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Topological representation and reasoning in space
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Abstract

In this article, an approach is presented for the representation and reasoning over qualitative spatial relations. A set-
theoretic approach is used for representing the topology of objects and underlying space by retaining connectivity
relationships between objects and space components in a structure, denoted, adjacency matrix. Spatial relations are
represented by the intersection of components, and spatial reasoning is achieved by the application of general rules for
the propagation of the intersection constraints between those components. The representation approach is general and
can be adapted for different space resolutions and granularities of relations. The reasoning mechanism is simple and the
spatial compositions are achieved in a finite definite number of steps, controlled by the complexity needed in the
representation of objects and the granularity of the spatial relations required. The application of the method is presented
over geometric structures that takes into account qualitative surface height information. It is also shown how direc-
tional relationships can be used in a hybrid approach for richer composition scenarios. The main advantage of this work
is that it offers a unified platform for handling different relations in the qualitative space, which is a step toward
developing general spatial reasoning engines for large spatial databases.
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1. INTRODUCTION Qualitative spatial representation and reasot®g§RR
techniques are being developed to complement the tradi-
Representing and manipulating spatial or geometric relational quantitative methods in those domains. Many typical
tions are of primary importance in many application areagproblems could benefit from qualitative manipulation when
of large spatial databases such as, Computer-Aided Desigprecise geometric information is neither available nor needed.
Manufacture and Process Planni(@AD/CAM/CAPP),  Applications of QSRR include qualitative spatial scene spec-
Geographic Information SystertSIS) and medical and bio- ification and scene feasibility problems, checking the sim-
logical databases. As a result, spatial reaso8®) finds ilarity and consistency of data sets, integrating different
application in diverse areas such as assembly planning, repatial setEl-Geresy & Abdelmoty, 1998 and in initial
botics, constraint-driven design and drafting, and machin@runing of search spaces in spatial query processing. Re-
selection and specification. GIS are based on a range &earch is also ongoing for incorporating QSRR in the defi-
spatial-reasoning techniques for manipulating geographigition and implementation of spatial query languages.
features on one or more data layers, such as in processimpwever, the qualitative approach has obvious limitations
spatial join queries, where sets of geographically referwhere useful characteristics of spatial objects such as shape
enced features are overlaid in the search for regions satismnd size are not used. Also, its application becomes limited
fying particular constraints. Such application domains arevhen exact positions and tolerance constraints are consid-
characterized by handling very large sets of entities, relaered. Hence, it can be argued that both the quantitative and
tionships, and constraints, and their manipulation usuallyjualitative approaches have complementary areas of strength
involves substantial computational costs. and that any system that can combine the two paradigms in
a way that uses their strengths would be an effective plat-
form for a range of novel and conventional applications.
_ _ _ . This article presents an approach to the representation of
Reprint requests to: Alia Abdelmoty, School of Computing, University

of Glamorgan, Treforest, Rhondda Cynon Taff, CF37 1DL, Wales, U.K. and reasoning over qualitative spatial relations, namely to-
E-mail: aiabdel@glam.ac.uk pological and orientation. We show how a representation
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strategy for storing connectivity relationships between ob- 1. Topology—proximity axis (P-axispver which the vari-

jects and space components forms the basis of a reasoning ation represents relationships resulting from the rela-

mechanism for the composition of spatial relationships. The tive transition of objects.

two types of relationships are treated individually and then 3 orientation axis (O-axis)over which the variation rep-

combined to demonstrate the effectiveness of a hybrid ap-  resents relationships resulting from the relative rota-

proach. Examples are given to illustrate the applicability of tion of objects.

the reasoning process on objects of arbitrary complexity and 3. Size axis (S-axis)where scaling variations are

dimension. The extension of the formalism to higher dimen- ™ represented

sion spaces is readily recognized. '
The article is structured as follows. In Section 2, an over- . L )

view is given of the different types of qualitative relation-  1WO types of rotations can be distinguished on the orien-

ships in space. Section 3 outlines the representation approalion axis: the rotation of an object around a reference ob-

in topological spaces. In Section 4, the reasoning method i@ct and the rotat_lon of.an opject arom_md itself. Hence,. there

presented and applied over topological relations betweel$ @ Need to define orientation relations from the point of

nonsimple objects. Representation and reasoning over orY/eW of each object. This type of orientation is called body

entation spaces is given in section 5 and the combined spac@éentation and uses an intrinsic frame of refere(Retz-

are treated in Section 6. Discussion and conclusions are givepchmidt, 1988 On the other handextrinsic orientations

in Section 7, where we also show how semiquantitative shap@'® When afixed external frame of reference is used for both

information could be incorporated in the formalism. the object spaces, for example, cardinal direction orienta-

tion (east, west, north, south
Interdependencies of the axes can be recognized as

1.1. The qualitative frame of reference

Different types of qualitative spatial relations can be pre-
sented on a qualitative frame of reference in an analogy to 1.
the quantitativelabsolute frame of reference. One of the
objects is used to represent the “origin” with respect to 2.
which the other object is referenced. An object in space
possesses three degrees of freedom that determine its spa-
tial relationship with other objects, namely, transition, ro-
tation, and scalingenlargements or shrinkingAccordingly,

three main axes of variation can be established as shown
in Figure 1, namely,

west

Opjece

(back)

* smaller’

. 4

Shape

* owverlap

follows:

Relationships along the size axis are independent of
the other two axes.

