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The characteristics of the intense vorticity structures (IVSs) near the turbulent/non-
turbulent (T/NT) interface separating the turbulent and the irrotational flow regions are
analysed using a direct numerical simulation (DNS) of a turbulent plane jet. The T/NT
interface is defined by the radius of the large vorticity structures (LVSs) bordering
the jet edge, while the IVSs arise only at a depth of about 5η from the T/NT
interface, where η is the Kolmogorov micro-scale. Deep inside the jet shear layer
the characteristics of the IVSs are similar to the IVSs found in many other flows:
the mean radius, tangential velocity and circulation Reynolds number are R/η ≈ 4.6,
u0/u′ ≈ 0.8, and ReΓ /Re

1/2
λ ≈ 28, where u0, and Reλ are the root mean square of

the velocity fluctuations and the Reynolds number based on the Taylor micro-scale,
respectively. Moreover, as in forced isotropic turbulence the IVSs inside the jet are
well described by the Burgers vortex model, where the vortex core radius is stable
due to a balance between the competing effects of axial vorticity production and
viscous diffusion. Statistics conditioned on the distance from the T/NT interface are
used to analyse the effect of the T/NT interface on the geometry and dynamics of the
IVSs and show that the mean radius R, tangential velocity u0 and circulation Γ of
the IVSs increase as the T/NT interface is approached, while the vorticity norm |ω|
stays approximately constant. Specifically R, u0 and Γ exhibit maxima at a distance
of roughly one Taylor micro-scale from the T/NT interface, before decreasing as the
T/NT is approached. Analysis of the dynamics of the IVS shows that this is caused by
a sharp decrease in the axial stretching rate acting on the axis of the IVSs near the
jet edge. Unlike the IVSs deep inside the shear layer, there is a small predominance
of vortex diffusion over stretching for the IVSs near the T/NT interface implying that
the core of these structures is not stable i.e. it will tend to grow in time. Nevertheless
the Burgers vortex model can still be considered to be a good representation for the
IVSs near the jet edge, although it is not as accurate as for the IVSs deep inside the
jet shear layer, since the observed magnitude of this imbalance is relatively small.

Key words: free shear layers, turbulence simulation, turbulence theory

1. Introduction
The characteristics and dynamics of the vortical structures in turbulent flows is

a longstanding issue in turbulence research and has generated a massive amount of
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information over the last 30 yr. Vortical structures consist in regions of concentrated
vorticity and low local pressure, with a large lifetime compared with the characteristic
time scales of the flow Dubief & Delcayre (2000). The study of these structures is
largely motivated by their simplicity and to the possibility of understanding complex
flow phenomena using relatively simple models e.g. see Lesieur (1997). Moreover,
vortical structures govern the transport, mixing and diffusion of mass, momentum and
scalars (e.g. heat) which is important in many applications e.g. understanding the
dynamics of the vortical structures is a prerequisite for turbulence control.

It is important to divide the vortical structures present in turbulent flows into two
classes: large vorticity structures (LVSs) and intense vorticity structures (IVSs). The
LVSs are the largest vortical structures which are present in a particular flow. Often
originating in the particular instabilities from that flow, their characteristics such as
the vortex core radius, length size and lifetime are deeply related to these processes
and therefore are quite different from flow to flow. However the dynamics of these
structures share some common features with LVSs from other turbulent flows, e.g. they
consist of structures with roughly tubular shape and are approximately governed by the
same simple inviscid laws.

