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Abstract

In this article, an approach is presented for the representation and reasoning over qualitative spatial relations. A set-
theoretic approach is used for representing the topology of objects and underlying space by retaining connectivity
relationships between objects and space components in a structure, denoted, adjacency matrix. Spatial relations are
represented by the intersection of components, and spatial reasoning is achieved by the application of general rules for
the propagation of the intersection constraints between those components. The representation approach is general and
can be adapted for different space resolutions and granularities of relations. The reasoning mechanism is simple and the
spatial compositions are achieved in a finite definite number of steps, controlled by the complexity needed in the
representation of objects and the granularity of the spatial relations required. The application of the method is presented
over geometric structures that takes into account qualitative surface height information. It is also shown how direc-
tional relationships can be used in a hybrid approach for richer composition scenarios. The main advantage of this work
is that it offers a unified platform for handling different relations in the qualitative space, which is a step toward
developing general spatial reasoning engines for large spatial databases.
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1. INTRODUCTION

Representing and manipulating spatial or geometric rela-
tions are of primary importance in many application areas
of large spatial databases such as, Computer-Aided Design,
Manufacture and Process Planning~CAD0CAM 0CAPP!,
Geographic Information Systems~GIS! and medical and bio-
logical databases. As a result, spatial reasoning~SR! finds
application in diverse areas such as assembly planning, ro-
botics, constraint-driven design and drafting, and machine
selection and specification. GIS are based on a range of
spatial-reasoning techniques for manipulating geographic
features on one or more data layers, such as in processing
spatial join queries, where sets of geographically refer-
enced features are overlaid in the search for regions satis-
fying particular constraints. Such application domains are
characterized by handling very large sets of entities, rela-
tionships, and constraints, and their manipulation usually
involves substantial computational costs.

Qualitative spatial representation and reasoning~QSRR!
techniques are being developed to complement the tradi-
tional quantitative methods in those domains. Many typical
problems could benefit from qualitative manipulation when
precise geometric information is neither available nor needed.
Applications of QSRR include qualitative spatial scene spec-
ification and scene feasibility problems, checking the sim-
ilarity and consistency of data sets, integrating different
spatial sets~El-Geresy & Abdelmoty, 1998!, and in initial
pruning of search spaces in spatial query processing. Re-
search is also ongoing for incorporating QSRR in the defi-
nition and implementation of spatial query languages.
However, the qualitative approach has obvious limitations
where useful characteristics of spatial objects such as shape
and size are not used. Also, its application becomes limited
when exact positions and tolerance constraints are consid-
ered. Hence, it can be argued that both the quantitative and
qualitative approaches have complementary areas of strength
and that any system that can combine the two paradigms in
a way that uses their strengths would be an effective plat-
form for a range of novel and conventional applications.

This article presents an approach to the representation of
and reasoning over qualitative spatial relations, namely to-
pological and orientation. We show how a representation
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strategy for storing connectivity relationships between ob-
jects and space components forms the basis of a reasoning
mechanism for the composition of spatial relationships. The
two types of relationships are treated individually and then
combined to demonstrate the effectiveness of a hybrid ap-
proach. Examples are given to illustrate the applicability of
the reasoning process on objects of arbitrary complexity and
dimension. The extension of the formalism to higher dimen-
sion spaces is readily recognized.

The article is structured as follows. In Section 2, an over-
view is given of the different types of qualitative relation-
ships in space. Section 3 outlines the representation approach
in topological spaces. In Section 4, the reasoning method is
presented and applied over topological relations between
nonsimple objects. Representation and reasoning over ori-
entation spaces is given in section 5 and the combined spaces
are treated in Section 6. Discussion and conclusions are given
in Section 7, where we also show how semiquantitative shape
information could be incorporated in the formalism.

1.1. The qualitative frame of reference

Different types of qualitative spatial relations can be pre-
sented on a qualitative frame of reference in an analogy to
the quantitative~absolute! frame of reference. One of the
objects is used to represent the “origin” with respect to
which the other object is referenced. An object in space
possesses three degrees of freedom that determine its spa-
tial relationship with other objects, namely, transition, ro-
tation, and scaling~enlargements or shrinking!. Accordingly,
three main axes of variation can be established as shown
in Figure 1, namely,

1. Topology–proximity axis (P-axis):over which the vari-
ation represents relationships resulting from the rela-
tive transition of objects.

2. Orientation axis (O-axis):over which the variation rep-
resents relationships resulting from the relative rota-
tion of objects.

3. Size axis (S-axis):where scaling variations are
represented.

Two types of rotations can be distinguished on the orien-
tation axis: the rotation of an object around a reference ob-
ject and the rotation of an object around itself. Hence, there
is a need to define orientation relations from the point of
view of each object. This type of orientation is called body
orientation and uses an intrinsic frame of reference~Retz-
Schmidt, 1988!. On the other hand,extrinsic orientations
are when a fixed external frame of reference is used for both
the object spaces, for example, cardinal direction orienta-
tion ~east, west, north, south!.

Interdependencies of the axes can be recognized as
follows:

1. Relationships along the size axis are independent of
the other two axes.

2. Relationships along the topology–proximity axis may
depend on the size of the objects involved in the case
where the objects are in close proximity. For example,
when objects are very close, changing the size of the
objects can transform a relationship ofdisjoint into
overlap or the relationship ofequal to contain
or inside .

Fig. 1. Qualitative frame of reference for spatial relationships.
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3. Relationships on the orientation axis may be affected
by both size and proximity of the objects involved.
An object infront of another can become alsoleft
or right of it, if it increases in size or gets closer to
the other object.

