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ABSTRACT
Flight delays may be decreased in a predictable way if the Weibull wind speed parameters of
a runway, which are an important aspect of safety during the take-off and landing phases of
aircraft, can be determined. One aim of this work is to determine the wind profile of Hasan
Polatkan Airport (HPA) as a case study. Numerical methods for Weibull parameter determi-
nation perform better when the average wind speed estimation is the main objective. In this
paper, a novel objective function that minimises the root-mean-square error by employing
the cumulative distribution function is proposed based on the genetic algorithm and particle
swarm optimisation. The results are compared with well-known numerical methods, such as
maximum-likelihood estimation, the empirical method, the graphical method and the equiva-
lent energy method, as well as the available objective function. Various statistical tests in the
literature are applied, such as R2, Root-Mean-Square Error (RMSE) and χ2. In addition, the
Mean Absolute Error (MAE) and total elapsed time calculated using the algorithms are com-
pared. According to the results of the statistical tests, the proposed methods outperform oth-
ers, achieving scores as high as 0.9789 and 0.9996 for the R2 test, as low as 0.0058 and 0.0057
for the RMSE test, 0.0036 and 0.0045 for the MAE test and 3.53 × 10−5 and 3.50 × 10−5 for
the χ2 test. In addition, the determination of the wind speed characteristics at HPA show that
low wind speed characteristics and regimes throughout the year offer safer take-off and land-
ing schedules for target aircraft. The principle aim of this paper is to help establish the correct
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orientation of new runways at HPA and maximise the capacity of the airport by minimising
flight delays, which represent a significant impediment to air traffic flow.

Keywords: Airport wind analysis; Weibull distribution; Wind speed; Metaheuristics;
Parameter estimation; Hasan Polatkan Airport

NOMENCLATURE
Symbols

v̄3 cube of mean wind speed

v̄3 mean of wind speed cubed

ŷk estimated wind speed for statistical tests

Epf energy pattern factor

c1 cognitive weight

c2 social weight

fitcdf objective function for cumulative density error minimisation

fitpdf objective function for probability density error minimisation

gt best global position of swarm

pt best position of particle

u1 uniform random number

u2 uniform random number

v̄ mean wind speed

vj wind speed for jth measurement

vt current velocity

vt+1 updated velocity

xt current position

xt+1 updated position

ȳ mean wind speed for statistical tests

yk actual wind speed for statistical tests

|·| absolute value operator

�(·) Gamma function

F(v) cumulative density function

N total wind speed data

c scale factor

exp(·) exponential function

f (v) probability density function

k shape factor

ln(·) natural logarithm

n total number of parameters

v wind speed

w inertial weight

σ standard deviation
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Definitions, acronyms and abbreviations
CDF cumulative distribution function

GA genetic algorithm

GW gigawatts

HPA Hasan Polatkan Airport

J1 fitness function based on probability distribution

J2 fitness function based on cumulative distribution

MAE mean absolute error

PDF probability density function

PSO particle swarm optimisation

R2 R value squared

RMSE root-mean-square error

χ2 chi squared

1.0 INTRODUCTION
Wind is the fastest-growing energy source, being commercialized and developing more
rapidly compared with other renewable energy resources. It has been used to supply mechan-
ical power since the early twentieth century, but nowadays, it is often used for generating
electrical power to supply energy demands(1). The wind industry has achieved major develop-
ment in recent years in terms of installed capacity and the number of wind farms. Parallel to
this progress, the total global installed capacity of wind energy was approximately 18.039GW
in 2000, whereas it reached almost 591GW by the end of 2018(2). The random nature of
wind gives rise to inconsistent power generation from wind energy, which leads to significant
problems for electricity generation as well as the assessment and prediction of wind energy
potential(3). Long-term meteorological observations are required to determine the character-
istics and potential of wind energy at a particular location. A probabilistic-based model can
be used to approximately assess the available wind energy potential at a location based on
long-term observations(4). Knowledge of the probability density function of wind at any site
is a key factor in practice. Accurate determination of the wind speed distribution from reli-
able wind speed data plays an important role in the assessment of the wind energy potential
at any site and minimises any uncertainty or unexpected risks(3). It is widely known that the
wind speed data at any site can be characterised by a statistical distribution. Different prob-
ability density functions can be used to evaluate and analyse such wind speed distributions,
including the Rayleigh, Weibull, gamma, lognormal, inverse Gaussian, kappa, Burr, gener-
alised gamma, beta, logistic, inverse Weibull, maximum-entropy principle-type, and mixture
distributions(5–14). The Weibull distribution is well known and the most commonly used
method to estimate the wind energy potential in the literature because of its desirable proper-
ties, including having only limited parameters, providing a good fit to wind data, simplicity,
flexibility and a simple closed-form expression(3,6,15).

The shape (k) and scale (c) parameters in the Weibull distribution must be accurately
determined since the details of the wind speed distribution are used as a benchmark when
optimising the efficiency, energy production and capacity factor, as well as for minimis-
ing the costs of capital investment and electricity generation(15). For this purpose, numerous
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alternative numerical methods exist and are widely used in literature. The implemented meth-
ods include graphical(16), empirical(17), maximum-likelihood(18), energy pattern factor(19),
moment(20), modified maximum-likelihood(21) and least-squares estimator(22) approaches, as
well as others(23). Numerical methods may not always be sufficient to accurately estimate
the parameters of the Weibull distribution. Despite the fitting accuracy of methods available
in literature, alternative methods should be further investigated in detail to improve on the
accuracy of the Weibull distribution(3,24).

To increase the efficacy, accuracy and robustness of the solution, metaheuristic techniques
have been proposed as alternative approaches to numerical methods. These include the genetic
algorithm, particle swarm optimisation, the bat algorithm, cuckoo search, social spider opti-
misation, and so on(14,25–29). Metaheuristic techniques have the potential to optimise any
given fitness function encountered in real-life problems, such as the determination of Weibull
parameters. To understand wind characterisation, as in a case study in Saudi Arabia, certain
metaheuristic and numerical methods are employed to fit the wind speed data with both sin-
gle and combined distributions(3). The results show that the combined probability density
functions exhibit better performance than single probability density functions and that, when
single probability densities are considered, the Weibull distribution is the best density function
in comparison with the Rayleigh, gamma and lognormal functions. A multiverse optimi-
sation method was also presented(30) to analyse wind data in the Tirumala region of India
in comparison with other, metaheuristic and numerical methods. The limitations of the pre-
sented algorithm, due to its computational complexity, were underlined. The particle swarm
optimisation method was employed(31) to estimate the Weibull parameters for the Brazilian
Northeast Region. The presented method was compared with the moment method, empirical
method, energy pattern factor method, maximum-likelihood method and energy equivalent
method. For the considered wind sites, the particle swarm algorithm method showed the best
performance in comparison with other numerical methods. An evolutionary strategy-based
maximum-likelihood estimation method has been presented to estimate the three -parameters
of the Weibull distribution(32). The proposed method was compared with least-squares regres-
sion, weighted least-squares regression, genetic algorithm and so on. According to the results,
the evolutionary strategy performed better for empirical distribution functions. The non-linear
least-squares estimation and particle swarm optimisation algorithms have been hybridised(33).
While the nonlinear least-squares estimation method was used for selecting the starting point
and bounds, the particle swarm method was used to search for the optimal values of the param-
eters in the Weibull distribution. The method was compared with a genetic algorithm-based
method and maximum-likelihood estimation method. The results showed that the proposed
method was advantageous in terms of efficiency.

Other than the Weibull distribution, metaheuristic-based algorithms can be employed
and are widely used in aviation, including the neuro-evolution algorithm(34), evolutionary
algorithm(35), genetic algorithm(36), particle swarm optimisation algorithm(37,38), neuro-fuzzy
algorithm(39) and ant colony optimisation(40).