On the other hand the IVSs are defined as structures with particularly strong
vorticity, i.e. structures composed of flow points with vorticity greater than a
particularly high vorticity threshold ωivs. Jiménez et al. (1993) defined this vorticity
threshold as equal to the vorticity defining the 1 % of flow points with the highest
vorticity. In isotropic turbulence the IVSs are the well-known ‘worms’ described
by Siggia (1981). Many works have been devoted to the study of these structures,
particularly in isotropic turbulence e.g. Siggia (1981), Ashust et al. (1987), Vincent &
Meneguzzi (1991), Jiménez et al. (1993) and Jiménez & Wray (1998), but recently
other flows have been used to study the IVSs such as mixing layers (Tanahashi,
Iwase & Miyauchi 2001), channel flows (Kang, Tanahashi & Miyauchi 2008) and
jets (Ganapathisubramani, Lakshminarasimhan & Clemens 2008). In contrast to the
LVSs the characteristics of the IVSs are similar in a variety of different flows, e.g.
the vortex radius, axial vorticity and azimuthal velocity from the IVSs in mixing
layers are similar to the values found in isotropic turbulence. Specifically, it has been
reported that the radius of the IVSs is R≈ 5η, where η is the Kolmogorov micro-scale,
in isotropic turbulence (Jiménez et al. 1993), mixing layers (Tanahashi et al. 2001),
channel flows (Kang et al. 2008) and jets (Ganapathisubramani et al. 2008). That
the threshold used to define the IVSs has a negligible impact on their computed
characteristics is attested by the fact that other works use different techniques to define
the ‘worms’ obtaining very similar statistics, e.g. Kang et al. (2008). In isotropic
turbulence Jiménez et al. (1993) and Jiménez & Wray (1998) divided the flow
structures into three classes: (i) IVSs; (ii) structures of background vorticity, defined
as structures with vorticity greater than the fluctuating vorticity and smaller than the
vorticity defining the IVSs, i.e. ω′ < ω < ωivs; and (iii) weak vorticity structures, with
ω < ω′. It is important to realize that with the notation used here the LVSs are all of
the flow vortices that are not included in the set of IVSs, i.e. the LVSs contain also
the background vorticity structures and the weak vorticity structures which in isotropic
turbulence are relatively free from vorticity and can be identified with the velocity
eddies.

The present work focuses on the study of the IVSs in the context of the turbulent
entrainment mechanism that takes place in free shear flows such as mixing layers,
wakes and jets. In these flows the flow field can be divided into two regions: in one
region the flow is turbulent while in the other region the flow consists of largely
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irrotational, or non-turbulent flow Corrsin & Kistler (1955). The two regions are
separated by a sharp interface, the turbulent/non-turbulent (T/NT) interface, where
the turbulent entrainment mechanism takes place. Turbulent entrainment governs the
growth rate of free shear layers and also the scalar (e.g. heat) exchanges and the
mixing rates across the T/NT interface.

The important role played by the LVSs in the turbulent entrainment has been
recognized a long time ago (Townsend 1976). Past studies assumed that turbulent
entrainment is mainly caused by large-scale ‘engulfing’ motions (Townsend 1976)
induced by the LVSs. Bisset, Hunt & Rogers (2002) described the topology of the
streamlines induced by LVSs near the T/NT interface, and observed that streams of
turbulent and irrotational motion collide at the interface, and stretch out along it,
driving its highly convoluted shape. The vortical interactions with a T/NT interface
were also studied in detail using linear analytical models, e.g. Hunt, Eames &
Westerweel (2008).

Recently, some aspects of the LVSs and IVSs near the T/NT interface were
investigated by da Silva & Taveira (2010) and da Silva & dos Reis (2011). Specifically,
it has been shown that in a jet the T/NT interface is the physical surface defined
by the LVSs, in agreement with the classical picture that is known for some time,
e.g. Townsend (1966) and Bisset et al. (2002): the LVSs are responsible for the
observed convolutions of the T/NT interface and explains that the length scale of these
convolutions is roughly equal to the length scale of the LVSs. da Silva & dos Reis
(2011) showed moreover that the presence of LVSs is responsible for the existence of
a region of irrotational kinetic energy dissipation and by a positive enstrophy diffusion
in the region bounding the turbulent and the non-turbulent flow regions. The analysis
of the orientation of the vortices shows also that the IVSs tend to be aligned with the
tangent to the T/NT interface near the jet edge.