Shape is another aspect of the qualitative representa-
tion. However, it cannot be represented by linear ordered
continuous variations. It is added to the figure for illustra-
tive purposes. Accordingly an objectO1 can be qualita-
tively described with reference to another objectO2 by a
triple ~P,O,S!, which is the qualitative equivalence to the
~X,Y, Z! or ~R,u,f! in a quantitative frame of reference.

2. THE FORMALISM

This section first addresses the problem of qualitative rep-
resentation of objects with random spatial complexity and
their topological relationships. The reasoning formalism is
then presented, consisting of 1! general constraints to gov-
ern the spatial relationships between objects in space, and
2! general rules to propagate relationships between those
objects. Both the constraints and the rules are based on a
uniform representation of the topology of the objects, their
embedding space and the representation of the relation-
ships between them.

2.1. The general representation approach

Objects of interest and their embedding space are divided
into components according to a required resolution. The con-
nectivity of those components is explicitly represented. Spa-
tial relations are represented by the intersection of object
components~Abdelmoty & Williams, 1994! in a similar fash-
ion to that described in Egenhofer~1994!, but with no re-
striction on object components to consist only of two parts
~boundary and interior!.

2.1.1. The underlying representation of object
topology

Let Sbe the space in which the object is embedded. The
object and its embedding space are assumed to bedenseand
connected. The embedding space is also assumed to be in-
finite. The object and its embedding space are decomposed
into components that reflect the objects and space topology
such that 1! No overlap exists between any of the represen-
tative components; 2! The union of the components is equal
to the embedding space. The topology of the object and the
embedding space can then be described by a matrix whose
elements represent the connectivity relations between its
components. This matrix shall be denotedadjacency ma-
trix. In the decomposition strategy, the complement of the
object in question shall be considered to be infinite, and the
suffix 0 @e.g., ~x0!# is used to represent this component.

Hence, the topology of a spaceS containing an objectx is
defined using the following equation.

x 5 ø
i51

n

xi ~1!

Sx 5 x ø x0, ~2!

whereSx is used to denote the space associated with ob-
ject x.

In Figure 2 different possible decompositions of a simple
convex polygon and its embedding space are shown along
with their adjacency matrices. In Figure 2a, the object is
represented by two components, a linear componentx1 and
an areal componentx2, and the rest of the space is repre-
sented by an infinite areal componentx0, representing the
surrounding area. In Figure 2d, only one areal component is
used to represent the polygon. Both representations are valid
and may be used in different contexts. Different decompo-
sition strategies for the objects and their embedding spaces
can be used according to the precision of the relations re-
quired and the specific application considered. The higher
the resolution used~or the finer the components of the space
and the objects!, the higher the precision of the resulting set
of relations in the domain considered.

The fact that two components are connected is repre-
sented by a~1! in the adjacency matrix and by a~0! other-
wise. Since connectivity is a symmetric relation, the resulting
matrix will be symmetric around the diagonal. Hence, only
half the matrix is sufficient for the representation of the ob-
ject’s topology and the matrix can be collapsed to the struc-
ture in Figures 2c and 2f.

Semibounded areas of the embedding space can also be
represented~as virtual components! if needed. For exam-
ple, Figure 3a shows a possible decomposition of a concave-
shaped object and its embedding space. In Figure 3b, the
adjacency matrix for its components is presented. The ob-
ject is represented by two components, a linear component
x1 and an areal componentx2, and the rest of its embedding
space is represented by a finite areal componentx3, repre-
senting the virtual enclosure, and infinite areal component
x0, representing the surrounding area.

2.1.2. The underlying representation of spatial
relations

In this section, the representation of the topological rela-
tions through the intersection of their components~Egen-
hofer & Herring, 1990; Egenhofer et al., 1994! is adopted
and generalized for objects of arbitrary complexity. Distinc-
tion of topological relations is dependent on the strategy used
in the decomposition of the objects and their related spaces.
For example, in Figure 4 different relationships between two
objectsx andy are shown, where in Figure 4a thex is out-
sidey and in Figure 4bx is insidey. Objecty is decomposed
into two components,y1 andy2, and the rest of the space
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associated withy is decomposed into two components,y3,
representing the enclosure, andy0, representing the rest of
the space. Note that it is the identification of the~virtual!
componenty3 that makes the distinction between the two
relationships in the figure.

The complete set of spatial relationships are identified by
combinatorial intersection of the components of one space
with those of the other space.

If R~x,y! is a relation of interest between objectsx andy,
andX andY are the spaces associated with the objects re-
spectively such thatm is the number of components inX
andl is the number of components inY, then a spatial rela-
tion R~x,y! can be represented by one instance of the fol-
lowing equation:

Fig. 2. ~a! and ~d! Possible decompositions of a simple convex polygon and its embedding space.~b! and ~e! Adjacency matrices
corresponding to the two shapes in~a! and~d!, respectively.~c! and~f ! Half the symmetric adjacency matrix is sufficient to capture
the object representation.

Fig. 3. ~a! Using virtual components to represent semibounded compo-
nents~of interest! in space.~b! Adjacency matrix for the shape in~a!.

Fig. 4. Different qualitative spatial relationships can be distinguished by
identifying the appropriate components of the objects and the space.~c!
and~d! corresponding intersection matrices.
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R~x,y! 5 X ù Y

5 Sø
i51

m

xiD ù Sø
j51

l

yjD
5 ~x1 ù y1,...,x1 ù yl,x2 ù y1,...,xm ù yl!

