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SUMMARY
This paper analyses the concept of velocity isotropy for
Parallel Mechanisms with Actuation Redundancy (PMAR).
The limits of classical indices based on the Jacobean matrix
condition number are shown. It is proposed to use either the
largest ellipsoid included in the operational polytop, or the
operational polytop itself, as better representations of a
PMAR capabilities. The polytop is studied because it is
actually the accurate representation of a machine capability,
while the largest ellipsoid remains similar to the classical
tool roboticists are dealing with for decades. Velocity
performance indices are proposed, and the ways to compute
them efficiently are given.

KEYWORDS: Performance indices; Parallel mechanisms; Actua-
tion redundancy; Velocity isotropy; Operational polytop.

1. INTRODUCTION
When designing a machine, optimization processes are
often run aiming at pointing out the machine of “best
performances”. For this task, quality indices are used.
According to the machine purpose, one index is selected,
and that will lead to the machine which provides the best
score, i.e. which offers the best index value. Actually,
optimization is often more delicate and often ends with a
compromise of several abilities because of the antagonist
evolution of various abilities that are essential to the correct
behavior of the mechanism.

Among all the quality indices, the Jacobian matrix
condition number is often used; it is supposed to character-
ize the velocity isotropy of the mechanism. Due to the
force-velocity duality,* it is also often said to be representa-
tive of forces isotropy. The related concept of
manipulability, described as the ability to move in arbitrary
directions, has been the basis of many kinematic design
researches in robotics since the work of Salisbury and
Craig.1 The mathematical basics which are the foundations
of the isotropy concept for robots have been first defined for
serial robots,2,3 and then more deeply investigated in, e.g.
references [4–6], and it turns out that a deeper analysis is
required when considering more complex mechanisms. The
case of closed chain manipulator has been addressed long
time ago7 as well as more recently8 but not unlike the open
chain case. Two-arm robots, or more generally, cooperating

robot systems, have been analyzed with various approaches
aiming at managing properly the capability of the complete
multi-arm robot, e.g. in references [9, 10] by considering a
quadratic form constructed from the Jacobians of each
single arm. More recently, a unified approach has been
proposed to evaluate the manipulability of closed kinematic
chains11 under a general mathematical framework using the
coordinate-free methods of Riemannian geometry: this
work considers all kind of closed chain robot arms,
including redundant or over-actuated ones (this approach
includes dynamic manipulability as well, which is out of the
scope of this paper).

This paper aims at offering an analysis of isotropy
concept when considering PMAR (Parallel Mechanisms
with Actuation Redundancy), i.e. parallel mechanisms
where a given operational force does not correspond to a
unique set of joint forces. This type of redundancy differs
from the kinematic redundancy (cf. Figure 1) case where a
given operational velocity does not correspond to a unique
set of joint velocities. It has been shown12,13 that actuation
redundancy may help to overcome the problem of over-
mobility singularities, and it seems important to offer tools
to correctly analyze the velocity performances of such
machines. The case of such mechanisms has been partially
addressed in reference [14] where the problem of “internal”
forces is taken into account to derive a task space polytop.

In Section 2, some basic issues related to the use of the
Jacobian condition number as a manipulability measure are
firstly recalled and one of its important limitations is pointed
out when considering PMAR: this index does not provide a
proper measure of kinematic isotropy when this term means
“ability to perform the same speed along different direc-
tions” (Figure 2). Section 3 is dedicated to the definition of
a representation of isotropy which is consistent with the
well known condition number since it refers to measures
made on a velocity ellipsoid; however, the ellipsoid that
must be considered is rather different from the usual one.
Two different algorithms are given: one is based on
derivations made in joint space, and the other one on
derivations made in operational space. Section 4 is a
discussion about different possible indices and the relevant
algorithms: they are based on an analysis of the velocity
polytop.

Indeed, parallel machines with actuation redundancy
have already been built,12–16 and the time has come for the
definition of design and analysis tools which can properly* See our analysis of the “velocity-force duality” in Section 2–3.
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deal with such machines. This paper is a step towards this
goal.

2. CONDITION NUMBER AND ITS APPLICATION
TO PMAR
In the following a mechanism is characterized by its inverse
Jacobian, Jm, which links joints velocities q̇ to operational
speed, ẋ, as follows:†

q̇=Jm ẋ (1)

2.1 Is a Two-dof X-Y Table an Isotropic Device?
In order to illustrate the following discussion, let us consider
the simple case of a serial 2-dof X-Y table in Figure 3.