The flow vortices also determine the thickness of the T/NT interface, δω. Indeed
da Silva & Taveira (2010) have shown that δω in a jet is roughly equal to the
radius of the LVSs near the T/NT interface δω ≈ Rlvs. The radius of the LVSs near
the T/NT interface can be estimated bearing in mind that long-lived vortices are
vortices where the time scale associated with the radial viscous diffusion of vorticity
is roughly balanced by the axial stretching caused by the local strain rate field S′,
such as in a Burgers vortex (Jiménez & Wray 1998). The radius of these vortices,
even if they are not exactly described by the Burgers vortex model, is at least of
the order of the Burgers radius Rlvs ∼ (ν/S′)1/2. In a jet the magnitude of the strain
rate acting on a LVS near the jet edge is S ∼ u′/L11, where u′ is the fluctuating
velocity field and L11 is the integral scale of turbulence (Hunt et al. 2010). This leads
to Rlvs ∼ √ν/(u′/L11) = L11Re

−1/2
0 ∼ λ, where Re0 = u′L11/ν is the Reynolds number

associated with the integral scale. However, it is possible to find jets (particularly
at very high Reynolds numbers) and in shear-free flows (flows without mean shear)
where the biggest existing vorticity structures are similar to the IVSs in that they
exhibit no particular spatial orientation, due to the fragmentation of the LVSs. In
this case S′ ∼ u′/λ and the radius of the vortices defining the T/NT interface is
Rivs ∼√ν/(u′/λ) = λRe−1/2

λ ∼ η, where Reλ = u′λ/ν is the Reynolds number based on
the Taylor micro-scale.

Concerning the physical processes responsible by the entrainment, recent works
suggest that the entrainment is mainly caused by small-scale (‘nibbling’) eddy motions
acting on the T/NT interface (Westerweel et al. 2005), as proposed originally by
Corrsin & Kistler (1955). Specifically Westerweel et al. (2005, 2009) showed that the
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engulfment motion caused by the large-scale vortices is not the dominant process for
the turbulent entrainment of irrotational fluid in a jet, in agreement with Mathew &
Basu (2002). Instead, it is suggested that small-scale ‘nibbling’ eddy motions may be
the dominating entrainment mechanism. Nevertheless, it is largely accepted that the
entrainment rate is imposed by the LVSs that exist inside the turbulent region in the
proximity of the T/NT interface. One has to bear in mind that both engulfing and
nibbling exist in free shear flows, and that the relative importance between the two
processes may depend on the geometry of the flow due to the well-known sensitivity
of shear flows to large-scale external initial and boundary conditions or Reynolds
number, e.g. Westerweel et al. (2009) argue that engulfing may be more important in
mixing layers than in jets or wakes.

Whatever these nibbling eddy motions may consist of, they are likely to be more
associated with small-scale IVSs than with the LVSs. Notwithstanding the amount of
work carried out on the role of the LVSs near the T/NT interface in free shear flows,
there is virtually no work devoted to the effects and dynamics of the IVSs in this
region. Specifically the dynamics of the IVSs near the T/NT interface remains largely
unexplored.

The goal of the present work is to characterize the geometry of the IVSs near the
T/NT interface in order to shed light on their dynamics in the context of turbulent
entrainment. For this purpose a direct numerical simulation (DNS) of a temporally
evolving turbulent plane jet was used. The turbulent plane jet shares many common
features with other free shear flows such as the presence of important turbulent
diffusion mechanisms driving the growth of the shear layer, and the presence of
similar LVSs, such as the Kelvin–Helmholtz vortices originated during the transition to
turbulence phase, whose foot prints are still present in the fully developed self-similar
turbulent regime.

This article is organized as follows. In § 2 we describe the temporal turbulent plane
jet DNS used in the present work. Section 3 analyses the global features of the IVSs
in a jet while § 4 studies these characteristics in the proximity of the T/NT interface.
The work ends with a review of the main results and conclusions (§ 5).