The capacity of a runway is an important factor for coping with the exponentially growing
traffic demand(41). Both runways and airspace must be effectively used to minimise any pos-
sible delays(42). One key issue regarding runway capacity is wind speed. Wind speed plays a
major role in critical applications, such as aviation, and its effect cannot be ignored. Approach
and landing are the most crucial phases for aircraft, considering that 75% of aircraft accidents
occur during these flight phases(43). The flight schedule is planned based on weather and wind
conditions(44). Wind is a key factor in planning the most appropriate flight schedule. Low-
level wind disturbance can sometimes cause go-arounds or other operational disruption(45).
Crosswind has a challenging impact on aircraft during take-off and landing. Aircraft have
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a set of restrictions for take-off and landing in crosswinds. They are not allowed to attempt
take-off and landing in cases where the crosswind passes these limits. If the magnitude of this
effect is high, then aircraft may not properly perform correct procedures for take-off and land-
ing, which may endanger flight safety and security, resulting in flight delays and additional
cost. This is undesirable for passengers, aircraft companies and airport traffic. Therefore, the
wind effect has to be taken into consideration with regard to in-flight safety, security and air-
port design. An airport must be constructed in a location where wind has the least negative
impact on flights inasmuch as it affects runway length and width. For this purpose, detailed
wind analysis of an airport location must be precisely performed.

As can be understood from a literature survey, most research papers offer numerical
methods to estimate Weibull parameters. However, parameters of the Weibull distribution
estimated by numerical methods may generally be unable to adjust to a histogram of the wind
speed distribution(30). Since researchers have mainly focused on numerical methods to deter-
mine the parameters of the Weibull distribution, studies based on metaheuristic approaches
remain limited, and as yet there is no consensus regarding the most accurate estimation
algorithm(6). In addition, most of the proposed metaheuristic methods are based on the RMSE
of the probability density function of the wind histogram. However, the cumulative distribu-
tion function, which is neglected in the proposed methods, is as important as the probability
density function. Furthermore, it can also be seen that comparisons of proposed algorithms
lack the computational time factor, which is a key metric since metaheuristic algorithms
demand a significant amount of time.

One key issue regarding airport design is the orientation of the runway. Runways are ori-
ented according to the historical properties of wind. The orientation of a runway (such as
9–27) is aligned with the prevailing wind direction to prevent crosswind components dur-
ing landing and take-off. According to authorities(46–48), the wind coverage of a runway must
be greater than 95%. Such a wind coverage (also called the usability factor of the runway)
means that, for 95% of the time, crosswinds must be lower than the allowed threshold value.
According to literature(49,50), if the wind speed exceeds the safety limits during the take-off
or landing phase, the probability of an accident increases exponentially. Not only crosswinds
endanger flight safety; tailwinds are also important factors. If the tailwind exceeds the allow-
able limits, overrun accidents may occur on landing. For these reasons, airports are equipped
with wind measurement and recording systems to prevent delays and accidents through the
use of wind speed and direction histograms, respectively.

In light of the literature survey and discussion above, the original contributions of this paper
are as follows:

• to propose metaheuristic-based methods as powerful and better alternatives to numerical
approaches

• to propose a novel objective function based on the cumulative distribution function of the
Weibull distribution

• to apply wind energy and wind power determination methods to the wind distribution
histogram of a runway

• to extend statistical tests to conduct a time consumption analysis, which fills a gap in the
comparison of the computational demand of metaheuristic algorithms;

• to determine the wind speed profile of HPA as an original case study, which can contribute
to the determination of wind coverage and wind distribution of the considered runway

In summary, this work focuses on more accurate methods for the estimation of the param-
eters of the Weibull distribution, thereby filling a research gap for metaheuristic methods

https://doi.org/10.1017/aer.2020.136 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.136


KABA AND SUZER WEIBULL PARAMETER ESTIMATION FOR RUNWAYS... 921

by employing a novel objective function as the cumulative distribution function. Within this
framework, the proposed methods provide a new perspective on determining the parameters.
Carrying out research in a specific region, the efficiency and performance of the proposed
methods are compared with numerical methods and the performance of the methods is
validated by the results.

The rest of this paper is organized as follows: Section 2 presents the preliminaries of the
Weibull distribution, while the numerical methods are covered in Section 3. The proposed
methods are introduced in Section 4, and statistical analysis methods are given in Section 5.
The results are covered and discussed in Section 6, while concluding remarks are given in
Section 7.

2.0 PRELIMINARIES ON MATHEMATICAL
BACKGROUND

2.1 Weibull distribution
The statistical distribution of wind speed varies from region to region worldwide. These
changes result from local climatic conditions, soil structure, terrain and surface topography.
They can be statistically represented by a probability density and cumulative function. A prob-
ability density function may be described as a probability distribution which corresponds to
the relative possibility for a random variable v to take on a given value(51). The Weibull dis-
tribution, which was created by the Swedish physicist Waloddi Weibull in the 1930s, provides
information regarding the wind speed distribution resulting from these changes. Since the
Weibull distribution is a good fit to represent the wind speed distribution at a location, it is
widely used in literature to estimate, model and analyse both the potential of wind energy
and the wind speed at a specific location(15). The probability density function of the Weibull
distribution can be described as Equation (1):

f (v) =
(

k

c

) (v

c

)k−1
exp

(
−
(v

c

)k
)

, · · · (1)

where f (v) is the probability of occurrence of a wind speed v, k represents the shape parameter
and c denotes the scale parameter. The cumulative distribution function corresponding to this
probability density can be easily derived from Equation (2):

F(v) =
v∫

−∞
f (x) dx. · · · (2)

Therefore, the cumulative distribution function of the Weibull distribution can be written
as Equation (3):

F (v) = 1 − exp

(
−
(v

c

)k
)

, · · · (3)

where F(v) denotes the cumulative distribution function of the wind speed v.
The shape and scale parameters of the Weibull distribution play a crucial role in the wind

distribution of a region. The shape parameter, which is an important parameter for the Weibull
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Table 1
Description of the meteorological station and wind speed data

Elevation Period
Station Station ID Latitude Longitude (m) (year/month)

Eskişehir Hasan 17,123 39.813256 30.528400 787 2012–2014 Jan–Dec
Polatkan Airport

distribution, helps to calculate the frequency of the difference between the measured speed
and wind speed(52). The value of the shape parameter describes the variation in mean wind
speed for a given sample(52,53). When the value of the shape parameter is high, the stability
of the wind speed is also high. If the wind speed in a region varies little, the k parameter is
high, indicating that the wind speed is approximately constant (which may be low or high).
High values of the shape parameter signify that the Weibull distribution is intensified around a
given value and that the peak value of the distribution is higher. Meanwhile, low values of the
shape parameter imply that a broad range of values are included in the distribution and that the
peak value of the distribution is lower(17,54). The scale parameter directly indicates the wind
potential at a location(52,53). The main function of the scale parameter is to fix the position of
the curve. For a location with strong wind, it takes higher values, whereas it has lower values
for locations with weak wind(54). This means that the c parameter varies depending on the
mean wind speed. If the mean wind speed is high, then the c parameter is also high.

2.2 Geographic information
Eskişehir is located in the north-western part of Turkey. It has an area of 13,960km2, repre-
senting approximately 1.75% of the territory of Turkey, and measures about 80km from north
to south. Its population is 887,475 according to the Turkish Statistical Institute(55). It has its
own climatic features. Like other cities in the Central Anatolian region, it has a terrestrial
climate. The annual average temperature at Eskişehir, which is one of the coldest regions in
Turkey, is 10.9◦C. The mean wind speed at Eskişehir is approximately 3.355m/s. The pro-
posed methods were applied to HPA, which is 5km from Eskişehir. The wind speed data were
sampled hourly in the period between 1 January 2012 and 31 December 2014, at a height of
10m above ground level owing to operational conditions. A total of over 27,000 measurements
were taken from the Turkish State Meteorological Service.

The geographical location of the site is shown in Fig. 1. The diamond symbol indicates the
exact location of the meteorological station at the site. In addition to its geographical position,
the location of HPA on the Wind Atlas is shown in Fig. 2. A detailed description of the site,
including latitude and longitude as geographical coordinates, the elevation corresponding to
the meteorological station and the period of the measured data, is presented in Table 1.