Relationships along the topology—proximity axis may
depend on the size of the objects involved in the case
where the objects are in close proximity. For example,
when objects are very close, changing the size of the
objects can transform a relationshipdigjoint into

overlap or the relationship oéqual to contain
or inside

Orientation

Interaction-Proximily

e —

Fig. 1. Qualitative frame of reference for spatial relationships.
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3. Relationships on the orientation axis may be affectedHence, the topology of a spa&kcontaining an object is
by both size and proximity of the objects involved. defined using the following equation.
An objectinfront  of another can become alksdt
orright ofit, if it increases in size or gets closer to n
the other object. X = U1 Xi 1

Shape is another aspect of the qualitative representa-
tion. However, it cannot be represented by linear ordered
continuous variations. It is added to the figure for illustra-
tive purposes. Accordingly an obje€, can be qualita-
tively described with reference to another objestby a
triple (P,0, S), which is the qualitative equivalence to the
(X)Y,Z) or (R,0,¢) in a quantitative frame of reference.

S = XU Xo, 2

where S, is used to denote the space associated with ob-
jectx.

In Figure 2 different possible decompositions of a simple
convex polygon and its embedding space are shown along
with their adjacency matrices. In Figure 2a, the object is
represented by two components, a linear comporgand
2 THE EORMALISM an areal component,, and the rest of the space is repre-
sented by an infinite areal componeqt representing the

This section first addresses the problem of qualitative repSurrounding area. In Figure 2d, only one areal component is
resentation of objects with random spatial complexity andSed to represent the polygon. Both representations are valid
their topological relationships. The reasoning formalism is2nd may be used in different contexts. Different decompo-
then presented, consisting of deneral constraints to goy- Sition strategies for the objects and their embedding spaces
ern the spatial relationships between objects in space, arf@n be used according to the precision of the relations re-
2) general rules to propagate relationships between thosguired and the specific application considered. The higher
objects. Both the constraints and the rules are based ontBe resolution usecbr the finer the components of the space
uniform representation of the topology of the objects, their@nd the objectsthe higher the precision of the resulting set

embedding space and the representation of the relatior®f relations in the domain considered. _
ships between them. The fact that two components are connected is repre-

sented by d1) in the adjacency matrix and by(@) other-

wise. Since connectivity is a symmetric relation, the resulting
2.1. The general representation approach matrix will be symmetric around the diagonal. Hence, only

half the matrix is sufficient for the representation of the ob-
Objects of interest and their embedding space are dividefct's topology and the matrix can be collapsed to the struc-
into components according to a required resolution. The corture in Figures 2c and 2f.
nectivity of those components is explicitly represented. Spa- Semibounded areas of the embedding space can also be
tial relations are represented by the intersection of objectepresentedas virtual componentsf needed. For exam-
component$Abdelmoty & Williams, 1994 in a similar fash-  ple, Figure 3a shows a possible decomposition of a concave-
ion to that described in Egenhofér994), but with no re- shaped object and its embedding space. In Figure 3b, the
striction on object components to consist only of two partsadjacency matrix for its components is presented. The ob-

(boundary and interigr ject is represented by two components, a linear component
X, and an areal componexy, and the rest of its embedding
2.1.1. The underlying representation of object space is represented by a finite areal compomgntepre-
topology senting the virtual enclosure, and infinite areal component

Let Sbe the space in which the object is embedded. Théo: representing the surrounding area.

object and its embedding space are assumed tiebseand ) ) )
connectedThe embedding space is also assumed to be iné-1.2. The underlying representation of spatial

finite. The object and its embedding space are decomposed ~ 'elations

into components that reflect the objects and space topology In this section, the representation of the topological rela-
such that 1 No overlap exists between any of the representions through the intersection of their componet&gen-
tative components;)2Z'he union of the components is equal hofer & Herring, 1990; Egenhofer et al., 1994 adopted

to the embedding space. The topology of the object and thand generalized for objects of arbitrary complexity. Distinc-
embedding space can then be described by a matrix whos®n of topological relations is dependent on the strategy used
elements represent the connectivity relations between itm the decomposition of the objects and their related spaces.
components. This matrix shall be denotdiacency ma- For example, in Figure 4 different relationships between two
trix. In the decomposition strategy, the complement of theobjectsx andy are shown, where in Figure 4a tkés out-
object in question shall be considered to be infinite, and theidey and in Figure 4kxis insidey. Objecty is decomposed
suffix 0 [e.g.,(Xg)] is used to represent this component.into two componentsy, andy,, and the rest of the space

https://doi.org/10.1017/50890060400145032 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060400145032

376 B.A. El-Geresy and A.l. Abdelmoty

0 1 T2
0
L) - 1 0
""""""""""""""""""" 1 xq
zq 1 - 1
0 1 ED)
3>} 0 1 -
(a) (b) (<)
x0
zQ ®q
0
"""""""""""""""""" ®( - 1
1 xq
@1 1
(d) (e) )

Fig. 2. (a) and(d) Possible decompositions of a simple convex polygon and its embedding $preed (e) Adjacency matrices

corresponding to the two shapes(& and(d), respectively(c) and(f) Half the symmetric adjacency matrix is sufficient to capture
the object representation.

associated witly is decomposed into two componenys, If R(x,y) is arelation of interest between objegtandy,

representing the enclosure, ayyl representing the rest of andX andY are the spaces associated with the objects re-

the space. Note that it is the identification of thertual) spectively such thain is the number of components K

componenty,; that makes the distinction between the two andl is the number of components ¥j then a spatial rela-

relationships in the figure. tion R(x,y) can be represented by one instance of the fol-
The complete set of spatial relationships are identified bylowing equation:

combinatorial intersection of the components of one space

with those of the other space.

L ox0 YO

x1
x2
z0
vo | v1 | v2 | w3 vo | v1 | v2 | w3
1 T z0 1 1 1 1 20 1 1 1 1
0 1 2o @y 1 0 0 0 @y 0 0 0 1
®o 1 0 0 0 @9 0 0 0 1
1 1 0 x3
(c) (d)
(a) (b)

Fig. 4. Different qualitative spatial relationships can be distinguished by
Fig. 3. (a) Using virtual components to represent semibounded compo-dentifying the appropriate components of the objects and the space.
nents(of interesj in space(b) Adjacency matrix for the shape ii). and(d) corresponding intersection matrices.
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involved in certain spatial relations suchexgial orcon-

Yo | Y1 | Y2 | - tain between the smaller and the larger object.