2. Direct numerical simulation of a turbulent plane jet

In the present work the intense vorticity structures are analysed near the T/NT
interface by using a temporal DNS of a turbulent plane jet, which we refer to as P. Jet.
This DNS is the same as already used by the authors and described in detail in da
Silva & Pereira (2008), da Silva (2009) and da Silva & Taveira (2010).

It is noteworthy that the present simulation is mathematically identical to the plane
wake used in Bisset et al. (2002), since temporally evolving wakes and planar jets
differ mainly in the shape of the initial mean velocity profile: the maximum mean
velocity in a jet is located at the centreline while in a wake the minimum velocity
is located at the centreline. Consequently in the self-similar regime the shape and
magnitude of the Reynolds stresses profiles in the two flows are similar as can be
attested by comparing the Reynolds stresses in da Silva & Pereira (2008) and Bisset
et al. (2002).

The Navier–Stokes solver uses a pseudo-spectral scheme for spatial discretization,
and a third-order, three-step, Runge–Kutta scheme for temporal advancement. The
grid is isotropic (1x = 1y = 1z), and the number of collocation points along the
streamwise (x), normal (y) and spanwise (z) directions is equal to (Nx × Ny × Nz) =
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(256 × 384 × 256). The extent of the computational domain attains (Lx,Ly,Lz) =
(4H, 6H, 4H), where H is the initial jet slot width.

The initial condition consists of a mean velocity profile on which a three-component
velocity fluctuating ‘spectral noise’ was superimposed. Specifically, the mean velocity
profile is given by

u(x, y, z)= U1

2

{
1+ tanh

[
H

4θ0

(
1− 2|y|

H

)]}
, (2.1)

where U1 is the mean velocity at the jet centreline and θ0 is the initial momentum
thickness. The non-dimensional ratio between the inlet slot width and the initial
momentum thickness was set to H/θ0 = 35. Similar mean velocity profiles were used
in many other simulations of planar jets, e.g. Stanley, Sarkar & Mellado (2002).

The simulations are halted before the effect of the boundary conditions can be
observed in the jet statistics, e.g. the Reynolds stresses. Extensive validation tests
were undertaken for this simulation and the results showed that the present DNS is
accurate at the large and small scales of motion and representative of a fully developed
turbulent plane jet (see da Silva & Pereira 2008 for details). The self-similar regime
occurs when the second-order moments at several different times collapse, and is
obtained at T/Tref ≈ 20, where Tref = H/(2U1) by which time the jet half-width is
equal to δ0.5/H = 0.78. At the self-similar regime the Reynolds number based on
the Taylor micro-scale λ2 = 〈u′2〉/〈(∂u/∂x)′2〉, and on the root mean square of the
streamwise velocity u′ = 〈u′2〉1/2 is equal to Reλ = u′λ/ν ≈ 120 across the jet shear
layer. The minimum resolution across the jet shear layer is 1x = η ≈ 3 i.e. most
points/instants have 1x = η < 3. This is slightly less than in isotropic turbulence but
is well in line with the resolution used in the DNS of free shear flows. The kinetic
energy and enstrophy spectra shown in da Silva & Pereira (2008) confirm that the
resolution is adequate.

The flow coherent structures from the P. Jet DNS are qualitatively similar to many
previous DNSs of turbulent plane jets, e.g. Stanley et al. (2002). Figure 1(a,b) show
iso-surfaces of Q > 0 and pressure, respectively, at the far field (self-similar) regime,
where Q = ωiωi/4 + SijSij/2, where Sij = 1/2(∂ui/∂xj + ∂uj/∂xi) is the rate-of-strain
tensor, and ωi is the vorticity vector. The low-pressure iso-surfaces highlight the big
rollers which are remnants of the Kelvin–Helmholtz vortices generated during the
transition to turbulence which represent the typical LVSs from a turbulent plane jet.
The iso-surfaces of Q > 0 highlight smaller, more intense structures, with fewer signs
of a particular spatial orientation, except for the streamwise vortices near the jet
edges. As expected the IVSs are closer to the structures defined by Q > 0 than to the
structures defined by regions of low pressure (see below), but there is of course some
spatial overlap between these structures.