3.0 NUMERICAL METHODS
The Weibull distribution is widely used in literature to estimate and analyse both the potential
of wind energy and the wind speed in a specific region(15). It includes two parameters: the
shape factor k and the scale factor c. To estimate the wind energy potential and the wind speed
in a given region, these two important parameters must be determined. Various numerical
methods can be used to determine the k and c parameters of the Weibull distribution(19).
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Figure 1. The geographical location of the study site on the map (revised from Google Earth).

Figure 2. The location of HPA at Wind Atlas(56).

In this section, four widely used numerical methods are presented: the graphical method, the
empirical method, the maximum-likelihood method and the energy pattern factor, also known
as the power density method.

3.1 Graphical method
The graphical method, introduced by Deaves et al. in 1997, is directly based on the cumulative
distribution function(57). The Weibull parameters can be calculated by using the cumulative
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distribution function(15,19). Applying a logarithmic transform twice, the cumulative distri-
bution function of the Weibull distribution, given in Equation (3), becomes Equation (4):

ln(−ln(1 − F(v))) = k ln(v) − k ln(c). · · · (4)

Note that there is a special relationship between ln (−ln (1 − F(v))) and k ln(v) − kln (c).
By plotting ln (−ln (1 − F (vi))) on the y-axis versus ln (vi) on the x-axis for i = 1, 2, . . . N ,
an approximately straight line is obtained(58). The slope of the straight line gives us the
k parameter, while the c parameter is simply determined from the intersection with the
y-ordinate(15,59).

A second approach to determine the k and c parameters is the least-squares method. As can
be seen, Equation (4) adopts the linear form y = ax + b with respect to ln (− ln (1 − F(v)))
and ln(v). If the straight line fits best to ln (−ln (1 − F (vi))) against ln (vi) for i = 1, 2, . . . N
which is obtained using the least-squares method, the coefficients of the straight line, a and b,
can easily be calculated(15,17). In such a case,

k = a&c = exp

(
−b

a

)
. · · · (5)

It can be clearly seen that the slope of the straight line fitted to the data gives us the k parameter
while the c parameter is simply determined from the y-intercept of the straight line in Equation
(5)(15,17,59).

3.2 Empirical method
The empirical method was proposed by Justus et al. in 1978(60). It is a simple approach that
can be used to determine the Weibull parameters. For this purpose, it makes use of the stan-
dard deviation and mean wind speed. In this method, the shape and scale parameters can be
obtained using Equations (6) and (7):

k =
(σ

v

)−1.086
, · · · (6)

c = v̄

�
(
1 + 1

k

) , · · · (7)

where σ represents the standard deviation, v̄ denotes the mean wind speed and � indicates
the gamma function given in Equation (8):

�(z) =
∞∫

0

tz−1e−tdt · · · (8)

3.3 Maximum-likelihood method
The maximum-likelihood method, proposed by Stevens and Smulders in 1979, has a
high computational load since the parameters of the Weibull distribution are determined
iteratively(15,17,61). For this reason, it is more difficult and complicated to apply this method
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compared with other methods. The shape and scale parameters can be calculated from
Equations (9) and (10):

k =
(∑N

j=1 vk ln
(
vj

)∑N
j=1 vj

k
−
∑N

j=1 ln
(
vj

)
N

)−1

, · · · (9)

c =
(∑N

j=1 vj
k

N

) 1
k

, · · · (10)

Iterative methods, such as the Newton–Raphson algorithm, can be used to find the k and c
parameters. However, it should not be forgotten that zero velocities are excluded from the
wind data due to the fact that there is no solution for zero velocity values.

3.4 Energy pattern factor method
The energy pattern factor method, also commonly known as the power density method, was
proposed by Akdağ and Dinler in 2009(15). This method is based on the energy pattern factor,
a ratio that is often used in the aerodynamic design of turbine blades(62). Edward William
Golding described it as the total power of the wind divided by the power computed by taking
the cube of the mean wind speed, which is determined from sample measurements as shown
in Equations (11) and (12)(63,64):

Epf = Total power of wind

Power computed by cubing the mean wind speed
, · · · (11)

Epf =
(

1
N

∑N
j=1 vj

3
)

(
1
N

∑N
j=1 vj

)3
= v3

(v̄)3
= �

(
1 + 3

k

)
�3
(
1 + 1

k

) , · · · (12)

where (v̄)3 is the cube of the mean wind speed, v3 is the mean of the wind speed cubed

and v3

(v̄)3 is defined as the energy pattern factor. Epf is always greater than 1 and, generally,

its range is from 1.44 to 4.4 for most wind distributions(15). After the energy pattern factor
Epf has been calculated, the k and c parameters can be easily computed using Equations (13)
and (14):

k = 1 + 3.69(
Epf
)2

, (13) · · · (13)

c = v̄

�
(
1 + 1

k

) . · · · (14)

4.0 METAHEURISTIC DATA FITTING
The framework of this study is shown in Fig. 3. As shown in Fig. 3, the first step is to collect
the wind speed measurements between 2012 and 2014. Then the time-series distribution
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Figure 3. The framework of the study with numerical and metaheuristic methods.

is obtained from the observation matrix. The next step is to determine the histogram of
the measured wind speed frequencies. From the histogram distribution, the shape and scale
parameters of the Weibull distribution are estimated by employing the four widely used
numerical methods, viz. the graphical, empirical, maximum-likelihood and energy pattern
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Table 2
Parameters of genetic algorithm

Parameter Value

Dimension 2
Population size 10
Crossover probability 0.7
Mutation probability 0.1
Generation 100
Stall generation limit 25
Lower bound [0, 0]
Upper bound [100,100]
Initialisation [0.1, 0.1]
Iteration 3

factor approaches, and also by employing four metaheuristic methods. The metaheuristic
methods can be divided into two types: conventional methods and novel methods. Next, these
two parameters are estimated using the genetic algorithm and particle swarm optimisation.
A detailed explanation of the proposed methods is given in the following sections. After
determining the parameters, the probability density and cumulative distribution functions are
built, and the RMSE, MAE, R squared (R2) and chi-squared (χ2) tests are applied to compare
the performance of the proposed method with that of the numerical methods. The results are
ranked on the basis of the statistical analysis and elapsed time; thereafter the optimal method
is selected to characterise the wind at the site.

4.1 Genetic algorithm-based data fitting method
Genetic algorithms are population-based, stochastic optimisation methods that are inspired
by the phenomenon of natural selection. Genetic algorithms do not need any gradients or
Hessians to operate in the search space, which most numerical methods would need. The
crossover, mutation and selection operations are important phases of genetic algorithms.
While crossover remains the main variation operator, mutation serves as a random pertur-
bation. The selection of the next generation is based on the survival-of-the-fittest rule; that is,
individuals with the highest probabilities will be transferred into offspring(65,66).

The parameters of the genetic algorithms are presented in Table 2. The lower and upper
bounds for the shape and scale parameters are chosen as [0, 100], which generously extends
the search space. The initial values of the population are chosen as [0.1, 0.1], which are close
to the lower bound to prevent any bias in the results. The population size is chosen as ten,
which reduces the time demands of the proposed method at the cost of decreasing the chance
of converging to the global optimal solution. The algorithm is run three times, and the mean
value is taken as the final solution.