The example in Figure 6 demonstrates the six possible
To spatial relations that can exist between two solid objects; a
simple convex polygon and a simple concave one, along
R(z,y) =| 1, with their intersection matrices. The example can be used
to represent many situations, for example, putting a box into
o a container, carving a hole in a solid shape by a tool, etc.
Note that since objectis a solid object, componegs can
only have a nonempty intersection wixh.

Fig. 5. Layout of the intersection matrix. . .
9 y 2.2. The general reasoning formalism

The reasoning approach consists ofgeneral constraints
to govern the spatial relationships between objects in space,

Ry =XnY and 2 general rules to propagate relationships between the
m | objects.
ot = 2.2.1. General constraints
= (X N Vg, X N YL X2 N Y, X N W) The intersection matrix is in fact a set of constraints whose

values identify specific spatial relationships. The process of

The intersections, N y; can be an empty or a nonempty spatial reasoning can be defined as the process of propagat-
intersection. The above set of intersections shall be repréng the constraints of two spatial relatiofesg.,R,(A,B) and
sented by an intersection matrix, as shown in Figure 5. FOR,(B,C)) to derive a new set of constraintbetweenA
example, consider the intersection matrices in Figures 4gnd C). The derived constraints can then be mapped to a
and 4d. The components andx, have a nonempty inter- specific spatial relatioiRs(A,C)).
section withy, in Figure 4c and witty; in Figure 4d. Asubset of the set of constraints defining all possible spa-

Different combinations in the intersection matrix can rep-tial relations is general and applicable to any relationship
resent different qualitative relations. The set of valid or soundhetween any objects. These general constraints are a con-
spatial relationships between objects is dependent on the pafequence of the initial assumptions used in the definition of

ticular domain studied. Also, properties of the objects coultthe object and space topology. The two general constraints
affect the set of possible spatial relationships that can exigre:

between them. For example, if one of the objects is solid

and the other is permeable, there cannot be any intersection 1. Every unboundedinfinite) component of one space
of the inside of the solid object with any component of the must intersect with at least one unboundgdinite)
other object. Objects of different size or shape cannot be component of the other space.

Rs =| 0o 0 0 1 Rg =| o 1 0 1

Fig. 6. A set of six spatial relationships between two solid bodies. The decomposition of objects are as in Figure 4.
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2. Every component from one space must intersect with
at least one component from the other space.

2.2.2. General reasoning rules

Composition of spatial relations is the process through
which the possible relationshig between two objectsg
andz, is derived, given two relationshipR; betweerx and
y andR, betweeny andz. Two general reasoning rules for
the propagation of intersection constraints are presented. The
rules are characterized by the ability to reason over spat
relationships between objects of arbitrary complexity in an
space dimension. These rules allow for the automatic deri-
vation of the compositiofitransitivity) tables between any
spatial shapesRandell et al., 1992 Abdelmoty & El-

Geresy, 199b

Composition of spatial relations using timersectiorrep-
resentation approach is based on the transitive property
the subset relations. In what follows the following subset
notation is used. Ik’ is a set of componentset of point-
setg {Xy,...,Xy} in @ spaceX, andy, is a component in
spaceY, thenC denotes the following subset relationship:

« y; C X’ denotes the subset relationship such ¥ate
X(yy X #¢d) Oy, N (X = X3 = Xpeoo = X)) = ¢
wherei =1,...m". Intuitively, this symbol indicates that
the componeny; intersects with every set in the col-

9)
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Rl | ”2 |23 | 24 | """ | #n

T — | a1 — | a2 — —

Fig. 7. Representation of the constraitN (z, U z,) # ¢.

The above rule states that if the compongnt spaceY

ial . . .
jwas a positive intersection with every component from the

setsx’ andz’, then each component of the sétmust in-
tersect with at least one component of the Zeand vice
versa.

The constraink;, Nz, # ¢ O, Nz, # ¢ ... 0% Nz, #
¢ can be expressed in the intersection matrix by a label; for
ample the labed, (r =1 or 2) in the matrix in Figure 7
indicates; N (z, U z,) # ¢ (X, has a positive intersection
with z,, or with z, or with both. A — in the matrix indicates
that the intersection is either positive or negative.

Rule 1 represents the propagation of nonempty intersec-
tions of components in space. A different version of the rule
for the propagation of empty intersections can be stated as
follows.

Rule 2: Propagation of empty intersectionsLet z’' =
{z1,2,,...,2y} be a subset of the set of components of

lectionx” and does not intersect with any set outside Ofspacez whose total number of Componentsr‘iﬁnd n <

!

X'

If x;, y;, andz, are components of objects y, andz,

n;z’ C Z. Lety ={y1,¥,...,Yr} be a subset of the set of
components of spacéwhose total number of components

respectively, then if there is a nonempty intersection beis | andl’ <I;y" CY. Letx; be a component of the space

tweenx; andy;, andy; is a subset og,, then it can be con-

X. Then the following is a governing rule for the spaéés

cluded that there is also a nonempty intersection betwgen Y, andZ.

andz,.

(xiNy#=¢) 0y, Cz) = (X Nz # P)

This relation can be generalized in the following two rules.

(xCy)Od(y Ez)

SN (Z-21—2... —Zy) =)

The rules describe the propagation of intersections between g vk If n’ = n. that is. x. may intersect with every
the components of objects and their related spaces involvedement inz. or if m’ = m the{t is,z, may intersect with

in the spatial composition.