The intersectionxi ù yj can be an empty or a nonempty
intersection. The above set of intersections shall be repre-
sented by an intersection matrix, as shown in Figure 5. For
example, consider the intersection matrices in Figures 4c
and 4d. The componentsx1 andx2 have a nonempty inter-
section withy0 in Figure 4c and withy3 in Figure 4d.

Different combinations in the intersection matrix can rep-
resent different qualitative relations. The set of valid or sound
spatial relationships between objects is dependent on the par-
ticular domain studied. Also, properties of the objects could
affect the set of possible spatial relationships that can exist
between them. For example, if one of the objects is solid
and the other is permeable, there cannot be any intersection
of the inside of the solid object with any component of the
other object. Objects of different size or shape cannot be

involved in certain spatial relations such asequal or con-
tain between the smaller and the larger object.

The example in Figure 6 demonstrates the six possible
spatial relations that can exist between two solid objects; a
simple convex polygon and a simple concave one, along
with their intersection matrices. The example can be used
to represent many situations, for example, putting a box into
a container, carving a hole in a solid shape by a tool, etc.
Note that since objecty is a solid object, componenty2 can
only have a nonempty intersection withx0.

2.2. The general reasoning formalism

The reasoning approach consists of 1! general constraints
to govern the spatial relationships between objects in space,
and 2! general rules to propagate relationships between the
objects.

2.2.1. General constraints

The intersection matrix is in fact a set of constraints whose
values identify specific spatial relationships. The process of
spatial reasoning can be defined as the process of propagat-
ing the constraints of two spatial relations~e.g.,R1~A,B! and
R2~B,C!! to derive a new set of constraints~betweenA
and C!. The derived constraints can then be mapped to a
specific spatial relation~R3~A,C!!.

A subset of the set of constraints defining all possible spa-
tial relations is general and applicable to any relationship
between any objects. These general constraints are a con-
sequence of the initial assumptions used in the definition of
the object and space topology. The two general constraints
are:

1. Every unbounded~infinite! component of one space
must intersect with at least one unbounded~infinite!
component of the other space.

Fig. 5. Layout of the intersection matrix.

Fig. 6. A set of six spatial relationships between two solid bodies. The decomposition of objects are as in Figure 4.
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2. Every component from one space must intersect with
at least one component from the other space.

2.2.2. General reasoning rules
Composition of spatial relations is the process through

which the possible relationship~s! between two objects,x
andz, is derived, given two relationships:R1 betweenx and
y andR2 betweeny andz. Two general reasoning rules for
the propagation of intersection constraints are presented. The
rules are characterized by the ability to reason over spatial
relationships between objects of arbitrary complexity in any
space dimension. These rules allow for the automatic deri-
vation of the composition~transitivity! tables between any
spatial shapes~Randell et al., 1992a; Abdelmoty & El-
Geresy, 1995!.

Composition of spatial relations using theintersectionrep-
resentation approach is based on the transitive property of
the subset relations. In what follows the following subset
notation is used. Ifx ' is a set of components~set of point-
sets! $x1, . . . ,xm' % in a spaceX, andyj is a component in
spaceY, thenv denotes the following subset relationship:

• yj v x ' denotes the subset relationship such that;xi [
x '~ yj ù xi Þ f! ∧ yj ù ~X 2 x1 2 x2 . . . 2 xm! 5 f
wherei 51, . . .m'. Intuitively, this symbol indicates that
the componentyj intersects with every set in the col-
lectionx ' and does not intersect with any set outside of
x '.

If xi , yj , andzk are components of objectsx, y, andz,
respectively, then if there is a nonempty intersection be-
tweenxi andyj , andyj is a subset ofzk, then it can be con-
cluded that there is also a nonempty intersection betweenxi

andzk.

~xi ù yj Þ f! ∧ ~ yj # zk! r ~xi ù zk Þ f!

This relation can be generalized in the following two rules.
The rules describe the propagation of intersections between
the components of objects and their related spaces involved
in the spatial composition.

Rule 1: Propagation of nonempty intersections: Let
x ' 5 $x1, x2, . . . ,xm' % be a subset of the set of components
of spaceX whose total number of components ism and
m' # m; x ' # X. Let z' 5 $z1, z2, . . . ,zn' % be a subset of
the set of components of spaceZ whose total number of
components isn andn' # n; z' # Z. If yj is a component
of spaceY, the following is a governing rule of interaction
for the three spacesX, Y, andZ.

~x ' w yj ! ∧ ~ yj v z' !

r ~x ' ù z' Þ f!

[ ~x1 ù z1 Þ f ∨ . . . ∨ x1 ù zn' Þ f!

∧ ~x2 ù z1 Þ f ∨ . . . ∨ x2 ù zn' Þ f!

∧ . . .

∧ ~xm' ù z1 Þ f ∨ . . . ∨ xm' ù zn' Þ f!

The above rule states that if the componentyj in spaceY
has a positive intersection with every component from the
setsx ' andz', then each component of the setx ' must in-
tersect with at least one component of the setz' and vice
versa.

The constraintxi ù z1 Þ f ∨ xi ù z2 Þ f . . . ∨ xi ù zn' Þ
f can be expressed in the intersection matrix by a label; for
example the labelar ~r 5 1 or 2! in the matrix in Figure 7
indicatesx1 ù ~z2 ø z4! Þ f ~x1 has a positive intersection
with z2, or with z4 or with both!. A2 in the matrix indicates
that the intersection is either positive or negative.