For this mechanism, Jm is the identity matrix, and for the
robotics community, this mechanism is often considered as
perfectly isotropic; velocity performances are said to be
identical in all directions of the operational space. This is
clearly not true, as shown in Figure 4 and Figure 5.

Reachable joint velocity space is actually a square
defined by |q̇i|≤ q̇max. This square remains a square once
mapped in the operational space using matrix Jm

�1.
Therefore the highest velocity reachable by the moving
platform is vmax =�2� q̇max. Such a speed is only accessible
for a very specific motion direction, while vmin =q̇max is

reachable for all operational directions. Graphically, this
results in the circle of radius vmin inscribed in the square.
This circle is the image of the joint space circle of radius
q̇max by the linear mapping represented by matrix Jm

�1.
Interestingly enough, even if this is not an isotropic device
strictly speaking (in the sense of “same velocity along
different directions”), roboticists consider it as a perfectly
isotropic design for the following reason: there is no
deformation of the velocity joint space circle (or hyper-
sphere for higher orders) by the Jacobian matrix. Stated
another way, classical techniques consider the manipul-
ability as a measure of the “quality” of the velocity mapping
(from joint space to task space), and it turns out it is often
closely related to the isotropy of the machine itself.

2.2 Analysis of a Basic Non-redundant Parallel
Mechanism
The simple parallel mechanism in Figure 6 is made of two
connecting rods linking two identical linear motors to the
moving platform. Obviously, the moving platform can move
in translation along two directions.

The inverse Jacobian matrix of this mechanism in this
centered position is the same as for the X-Y table (joint and
operational reachable domains are those represented in
Figure 4 and Figure 5). When the mechanism is not in its
centered position, the inverse Jacobian matrix is not equal to
the identity matrix anymore; so if the reachable joint

† The notation ẋ does not mean it is the derivative of operational
vector with respect to time.

Fig. 1. A planar PKM and different type of redundancy.

Fig. 2. Existing PMAR.
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domain remains the same, the reachable operational domain
becomes a polytop (see Figure 7).

The image of the joint circle is an ellipse inscribed in the
polytop. This ellipse is entirely characterized by the SVD‡

of Jm; the SVD provides in particular the lengths of the
ellipse’s axes. A usual isotropy index is derived as the ratio
of extreme operational velocities: vmax

ellipse and vmin
ellipse; this index

is a measure of the ellipse’s distortion. The lower the
distortion is (index value close to 1), the more the ellipse
tends towards the circle, considered as an “ideal case” from
the isotropy point of view.

Rather than considering the ellipse, one could be
interested in the more realistic polytop that may be analyzed
in terms of ratio between the absolute maximal speed
(vmax

parallelogram) and the maximum speed that the mechanism
can reach in all operational space directions (vmin

parallelogram).
The latter graphically corresponds to the radius of the
largest circle inscribed in the operational polytop.

In this paper, discussions related to PMAR are made for
both cases, velocity ellipsoid and velocity polytop; however,
the usual inverse Jacobian matrix condition number cannot
be used straightforward, as shown in the next section.

2.3 A Basic PMAR – 3 Actuators/2 dof
Let us consider the PMAR in Figure 8, made up of three
connecting rods and three identical linear actuators. Here,
two actuators are collinear which means that two connecting
rods are collinear as well. This really specific case is used
here as a trivial example showing clearly the limits of
classical derivations.

In the central position of Figure 8, the actuated chain
(joint position: q3) added to the mechanism of Figure 6 is
exactly in the same situation than the chain No. 1. This
mechanism produces in term of velocities the same effects
that the former non-redundant parallel mechanism (Figure
6). So, in this central position, this mechanism is as
isotropic from the velocity point of view as the previous
mechanism or even the X-Y table; operational velocities
explore the same field as previously: the operational polytop
is a square (Figure 5).

The inverse Jacobian matrix of this PMAR, Jm, is given
by:

Jm =
1
0
1

0
1
0

(2)

and its condition number, defined as the ratio of the
maximum and minimum singular values of Jm, is equal to
�2. Thus, the ratio between extreme singular values does
not represent anymore the ratio of extreme dimensions of
the ellipse of maximum surface inscribed in the operational
polytop, since this ratio should be equal to 1. Indeed, the
operational ellipse obtained using the SVD has two half-‡ Singular Value Decomposition.