Rule 1: Propagation of nonempty intersections Let

every elementirX, or if |" = [, that is,x; (or z,) may inter-
sect with every element i, then no empty intersections

X' =1{X1, X, ... X} be a subset of the set of components a5 he propagated for or z,. Rules 1 and 2 are the two

of spaceX whose total number of componentsnsand

m =m; x'" C X. Letz ={z;,2,,...,Zv} be a subset of
the set of components of spaZewhose total number of
components i; andn’ = n; z' C Z. If y, is a component

general rules for propagating empty and nonempty intersec-
tions of components of spaces.

Note that in both rules the intermediate objegt and its
space components play the main role in the propagation of

of spaceY, the following is a governing rule of interaction jytersections. The first rule is applied a number of times equal

for the three spacex, Y, andZ.
(x"3y) Oy, E2')
> (X'NzZ #¢)
=X Nz #=dO...0x1 N Zy # D)
OxoNzy#pO...0OX N Zy # )
O...
OXw NZ1#F S O...0Xw N Zy # )
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to the number of components of the space of the intermedi-
ate object. Hence, the composition of spatial relations be-
comes a tractable problem that can be performed in a defined
limited number of steps. ]

2.3. Example of spatial reasoning with complex
objects

The example in Figure 8 is used for demonstrating the com-
position of relations using nonsimple spatial objects. Fig-
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yo x0
] o0
‘
.
1 I e
Y v x2 21 ¥
. @O
23
) | X1 2
| x3
]
(@) (b)
Z0 z1 z2
Yo Y1 y2 y3 Yq
vo 1 0 0
zq 1 1 1 0 0
Y1 1 0 0
2 1 0 0 0 0
yo 1 1 1
2o 1 0 0 0 0
Y3 1 1 0
z3 1 1 1 1 1
Y4 1 0 0
(c) (d)

Fig. 8. (a) and(b) Spatial relationships between nonsimple objecty,

andz (c) and(d) Corresponding intersection matrices.

ure 8a shows the relationship between a concave polygon
and a polygon with a holg and Figure 8b shows the rela-
tionship between objegt and a simple polygorz wherez
touches the hole iy. The intersection matrices correspond-

ing to the two relationships are also shown.
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A zZ1 z2

To 1 - ai

X1 1 0 0

2 1 0 0

xrs3 1 1 a2

Fig. 9. The result of composing relations in figures 8a and 8b.

e Y, intersections:

Xat Y4 Oys E{zo} = X3 N 20 # .
Applying rule 2 we get the following:

* Xo T {Yo, V1. Y2 O{ Yo, Y1, VoI E {20, 21, Z5}; Xo has no
empty intersections with components4n

e X, Cyo Oy C{zo} > X, Nz = 0%, N2, = ;

e X, LYo Oyo C{zo) > XNz = Ox, N 2, = ¢

o X3 C {Yo, Y1, ¥2: Y3, Yat O {Yo: Y1, Y2, Y3, Ya} E {Z0,
Z,,2,}; X3 has no empty intersections with compo-
nents inZ.

Refining the above constraints, we get the intersection ma-

Given that the possible set of relationships that can occuiy in Figure 9. Comparing the resulting matrix above with
betweerx andz in a certain domain are as shown in Fig- the matrices in Figure 6, it can be seen that the result matrix

ure 6, it is mandatory to derive the possible relationshipggrresponds to two possible relationships between objects
between these two objects given the situation in Figure 8.5,44, namely the relationshipR, andRs.

The reasoning rules are used to propagate the intersec- p gifferent conclusion is obtained if the relationship be-

tions between the components of objecendz as follows.

From rule 1 we have the following:
e Y, intersections:
{Xos X1, X2, X3} I Yo OYo E {20}
S XoNZg#F P UXy N ZgF P

Ox, Nz # ¢ OXz N 29 # ¢
e Yy, intersections:

{Xo,Xa} D y1 Oy1 E{Zo} = X1 N 2o # ¢ OX3 N 20 # ¢h;

e Y, intersections:
X0, X3} 2 Y2 Oy, C {2,231, 25}
—> X N(zgUzyU2Zy) # ¢

Ox3N(ZgU z1 U 25) # ¢
e Yy, intersections:

{xs} D ys Oys E{z0, 21}

—X3NZg# P X3 N 21 # ¢;

https://doi.org/10.1017/50890060400145032 Published online by Cambridge University Press

tween objecty andzis as shown in Figure 10a. The com-
position of the relationships betwegny, andzin this case
will result in the definite matrix in Figure 10b, which cor-
responds tdzs in Figure 6.

3. REPRESENTATION AND REASONING OVER
ORIENTATION RELATIONS

Orientation spaces are defined using a strategy similar to
that used for topological spaces above. Adjacency between
objects and the semi-infinite orientation areas are explicitly
represented for each object. Orientation relationships be-
tween two objects are defined by the intersection between
components in the object spaces.

Several schemes exist for the division of space to repre-
sent areas of acceptance for each orientation such as coni-
cal or rectangular. The approach defined here is independent
of the scheme used to divide the space. Space divisions used
in this paper are chosen for clarity and readability. More
complex divisions can be treated in a similar way.

For simplicity, object shapes are approximated by points
in the following examples. Consider the orientation rela-
tions in Figure 11a for an intrinsic frame of reference. The
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YO 20

20 1 z2

1) Y1 y2 y3 Y4
vo 1 0 0

zq 1 1 1 0 0
v1 1 0 0

@y 1 0 0 0 0
yo 1 0 0

) 1 0 0 0 0
v3 1 0 0

@3 1 1 1 1 1
va 1 1 1

(a) (k) (c) (d)
X0 z0

(e)

20 1 0 0
21 1 0 0
29 1 0 0

()

Fig. 10. Example for the propagation of definite relationships.

components of spacésandY are as followsX = x U FR,
UFL,UBRUBL,, Y=yUFR,UFL,UBR, U BL,
whereFR,, FL;, BR,, andBL; denote the orientationsront-
Right, Front-Left Back-Right andBack-Left respectively.