Rule 1 represents the propagation of nonempty intersec-
tions of components in space. A different version of the rule
for the propagation of empty intersections can be stated as
follows.

Rule 2: Propagation of empty intersections: Let z' 5
$z1, z2, . . . ,zn' % be a subset of the set of components of
spaceZ whose total number of components isn andn' ,
n; z' , Z. Let y'5 $ y1, y2, . . . ,yl ' % be a subset of the set of
components of spaceY whose total number of components
is l and l ' , l; y' , Y. Let xi be a component of the space
X. Then the following is a governing rule for the spacesX,
Y, andZ.

~xi v y' ! ∧ ~ y' v z' !

r ~xi ù ~Z 2 z1 2 z2 . . . 2 zn' ! 5 f!

Remark. If n' 5 n, that is,xi may intersect with every
element inZ, or if m' 5 m, that is,zk may intersect with
every element inX, or if l '5 l, that is,xi ~or zk! may inter-
sect with every element inY, then no empty intersections
can be propagated forxi or zk. Rules 1 and 2 are the two
general rules for propagating empty and nonempty intersec-
tions of components of spaces.

Note that in both rules the intermediate object~ y! and its
space components play the main role in the propagation of
intersections. The first rule is applied a number of times equal
to the number of components of the space of the intermedi-
ate object. Hence, the composition of spatial relations be-
comes a tractable problem that can be performed in a defined
limited number of steps. n

2.3. Example of spatial reasoning with complex
objects

The example in Figure 8 is used for demonstrating the com-
position of relations using nonsimple spatial objects. Fig-

Fig. 7. Representation of the constraintx1 ù ~z2 ø z4! Þ f.
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ure 8a shows the relationship between a concave polygonx
and a polygon with a holey and Figure 8b shows the rela-
tionship between objecty and a simple polygonz wherez
touches the hole iny. The intersection matrices correspond-
ing to the two relationships are also shown.

Given that the possible set of relationships that can occur
betweenx andz in a certain domain are as shown in Fig-
ure 6, it is mandatory to derive the possible relationships
between these two objects given the situation in Figure 8.

The reasoning rules are used to propagate the intersec-
tions between the components of objectsx andzas follows.
From rule 1 we have the following:

• y0 intersections:

$x0, x1, x2, x3% w y0 ∧ y0 v $z0%

r x0 ù z0 Þ f ∧ x1 ù z0 Þ f

∧ x2 ù z0 Þ f ∧ x3 ù z0 Þ f;

• y1 intersections:

$x0, x3% w y1 ∧ y1 v $z0% r x1 ù z0 Þ f ∧ x3 ù z0 Þ f;

• y2 intersections:

$x0, x3% w y2 ∧ y2 v $z0, z1, z2%

r x0 ù ~z0 ø z1 ø z2! Þ f

∧ x3 ù ~z0 ø z1 ø z2! Þ f;

• y3 intersections:

$x3% w y3 ∧ y3 v $z0, z1%

r x3 ù z0 Þ f ∧ x3 ù z1 Þ f;

• y4 intersections:

$x3% w y4 ∧ y4 v $z0% r x3 ù z0 Þ f.

Applying rule 2 we get the following:

• x0 v $ y0, y1, y2% ∧ $ y0, y1, y2% v $z0, z1, z2%; x0 has no
empty intersections with components inZ.

• x1 v y0 ∧ y0 v $z0% r x1 ù z1 5 f ∧ x1 ù z2 5 f;

• x2 v y0 ∧ y0 v $z0% r x2 ù z1 5 f ∧ x2 ù z2 5 f;

• x3 v $ y0, y1, y2, y3, y4% ∧ $ y0, y1, y2, y3, y4% v $z0,
z1, z2%; x3 has no empty intersections with compo-
nents inZ.

Refining the above constraints, we get the intersection ma-
trix in Figure 9. Comparing the resulting matrix above with
the matrices in Figure 6, it can be seen that the result matrix
corresponds to two possible relationships between objectsx
andz, namely the relationshipsR3 andR5.

A different conclusion is obtained if the relationship be-
tween objectsy andz is as shown in Figure 10a. The com-
position of the relationships betweenx, y, andz in this case
will result in the definite matrix in Figure 10b, which cor-
responds toR5 in Figure 6.

3. REPRESENTATION AND REASONING OVER
ORIENTATION RELATIONS

Orientation spaces are defined using a strategy similar to
that used for topological spaces above. Adjacency between
objects and the semi-infinite orientation areas are explicitly
represented for each object. Orientation relationships be-
tween two objects are defined by the intersection between
components in the object spaces.

Several schemes exist for the division of space to repre-
sent areas of acceptance for each orientation such as coni-
cal or rectangular. The approach defined here is independent
of the scheme used to divide the space. Space divisions used
in this paper are chosen for clarity and readability. More
complex divisions can be treated in a similar way.

For simplicity, object shapes are approximated by points
in the following examples. Consider the orientation rela-
tions in Figure 11a for an intrinsic frame of reference. The

Fig. 8. ~a! and ~b! Spatial relationships between nonsimple objectsx, y,
andz. ~c! and~d! Corresponding intersection matrices.

Fig. 9. The result of composing relations in figures 8a and 8b.
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components of spacesX andY are as follows:X 5 x ø FRx

ø FLx ø BRx ø BLx, Y 5 y ø FRy ø FLy ø BRy ø BLy

whereFRi ,FLi ,BRi , andBLi denote the orientations:Front-
Right, Front-Left, Back-Right, andBack-Left, respectively.

The intersection matrix corresponding to this relation is
shown in Figure 11b.