The pseudo-code of the proposed genetic algorithm-based data fitting method is given in
Algorithm 1. The proposed algorithm starts with the initialisation of the parameters given
in Table 2. Next, the counter i is reset and the for loop is started. After this, the while loop
is created to evaluate the fitness of the population and also to apply the genetic operators
for selection, crossover, mutation and replacement. When predefined conditions are met, for
example on the generation number or a stall limit, the optimised variables are saved and the
algorithm is restarted with the increased counter value until the run number n is reached.
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Algorithm 1. Genetic algorithm-based data fitting method

1: procedure gadf
2: Initialize
3: for i < n
4: while
5: evaluate fitness
6: Selection
7: Crossover
8: Mutation
9: Replacement
10: until conditions
11: end for
12: return mean k, c
13: end procedure

Next, the mean values of the optimised parameters are calculated and returned to the main
program. Two separate fitness steps are evaluated, since two different objective functions are
proposed. The roulette wheel selection method is used in the proposed algorithm, in which
individuals with the highest probabilities will likely survive in the next generation. In the
crossover phase, the weighted arithmetic means of the parents are used to create the offspring.
In the mutation phase, randomly generated direction and steps are applied to the population
to ensure exploration of the search space.

4.2 Particle swarm optimisation-based data fitting method
Particle swarm optimisation is an intelligent method which was introduced in Ref. 26 as
a tool to optimise continuous nonlinear functions. The algorithm is inspired by the social
and cognitive behaviour of flocks of birds, which is computationally inexpensive due to the
primitive mathematical operators used(26). Each individual in the swarm is called a particle.
A particle is a candidate for a global solution which has:

• a tendency for randomness in the search space
• a tendency to return to the best location visited by itself and
• a tendency to go where most particles in the neighborhood go(67).

The equations to update the position and velocity of the particles are given in Equations (15)
and (16).

vt+1 = w ∗ vt + c1 ∗ u1 (pt − xt) + c2 ∗ u2 ∗ (gt − xt) , · · · (15)

xt+1 = xt + vt+1, · · · (16)

where vt is the current velocity, vt+1 is the updated velocity, w is the inertial weight, c1 is the
cognitive weight, u1 and u2 are uniform random numbers ∈ [0, 1], pt is the best position of
the particle, c2 is the social weight, gt is the best global position of the swarm, xt is the current
position and xt+1 is the updated position(31).
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Table 3
Parameters of particle swarm optimisation

Parameter Value

Dimension 2
Swarm size 10
Inertia [0.1, 1.1]
Cognitive weight 1.49
Social weight 1.49
Max. iterations 100
Max. iter. stall limit 25
Lower bounds [0, 0]
Upper bounds [100,100]
Initialisation [0.1, 0.1]
Iteration 3

Algorithm 2. PSO algorithm-based data fitting method

1: procedure psodf()
2: Initialize
3: for j < n
4: while
5: evaluate fitness
6: update gbest and pbest values
7: update velocities
8: update positions
10: until conditions
11: end for
12: return mean k, c
13: end procedure

The parameters for the particle swarm optimisation method are presented in Table 3. It can
be seen from Tables 2 and 3 that all the common parameters are chosen the same to achieve
a fair comparison between the metaheuristic algorithms. These parameters are swarm size,
iteration number, stall limit, lower and upper bounds, initialisation values and the total number
of runs of the proposed algorithms. The inertial weight in the particle swarm algorithm lies
in the range of 0.1–1.1, and its value is assigned adaptively. The cognitive and social weights
are chosen as 1.49, whereas in literature they are generally taken in the range of 1–2(68).

The pseudo-code for the proposed particle swarm optimisation-based data fitting method
is given in Algorithm 2. The initialisation step is conducted according to Table 3. The counter
j is set to zero, and the for loop is started. Next, a while loop is created to assess the fitness
measures of the particles and also implement the exploration as well as cognitive and social
behaviour of the particles. When the maximum number of iterations is reached or a stall
occurs, the gbest value is stored and the proposed method is restarted until the run number
n is reached. Finally, the average values of the gbest values are calculated and returned to
the main program as optimal solutions. The algorithm is evaluated twice, since two different
fitness functions are proposed.
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4.3 Fitness functions
The objective function is an important part of the metaheuristic methods, since their optimi-
sation performance is directly related to the fitness measure. The definition of the objective
function clearly determines how close an individual is to the global minimum. Therefore,
two different objective functions are proposed in this paper to achieve a higher performance
standard according to the different figures of merit. While the first objective function deals
with minimisation of the probability density error, the second deals with minimisation of the
cumulative distribution error. The proposed objective functions are given in Equations (17)
and (18), respectively.

fitpdf =
√√√√1

n

n∑
i=0

(
fmeasPdf (vi) − fcalcPdf (vi)

)2
, · · · (17)

fitcdf =
√√√√1

n

n∑
i=0

(
fmeasCdf (vi) − fcalcCdf (vi)

)2
, · · · (18)

where fitpdf is the first proposed objective function dependent on the RMSE of the probabil-
ity density, fitcdf is the second proposed objective function dependent on the RMSE of the
cumulative distribution, n is the number of unique wind speed values, fmeasPdf and fmeasCdf

are the measured probability and cumulative functions and, lastly, fcalcPdf and fcalcCdf are the
calculated probability and cumulative functions based on the k and c values obtained from the
proposed methods, respectively.

5.0 STATISTICAL ANALYSIS
Various statistical analysis methods exist to assess the performance or fit of a model(19,69).
The common statistical analysis methods used as metrics are the Mean Absolute Error
(MAE), Mean Square Error (MSE), Root-Mean-Square Error (RMSE), R squared (R2) and
chi squared (χ2). Different criteria to assess the fit of the model can also be found in Refs
70 and 71. In this section, the statistical methods to measure the performance of the differ-
ent numerical methods used for determining the Weibull distribution parameters are briefly
explained.

5.1 Root-mean-square error
The Root-Mean-Square Error (RMSE) is a statistic that is often used for evaluating the per-
formance of a model. The RMSE of a model, with regard to a given dataset, is the square
root of the mean of the square of each estimation error on all the samples in the dataset. Each
individual estimation error is equal to the difference between the actual observation and the
estimated observation for the sample(72). The RMSE can be expressed mathematically as

RMSE=
√√√√ 1

N

N∑
k=1

(
yk−ŷk

)2
. · · · (19)

It can be seen that, the smaller the RMSE value is, the better the accuracy of the model.
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5.2 R squared
R squared (R2), which is also defined as the coefficient of determination, is another way of
measuring the error between the data and model. R2 values range from 0 to 1. As the value of
R2 converges to 1, the accuracy of the model increases. It can be defined as follows:

R2= 1−
∑N

k=1

(
yk−ŷk

)2∑N
k=1 (yk−y)2 · · · (20)

where ȳ represents the mean wind speed.

5.3 Chi squared
Chi squared is used to determine the magnitude of the difference between the actual and esti-
mated observations. If the actual observation exactly matches with the estimated observation,
then the value of chi squared will be zero. As the difference between the actual and estimated
observations grows, the value of chi squared will increase as well. It can be expressed as
follows:

X 2=
∑N

k=1

(
yk−ŷk

)2

N−n · · · (21)

where n is the number of parameters used in the model.

5.4 Mean absolute error
The Mean Absolute Error (MAE) of a model, with regard to a given dataset, is the mean of
the absolute values of each estimation error on all the samples in the dataset. Each individual
estimation error is equal to the difference between the actual and estimated observation for
the sample(72). The MAE can be expressed mathematically as

MAE= 1

N

N∑
k=1

|yk−ŷk |, · · · (22)

where yk represents the actual observation, ŷk depicts the estimated observation, N denotes
the number of observations and |·| is the absolute value operator.

6.0 RESULTS AND DISCUSSION
The wind speed data are based on hourly observations from 1 January 2012 to 31 December
2014, with a total of over 27,000 measurements at HPA. The scale and shape parameters of
the Weibull distributions are estimated according to the 1-year period of the observations. In
Table 4, the mean and standard deviation of the measured wind speed are presented on both a
yearly and monthly basis.