Fig. 3. X-Y table geometry.

Fig. 4. Reachable joint space of the X-Y table.

Fig. 5. Reachable velocity operational space of the X-Y table.

Fig. 6. V-shape Parallel Mechanism Geometry.

Fig. 7. Reachable operational space for a simple parallel mecha-
nism.

Fig. 8. Geometry of a specific PMAR.
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axes which length are q̇max and q̇max/�2 as depicted in
Figure 9.

In other words, the usual isotropy index says such a
machine is far from being isotropic, when a common sense
analysis says it is as isotropic as an X-Y table. Indeed, in
such cases, the condition number may give a rough estimate
of the anisotropy in force (in reality the machine maximum
force along x is twice the maximum force along y), but it
does not represent anything related to the machine velocity
isotropy.

Even in the approach proposed by Park et al.11 the matrix
whose eigenvalues and eigenvectors describe the manipul-
ability** is M=diag(1/2 1); again, this matrix does not
correspond to an isotropic design in the classical sense.

This situation seems rather contradictory: the machine
described in Figure 8 offers the same velocity along x and y
axes, while known manipulability indexes state it is not an
isotropic design. For the indexes based on the Jacobian
itself, the reason for that “contradiction” is clear; indeed, for
PMAR the “duality” between force and velocity does not
hold anymore for this simple fact: a set of joint forces can
be chosen freely within the actuators capacity boundaries,
while the components of the joint velocities vector must
respect kinematic constraints and thus cannot be chosen
freely; there is no such information embedded in the
Jacobian matrix. The case of Park et al.’s approach, which
offers a unified frame for the analysis of all manipulators,
presents an additional subtlety: consistently with former
definitions of manipulabity, a manipulator is said to be in an
isotropic posture when the forward kinematic map is an
isometry.5,11 This paper proposes a different approach by
focusing on the machine actual capabilities in task space
more than on the velocity mapping.

In order to be consistent with the interpretation of the
condition number established for non-redundant mecha-
nisms, it is proposed in this paper to use the largest ellipse
included in the operational polytop, rather than the ellipse
given by the straightforward use of the Jacobian; Section 3
is revisiting the concept of velocity isotropy and will show
how convenient this “largest” ellipse could be. An alternate
solution is to resort on the operational polytop itself
because it describes exactly the velocity capabilities of a
given machine, and this is addressed in Section 5 as well.
Selecting among these two options is let at the designer
appreciation: indeed, the polytop will give the designer

information about the extreme cases, while the ellipse will
offer a more global view of the mechanism behavior.

3. REVISITING THE CONCEPT OF VELOCITY
ISOTROPY FOR PMAR

3.1 Preliminary Remarks

– To be simple, different domains of space will be named
circle, ellipse, polytop, square, cube. One should keep in
mind that those terms must be generalized when con-
sidering spaces whose dimensions are higher than 2 or 3
(hyper-circle, hyper-ellipse, and so on).

– Only a-dimensional problems are considered here. In
other cases, weighting matrices, Wẋ and Wq̇, can be used
as follows:17

Wẋ =
1/ẋmax

1

0

···

0

1/ẋmax
n

, x̃=Wẋ ẋ, | ˜̇xi|≤1, (3)

Wq̇ =
1/q̇max

1

0

···

0

1/q̇max
n

, ˜̇q=Wq̇ q̇, | ˜̇qi|≤1, (4)

Weighting matrices help in managing issues such as:
non-homogeneity (coexistence of linear and angular
velocities), differences in actuators’ performances
(q̇max

i ≠ q̇max
j ), differences in desired performances along

various operational axes (ẋmax
i ≠ ẋmax

j ).

3.2 Analysis of the SVD for a Redundant Mechanism
For illustration purpose the planar mechanism shown in
Figure 10 will be used here. It is a 3-actuator-2-dof PMAR,
which geometry is more general than the one in Section 2.3.
However, formulas will be established for any type of joint
and operational spaces, as long as they respect the following
condition:

m>n, with dim(q̇)=m and dim(ẋ)=n (5)

The SVD of the inverse Jacobian matrix gives18:

Jm =U S VT (6)

where:

– VT is a n�n orthogonal matrix, representing a linear
application in the operational space;

** See appendix for few details regarding this approach.

Fig. 9. Reachable operational space for this specific PMAR.

