and
with previous data in the tracer limit 〈1ru3

〉/〈1ru2
〉

3/2
≈ −0.4 (summarised in

Sreenivasan & Antonia (1997) and Davidson (2015)). The long-time rod stretching
skewness data reflect the fact that rod alignment alters the rod stretching statistics.
Alignment changes the sign of the rod stretching skewness so that the long-time value
is positive for l < 100η. As l/η increases, the long-time skewness value decreases
from Skew(1ru/l)≈ 0.25 for tracer rods (see also Kramel et al. 2016) and becomes
negative after crossing zero at l ≈ 100η. The negative values for rods well into the
inertial range suggests that long rods experience stronger extremes of compression
than of extension. It is also interesting to note that our data do not appear to show
a scale-invariant behaviour for the long-time skewness for rods with lengths in the
inertial range.

The variance of rod stretching, defined as Var(a) = 〈(a − 〈a〉)2〉, is shown in
figure 7(d,e). Figure 7(d) shows that the variance of rod stretching follows a power-law
scaling Var(1ru/l) ∼ l−4/3 in the inertial range. The physical argument behind this
scaling is the same as that for the rod tumbling variance: rod stretching is driven
primarily by fluid motions of size l, whose turnover time scales as ∼ l2/3 in the
inertial range from K41 theory.

In figure 7(e), we plot the rod stretching variance made dimensionless by the
scale-local time scale τ 2

L to further examine the l−4/3 scaling. At the initial time,
rod stretching variance and τ 2

L are essentially the same quantities with different
constants and the initial-time variance of rod stretching rate can be written as
Var(1ru/l)τ 2

L = 1/15. At long time, the value of Var(1ru/l)τ 2
L is lower than at the

initial time because preferential alignment of rods means they sample a smaller
variation of stretching and compression compared to randomly oriented rods. As
l/η increases, rod alignment with the perceived velocity gradients weakens, causing
Var(1ru/l)τ 2

L to increase towards the random orientation limit. Data of rod stretching
variance from Jeffery’s equation at long time show a decrease relative to τ 2

L as l/η
increases; this is due to the fact that velocity gradients in Ã are weaker than two-point
velocity increments.

3.5. Higher-order moments of rod tumbling and rod stretching
The power-law behaviour of higher-order moments of rod tumbling and rod stretching
can be used to understand how internal intermittency affects rod dynamics. One
manifestation of intermittency in the inertial range is that power-law exponents of
the moments of velocity increments, i.e. structure functions, show anomalous scaling
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(Frisch 1995). From figures 6 and 7, we conclude that the variances of rod tumbling
and rod stretching in the inertial range are primarily due to velocity increments over
a distance l. This implies that intermittency corrections for higher-order moments of
rod dynamics should behave similarly to those for velocity increments in the flow. To
test this, we compare the power-law scaling exponents for moments of rod tumbling,
(ṗiṗi)

1/2, and rod stretching, (1ru−〈1ru〉), to those of transverse velocity increments,
1Nu, and longitudinal velocity increments, 1Lu. The moments of rod stretching are
calculated after removing the mean, but results are unaffected within the statistical
uncertainty because the mean is small compared to the standard deviation (figure 7a).
To facilitate comparison to other quantities, rod tumbling is converted into velocity
units by multiplying by the rod length, (ṗiṗi)

1/2l. This does not affect the deviation
of its power-law exponents from K41 predictions.

The power-law exponents are measured over 80η 6 l 6 200η. Over this range,
logarithmic derivatives calculated using finite differencing are reasonably flat for all
quantities, confirming power-law behaviour. It is known that the range of scales for
which there is clear power-law behaviour is different for 1Lu and 1Nu, as well as
being a function of moment order and Reynolds number (Ishihara, Gotoh & Kaneda
2009), but for moments up to n= 6, 1Lu and 1Nu both show power-law behaviour
over 80η 6 l 6 200η. In plots of pre-multiplied moments (not shown), we also
observe reasonable convergence of moments up to n = 6 in our data. We compute
the power-law scaling exponents by a least-squares fit in log space with error bars
to show 95 % confidence intervals from the uncertainty in the fitting. Comparison
of these results with scaling exponents calculated using extended self-similarity (not
shown), where higher-order moments are plotted as a function of the second-moment
instead of as a function of l, show that the results are the same within the statistical
uncertainty.

The scaling exponents of higher-order moments are compared to predictions from
the Kolmogorov hypotheses (K41 theory) and the refined Kolmogorov hypotheses
(Kolmogorov 1962; Oboukhov 1962; henceforth K62 theory). In K41 theory,
moments of velocity increments in the inertial range conditioned on the mean
dissipation rate, 〈ε〉, are assumed to be universal and to scale as 〈(1Lu)n〉 ∼ (〈ε〉l)ζn ,
where ζn is a function only of n and universal constants. The K41 prediction is
ζn,K41 = n/3. However, it is well known that internal intermittency causes deviations
from the K41 predictions (Frisch 1995; Sreenivasan & Antonia 1997). Taking the
intermittent spatial distribution of dissipation into account, K62 theory predicts that
ζn,K62= (n/3)−µ(n/6)[(n/3)− 1]. Here, µ is the intermittency exponent whose value
is set to µ = 0.25 (Pope 2000). This model of intermittency assumes that a locally
averaged value of ε is sufficient to predict statistics of velocity increments and that
the dissipation follows a log-normal distribution.