According to Table 4, while the maximum mean wind speed peaked in July 2014 at
8.240964Kn, the minimum mean wind speed of 5.074570Kn was observed in February 2014.
The maximum standard deviation peaked in April 2012 at 5.538475Kn, while the minimum
standard deviation of 2.516791Kn was observed in September 2012.
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Table 4
Monthly and yearly mean and standard deviation values of the measured

wind speed of HPA

Measurement period Mean wind speed [Kn] Standard deviation [Kn]

January 7.483311 4.236814
February 7.796034 4.376052
March 6.290698 3.125670
April 7.453226 5.538475
May 6.481203 4.508074
June 6.223665 3.406966

2012 July 6.921228 3.219749
August 6.302578 3.482785
September 5.229167 2.516791
October 5.086765 3.761263
November 5.677067 2.961775
December 7.328671 3.964083
2012 6.544405 3.932964

January 7.396846 3.683561
February 5.868637 3.835750
March 6.438700 4.481505
April 5.280125 3.403589
May 5.481967 5.018570
June 5.370253 4.281564

2013 July 5.230769 3.070941
August 5.542857 2.526674
September 5.931587 3.052931
October 5.541833 4.043469
November 5.362117 3.412964
December 6.492715 3.464238
2013 5.852837 3.783959

January 6.611625 3.774360
February 5.074570 3.440265
March 6.778506 3.928422
April 6.155102 3.694447
May 6.486310 3.789777
June 6.825356 3.712014

2014 July 8.240964 3.947142
August 7.527370 4.017789
September 6.556150 4.147650
October 5.447500 3.514282
November 6.072136 3.920839
December 6.871959 3.581862
2014 6.590056 3.877587
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Table 5
Shape parameter (k) estimation of the yearly Weibull distributions

Maximum
likelihood Graphical Empirical Energy GA (J1) GA (J2) PSO (J1) PSO (J2)

2012 1.7885 1.5155 1.7386 1.5657 1.9671 1.7593 1.9671 1.7593
2013 1.6705 1.3935 1.6060 1.4737 1.7248 1.5240 1.7248 1.5240
2014 1.7921 1.5264 1.7789 1.6839 1.8262 1.6997 1.8262 1.6997

Table 6
Scale parameter (c) estimation of the yearly Weibull distributions

Maximum
likelihood Graphical Empirical Energy GA (J1) GA (J2) PSO (J1) PSO (J2)

2012 7.3909 7.7783 7.3453 7.2841 6.9033 6.6293 6.9033 6.6293
2013 6.5895 6.5056 6.5302 6.4690 6.1077 5.8536 6.1077 5.8536
2014 7.4278 7.0685 7.4061 7.3810 7.3171 6.8047 7.3171 6.8047

The estimated scale parameter c and shape parameter k of the yearly Weibull distributions
for the mathematical and proposed methods are presented in Tables 5 and 6. In these tables,
GA represents the genetic algorithm and PSO represents the particle swarm optimisation
method. In addition, while J1 represents the first fitness function based on the probability
distribution, J2 represents the second fitness function based on the cumulative distribution.

The estimated scale parameters lie in the range of 1.3935 to 1.9671 with an average of
1.6890. The estimated shape parameters lie in the range of 5.8536 to 7.7783 with an average
value of 6.8503. The minimum, maximum and mean values are based on three years of mea-
surements. Therefore, it can be seen that all the existing methods and proposed algorithms
are more consistent in the estimation of the scale value c, since the difference between the
minimal and maximal estimation is 0.5736. On the other hand, the estimation of the shape
value k differs slightly in each algorithm, with a maximum difference of 1.9247.

The Weibull probability density functions constructed using the estimated shape and scale
parameters are shown in Figs 4–6 in comparison with the measurement histogram. All the
methods for defining the Weibull cumulative distribution function are compared in Figs 7–9
with the cumulative histogram of the measurements. The errors between the measurement
histograms and the estimated values are shown in Figs 10–15 for both the probability density
and cumulative distribution functions. For clarity, the J1 fitness functions are used in the
probability density function plots while the J2 fitness functions are used in the cumulative
distribution plots. The average wind speed estimations of the algorithms are presented in
Table 7.

Table 8 presents a comparison of the total elapsed time of the algorithms in seconds.
Note that all of the implemented algorithms are capable of estimating the values in mil-

liseconds for the 1-year period of measurements. However, although they are extremely
compatible, the estimations by the mathematical methods generally take less time than when
using the metaheuristic approaches, except for the empirical method, which is the slowest
among the algorithms for all years. While the energy method is generally the fastest algorithm
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Table 7
Average wind speed estimations of the algorithms

Maximum
likelihood Graphical Empirical Energy GA (J1) GA (J2) PSO (J1) PSO (J2)

2012 6.5743 7.0092 6.5438 6.5425 6.1199 5.9018 6.1199 5.9018
2013 5.8857 5.9278 5.8513 5.8495 5.4435 5.2719 5.4435 5.2719
2014 6.6064 6.3647 6.5896 6.5890 6.5024 6.0706 6.5024 6.0706

Table 8
Total elapsed time of the algorithms

Maximum
likelihood Graphical Empirical Energy GA (J1) GA (J2) PSO (J1) PSO (J2)

2012 0.0035 0.0038 0.1125 0.0074 0.0686 0.0574 0.0441 0.0325
2013 0.0075 0.0086 0.1090 0.0011 0.0780 0.0513 0.0399 0.0312
2014 0.0051 0.0068 0.1225 0.0012 0.0847 0.0521 0.0486 0.0708

Figure 4. Comparison of the estimated parameters for the Weibull probability density function (2012).

compared with the others, among the metaheuristic approaches, the particle swarm algorithm
is generally faster than the genetic algorithm.

Goodness-of-fit tests for the estimation algorithms were carried out using χ2, R2, RMSE
and MAE for both the probability density and cumulative distribution functions. The results of
these statistical tests are presented in Tables 9–12 for R2, RMSE, MAE and χ2, respectively.
For the χ2, RMSE and MAE tests, the goodness of fit increases as the value approaches zero.
However, for the R2 test, the goodness of fit increases as the value converges to one.
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Table 9
R2 results of the algorithms

PDF CDF
2012 2013 2014 2012 2013 2014

Maximum likelihood 0.9450 0.9080 0.9780 0.9868 0.9834 0.9907
Graphical 0.8818 0.8695 0.9386 0.9689 0.9852 0.9956
Empirical 0.9403 0.9065 0.9778 0.9883 0.9865 0.9914
Energy 0.9051 0.8891 0.9713 0.9878 0.9883 0.9923
GA (J1) 0.9616 0.9164 0.9789 0.9957 0.9942 0.9931
GA (J2) 0.9417 0.8938 0.9604 0.9993 0.9985 0.9996
PSO (J1) 0.9616 0.9164 0.9789 0.9957 0.9942 0.9931
PSO (J2) 0.9417 0.8938 0.9604 0.9993 0.9985 0.9996

Figure 5. Comparison of the estimated parameters for the Weibull probability density function (2013).

From these tables, it can be clearly seen that the results of the metaheuristic algorithms have
better fitness values according to all of the implemented goodness-of-fit tests. The maximum
achievable bound for the R2 test is one. If the output of the method reaches the maximum
bound, then it is said to be optimum fitting. From the results presented in Table 9, it can be
seen that both metaheuristic algorithms achieved results as high as 0.9616 for the probability
density function and 0.9996 for the cumulative distribution function. According to the results
presented in Table 10, both metaheuristic algorithms achieved 0.0058 for the probability den-
sity function and 0.0057 for the cumulative distribution function, thus almost converging to
the ideal value of zero. In the MAE test results presented in Table 11, metaheuristics again
perform betters in comparison with existing methods, reaching values as low as 0.0036 for
the probability density function and 0.0045 for the cumulative distribution function. Finally,
according to Table 12, the results of the χ2 test show that all of the algorithms performed
well in fitting; however, metaheuristics achieved better results, being closer to the optimum
compared with the existing methods.
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Table 10
RMSE results of the algorithms