Fig. 10. Geometry of a typical parallel redundant mechanism.
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– S is a rectangular matrix whose upper part includes the
singular values of, Jm, �1, ···, �n:

S=

�1

0

n

···

0

0

�n

n m (7)

It characterizes the linear application that links a
operational velocity vector to a joint velocity vector.

– U is a m�m orthogonal matrix, representing a linear
application in the joint space. The n first columns, vectors
U1, . . . ,Un (n<m) span the range of Jm. The m�n
following columns correspond to the actuators velocities
which can never be produced by a movement of the
moving platform. They span the kernel of Jm.

m

n

U= U1 . . . Un m (8)

To be acceptable, i.e. to be admissible by the mechanism, a
joint velocity vector must belong to the range of Jm. Let us
note (Figure 11):

– {e�

Q̇i
, . . ., e�

Q̇n
}, a base for this type of vector;

– Q (dim(Q)=n), a column matrix representative of the
joint velocity vecor in this base;

– S1, a matrix representing a mapping from the operational
space to the restriction of the joint space to the range of
Jm:

n

S1 =
�1

0

···

0

�n

n (9)

The following equation links an admissible joint velocity
vector to an operational velocity vector:

ẋ=V S1
�1 ˜̇Q (10)

The restriction of the unit sphere to the range of Jm is a
circle of radius 1 (cf. Figure 12). This circle is transformed
into an ellipse in the operational space; the ellipse’s half-

axes length are 1/�i, i � {1, . . . ,n}. The condition number
of Jm is an image of this ellipse’s shape.

Obviously, the entire acceptable joint space is not a
sphere but a cube defined by the following inequalities:

�1≤q̇i ≤1, i � {1, . . . , m} (11)

The restriction of this cube to the range of Jm (cf. Figure 12)
is a polygon, or polytop. All acceptable actuator velocity
vectors must be located inside this polygon. In Figure 13,
the circle and the polygon are depicted. It is to be noted that
the circle could be larger and still acceptable because it is
not tangent with the polygon. That implies that the opposite
of the singular values are not enlightening maximum speeds
which can be reached by the moving platform.

For a non-redundant mechanism, the joint circle and the
operational ellipse are the greatest ellipses respectively
included into the joint square and the operational polytop;
for a PMAR, this is no more the case (cf. Figure 14 and
Figure 15).

It is proposed in this paper to consider the largest ellipse
included in the operational polytop. The ratio of the extreme
half-axes of this ellipse can be a more significant isotropy
index. Furthermore, it is proposed as well to consider
another index constituted by the ratio between the extreme
velocities measured at the polytop level, vmax

polytop and vmin
polytop.

Fig. 11. Graphical representation of q̇=U Q̇.

Fig. 12. Intersection of the unit cube and the unit sphere with the
range of Jm.

Fig. 13. Joint polygon and circle.

Fig. 14. Joint velocities for a PMAR.
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3.3 Case Study
The complete situation is depicted in Figure 16 for a given
geometry [120° between each actuator, length of arms=100,
position of the moving platform (�40, �10)].

The obtained results are given in Table I. The modified
operational ellipse is clearly a better representation of the
machine velocity capability than the ellipse associated with
the restriction of joint space unit sphere (operational ellipse
in Figure 14).

The purposes of Section 3 were mainly:

– to point out the limits of the classical definition of the
isotropy ellipsoid when dealing with PMAR;

– to propose the use of either the largest ellipse included in
the operational polytop, or the operational polytop itself,
as better representations of a PMAR velocity capabil-
ities.

The paper now addresses ways to establish the largest
ellipsoid and the polytop.

4. SEARCH OF THE OPERATIONAL ELLIPSE OF
GREATEST SURFACE INCLUDED INTO THE
ADMISSIBLE OPERATIONAL POLYTOP
This search can be made:

– by reasoning in joint space, i.e. finding the largest ellipse
in joint space and then mapping it into the operational
space (Section 4.1);

– by reasoning directly in the operational space (Section
4.2). It will be shown that the resulting ellipses are
actually identical.