The present work uses a vortex tracking procedure to detect and characterize the
IVSs. In order to validate this vortex tracking procedure a small DNS of (forced)
isotropic turbulence was also carried out. We denote this simulation by HIT. This
simulation was made using a standard pseudo-spectral code with low wavenumber
forcing described in da Silva & Pereira (2007a). The simulation uses 2563 collocation
points and the Reynolds number based on the Taylor micro-scale is Reλ = 111 and
the maximum resolved wavenumber multiplied by the Kolmogorov micro-scale is
kmaxη = 1.51.

A first comparison of the flow structures present in the two simulations, HIT
and P. Jet, can be made using histograms representing the fraction of vorticity and
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FIGURE 1. Iso-surfaces of Q = 30(U1/H)2 (a) and pressure p = −0.1(ρU2
1) (b) at the self-

similar regime (T/Tref ≈ 22). Note that the figures do not show the total extent of the lateral
domain.
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FIGURE 2. One-dimensional histograms of the volume fraction occupied by points above a
certain vorticity threshold in isotropic turbulence (HIT) and in the plane jet (P. Jet). The x-axis
represents, e.g. |ωx|/ω′ with ω′ = (ω′iω′i)1/2, where ω′i is the fluctuating vorticity field. For the
jet case ω′ is roughly constant inside the shear layer and a mean value was taken.

enstrophy associated with points above a given threshold. These histograms are
displayed in figure 2. In HIT the histograms for the three vorticity components
are equal, which is a consequence of the statistical isotropy of the vorticity field.
The same occurs in the plane jet for vorticity values corresponding to the most
frequent events, e.g. |ωx|/ω′ < 1, and also, approximately, for the intense vorticity, e.g.
|ωx|/ω′ > 1.
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3. The intense vorticity structures inside the shear layer region
In the present work the statistics of the IVSs such as their core radius R and

maximum tangential velocity u0 were determined using a tracking procedure which is
similar (with some modifications) to the procedure described by Jiménez et al. (1993)
and Jiménez & Wray (1998). Similar vortex tracking algorithms were used in the
study of the IVSs in a variety of different flows (e.g. Kida & Miura 1998; Tanahashi
et al. 2001). The procedure used here is described in the Appendix. In (forced)
isotropic turbulence Jiménez et al. (1993) and Jiménez & Wray (1998) showed that
the vortex core size R, maximum axial vorticity ω0, circulation Reynolds number
ReΓ = Γ/ν, and maximum azimuthal velocity u0 for the IVSs scale as R ∼ 5η,
ω0 ∼ ω′Re1/2

λ , ReΓ ∼ 20Re1/2
λ , and u0 ∼ u′, respectively, where Γ is the circulation,

and σ0 = (ωiωjSij/ωkωk)0 is the axial stretching rate at the axis of the IVS. It has
been shown, moreover, that in forced isotropic turbulence the mean radius of the IVSs
is R ≈ RB, where RB = 2(ν/σ0)

1/2 is the Burgers radius, i.e. the IVSs from forced
isotropic turbulence are approximately equilibrium Burgers vortices Jiménez & Wray
(1998).

Table 1 presents a compilation of the IVS characteristics found in several different
flows at several Reynolds numbers, such as (forced and decaying) homogeneous
isotropic turbulence, homogeneous shear, mixing layer, round and plane jets, circular
duct, and channel and boundary layer flows. The results obtained with the present
tracking procedure in the turbulent plane jet (P. Jet) and in (forced) isotropic
turbulence (HIT) are also shown.