FL_y FR_y
y
FR_x
FL_x
BL_y BRy | X
BL_x BR_x
(a)
x | FRg FLy BRgy BLy
y 0 0 1 0 0
FRy 0 1 1 0 0
FLy 0 0 1 0 0
BRy 1 1 1 1 1
BLy 0 0 1 0 1

(b)

Fig. 11. (a) Example of an intrinsic orientation relation and its correspond- ) 8
ing intersection matrix irib). The arrow on the figure denotes the front of th€ componentsR, andFR, is not empty, then the relation

the object.
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The intersection matrix corresponding to this relation is
shown in Figure 11b.

Both the relationship and its converse are needed to com-
pletely define the orientation relation in the case of the in-
trinsic frame of reference. For example, in Figure 11a, the
relationship between objectsandy is defined byBR(X, y)
OFL(y, x). If either of the objects rotates around itself, its
relative relationship with the other object will change as well,
as shown in Figure 12. In Figure 12, objechas changed
its orientation and hence has also changed its relationship
with y to beBR(X, y) O BL(Yy, X).

3.1. Examples of qualitative reasoning with
orientation relations

For the sake of simplicity, the objects and the bounding lines
of the orientations areas are omitted. This does not affect
the reasoning process in the examples given or the features
of the formalism, since both general constraints are pre-
served for the semi-infinite areas. A mapping between non-
empty intersections of space and the corresponding possible
relations is given in Figure 13.

Each cell in Figure 13 contains the relation where there is
a nonempty intersection between the corresponding com-
ponents. If a relation is missing in a cell, then the intersec-
tion between the corresponding components is empty for
the missing relation. For example, the highlighted cell in
Figure 13 corresponding to the componefi andFR, is
interpreted as follows: If we know that the intersection of

between objectg andz could be either of the following:
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A
FL_y FR_y
A
y
FL_x

FL_x
BL_y BRy | X

BL_x FR_x

(a)
x | FRy | FLy | BRy | BLg

Yy

FRy

FLy

BRy

BLy 1

(b)

Fig. 12. (a) Changing the body orientation of objectgives a different
relationship defined by the matrix ifi).

a. FR(z,x) O(BL(x, z) OBR(x, z) OFL(x, z) OFR(x, 2)).
Another way of expressing thisER(z, x) DAl (x, 2);

b. BR(z,x) O(FL(x,z) OFR(X,2));
c. BL(z,x) OFR(x,2); or
d. FL(z,x) O(BR(x,z) OFR(X, z)).

. r’ All A I A | Tyl A
[ = T
All J All I r’ Al ﬁ»

FLx f* * T‘ ¢ +* o
BRx % <_+ * If* -t
¢* Al «f ‘ All «¢ All

BL e I = «ﬂ !
" an | _ b “ﬂ' All ‘ b

Fig. 13. Correspondence between the intersection of the components and

the relations in the intrinsic frame of reference. The highlighted cell entry
is explained in the text. The cross represents the spaxeaoid the small
arrows represent the front direction of object
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ExampPLE. Propagation of definite compositions. Con-

sider the simple example of composing the relationships

FL(y,x) OFL(x,y) OBR(y,z) 0BR(z,y). The relation-
ships and their corresponding intersection matrices are shown
in Figures 14a and 14b.

The reasoning rules are used to propagate the intersec-

tions between the components of objecemdz as follows.

From rule 1 we have the following:

e FRyintersections:
{FLx,BLy} D FRy C {BR,,BL,}
— (FLy N BR,# ¢ OFL, N BL, # ¢)

0O(BL, N BR, # ¢ OBL, N BL, # ¢).
FL, intersections:

{X} I FLy E{BR;} = (BR, N {X} # ¢).

Note that the result of this composition can only iden-
tify the relative position o to z (BR(X, z)), but not
vice versa.

BR, intersections:

{FLx} 2 BR, C{Z} = (FLy N{Z} # ¢).

From this constraint it can be deduced that the relation
betweerz andx is FL(z, X).
BL, intersections:

{FR,FL,} 3 BL,C {FR,,BR,}
— (FR, N FR, # ¢ OFR, N BR, # ¢)
O(FL, N FR,# ¢ OFL, N BR, # ).

Note the intersections of the componefts, and BR,
have fully identified the composed relation, namely,
BR(x,z) O FL(z x). In this case, we don’t need to apply
rule 2. However for completeness the propagation of con-
straints by rule 2 are as follows:

o {FR,} C (FLy U BL,) C {BR,,FR,} —» FR, N
{FL,,BL,} = ¢;

o {BRJLC FI—y C{BR,} — BR N{FR,,FL,,BL,} = ¢;

e {BL,} C {FLy,FRy} C {BR,,BL,} — BL, N {FR,,
FL,} = ¢,

e FL, has no empty intersections sinice= I.