The scaling exponent data are shown in figure 8. In figure 8(a), we observe that
1Nu shows a larger departure from K41 theory than 1Lu, which is in agreement
with previous data (e.g. Chen et al. 1997), though data from higher-Reynolds-number
simulations suggest that this difference exists only at low Reynolds numbers (Iyer,
Sreenivasan & Yeung 2017). In figure 8(b), we include data of rod dynamics, first
examining initial-time data of ṗi (data where rods are randomly oriented). These
scaling exponents match those of the transverse velocity increments quite well.
Figure 8(c) shows data for rods in statistically steady alignment with the flow,
computed from rod dynamics using velocity increments across the rod end points, ṗi,E
(rod tumbling computed using only rod end points) and 1ru− 〈1ru〉 (rod stretching).
Since these rod data are computed using two-point velocity increments aligned with
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FIGURE 8. (Colour online) The power-law exponents for moments of velocity increments
and rod dynamics in the inertial range as a function of moment order. K41 theory, ζn =

n/3 (solid line); K62 theory, ζn = (n/3)− µ(n/6)[(n/3)− 1] with intermittency exponent
µ = 0.25 (dashed line). Error bars represent 95 % confidence intervals to the power-law
fit.

the rod, they should explicitly reveal the effects of preferential alignment on scaling
exponents. The scaling exponents of rod tumbling match the transverse velocity
increments and those of rod stretching match the longitudinal velocity increments.
Thus, it appears that rod alignment does not affect the intermittency within the
statistical uncertainty in our data.
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In figure 8(d), the rod tumbling data from using fully resolved rod dynamics
for rods in statistically steady alignment with the flow are used to compute the
scaling exponents. In this case, we observe that the scaling exponents of higher-order
moments of rod tumbling show a further departure from K41 theory than transverse
velocity increments. The statistical uncertainty associated with these data is large,
but, within this uncertainty, it does seem that rod tumbling is more intermittent than
transverse velocity increments in the flow. If this additional intermittency is real, it
must be due to the distribution of transverse velocity over the rod length, which
evidently increases the likelihood of extreme values of rod tumbling.

Finally, in figure 8(e), we show scaling exponents from rod data computed from
Jeffery’s equation. In this case, we observe that rod dynamics shows less intermittency
compared to velocity increments in the flow. This shows that our computation of Ã not
only gives weaker velocity gradients, but also leads to less intermittent rod dynamics,
compared to estimates from two-point velocity increments. Less intermittency in rod
tumbling computed from Jeffery’s equation compared to rod tumbling from fully
resolved rods in the flow further highlights the role of fluid motions at scales smaller
than the rod length in generating extreme values of rod tumbling.

4. Conclusions

By tracking rods of different lengths in an isotropic turbulent flow, we study the
effects and structure of turbulent fluid motions at different scales on slender rods.
We find that the preferential alignment of rods with the directions of the perceived
velocity gradient tensor changes with the rod length. In the dissipation range, there
is a well-defined scale-independent preferred alignment where rods are most strongly
aligned with the vorticity. In the inertial range, there is a different well-defined
preferred alignment that is almost scale-independent where rods are most strongly
aligned with the most extensional eigenvector of the strain-rate tensor.

In the inertial range, we find that the variances of both rod tumbling and rod
stretching scale as l−4/3, where l is the rod length. This scaling can be derived from
the physical argument that rod tumbling and stretching are driven primarily by fluid
motions of the same size as the rod length combined with K41 scaling relationships
for the time scale of these turbulent fluid motions (see also Parsa & Voth 2014).
A closer examination of the rod tumbling variance reveals that its value is higher
than expected at transitional scales between the dissipation range and the inertial
range (specifically, at l ≈ 60η). By comparing rod tumbling data from different
methods, we conclude that this is because fluid motions at scales smaller than l
do not cancel out over the rod, but rather contribute to rod tumbling variance. For
rod stretching statistics, we find that there is interesting behaviour at l ≈ 100η. At
this scale, the mean rod stretching relative to longitudinal fluid velocity increments
shows a maximum and the skewness of rod stretching changes sign from being
positive for rods in the tracer limit to becoming negative for rods well into the
inertial range. Thus, the skewness of longitudinal velocity increments in the frame
of rods in statistically steady alignment with the turbulent flow do not display scale
independence in the inertial range; this is a marked contrast relative to longitudinal
velocity increments taken in random orientations whose scale independence in the
inertial range is predicted from Kolmogorov’s 4/5 law.

The power-law scaling exponents of higher-order moments of rod tumbling and rod
stretching show anomalous scaling as a consequence of turbulent intermittency. The
scaling exponents for rod stretching compare well to scaling exponents for longitudinal
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velocity increments in the flow and predictions from the refined similarity hypothesis
(K62 theory). When the rod tumbling is computed from two-point transverse velocity
increments across the rod length, the rod tumbling scaling exponents agree with the
scaling exponents of transverse velocity increments in the flow. Together, this suggests
that evaluating velocity increments in directions associated with fluid deformation
does not seem to increase the departure of their scaling exponents from K41 theory
predictions, though this departure is within the uncertainty limits of the data. However,
if the rod tumbling is computed from fully resolved rod dynamics that take into
account the fluid velocity variation along the full length of the rod, the scaling
exponents do show a further departure from K41 theory predictions. This means
that rod alignment does not necessarily cause rod dynamics to be more intermittent
in comparison to structure functions in the inertial range, but that the effects of
small-scale fluid motions on rod tumbling in combination with rod alignment does
appear to result in additional intermittency.
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