Both the relationship and its converse are needed to com-
pletely define the orientation relation in the case of the in-
trinsic frame of reference. For example, in Figure 11a, the
relationship between objectsx andy is defined byBR~x, y!
∧ FL~ y, x!. If either of the objects rotates around itself, its
relative relationship with the other object will change as well,
as shown in Figure 12. In Figure 12, objectx has changed
its orientation and hence has also changed its relationship
with y to beBR~x, y! ∧ BL~ y, x!.

3.1. Examples of qualitative reasoning with
orientation relations

For the sake of simplicity, the objects and the bounding lines
of the orientations areas are omitted. This does not affect
the reasoning process in the examples given or the features
of the formalism, since both general constraints are pre-
served for the semi-infinite areas. A mapping between non-
empty intersections of space and the corresponding possible
relations is given in Figure 13.

Each cell in Figure 13 contains the relation where there is
a nonempty intersection between the corresponding com-
ponents. If a relation is missing in a cell, then the intersec-
tion between the corresponding components is empty for
the missing relation. For example, the highlighted cell in
Figure 13 corresponding to the componentsFRx andFRz is
interpreted as follows: If we know that the intersection of
the componentsFRx andFRz is not empty, then the relation
between objectsx andz could be either of the following:

Fig. 10. Example for the propagation of definite relationships.

Fig. 11. ~a! Example of an intrinsic orientation relation and its correspond-
ing intersection matrix in~b!. The arrow on the figure denotes the front of
the object.
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a. FR~z, x! ∧ ~BL~x, z! ∨ BR~x, z! ∨ FL~x, z! ∨ FR~x, z!!.
Another way of expressing this isFR~z, x! ∧ All ~x, z!;

b. BR~z, x! ∧ ~FL~x, z! ∨ FR~x, z!!;

c. BL~z, x! ∧ FR~x, z!; or

d. FL~z, x! ∧ ~BR~x, z! ∨ FR~x, z!!.

Example. Propagation of definite compositions. Con-
sider the simple example of composing the relationships
FL~ y, x! ∧ FL~x, y! ∧ BR~ y, z! ∧ BR~z, y!. The relation-
ships and their corresponding intersection matrices are shown
in Figures 14a and 14b.

The reasoning rules are used to propagate the intersec-
tions between the components of objectsx andzas follows.
From rule 1 we have the following:

• FRy intersections:

$FLx, BLx% w FRy v $BRz, BLz%

r ~FLx ù BRz Þ f ∨ FLx ù BLz Þ f!

∧ ~BLx ù BRx Þ f ∨ BLx ù BLz Þ f!.

• FLy intersections:

$X % w FLy v $BRz% r ~BRz ù $X % Þ f!.

Note that the result of this composition can only iden-
tify the relative position ofx to z ~BR~x, z!!, but not
vice versa.

• BRy intersections:

$FLx% w BRy v $Z% r ~FLx ù $Z% Þ f!.

From this constraint it can be deduced that the relation
betweenz andx is FL~z, x!.

• BLy intersections:

$FRx, FLx% w BLy v $FRz, BRz%

r ~FRx ù FRz Þ f ∨ FRx ù BRz Þ f!

∧ ~FLx ù FRz Þ f ∨ FLx ù BRz Þ f!.

Note the intersections of the componentsFLy and BRy

have fully identified the composed relation, namely,
BR~x, z! ∧ FL~z, x!. In this case, we don’t need to apply
rule 2. However for completeness the propagation of con-
straints by rule 2 are as follows:

• $FRx% v ~FLy ø BLy! v $BRz, FRz% r FRx ù
$FLz, BLz% 5 f;

• $BRx% v FLy v $BRz% r BRx ù $FRz, FLz, BLz% 5 f;

• $BLx% v $FLy, FRy% v $BRz, BLz% r BLx ù $FRz,
FLz% 5 f;

• FLx has no empty intersections sincel ' 5 l.

Grouping the above constraints, we get the intersection ma-
trix in Figure 14c. Using Figure 13, it can be seen that the
result matrix corresponds to the relationshipsBR~x, z! ∧
FL~z, x! as in Figure 14d. n

Example. Propagation of indefinite compositions. Con-
sider the relationships in Figure 15:FL~ y, x! ∧ FL~x, y! ∧
FR~z, y! ∧ FR~ y, z!. The corresponding intersection matri-
ces are shown in Figure 15b. The reasoning rules are used
to propagate the intersections between the components of
objectsxandzas follows. From rule 1 we have the following:

Fig. 12. ~a! Changing the body orientation of objectx gives a different
relationship defined by the matrix in~b!.

Fig. 13. Correspondence between the intersection of the components and
the relations in the intrinsic frame of reference. The highlighted cell entry
is explained in the text. The cross represents the space ofx, and the small
arrows represent the front direction of objectz.
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• FRy intersections:

$Z% w FRy v $FLx, BLx%

r ~FRz ù FLx Þ f ∨ FRz ù BLx Þ f! ~3.1!

∧ ~FLz ù FLx Þ f ∨ FLz ù BLx Þ f! ~3.2!

∧ ~BRz ù FLx Þ f ∨ BRz ù BLx Þ f! ~3.3!

∧ ~BLz ù FLx Þ f ∨ BLz ù BLx Þ f!; ~3.4!

• FLy intersections:

$FRz, BRz% w FLy v $X %

r ~FRx ù FRz Þ f ∨ FRx ù BRz Þ f! ~4.1!

∧ ~FLx ù FRz Þ f ∨ FLx ù BRz Þ f! ~4.2!