PDF CDF
2012 2013 2014 2012 2013 2014

Maximum likelihood 0.0097 0.0134 0.0059 0.0308 0.0319 0.0266
Graphical 0.0142 0.0160 0.0098 0.0473 0.0301 0.0183
Empirical 0.0101 0.0135 0.0059 0.0290 0.0288 0.0256
Energy 0.0128 0.0147 0.0067 0.0296 0.0268 0.0243
GA (J1) 0.0081 0.0128 0.0058 0.0175 0.0188 0.0230
GA (J2) 0.0100 0.0144 0.0079 0.0072 0.0096 0.0057
PSO (J1) 0.0081 0.0128 0.0058 0.0175 0.0188 0.0230
PSO (J2) 0.0100 0.0144 0.0079 0.0072 0.0096 0.0057

Table 11
MAE results of the algorithms

PDF CDF
2012 2013 2014 2012 2013 2014

Maximum likelihood 0.0049 0.0066 0.0038 0.0187 0.0184 0.0177
Graphical 0.0080 0.0078 0.0056 0.0299 0.0201 0.0115
Empirical 0.0050 0.0067 0.0038 0.0181 0.0175 0.0172
Energy 0.0065 0.0072 0.0042 0.0189 0.0174 0.0166
GA (J1) 0.0040 0.0060 0.0036 0.0109 0.0096 0.0151
GA (J2) 0.0043 0.0065 0.0043 0.0053 0.0060 0.0045
PSO (J1) 0.0040 0.0060 0.0036 0.0109 0.0096 0.0151
PSO (J2) 0.0043 0.0065 0.0043 0.0053 0.0060 0.0045

Table 12
χ2 results of the algorithms

PDF CDF
2012 2013 2014 2012 2013 2014

Maximum 9.96 × 10−5 1.90 × 10−4 3.68 × 10−5 1.00 × 10−3 1.08 × 10−3 7.52 × 10−4

likelihood
Graphical 2.14 × 10−4 2.69 × 10−4 1.03 × 10−4 2.36 × 10−3 9.56 × 10−4 3.55 × 10−4

Empirical 1.08 × 10−4 1.93 × 10−4 3.71 × 10−5 8.88 × 10−4 8.77 × 10−4 6.97 × 10−4

Energy 1.72 × 10−4 2.29 × 10−4 4.81 × 10−5 9.24 × 10−4 7.58 × 10−4 6.28 × 10−4

GA (J1) 6.94 × 10−5 1.72 × 10−4 3.53 × 10−5 3.25 × 10−4 3.74 × 10−4 5.62 × 10−4

GA (J2) 1.05 × 10−4 2.19 × 10−4 6.62 × 10−5 5.40 × 10−5 9.77 × 10−5 3.50 × 10−5

PSO (J1) 6.94 × 10−5 1.72 × 10−4 3.53 × 10−5 3.25 × 10−4 3.74 × 10−4 5.62 × 10−4

PSO (J2) 1.05 × 10−4 2.19 × 10−4 6.62 × 10−5 5.40 × 10−5 9.77 × 10−5 3.50 × 10−5
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Figure 6. Comparison of the estimated parameters for the Weibull probability density function (2014).

Figure 7. Comparison of the estimated parameters for the Weibull cumulative distribution function (2012).

In Table 13, an optimality-based sorting procedure is implemented to compare the per-
formance of the existing and proposed algorithms in terms of the elapsed time, mean wind
speed estimation and goodness-of-fit test results. In this comparison, while ‘1’ indicates the
optimal algorithm (first rank), ‘8’ denotes the one with the worst performance (last rank). In
the time column, the sorting is based on the minimum elapsed time. The optimum algorithm
is highlighted in bold. While in the χ2, RMSE, and MAE columns, the sorting is based on
closeness to zero, in the R2 column, the sorting is based on closeness to one. Finally, the mean
wind speed sorting is based on Equation (23), which denotes the smallest distance from the
measured mean wind speed.

min
{∣∣y−ŷ

∣∣} · · · (23)
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Figure 8. Comparison of the estimated parameters for the Weibull cumulative distribution function (2013).

Figure 9. Comparison of the estimated parameters for the Weibull cumulative distribution function (2014).

where ȳ denotes the measured mean wind speed, ŷ denotes the estimated mean wind speed
and |·| denotes the absolute value of the difference. It is clear from Table 13 that, according
to the χ2, RMSE, MAE and R2 tests, the genetic algorithm with the first objective function
always ranks first for the probability density function fitting whereas the genetic algorithm
with the second objective function also always ranks first for the cumulative distribution func-
tion fitting. The energy method is the fastest of all the algorithms, while the empirical method
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Figure 10. Weibull probability density function errors of the estimated parameters (2012).

Figure 11. Weibull probability density function errors of the estimated parameters (2013).

always ranks first for the estimation of mean wind speed. Table 14 is constructed from the
results of Table 13 to provide a global ranking based on the average values of all the compar-
ison methods. Moreover, the average value of the years is calculated for a final comparison
of the estimated performance of the algorithms throughout the whole available measurement
period.

The results presented in Table 14 show that the proposed metaheuristic methods are more
suitable for fitting the measured wind speed using both the probability density and cumulative
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Figure 12. Weibull probability density function errors of the estimated parameters (2014).

Figure 13. Weibull cumulative distribution function errors of the estimated parameters (2012)

distribution functions. Boldfaces show the minimum mean rank. A graphical distribution of
the average ranking over the algorithms is shown in Fig. 16 for all years.

7.0 CONCLUDING REMARKS
Two metaheuristic-based algorithms are proposed to estimate the parameters of the Weibull
distribution, viz. genetic algorithm-based and particle swarm-based data fitting methods. An
objective function is introduced based on the cumulative distribution function. The introduced
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Figure 14. Weibull cumulative distribution function errors of the estimated parameters (2013).

Figure 15. Weibull cumulative distribution function errors of the estimated parameters (2014).

objective function is based on the minimum RMSE between the measured and estimated
parameters of the Weibull distribution. The proposed methods are compared with well-known
numerical estimation methods, viz. maximum-likelihood estimation, the graphical method,
the empirical method and the equivalent energy method, as well as the existing objective
function. χ2, RMSE, MAE and R2 statistical tests are conducted to assess the performance of
the implemented algorithms based on the goodness of fit. The total time consumption of the
algorithms is also analysed and introduced as a secondary performance assessment tool.
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Figure 16. Mean rank values of the implemented algorithms.

According to the results of the statistical tests, the proposed algorithms outrank the numer-
ical methods as well as the existing objective function. In the R2 test, the proposed algorithms
achieve values as high as 0.9616, 0.9164 and 0.9789 for the probability density and 0.9993,
0.9985 and 0.9996 for the cumulative distribution function for the years 2012, 2013 and
2014, respectively. In the RMSE test, the proposed algorithms achieve values as low as
0.0081, 0.00128 and 0.0058 for the probability density and 0.0072, 0.0096 and 0.0057 for the
cumulative distribution function for the years 2012, 2013 and 2014, respectively. In the MAE
test, the proposed algorithms achieve values as low as 0.0040, 0.0060 and 0.0036 for the
probability density and 0.0053, 0.0060 and 0.0045 for the cumulative distribution function
for the years 2012, 2013 and 2014, respectively. In the χ2 test, the proposed algorithms
achieve values as low as 6.94 × 10−5, 1.72 × 10−4 and 3.53 × 10−5 for the probability density
and 5.40 × 10−5, 9.77 × 10−5 and 3.50 × 10−5 for the cumulative distribution function for
the years 2012, 2013 and 2014, respectively.

The main conclusions drawn from this study can be summarised as follows:

• The proposed metaheuristic-based algorithms outperform the numerical methods for all of
the conducted statistical tests, namely χ2, RMSE, MAE and R2.

• The genetic algorithm-based data fitting method ranked first and the graphical method
ranked last out of all the implemented algorithms for all years.

• All of the implemented algorithms are more consistent in estimating the scale parameter
in comparison with the shape parameter.

• All of the implemented algorithms are capable of estimating the Weibull parameters in
milliseconds for one year of measurement.