Grouping the above constraints, we get the intersection ma-
trix in Figure 14c. Using Figure 13, it can be seen that the
result matrix corresponds to the relationshBR(x, z) O
FL(z,x) as in Figure 14d. [

ExampLE. Propagation of indefinite compositions. Con-
sider the relationships in Figure 1BL(y, x) OFL(x,y) O
FR(z,y) OFR(y, z). The corresponding intersection matri-
ces are shown in Figure 15b. The reasoning rules are used
to propagate the intersections between the components of
objectsxandzas follows. From rule 1 we have the following:
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BR_y BL_y FIL_y FR_y
y * y
FL_x FR_x BR_z BL_z
. X BL Z
FRy ytLy - BR_y
BL_x BR_x FR_z Y FL_z
(a)
FRy FLg BR, BL, FR. FL. BR: BL
0 1 0 1 FRy 0 0 1 1
1 1 1 1 FLy 0 0 1 0
0 1 0 0 BRy 1 1 1 1
1 1 0 0 BLy 1 0 1 0
(b)
FL_z FR_z
FR_x
FI._x
BL_z BR_z X
FR, FLg BRg BLg -
FR. 1 1 0 0 BL_x BR_x
FL, 0 1 0 0
BR. 1 1 1 1
BL, 0 1 0 1

(e)

(d)

Fig. 14. (a) Composing the relationshiga_(x,y) OFL(y, x) andBR(y, z) OBR(z,y). (b) Corresponding intersection matricés)
Resulting propagated constraintd) Correspondinddefinite) relationship.

e FRy intersections:
{Z} 3 FR, C {FLy, BLy}
— (FR,N FL, # ¢ OFR, N BL, # ¢)
O(FL,N FLy # ¢ OFL, N BL, # ¢)
O(BR, N FLy # ¢ OBR, N BL, # ¢)

O(BL, N FLy # ¢ OBL, N BLy # ¢);

e FL, intersections:
{FR;, BR,} J FL, C {X}
- (FR,N FR, # ¢ OFR, N BR, # ¢)
O(FLy N FR,# ¢ OFL, N BR, # ¢)
O(BR.N FR,# ¢ OBR, N BR, # ¢)

O(BLy N FR, # ¢ OBL, N BR, # ¢);

(3.
(3.2
(3.9

(3.4

4.1
(4.2
4.2

4.2
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e BR, intersections:
{FR,,FL,} I BR, C{FL,}

— (FLy N FR, # ¢ OFL, N FL, # ¢);
e BL, intersections:

{FR,} I BL, E{FR,,FL,}
— (FR,N FR, # ¢ OFR, N FL, # &).

Applying rule 2 we get the following:

e FL,C{FR,UBR}C {FL,,BL} = FL,NFR = ¢
OFL, N BR, = ¢:

e BL,C FR,C {FL,,BL,} - BL, N FR, = ¢ OBL,N
BR, = ¢.

Refining the above constraints, we get the intersection
matrix in Figure 15c. Using Figure 13, we get the possible
relations in Figure 15d. Note that the conditidBsl), (3.2),

(4.1), and (4.2 are satisfied by definite intersections. The
process of mapping the propagated intersections into pos-
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BR BL_z
BR_y BL_y —
A FI_y * FR_y
y FI_x FR_x z
. X FI._z
FR_y ¢ FL_y Y FR_z. ¢
BI._x BR_x Bl_y BR_y
(a)
FRy FLg BRg BL, FR. FL, BR: BL
0 1 0 1 FRy 1 1 1 1
1 1 1 1 FLy 1 0 1 0
0 1 0 0 BRy 1 1 0 0
1 1 0 0 BLy 1 0 0 0
(b)
1
‘
! z.
________*____ - — -
|
j x
1
|
FR. FL BR. BL. '
'z
FRy 1, by 0 by 0 _______“"._“__‘____'
1
FLg ay, bg, 1 ag, 1 ag,by ag !
BR, b3 0 b3 0
BL, ay, by ag by, ag ag

(d)

Fig. 15. () Composing the relationshiga_(x,y) OFL(y, x) andFR(y, z) OFR(z,y). (b) Corresponding intersection matricés)
Resulting propagated constrainfd) Correspondingindefinite) relationships.

sible relations in Figure 13 is carried out by finding the in- mation. Second, the application of the approach in assem-
tersection of the set of relations corresponding to cells obly problems is studied, by enhancing the method with
value 1 in the matrix with the complement of the set of re-semiquantitative shape information.

lations corresponding to cells of value 0 in the matrix. This

process is demonstrated in Figure 16. In Figure 16a, the in-

tersection of the set of the relations corresponding to cell4-1. Combined reasoning with topological and

of value 1 is shown and in Figure 16b the result from Fig- orientation spaces

ure 16a is intersected with the complements of the sets
relations corresponding to cells of value 0.

The result of the composition is indefinite and conse-
quently the relative positions of the objects is ambiguous
The possible resulting relations between obje@sdz are:
(FR(x,2z) OBL(z,x)) O(BR(x,z) OFL(z, X)) ]

OAS can be expected, reasoning with more than one type of
gualitative relationships would produce more precise re-
sults. One way of handling multiple types of relations using
the representation and reasoning approaches above is by
overlaying both the orientation and topological spaces for
the objects. Hence, the combined space would contain both
the object components as well as the orientation areas. Ori-
entation areas around the object could either be defined using
a representative point on the objéety., its center or using

the minimum bounding rectangle of the object. The exam-
In this section, the formalism proposed is extended in twle in Figure 17 illustrates the space components in the later
ways. First, the reasoning process is enhanced by considezase. Spatial reasoning is carried out in a fashion similar to
ing multiple types of qualitative positional information at that above. Figure 18 shows the composition of the follow-
once, namely, combining topological and orientation infor-ing relationships between objectsy and z: touch(x, y),

4. POSSIBLE EXTENSIONS OF THE
APPROACH
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a)

Fig. 16. The process of mapping the constraints propagated by the reasoning rules to the set of possible relationsFRare)y,
0OBL(z,x)) O(BR(x,z) OFL(z, x)). The figure is explained in the text.

front(y, x), back(x,y) and disjointy, z), back(y,z), e Finding a consistent scenario.

front(z,y). The composition yields the definite relations: e Finding all consistent scenarios.

disjoint(x, z), back(x, z) and front(z, x). Note that the com- e Other reasoning tasks such as determining whether
position would have been indefinite if only the topological given spatial specifications are consistent.