∧ ~BRx ù FRz Þ f ∨ BRx ù BRz Þ f! ~4.2!

∧ ~BLx ù FRz Þ f ∨ BLx ù BRz Þ f!; ~4.2!

• BRy intersections:

$FRz, FLz% w BRy v $FLx%

r ~FLx ù FRz Þ f ∧ FLx ù FLz Þ f!;

• BLy intersections:

$FRz% w BLy v $FRx, FLx%

r ~FRz ù FRx Þ f ∧ FRz ù FLx Þ f!.

Applying rule 2 we get the following:

• FLz v $FRy ø BRy% v $FLx, BLx% r FLz ù FRx 5 f
∧ FLz ù BRx 5 f;

• BLz v FRy v $FLx, BLx% r BLz ù FRx 5 f ∧ BLz ù
BRx 5 f.

Refining the above constraints, we get the intersection
matrix in Figure 15c. Using Figure 13, we get the possible
relations in Figure 15d. Note that the conditions~3.1!, ~3.2!,
~4.1!, and~4.2! are satisfied by definite intersections. The
process of mapping the propagated intersections into pos-

Fig. 14. ~a! Composing the relationshipsFL~x, y! ∧ FL~ y, x! andBR~ y, z! ∧ BR~z, y!. ~b! Corresponding intersection matrices.~c!
Resulting propagated constraints.~d! Corresponding~definite! relationship.
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sible relations in Figure 13 is carried out by finding the in-
tersection of the set of relations corresponding to cells of
value 1 in the matrix with the complement of the set of re-
lations corresponding to cells of value 0 in the matrix. This
process is demonstrated in Figure 16. In Figure 16a, the in-
tersection of the set of the relations corresponding to cells
of value 1 is shown and in Figure 16b the result from Fig-
ure 16a is intersected with the complements of the sets of
relations corresponding to cells of value 0.

The result of the composition is indefinite and conse-
quently the relative positions of the objects is ambiguous.
The possible resulting relations between objectsx andzare:
~FR~x, z! ∧ BL~z, x!! ∨ ~BR~x, z! ∧ FL~z, x!! n

4. POSSIBLE EXTENSIONS OF THE
APPROACH

In this section, the formalism proposed is extended in two
ways. First, the reasoning process is enhanced by consider-
ing multiple types of qualitative positional information at
once, namely, combining topological and orientation infor-

mation. Second, the application of the approach in assem-
bly problems is studied, by enhancing the method with
semiquantitative shape information.

4.1. Combined reasoning with topological and
orientation spaces

As can be expected, reasoning with more than one type of
qualitative relationships would produce more precise re-
sults. One way of handling multiple types of relations using
the representation and reasoning approaches above is by
overlaying both the orientation and topological spaces for
the objects. Hence, the combined space would contain both
the object components as well as the orientation areas. Ori-
entation areas around the object could either be defined using
a representative point on the object~e.g., its center!, or using
the minimum bounding rectangle of the object. The exam-
ple in Figure 17 illustrates the space components in the later
case. Spatial reasoning is carried out in a fashion similar to
that above. Figure 18 shows the composition of the follow-
ing relationships between objectsx, y and z: touch~x, y!,

Fig. 15. ~a! Composing the relationshipsFL~x, y! ∧ FL~ y, x! andFR~ y, z! ∧ FR~z, y!. ~b! Corresponding intersection matrices.~c!
Resulting propagated constraints.~d! Corresponding~indefinite! relationships.
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front~ y, x!, back~x, y! and disjoint~ y, z!, back~ y, z!,
front~z, y!. The composition yields the definite relations:
disjoint~x, z!, back~x, z! and front~z, x!. Note that the com-
position would have been indefinite if only the topological
relationships were considered;touch~x, y! ∧ disjoint~y, z!r
disjoint~x, z! ∨ touch~x, z! ∨ overlap~x, z! ∨ inside~x, z! ∨
inside2 and2 touch2 boundary~x, z!.

Also, proximity and relative size of the objects are im-
portant factors that must be considered, especially when the
objects are very close or are in a containment relation~Ab-
delmoty & El-Geresy, 1994!.

4.2. Topological structuring using qualitative height
information

Given a network of objects and relations, reasoning tasks
can be used in one or more of the following:

• Finding all feasible relations~minimal labelling
problem!.

• Finding a consistent scenario.

• Finding all consistent scenarios.

• Other reasoning tasks such as determining whether
given spatial specifications are consistent.

In this section, qualitative topological reasoning is used
for finding all consistent scenarios in the context of simple
assembly problems. In constructive solid geometry, any solid
object could generally be constructed from an initial basic
shape by adding or taking away other shapes in a sequence
of operations and transformations. Here, this idea is bor-
rowed, where an object is represented qualitatively by a
basic shape into which a set of holes is drilled and onto
which a set of protrusions is added as shown in Fig-
ure 19a. A semiqualitative representation is used by taking
surface heights into account, where holes are represented
by negative regions and protrusions by positive ones, as
shown in Figure 19b. The basic shape is denoted as base
region~or zero-height region!. Those regions can be estab-
lished by constructing orthographic views of the object or

Fig. 16. The process of mapping the constraints propagated by the reasoning rules to the set of possible relations, namely,~FR~x, z!
∧ BL~z, x!! ∨ ~BR~x, z! ∧ FL~z, x!!. The figure is explained in the text.

Fig. 17. Representation of the combined topological and orientation spaces.
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by slicing the object at the level of its base region compo-
nent. To determine all possible assembly scenarios, two steps
need to be applied.