• The equivalent energy method is generally the fastest algorithm, while the empirical
method is generally the slowest among all the implemented algorithms.
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Table 13
Performance comparison of the algorithms

χ2 R2 RMSE MAE
TIME PDF CDF PDF CDF PDF CDF PDF CDF MEAN WS

Maximum 1 3 7 3 7 3 7 5 6 3
likelihood

Graphical 2 8 8 8 8 8 8 8 8 6
Empirical 8 6 5 6 5 6 5 6 5 1

2012 Energy 3 7 6 7 6 7 6 7 7 2
GA (J1) 7 1 3 1 3 1 3 1 3 4
GA (J2) 6 4 1 4 1 4 1 3 1 7
PSO (J1) 5 2 4 2 4 2 4 2 4 5
PSO (J2) 4 5 2 5 2 5 2 4 2 8

Maximum 2 3 8 3 8 3 8 5 7 3
likelihood

Graphical 3 8 7 8 7 8 7 8 8 4
Empirical 8 4 6 4 6 4 6 6 6 1

2013 Energy 1 7 5 7 5 7 5 7 5 2
GA (J1) 7 1 3 1 3 1 3 1 3 6
GA (J2) 6 5 1 5 1 5 1 3 1 7
PSO (J1) 5 2 4 2 4 2 4 2 4 5
PSO (J2) 4 6 2 6 2 6 2 4 2 8

Maximum 2 3 8 3 8 3 8 3 8 3
likelihood

Graphical 3 4 3 8 3 8 3 8 3 6
Empirical 8 3 7 4 7 4 7 4 7 1

2014 Energy 1 5 6 5 6 5 6 5 6 2
GA (J1) 7 1 4 1 4 1 4 1 4 5
GA (J2) 5 6 1 6 1 6 1 6 1 7
PSO (J1) 4 2 5 2 5 2 5 2 5 4
PSO (J2) 6 7 2 7 2 7 2 7 2 8

• Numerical estimation methods are more capable of estimating the average wind speed in
comparison with metaheuristic methods with the introduced objective functions.

• The particle swarm-based data fitting method is observed to be faster than the genetic
algorithm-based data fitting method.

• The genetic algorithm-based data fitting method is observed to be more stable in compari-
son with the particle swarm-based data fitting method in terms of converging to the global
optimum.

• The findings of this paper may cast light on establishing the correct orientation of new run-
ways in the design stage, based on wind data analysis, minimising crosswind components
and enhancing the safety and utility of the airport. It can be seen that HPA does not appear
to have high enough wind potential to generate power and electricity. This supports the fact
that it is a suitable location for the airport.
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Table 14
Mean rank values of the implemented algorithms

MEAN RANK

Maximum likelihood 4.5
Graphical 7.2
Empirical 5.3

2012 Energy 5.8
GA (J1) 2.7
GA (J2) 3.2
PSO (J1) 3.4
PSO (J2) 3.9

Maximum likelihood 5
Graphical 6.8
Empirical 5.1

2013 Energy 5.1
GA (J1) 2.9
GA (J2) 3.5
PSO (J1) 3.4
PSO (J2) 4.2

Maximum likelihood 4.9
Graphical 4.9
Empirical 5.2

2014 Energy 4.7
GA (J1) 3.2
GA (J2) 4
PSO (J1) 3.6
PSO (J2) 5

Maximum likelihood 4.8
Graphical 6.3
Empirical 5.2

ALL Energy 5.2
GA (J1) 2.9
GA (J2) 3.6
PSO (J1) 3.5
PSO (J2) 4.4

On the basis of the significant results presented in this study, a general outlook on future
research studies can be provided as follows:

• Stochastic distribution models other than the Weibull distribution may be used.
• New metaheuristic algorithms may be employed.
• Wind speed data may be expanded into several regions.
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22. AKGÜL, F.G., ŞENOǦLU, B. and ARSLAN, T. An alternative distribution to Weibull for modeling the
wind speed data: inverse Weibull distribution, Energy Convers Manage, 2016, 114, pp 234–240.
doi: 10.1016/j.enconman.2016.02.026.

23. SALEH, H., ABOU EL-AZM ALY, A. and ABDEL-HADY, S. Assessment of different methods used to
estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt,
Energy, 2012, 44, (1), pp 710–719. doi: 10.1016/j.energy.2012.05.021.

24. SILVA, G., ALEXANDRE, P., DANIEL, F. and EVERALDO, F., Eds. On the Accuracy of the Weibull
Parameters Estimators, 2004.

25. RAJABIOUN, R. Cuckoo optimization algorithm, Appl Soft Comput, 2011, 11, (8), pp 5508–5518.
doi: 10.1016/j.asoc.2011.05.008.

26. KENNEDY, J. and EBERHART, R. Particle swarm optimization, 1995 IEEE international conference
on neural networks, Perth, WA, Australia, 1995, pp 1942–1948.

27. CUEVAS, E., CIENFUEGOS, M., ZALDÍVAR, D. and PÉREZ-CISNEROS, M. A swarm optimization algo-
rithm inspired in the behavior of the social-spider, Expert Syst Appl, 2013, 40, (16), pp
6374–6384. doi: 10.1016/j.eswa.2013.05.041.

28. JIANG, H., WANG, J., WU, J. and GENG, W. Comparison of numerical methods and meta-
heuristic optimization algorithms for estimating parameters for wind energy potential assess-
ment in low wind regions, Renew Sustain Energy Rev, 2017, 69, pp 1199–1217. doi:
10.1016/j.rser.2016.11.241.

29. CHANG, T.P. Wind energy assessment incorporating particle swarm optimization method, Energy
Convers Manage, 2011, 52, (3), pp 1630–1637. doi: 10.1016/j.enconman.2010.10.024.

30. KUMAR, M.B.H., BALASUBRAMANIYAN, S., PADMANABAN, S. and HOLM-NIELSE, J.B. Wind energy
potential assessment by Weibull parameter estimation using multiverse optimization method:
a case study of Tirumala region in India, Energies, 2019, 12, (11), p 2158. doi:
10.3390/en12112158.

31. CARNEIRO, T.C., MELO, S.P., CARVALHO, P.C.M. and BRAGA, A. P. d. S. Particle Swarm Optimization
method for estimation of Weibull parameters: a case study for the Brazilian northeast region,
Renew Energy, 2016, 86, pp 751–759. doi: 10.1016/j.renene.2015.08.060.

32. YANG, F., REN, H. and HU, Z. Maximum likelihood estimation for three-parameter Weibull
distribution using evolutionary strategy, Math Prob Eng, 2019, 2019, pp 1–8. doi:
10.1155/2019/6281781.

33. LU, Z., DONG, L. and ZHOU, J. Nonlinear least squares estimation for parameters of mixed Weibull
distributions by using particle swarm optimization, IEEE Access, 2019, 7, pp 60545–60554. doi:
10.1109/ACCESS.2019.2915279.

34. BAKLACIOGLU, T., AYDIN, H. and TURAN, O. Energetic and exergetic efficiency modeling of a cargo
aircraft by a topology improving neuro-evolution algorithm, Energy, 2016, 103, pp 630–645. doi:
10.1016/j.energy.2016.03.018.

35. KABA, A. and KYAK, E. Optimizing a Kalman filter with an evolutionary algorithm
for nonlinear quadrotor attitude dynamics, J Comput Sci, 2020, 39, p. 101051. doi:
10.1016/j.jocs.2019.101051.

36. BAKLACIOGLU, T., TURAN, O. and AYDIN, H. Dynamic modeling of exergy efficiency of turboprop
engine components using hybrid genetic algorithm-artificial neural networks, Energy, 2015, 86,
pp 709–721. doi: 10.1016/j.energy.2015.04.025.

37. KIYAK, E. Tuning of controller for an aircraft flight control system based on parti-
cle swarm optimization, Aircr Eng Aerosp Technol, 2016, 88, (6), pp 799–809. doi:
10.1108/AEAT-02-2015-0037.

38. WANG, J.-J and LIU, G.-Y Saturated control design of a quadrotor with heterogeneous compre-
hensive learning particle swarm optimization, Swarm Evol Comput, 2019, 46, pp 84–96. doi:
10.1016/j.swevo.2019.02.008.