4.1 Reasoning in Joint Space
The application which transforms the joint unitary circle of
the subspace image of Jm into the joint ellipse of largest
surface included in the joint polytop will be determined
here. This ellipse, once mapped into the operational space
by the linear application of matrix S�1

1 gives the ellipse of
largest surface included into the operational polytop (this
point will be proved in the next section). The conditions
which must be respected by the joint ellipse to be located
inside the joint polytop will be firstly presented; then the
conditions to find the largest ellipse will be formulated as an
optimization problem.

4.1.1 General Approach. Let M be a point of the range of
Jm and belonging to the unitary circle. Vector OM

�

(where O
is the origin of the frame) is a linear combination of vectors
e�

Q̇i
, . . . ,e�

Q̇n
. Let M be the column matrix representative of

this vector in the base of the range BIm(Jm) = (e�

Q̇i
, . . . ,e�

Q̇n
).

The relation � OM
�

�=1 results in:

MT, M=1 (12)

The largest ellipse in joint space is calculated with two
transformations: (i) the original unitary circle is expanded
(point M is transformed in point M̃); (ii) the expanded
ellipse is rotated (point M̃ is transformed in point in M�).
Thus (Figure 17):

– M̃ belongs to an ellipse whose axes are the vectors of
BIm(Jm), and whose half-axes length are d1, . . . ,dn. The
column matrix representative of point M̃ in frame of
origin O and base BIm(Jm), is noted M̃, and verifies:

M̃=D, M (13)

where D=diag(d1, . . . ,dn).

– M� belongs to the ellipse of greatest surface. M�, the
matrix associated to point M� verifies:

M�=R, M̃ (14)

with R an orthogonal matrix.
Expansion and orientation are combined to get the largest

ellipse. To be included in the joint polytop, the ellipse must
verify:

– the ellipse is located inside the unitary cube,
– it belongs to the range of Jm (true by construction).

Fig. 15. Operational velocities for a PMAR.

Fig. 16. Operational velocity situation centered on the moving
platform.

Table I. Results and indices values.

cond(Jm) 1.49

“Largest” ellipse index 1.08

vmax
modified ellipse 1.35� q̇max

vmin
modified ellipse 0.97� q̇max

Polytop index 1.48
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To belong to the joint cube, point M� must respect the
following condition:

e�

q̇i
·OM

�

�≤1 i=1, . . . , m (15)

Indeed, the cube is defined by 2m faces. However, the
problem is symmetric with respect to point O, and only m
faces have to be considered. Such faces are directed by
vectors e�

q̇i
, i � {1, . . . , m}, of the joint space canonic base.

This expresses the fact that M� belongs to the ith admissible
domain of space, delimited by the plane perpendicular to e�

q̇i
,

such that the distance from point O to the plane is equal to
1. This can be written in matrix form as follows:

ET
i M�≤1 (16)

where Ei is the column matrix associated to vector e�

q̇i
in

base BIm(Jm) = (e�

Q̇i
, . . . ,e�

Q̇n
).

4.1.2 Finding the Vectors Perpendicular to the Ellipse
and the Polytop. To guarantee that all ellipse points belong
to the ith admissible domain, it is sufficient to verify that the
point closest to the ith face is inside this domain. For such a
point, the vector n�� perpendicular to the ellipse, is collinear
to the vector e��q̇i

, perpendicular to the considered face of the
polytop (cf. Figure 18).

Let e��q̇i
be the projection of vector e�

q̇i
in the range of Jm.

Because BIm(Jm) does only direct a subpart of the articular
space it has to be noticed that Ei is also the column matrix
associated to vector e��

q̇i
.

The colinearity relationship is expressed as:

�k/ N�=k�Ei (17)

where:

– N� is the column matrix associated to vector n� in base
BIm(Jm),

– Ei is the column matrix associated to vector e��
q̇i

.

Let point M̃ be defined in the frame �O, BIm(Jm)� by the
following set of coordinates: (x1, . . . ,xn). Then the ellipse

whose axis are the vectors of BIm(Jm), and whose half-axes
length are d1, . . . ,dn is defined by:

f(M̃)=
x2

1

d2
1

+ . . .+
x2

n

d2
n

�1=0 (18)

And the vector perpendicular to the ellipse at point M̃, ñ�

, is
defined by:

ñ
�

=[grad
�

f ](M̃)=
2x1

d 2
1

e�

Q̇1
+ . . .+

2xn

d 2
n

e�

Q̇n
. (19)

With matrix in base BIm(Jm), this results in relation:

Ñ=D�2 M̃ (20)

In fact, because D is a diagonal matrix, D�2 is defined by:

D�2 =
1/d 2

1

0

···

0

1/d 2
n

. (21)

Then n��is obtained as:

N�=R Ñ. (22)

with R a rotation matrix.