1. Topological representation of objects using surface
heights as above. This step includes the definition of

all relationship constraints between object compo-
nents and the formation of a constraint network.

2. Topological reasoning over the network, applied as a
constraint satisfaction problem to find all consistent
scenarios.

4.2.1. Topological representation using surface heights

Foranobjectx, let thecomponentxbdenote itsbase region,
xi

2 denote a hole region, andxj
1 denote a protrusion region.

Objectx can then be defined as:x5 xbøi50
n xi

2øj50
m xj

1.
The following constraints apply between the components

of the object. All possible relationships between simple re-
gions are shown in Figure 20.

a. Betweenxb andxi
2: R~xb,xi

2! [ $contain, b-contain%

b. Betweenxb andxj
1: R~xb,xj

1! [ $contain, b-contain,
overlap, touch%

Fig. 18. ~a! Composingtouch~x, y! and front~ y, x! ∧ disjoint~ y, z! and back~ y, z!. ~b! Definite result:disjoint~x, z! and back~x, z!.

Fig. 19. Qualitative representation using surface heights.
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c. Betweenxi
2 and xk

2: R~xi
2 ,xk

2! [ $disjoint, touch%
and 0# k # n andk Þ i .

d. Betweenxj
1 and xl

1: R~xj
1 ,xl

1! [ $disjoint, touch%
and 0# l # m andl Þ j.

e. Betweenxi
2 and xj

1: R~xi
2 ,xj

1! [ $disjoint, touch,
contain%

Applying the above constraints, the topology of surfaces can
be represented as in the example shown in Figure 21. Note
that the relations are read as cell~column, row!.

4.2.2. Qualitative reasoning in assembly problems

The basic constraint in assembling any two faces of ob-
jects is that of contact, that is, the faces must touch. Using
the above topological representation of faces, this con-
straint is interpreted to a set of constraint between different
objects components. For two objectsx andy the constraints
are:

a. R~xb,yb! [ $touch, overlap,equal,inside,contain,b-
contain,b-inside%.

b. R~xi
2 ,yp

2! [ $U% whereU is the set of all possible
relations.

c. R~xj
1 ,yp

1! [ $touch, disjoint%.

d. R~xi
2 ,yp

1! [ $disjoint,touch, equal,contain,b-contain%.

e. R~xb,yp
2! [ $U%.

f. R~xb,yp
1! [ $disjoint,touch%.

g. R~xj
1 ,yp

2! [ $equal,inside,b-inside% This is a global
constraint which must be satisfied at least once.

Example. Consider the simple example of a child
assembling two pieces of Lego™ bricks. Two faces of the
bricks are considered as shown in Figure 22a, one with
two protrusions, and the other with two holes. Applying
the above constraints will produce three different scenar-
ios depicted in Figure 22b. Scenario 3 is not possible and
can be excluded if size constraints are taken into account,
larger~~y1

1 1 y2
1!,~x1

2 ∨ x2
2!!. Different types of qualitative

relations would need to be used if a minimum possible so-
lution set is to be derived qualitatively.

5. COMPARISON WITH RELATED WORK

Several approaches are reported in the literature for the rep-
resentation and reasoning over topological and orientation
relations. The main advantage of the representation method
proposed is its uniformity. The same methodology is used
for the definition of simple and complex objects and is ap-
plied consistently in the orientation and topological spaces.
The method is also adaptable, where different levels of rep-
resentation can be devised by hiding or revealing the details
of objects as required. The method is therefore well adapted
for use as a basis for a spatial reasoning formalism.

The representation of complex regions has been ad-
dressed in many works. Cohn et al.~1997! extended the
Randell–Cohn–Cui~RCC! formalism to handle concave re-
gions and regions with holes~doughnut shapes!. New axi-
oms and theories had to be devised to define the new shapes.
The main drawback of this approach is its complexity, as
new, possibly considerable, extensions of the formalism have
to be devised with every new shape considered.

In Egenhofer and Herring~1990! and Egenhofer and Fran-
zosa~1991!, the authors used point-set topology to define
simple regions, using three components, boundary, inte-
rior, and exterior. The method proposed here deviates from
their work in one important respect that has far-reaching
implications. We relaxed the constraint on the object com-
ponents to be any possible set of components that satisfies
the main assumptions behind the formalism. The notions
of boundaries, interiors, and exteriors were dropped and
the notion of object and space components is used instead.
Egenhofer’s method is limiting and could not be extended
to handle complex objects. Other methods were devised in
Egenhofer et al.~1994! to define regions with holes, through
the definition of spatial relationships between simple re-
gions, and no extension for the method was proposed for
the definition of irregular, or concave regions.

The work of Clementini and De Felice~1995! follows
closely the method of Egenhofer, and provides a definition
for regions with holes using boundaries, interiors and exte-
riors. Their method carries the same limitations as those of
Egenhofer and Herring~1990!. In another work, Clemen-

Fig. 20. The set of all possible relationships between two simple regions.

Fig. 21. Topological representation using constraint networks.
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tini et al. ~1995! addressed the issue of defining composite
regions for use in spatial query languages, by defining ex-
plicit relationships between all the components in the ob-
ject, in the same way regions with holes were defined in
Egenhofer et al.~1994!.

Coenen and Pepijn~1998! proposed an ontology for ob-
jects and relationships in spatiotemporal domains. They as-
sumed the space to consist of sets of points and used set-
theoretic notions to define objects in that space. Their
approach is distinctive from the others mentioned above,
where space is considered to be discrete, not continuous.
The method was used to define a general “object” and quan-
titative identifiers are used to qualify the object properties.