relationships were consideraduch(x, y) Odisjoint(y, z) —

. e In thi i litati logical ing i
disjoint(x, z) Otouch(x, z) overlap(x, z) Dlinside(x, z) O n this section, qualitative topological reasoning is used

inside— and — touch— boundaryx. 2) for finding all consistent scenarios in the context of simple
side—a ouc oundaryx, z). assembly problems. In constructive solid geometry, any solid

Also, proximity and relative size of the objects are im- object could generally be constructed from an initial basic

portant factors that must be considered, especially when tha1 ' . .
. . ] ape by adding or taking away other shapes in a sequence
objects are very close or are in a containment relatidm be by 9 9 y P q

of operations and transformations. Here, this idea is bor-
delmoty & El-Geresy, 1994 rowed, where an object is represented qualitatively by a
basic shape into which a set of holes is drilled and onto
4.2. Topological structuring using qualitative height which a set of protrusions is added as shown in Fig-
information ure 19a. A semiqualitative representation is used by taking
surface heights into account, where holes are represented
%y negative regions and protrusions by positive ones, as
shown in Figure 19b. The basic shape is denoted as base
e Finding all feasible relationgminimal labelling region(or zero-height region Those regions can be estab-

Given a network of objects and relations, reasoning task
can be used in one or more of the following:

problem). lished by constructing orthographic views of the object or
xf
X2
x1 L ;<—X1 Xr

r1
1 z9

Xb 1 0 zf
1 0 1 z;
1 0 0 1 zy,
1 0 1 0 1 zp

Fig. 17. Representation of the combined topological and orientation spaces.
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Tl
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] z9 z 5 2 zyp, zp
0 0 1 0 0 0
0 0 1 0 0 0
zf 0 0 1 0 0 0
0 0 1,b b 0 0
zy 1 1 , 1, a 1,a 1 1,d
zZp 0 0 1, ¢ 0 0 c

Fig. 18. () Composingouch(x, y) and front(y, x) O disjoint(y, z) and bacKy, z). (b) Definite resultdisjoint(x, z) and bacKx, z).

by slicing the object at the level of its base region compo-
nent. To determine all possible assembly scenarios, two steps

need to be applied.

1. Topological representation of objects using surface
heights as above. This step includes the definition of

base

hole |

(@)

Fig. 19. Qualitative representation using surface heights.

protrusion
| ——

xb

GO

(®)
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all relationship constraints between object compo-
nents and the formation of a constraint network.

2. Topological reasoning over the network, applied as a
constraint satisfaction problem to find all consistent

scenarios.

4.2.1. Topological representation using surface heights

Foranobjeck, letthe component, denote its base region,
x;_ denote a hole region, angl’ denote a protrusion region.

Objectx can then be defined as= x,ULoX UZoX".

The following constraints apply between the components
of the object. All possible relationships between simple re-
gions are shown in Figure 20.

a. Betweerx, andx : R(xp, %) € {contain b-contair}

b. Betweerx, andx": R(x,,X") € {contain b-contain

overlap, touch
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f. R(Xp,yp ) € {disjoint,touch.

g- R(X",yp) € {equalinsideb-insidg This is a global
constraint which must be satisfied at least once.

ExampPLE. Consider the simple example of a child
assembling two pieces of Lego™ bricks. Two faces of the
bricks are considered as shown in Figure 22a, one with
two protrusions, and the other with two holes. Applying
the above constraints will produce three different scenar-
ios depicted in Figure 22b. Scenario 3 is not possible and
can be excluded if size constraints are taken into account,

Fig. 20. The set of all possible relationships between two simple regionslarger((y; + y3 ),(x; OxX3)). Different types of qualitative

c. Betweenx; and x,: R(Xi ,x) € {disjoint, touch

and 0= k=nandk #i.

d. Betweenx;" andx": R(x",x") € {disjoint, touch

and 0= | = mandl #j.

e. Betweenx™ and x": R(x,x") € {disjoint, touch

contain}

relations would need to be used if a minimum possible so-
lution set is to be derived qualitatively.

5. COMPARISON WITH RELATED WORK

Several approaches are reported in the literature for the rep-
resentation and reasoning over topological and orientation
relations. The main advantage of the representation method
proposed is its uniformity. The same methodology is used
for the definition of simple and complex objects and is ap-

Applying the above constraints, the topology of surfaces camplied consistently in the orientation and topological spaces.
be represented as in the example shown in Figure 21. Notéhe method is also adaptable, where different levels of rep-

that the relations are read as ¢edllumn, row.

4.2.2. Qualitative reasoning in assembly problems

The basic constraint in assembling any two faces of o
jects is that of contact, that is, the faces must touch. Usin
the above topological representation of faces, this con-

resentation can be devised by hiding or revealing the details
of objects as required. The method is therefore well adapted
for use as a basis for a spatial reasoning formalism.

b- The representation of complex regions has been ad-
%ressed in many works. Cohn et §1997) extended the

andell-Cohn—CuiRCC) formalism to handle concave re-

straint is interpreted to a set of constraint between differenf'ONS and regions with hol¢gloughnut shapgsNew axi-

objects components. For two objegtandy the constraints

are:

a. R(x,,y,) € {touch overlap,equalinsidecontainb-

containb-insidg.

b. R(x,Yp) € {U} whereU is the set of all possible

relations.

c. R(x",yy) € {touch disjoint}.

d. R(xi",yp ) € {disjoint,touch, equal,contain,b-contain

e. R(Xy,Yp ) € {U}.

® [
X+

]

b — contain ®

contain disjoint

ot |

(a) (b)

Fig. 21. Topological representation using constraint networks.
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oms and theories had to be devised to define the new shapes.
The main drawback of this approach is its complexity, as
new, possibly considerable, extensions of the formalism have
to be devised with every new shape considered.