4.1.3 Defining the Admissible Ellipses. To summarize the
situation, the system of matrix equations to be solved is the
following:

�i�{1, . . . , m}, MT M=1 (12)

M̃=D M (13)

M�=R M̃ (14)

ET
i M�≤1 (16)

�k/ N�=k� Ei (17)

Ñ=D�2 M̃ (20)

N�=R Ñ (22)

Equations (13) and (14) imply that:

M�=R D M. (23)

Equations (20) and (22) lead to:

N�=R D�2 M̃, (24)

Equations (24) and (13) lead to:

N�=R D�1 M. (25)

Fig. 17. From the unitary circle to the largest ellipse.

Fig. 18. Colinearity normal to the ellipse/normal to the frontier.
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Inverting Equation (25) leads to:

M=D RT N�. (26)

Combining Equations (23) and (16) gives:

ET
i R D M≤1, (27)

combining Equations (17) and (26) gives:

�k/ M=k� D RT Ei, (28)

combining Equations (28) and (12), knowing that D is
diagonal, can be written as follows:

�k /k2 ET
i R D2 RT Ei =1. (29)

In the same way, combining Equations (28) and (16) leads
to:

�k /k ET
i R D2 RT Ei ≤1. (30)

While making sure that 0≤k ET
i R D2 RT Ei, Equation (30)

gives:

�k /k2ET
i R D2 RT Ei� ET

i R D2 RT Ei ≤1. (31)

Knowing Equation (29), (31) simplifies in the inequality:

ET
i � Ei ≤1, (32)

with �=R D2 RT, a symmetrical matrix.
Of course, Equation (32) has to be verified for all

i=1, . . . , m.
As a matter of fact, a relation exists between vectors Ei

and matrix U. Matrix U can be expressed as follows:

U=[U1 | U2] (33)

with:

U1 =
e�

q̇1
· e�

Q̇1

e�

q̇n
· e�

Q̇1

. . .

. . .

. . .

e�

q̇1
· e�

Q̇n

e�

q̇m
· e�

Q̇n

,

U2 =
e�

q̇1
· e�

Q̇n+1

e�

q̇m
· e�

Q̇n+1

. . .

. . .

e�

q̇1
· e�

Q̇m

e�

q̇m
· e�

Q̇m

.
(34)

And since Ei =
e�

q̇i
· e�

Q̇1

�
e�

q̇i
· e�

Q̇n

U1 is expressed as follows:

U1 =
ET

1

�
ET

m

(35)

Noting U1(i) the ith line of matrix U1 Equation (20) can be
rewritten as:

�i�{1, . . . , m} U1(i) � U1(i)
T ≤1. (36)

4.1.1 Finding the Largest Admissible Ellipse. Among all
those ellipses respecting Equation (35), the one of maximal
surface still have to be found. This problem is described
here as an optimization problem.

The surface of an hyper-ellipse equals to:

A=k� �n

i=1

di, (37)

with  k=� for n=2, k=(4/3)� for n=3, etc.
Maximizing  A is equivalent to maximizing the product of

the ellipse half-axes length. It is also equivalent to
minimizing the following expression: �	n

i=1d
2
i .

It can be seen that the determinant of S is:

det(�)=det(R)�det(D2)�det(R�1)=det(D2), (38)

so:

det(�)= �n

i=1

d 2
i (39)

To conclude, determining the ellipse of greatest
surface included in the joint polytop, consists in
finding the symmetrical matrix � which verifies:

�det(�) minimum

under constraints

U1(i) � U1(i)
T ≤1 �i�{1, . . ., m}.

The eigenvalue decomposition of the real symmetric �
gives:

�=R 
 RT, (40)

with:

– R is the orientation matrix (note that RT =R�1),

– 
=diag(�1, . . . ,�n),

– di =��i.

The knowledge of R and D characterizes entirely the ellipse
of greatest surface included inside the joint polytop. This
matrix is then mapped by matrix S�1

1 to the ellipse of largest
surface included in the operational polytop (this point will
be proven in next section).