Our approach is a an example of the constraint-driven ap-
proach, where a spatial relationship is defined by a set of
intersection constraints between the object components. As
mentioned earlier, the approach is a fundamental variation
of that proposed by Egenhofer~Egenhofer, 1989!.

The approach developed by Randell et al.~1992b! is an
example of the relation-driven approach to representing to-
pological relationships, where a set of axioms for defining
every needed relationship has to be devised. For example,
the definition of theoverlap relationship between two sim-
ple regions isOverlap~x,y! R Part~z,x! ∧ Part~z,y!, and a
set of constraints is used for defining the relationship
Part~x,y!.

Approaches for representing orientation relationships can
be classified under two main categories:projection-based
approaches andspace-divisionapproaches.

• In the projection-based approaches, objects are pro-
jected on thex andy axes, dividing the axes up into
several ordered parts. By comparing the order of these
projected parts, the orientation relation is inferred. Rea-
soning in these approaches exploits the interval alge-
bra ~Allen’s transitivity tables! from the temporal
domain~Chang & Jungert, 1986; Guesgen, 1989; Frank,
1992!

• The space-division approaches are based on dividing
the space around the object into semi-infinite accep-
tance areas. Reasoning in these approaches utilizes spa-
tial composition tables that are usually built manually,
by a visual process, for every object type or space gran-
ularity considered.

Fewer works exist for defining and reasoning over other
types of relationship. In Hernandez et al.~1995!, proximity
is defined by distance values and reasoning is carried out
by vector sums with respect to specific orientation between
objects. In Gahegan~1995!, a fuzzy set membership rela-
tion is used to reason about degrees of closeness.

In general, approaches to handling orientation relations
are limited in their expressiveness, because of their inabil-
ity to represent different types of orientation relations for
different object dimensions without restricting the space res-
olution or division. Also, building composition tables man-
ually affects the tractability of the reasoning process in the
case of high space resolutions. In general, approaches are
specific and none of the existing approaches offers a uni-
fied method for handling different types of spatial relations,
which is the main aim of the work presented here.

Approaches to spatial reasoning in the literature can gen-
erally be classified into usingtransitive propagationand
usingtheorem proving.

• Transitive propagation: In this approach the transitive
property of some spatial relations is utilized to carry
out the required reasoning. This applies toorder rela-
tions, such asbefore , after , and~,,5,.! ~for ex-
ample,a , b ∧ b , c r a , c!, and to the subset
relations such ascontain and inside ~for exam-
ple, inside~A,B! ∧ inside~B,C! r inside~A,C!, east
~A,B! ∧ east~B,C! r east~A,C!!.

• Transitive property of the subset relations was em-
ployed by Egenhofer~1994! for reasoning over topo-
logical relationships. Transitive property of the order

Fig. 22. ~a! Assembling two Lego bricksx andy. ~b! Three topologically possible scenarios.
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relations has been utilized by Chang and Liu~1984!,
Guesgen~1989!, Mukerjee and Joe~1990!, Lee and Hsu
~1991!, and Papadias and Sellis~1995!.

• Although order relations can be utilized in reasoning
over point-shaped objects, they cannot be directly ap-
plied when the actual shapes and proximity of objects
are considered.

• Theorem proving~elimination!: Here, reasoning is car-
ried out by checking every relation in the full set of
soundrelations in the domain to see whether it is a valid
consequence of the composition considered~theorems
to be proved! and eliminating the ones that are not con-
sistent with the composition~Cohn et al., 1993!.

• Bennett~1994! has proposed a propositional calculus
for the derivation of the composition of topological re-
lations between simple regions using this method. How-
ever, checking each relation in the composition table
to prove or eliminate is not possible in general cases
and is considered a challenge for theorem provers~Ran-
dell et al., 1992a!.

In general the limitation of all the methods in the above two
approaches are as follows:

• Spatial reasoning is studied only between objects of
similar types, for example, between two lines or two
simple areas. Spatial relations exist between objects of
any type and it is limiting to consider the composition
of only specific object shapes.

• Spatial reasoning was carried out only between ob-
jects with the same dimension as the space they are
embedded in, for example, between two lines in one-
dimension, between two regions in two-dimensions,
and so forth.

• Spatial reasoning is studied mainly between simple ob-
ject shapes or objects with controlled complexity, for
example, regions with holes treated as concentric sim-
ple regions. None of the methods in the literature has
been presented for spatial reasoning between objects
with arbitrary complexity.

6. CONCLUSIONS

A general approach has been presented for qualitative spa-
tial representation and reasoning. No limitations on the com-
plexity of the objects are imposed. It is based on a uniform
representation of the topology of the space as a connected
set of components. A structure denoted as adjacency matrix
was proposed to capture the topology of objects with dif-
ferent complexity. It was shown how topological spatial re-
lations can be uniquely defined. The reasoning method
consists of a set of two general constraints to govern the
spatial relationships between objects in space, and two gen-
eral rules to propagate relationships between objects in space.
The reasoning process is general and can be applied on any
type of objects with random complexity. It is also simple

and is based on the application of two rules for the propa-
gation of empty and nonempty intersections between object
components.

The method has been applied to orientation spaces and
extended to cater for hybrid reasoning where topological
and orientation spaces are used concurrently. A possible ex-
tension of the method was also presented which takes into
account qualitative surface height information.

It can be concluded that significant benefits are en-
visaged if spatial reasoning systems are enhanced by qual-
itative manipulation of different types of positional
information.
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