39. YAZAR, I., KIYAK, E., CALISKAN, F. and KARAKOC, T.H. Simulation-based dynamic model and speed
controller design of a small-scale turbojet engine, Aircr Eng Aerosp Technol, 2018, 90, (2), pp
351–358. doi: 10.1108/AEAT-09-2016-0150.

https://doi.org/10.1017/aer.2020.136 Published online by Cambridge University Press

https://doi.org/10.1080/03610918.2014.904520
https://doi.org/10.1016/j.enconman.2016.02.026
https://doi.org/10.1016/j.energy.2012.05.021
https://doi.org/10.1016/j.asoc.2011.05.008
https://doi.org/10.1016/j.eswa.2013.05.041
https://doi.org/10.1016/j.rser.2016.11.241
https://doi.org/10.1016/j.enconman.2010.10.024
https://doi.org/10.3390/en12112158
https://doi.org/10.1016/j.renene.2015.08.060
https://doi.org/10.1155/2019/6281781
https://doi.org/10.1109/ACCESS.2019.2915279
https://doi.org/10.1016/j.energy.2016.03.018
https://doi.org/10.1016/j.jocs.2019.101051
https://doi.org/10.1016/j.energy.2015.04.025
https://doi.org/10.1108/AEAT-02-2015-0037
https://doi.org/10.1016/j.swevo.2019.02.008
https://doi.org/10.1108/AEAT-09-2016-0150
https://doi.org/10.1017/aer.2020.136


KABA AND SUZER WEIBULL PARAMETER ESTIMATION FOR RUNWAYS... 947

40. PISKIN, A., BAKLACIOGLU, T., TURAN, O. and AYDIN, H. Modeling of energy efficiency of a tur-
boprop engine using ant colony optimisation, Aeronaut J , 2020, 124, (1272), pp 237–256. doi:
10.1017/aer.2019.134.

41. TEE, Y.Y. and ZHONG, Z.W. Modelling and simulation studies of the runway capacity of Changi
Airport, Aeronaut J , 2018, 122, (1253), pp 1022–1037. doi: 10.1017/aer.2018.48.

42. SAHIN, O. A proposed solution for airborne delays: linear holding, Aeronaut J , 2019, 123, (1269),
pp 1840–1856. doi: 10.1017/aer.2019.78.

43. DARAMOLA, A.Y. An investigation of air accidents in Nigeria using the Human Factors Analysis
and Classification System (HFACS) framework, J Air Transp Manage, 2014, 35, pp 39–50. doi:
10.1016/j.jairtraman.2013.11.004.

44. CECEN, R.K., CETEK, C. and KAYA, O. Aircraft sequencing and scheduling in TMAs under wind
direction uncertainties, Aeronaut J , 2020, 124, (1282), pp 1–17. doi: 10.1017/aer.2020.68.

45. IIJIMA, T., MATAYOSHI, N. and UEDA, S. Operational concept and validation of a new airport low-
level wind information system, Aeronaut J , 2020, 124, (1277), pp 1–41, doi: 10.1017/aer.2020.9.

46. Federal Aviation Administration (FAA). Advisory Circular AC 150/5300-13A: Airport Design,
AC 150/5300-13A, 2014.

47. European Aviation Safety Agency (EASA). Authority, Organisation and Operations
Requirements for Aerodromes, NPA 2011-20 (B.III), 2011.

48. International Civil Aviation Organization (ICAO). Runway Surface Condition Assessment,
Measurement and Reporting, Cir 329/AN/191, 2012.

49. ES, G.W.H. and KARWAL, A.K. Safety Aspects of Tailwind Operations, National Aerospace
Laboratory (NLR) NLR-TP-2001-003, 2001.

50. ES, G.W.H., GEEST, P.J. and NIEUWPOORT, M.H. Safety Aspects of Aircraft Operations in Crosswind,
National Aerospace Laboratory (NLR) NLR-TP-2001-217, 2001.

51. KIRAN, D.R. Reliability Engineering, in Total Quality Management: Key Concepts and Case
Studies, D. , KIRAN (Ed.), Amsterdam, Boston: Elsevier, 2017, pp 391–404.

52. A. Siddiqui et al. Determination of Weibull parameter by four numerical methods and pre-
diction of wind speed in Jiwani (Balochistan), J Basic Appl Sci, 2015, 11, pp 62–68. doi:
10.6000/1927-5129.2015.11.08.

53. RINNE, H. The Weibull Distribution: A Handbook, CRC Press, 2009, Boca Raton, Florida, London.
54. DAGDOUGUI, H., OUAMMI, A. and SACILE, R. Towards a concept of cooperating power network for

energy management and control of microgrids, Microgrid, M. S. Mahmoud (Ed.). Elsevier, 2017,
pp 231–262.

55. Turkish Statistical Institute. Population of Provinces by Years: Address Based Population
Registration, 2019.

56. Technical University of Denmark. Global Wind Atlas 3.0: Web-Based Application.
57. DEAVES, D.M. and LINES, I.G. On the fitting of low mean windspeed data to the Weibull distribu-

tion, J Wind Eng Ind Aerodyn, 1997, 66, (3), pp 169–178. doi: 10.1016/S0167-6105(97)00013-5.
58. MATHEW, S. Wind Energy: Fundamentals, Resource Analysis and Economics, Springer-Verlag

Berlin Heidelberg, 2006, Berlin, Heidelberg.
59. KANG, D., KO, K. and HUH, J. Comparative study of different methods for estimating Weibull

parameters: a case study on Jeju Island, South Korea, Energies, 2018, 11, (2), p. 356. doi:
10.3390/en11020356.

60. JUSTUS, C.G., HARGRAVES, W.R., MIKHAIL, A. and GRABER, D. Methods for estimating
wind speed frequency distributions, J Appl Meteor, 1978, 17, (3), pp 350–353. doi:
10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2.

61. STEVENS, M.J.M. and SMULDERS, P.T. The estimation of the parameters of the Weibull wind
speed distribution for wind energy utilization purposes, Wind Eng, 1979, 3, (2), pp 132–145.
www.jstor.org/stable/43749134

62. SINGH, K., BULE, L., KHAN, M.G.M. and AHMED, M.R. Wind energy resource assessment for
Vanuatu with accurate estimation of Weibull parameters, Energy Explor Exploit, 2019, 37, (6),
pp 1804–1832, doi: 10.1177/0144598719866897.

63. HAACK, B.N. A simulation model for wind electric systems, Wind Eng, 1980, 4, (2), pp 64–75.
www.jstor.org/stable/43749166

64. MANI, A. and MOOLEY, D.A. Wind Energy Data for India. Allied Publishers, 1983, New Delhi,
India. https://books.google.com.tr/books?id=9Ol1tgAACAAJ

https://doi.org/10.1017/aer.2020.136 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.134
https://doi.org/10.1017/aer.2018.48
https://doi.org/10.1017/aer.2019.78
https://doi.org/10.1016/j.jairtraman.2013.11.004
https://doi.org/10.1017/aer.2020.68
https://doi.org/10.1017/aer.2020.9
https://doi.org/10.6000/1927-5129.2015.11.08
https://doi.org/10.1016/S0167-6105(97)00013-5
https://doi.org/10.3390/en11020356
https://doi.org/10.1175/1520-0450(1978)017\le 0350:MFEWSF\ge 2.0.CO;2
http://www.jstor.org/stable/43749134
https://doi.org/10.1177/0144598719866897
http://www.jstor.org/stable/43749166
https://books.google.com.tr/books?id=9Ol1tgAACAAJ
https://doi.org/10.1017/aer.2020.136


948 THE AERONAUTICAL JOURNAL MAY 2021

65. AHN, C.W. Advances in Evolutionary Algorithms: Theory, Design and
Practice. Springer-Verlag Berlin Heidelberg, 2006. Berlin, Heidelberg.
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10133682
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