The sought matrix which represents the transformation of a
unitary circle in the admissible part of joint space into the
largest ellipse included inside the operational space polytop
is given by:

X=S�1
1 RD (41)

The indices we recommend to use are then related to
singular values of this matrix, e.g. cond(X), or min(�(X)),
etc.

4.2 Reasoning in Operational Space
The reasoning of Section 3.3.1 has been conducted in joint
space; however, rather than seeking the ellipse of maximum
surface included inside the joint polytop, and then comput-
ing its image in the operational space, it is possible to find
the ellipse of greatest surface included inside the operational
polytop. The following relation describes the mapping
between the operational space and the range of Jm:

M�=S1 K�, (42)
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with:

– M��range(Jm),
– K� a point in operational space,
– M� the column matrix associated with M� in BIm(Jm),
– K� the column matrix associated with K� in the singular

vectors base.

M� belongs to the joint polytop:

ET
i M�≤1 i=1, . . . , m. (43)

Thanks to relation (42), Equation (43) becomes in opera-
tional space:

ET
i S1 K�≤1. (44)

Since Equation (44) is the only equation that differs from
the system of equations of the previous section, the
resolution of the system leads to:

�i�{1, . . . , m} U1(i) S1 �� ST
1 U1(i)

T ≤1, (45)

where �� is a symmetrical matrix defined as follows:

��=R�D�2R�T (46)

Those equations express the constraints that must be
fulfilled by the operational ellipse to be located inside the
operational polytop. Those relations are very similar to
those obtained in the joint space.

In the operational space, the optimization problem
consists in finding a symmetrical matrix �� which verifies:

�det(��) minimum

under constraints

U1(i) S1� ST
1 U1(i)

T ≤1 �i�{1, . . . , m}

The eigenvalues decomposition of �� leads to matrix R� and
D�. Matrix X�=R�D� characterizes the linear application
that transforms a unitary circle in the ellipse of maximum
surface included into the operational polytop. The ratio of
extreme diagonal values of D� constitutes the isotropy index
built previously.

One can see that X=X�, that is to say that the ellipses
obtained with both methods are the same. In fact referring to
the definitions X of X� and, it can be verified that:

�=S1 XXT ST
1 , (47)

��=X� X�T. (48)

So the admissible domains constraints can be written as:

– Reasoning in joint space:

U1(i) S1 X XT ST
1 U1(i)

T ≤1, (49)
– Reasoning in operational space:

U1(i) S1 X X�T ST
1 U1(i)

T ≤1. (50)

In joint space, �det(�) has to be minimized, that is
�det(X XT), because:

�det(�)=�2 det(S1) det(X XT), (51)

det(S1)>0. (52)

In operational space �det(��) has to be minimized, that is:
�det(X� X�T). Thus, both entities are obtained as results of
the same optimization problem under the same constraints.

5. DETERMINATION OF EXTREME VELOCITIES
OF THE OPERATIONAL POLYTOP
In this section, the extreme velocities of the operational
polytop will be determined. The “lowest” velocity is defined
as the minimum velocity always reachable by the moving
platform in all directions of the operational space. The
“highest” velocity is the maximum velocity that can be
reached by the moving platform in a very particular
direction.

The highest velocity belongs necessarily to a vertex of the
polytop; the lowest value is located on one of the faces (cf.
Figure 15).

5.1 Finding vmax
polytop

Referring to Equation (44), a point K�i belonging to the ith

face can be described by:

ET
i S1 K�i =1 (53)

a point K�m+i, i�{1, . . . , m}, belonging to the adjacent face
(the (m+i)th face) can be described by:

�ET
i S1 K�m+i =1. (54)

In the optimization problem faces of type (54) have not been
considered; here they must be taken into account. A vertex
of the polytop is a point of the n-dimensional operational
space. The 2m frontier equations (m of type (53) and m of
type (54)) will be seek, to find all the combinations of n
faces which generate a vertex. For this, all Cn

2m possible
systems will be seeked.

If the ith system can be solved, the fact that point ��i,
i�{1, . . . , 2m} belongs to the polytop will have to be
verified. The system might have no solution, for example
when two vectors e�

i and e�

j have the same projection in the
range of Jm: Ei =Ej. Moreover, when a point K�i is
established, this point might be located outside the admis-
sible space (cf. Figure 19).