In Egenhofer and Herringl990 and Egenhofer and Fran-
z0sa(199)), the authors used point-set topology to define
simple regions, using three components, boundary, inte-
rior, and exterior. The method proposed here deviates from
their work in one important respect that has far-reaching
implications. We relaxed the constraint on the object com-
ponents to be any possible set of components that satisfies
the main assumptions behind the formalism. The notions
of boundaries, interiors, and exteriors were dropped and
the notion of object and space components is used instead.
Egenhofer’s method is limiting and could not be extended
to handle complex objects. Other methods were devised in
Egenhofer et al1994) to define regions with holes, through
the definition of spatial relationships between simple re-
gions, and no extension for the method was proposed for
the definition of irregular, or concave regions.

The work of Clementini and De Felicgl995 follows
closely the method of Egenhofer, and provides a definition
for regions with holes using boundaries, interiors and exte-
riors. Their method carries the same limitations as those of
Egenhofer and Herring1990. In another work, Clemen-
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xb yb
/: - \ @

(a)

yb xb yb xb
v2+
( yl+ i1 x1-

Scenerio 1 cenerio

(b) Scenerio 3

Fig. 22. (a) Assembling two Lego brickg andy. (b) Three topologically possible scenarios.

tini et al. (1995 addressed the issue of defining composite e The space-division approaches are based on dividing
regions for use in spatial query languages, by defining ex-  the space around the object into semi-infinite accep-
plicit relationships between all the components in the ob-  tance areas. Reasoning in these approaches utilizes spa-
ject, in the same way regions with holes were defined in tial composition tables that are usually built manually,
Egenhofer et al(1994). by a visual process, for every object type or space gran-
Coenen and PepijfL998 proposed an ontology for ob- ularity considered.
jects and relationships in spatiotemporal domains. They as- _ o )
sumed the space to consist of sets of points and used set-Féwer works exist for defining and reasoning over other
theoretic notions to define objects in that space. TheifyPes of relationship. In Hernandez et@d999, proximity
approach is distinctive from the others mentioned abovelS defined by distance values and reasoning is carried out
where space is considered to be discrete, not Continuougy.vectorsums with respect to specific onentauon_between
The method was used to define a general “object” and quarRPi€cts. In Gahegafl999, a fuzzy set membership rela-
titative identifiers are used to qualify the object properties.tion is used to reason about degrees of closeness.
Our approach is a an example of the constraint-driven ap- /N general, approaches to handling orientation relations
proach, where a spatial relationship is defined by a set of'® limited in the|r expressiveness, pecause of thglr inabil-
intersection constraints between the object components. A to represent different types of orientation relations for
mentioned earlier, the approach is a fundamental variatiofifférent object dimensions without restricting the space res-
of that proposed by EgenhoféEgenhofer, 1989 olution or division. Also,_ l_aundlng compos!tlon tables man-
The approach developed by Randell et(4D92) is an ually affec_:ts the tractablllty_of the reasoning process in the
example of the relation-driven approach to representing to¢@se of high space resolutions. In general, approaches are
pological relationships, where a set of axioms for definingSPecific and none of the existing approaches offers a uni-
every needed relationship has to be devised. For examplé€d method for handling different types of spatial relations,
the definition of theoverlap  relationship between two sim- Which is the main aim of the work presented here.

ple regions iverlap(x,y) « Part(z,x) O Part(zy), and a Approaches to spgtial regsoning i.n the Iiterature can gen-
set of constraints is used for defining the relationshipera”y be classified into usingransitive propagationand
Part(x,y). usingtheorem proving

Approaches for representing orientation relationships can
be classified under two main categorigsojection-based
approaches anspace-divisiorapproaches.

e Transitive propagation: In this approach the transitive
property of some spatial relations is utilized to carry
out the required reasoning. This appliestder rela-

¢ In the projection-based approaches, objects are pro- tions such adefore ,after , and(<,=,>) (for ex-
jected on thex andy axes, dividing the axes up into ample,a < b Ob < ¢ — a < ¢), and to the subset
several ordered parts. By comparing the order of these  relations such asontain andinside (for exam-
projected parts, the orientation relation is inferred. Rea-  ple, insidg/A,B) O insidgB,C) — insidg(A,C), east
soning in these approaches exploits the interval alge-  (A,B) OeastB,C) — eastA,C)).

bra (Allen’s transitivity table$ from the temporal o Transitive property of the subset relations was em-
domain(Chang & Jungert, 1986; Guesgen, 1989; Frank, ployed by Egenhofe(1994) for reasoning over topo-
1992 logical relationships. Transitive property of the order

https://doi.org/10.1017/50890060400145032 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060400145032

388 B.A. El-Geresy and A.l. Abdelmoty

relations has been utilized by Chang and (11984, and is based on the application of two rules for the propa-
Guesgeri1989, Mukerjee and Jo€1990, Lee and Hsu  gation of empty and nonempty intersections between object
(1991, and Papadias and Selli£995. components.
¢ Although order relations can be utilized in reasoning The method has been applied to orientation spaces and
over point-shaped objects, they cannot be directly apextended to cater for hybrid reasoning where topological
plied when the actual shapes and proximity of objectsand orientation spaces are used concurrently. A possible ex-
are considered. tension of the method was also presented which takes into
e Theorem provingelimination: Here, reasoning is car- account qualitative surface height information.
ried out by checking every relation in the full set of It can be concluded that significant benefits are en-
soundrelations in the domain to see whether itis a valid visaged if spatial reasoning systems are enhanced by qual-
consequence of the composition considetedorems itative manipulation of different types of positional
to be provedand eliminating the ones that are not con- information.
sistent with the compositiofCohn et al., 1998
e Bennett(1994 has proposed a propositional calculus
for the derivation of the composition of topological re- REFERENCES
lations between simple regions using this method. How-
ever, checking each relation in the composition tableabdelmoty, A.Il. & El-Geresy, B.A(1995. A general method for spatial
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