Once all vertices are determined, the highest distance
between the center and points K�i is given by:

vmax
parrallelogram = max

i�{1, . . . ,2m}
� K�i � (55)

5.2 Finding vmin
polytop

The lowest distance vmin
polytop is measured between the center

and a point located on one of the side of the polytop. Let us
note H�i the closest point on side i. OH�i is collinear with the
normal of this side.

Fig. 19. Determination of a point outside from the admissable
polytop.

Actuation redundancy 137

https://doi.org/10.1017/S0263574703005411 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005411


Relation (53) for H �i and ith face is the following:

E�iH�=1, (56)

where E�i =S1Ei is the normal vector to the side.
The collinearity relation can be written as follows:

�k/H�i =kE�i, (57)

so, combining (57) and (56) implies:

E�T
i kE�i =1. (58).

Thus k is:

k=1/ � E�i � 2. (59)

By replacing the value of k in relation (57) and by
calculating the distance from point H�i, i�{1, . . ., m} to the
center, this leads to:

� H�i � =1/ � E�i �, (60)

that is to say, by using expression of E�i:

� H�i � =1/ � S1Ei �. (61)

Then, the sought value is given by:

vmin
parallelogram = min

i�{1, . . . , m}
� H�i �. (62)

6. CONCLUSION
In this paper we have firstly shown the limits of classical
analysis and indices simply based on the Jacobian matrix
when Parallel Mechanisms with Actuation Redundancy are
analyzed in terms of velocity isotropy. We have introduced
new tools to analyze and optimize such mechanisms by
considering their actual capabilities in task space instead of
the quality of the velocity mapping. The first set of tools
offers measures based on a classical point of view, a
velocity ellipsoid, with an important feature: the sought
ellipsoid is much closer to the real machine capability than
the one usually considered. The second set of tools is based
on the velocity polytop: the ways to efficiently compute
such a polytop and, more important, its extreme values have
been described. It is expected that indices based on both
analysis can be usefully implemented in optimization
processes for new redundant parallel mechanisms.
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APPENDIX

INFORMATION ABOUT “MANIPULABILITY OF
CLOSED KINEMATIC CHAINS” BY PARK ET AL.11

A machine with closed kinematic chains is analyzed
according the following notations:

• A set of m joints whose positions (q1 . . . qm) describe the
mechanism posture,

• The mechanism is composed of a total of k joints
(actuated or not); there positions are described by (q1 . . .
qm qm+1 . . . qk),

• There are p kinematic loops constraints (in space:
6p=k�m, in plane: 3p=k�m).

The principal axes of the manipulability ellipsoid are
determined from the eigenvalues and eigenvectors of
M=F G�1 FT H, where:

• F is a matrix mapping the vector of velocities of joints
(ranging from 1 to m) to v, the velocity of the traveling
plate, v=F [q̇1 . . . q̇m]T,

• H is the task space metric (when position only is
considered, H=I),
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• G=� Im� m

�P�1A	T

E� Im� m

�P�1A	 is the joint space metric

(E is the metric on �k, E=diag(1 . . . k), where i =0 for
a passive joint, and i is proportional to the ith motor
capacity for an actuated joint).

To compute P and A, the ith kinematic constraint is written
as the forward kinematics of an open chain with its end-
effector fixed and stationary, and the associated Jacobian is
derived as follows:

0=Ai

q̇1

�

q̇m

+Pi

q̇m+1

�

q̇k

, i={1, . . . , p}

Then the p equations are stacked into a single equation:

0=
A1

�

Ap

q̇1

�

q̇m

+
P1

�

Pp

q̇m+1

�

q̇k

= A
q̇1

�

q̇m

+P
q̈m+1

�

q̇k

In the case study of section 2.3:

• See Figure 20 for numbering of joints.
• F=I and H=I; thus the matrix to be considered is simply:

M=G�1.

• Considering that all actuators have a maximum velocity
of 1: E=diag(1 1 1 0 0 0 0 0)

• 0=

1

0

0

0

0

0

0

1

0

0

1

0

�q̇1

q̇2
	+

0
0
0
1
0
0

l
l
1
l
0
0

l
0
1
l
0
0

0
0
1
0
0
1

0
0
0
0
l
1

0
0
0
0
0
1

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

• Thus: G=�2
0

0
1	 and M=�1/2

0
0
1	.

Fig. 20. Geometry of a specific PMAR (numbering of joints).
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