The values of the mean radius of the vortex core divided by the Kolmogorov
micro-scale 〈R〉/η are close to 〈R〉/η ≈ 4–5 for a variety of turbulent flows and
for a wide range of Reynolds numbers. For the present HIT and P. Jet we obtain
〈R〉/η = 4.6 for Reλ = 111 and 120, respectively, which is well within the range
of values found in the literature. The mean tangential velocity 〈u0〉 divided by the
root-mean-square velocity u′ obtained in the literature varies as 0.50 < 〈u0〉/u′ < 1.21
indicating that u0 ∼ u′. We have 0.68 and 0.76 for HIT and for P. Jet, respectively,
which are again well within the values found in the literature. The same is true
for the mean tangential velocity normalized by the Kolmogorov velocity scale uη.
Finally, the mean axial vorticity of the IVSs can be compared by computing
the Reynolds number based on the vortex circulation ReΓ = Γ/ν, divided by the
square root of the Reynolds number based on the Taylor micro-scale Re1/2

λ , where
the circulation is obtained through Γ = ∮ Eu · Edl = 2πRu0. Once more, the present
values of ReΓ /Re

1/2
λ = 28.8 (HIT) and 28.3 (P. Jet) are in good agreement with the

values obtained in the literature 10.5 < ReΓ /Re
1/2
λ < 32.4. The same can be said of

the axial vorticity which is ω0/(ω
′Re1/2

λ ) = 0.39 in the forced isotropic turbulence
configuration and ω0/(ω

′Re1/2
λ ) = 0.38 in the turbulent plane jet, and that compares

well with 0.30 < ω0/(ω
′Re1/2

λ ) < 0.42 observed in isotropic turbulence in Jiménez &
Wray (1998). These results show that the tracking procedure used here is indeed well
implemented.

In order to compare the characteristics of the IVSs in isotropic turbulence with the
IVSs in the turbulent plane jet figure 3(a–d) show the probability density functions
(p.d.f.s) of the vortex radius non-dimensionalized by the Kolmogorov micro-scale η,
the tangential velocity non-dimensionalized by the root-mean-square velocity u′, the
circulation Reynolds number normalized with the Reynolds number and the vortex
core radius normalized with the Burgers radius, respectively.
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FIGURE 3. Probability density functions of the filament properties in HIT and in the P.
Jet (data from the entire shear layer region): (a) radius normalized with the Kolmogorov
micro-scale; (b) maximum tangential velocity normalized with the root-mean-square velocity;
(c) circulation Reynolds number normalized with the Taylor-scale Reynolds number;
(d) radius normalized with the Burgers radius. For the P. Jet the values used in the
normalization, e.g. u′, are the values deep inside the shear layer and each instantaneous
field is normalized by its corresponding value of u′.

The shape and the magnitude of the p.d.f.s shown in figure 3(a–d) agree remarkably
well with the same p.d.f.s displayed in, e.g. Jiménez et al. (1993) and Jiménez & Wray
(1998) and in Tanahashi et al. (2001). Note, however, that tails of the p.d.f.s in the
P. Jet show some differences compared with isotropic turbulence, e.g. the probability
of finding vortex core radius with R = 10η is slightly higher in a jet than in isotropic
turbulence (figure 3a). Also, the extreme values of the tangential velocities found in
the jet are also slightly more frequent than in isotropic turbulence (figure 3b). It is
interesting to note that the p.d.f. of R/RB is very similar in a jet and in isotropic
turbulence which indicates that the IVSs found in the jet are well described by the
Burgers vortex model. The Burgers vortex model occupies an important place in the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

29
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.296


174 C. B. da Silva, R. J. N. dos Reis and J. C. F. Pereira

study of vortical structures in turbulent flows since it is known from Jiménez & Wray
(1998) that the ‘worms’ from forced isotropic turbulence are very well described by
this model.

The steady Burgers vortex is an exact solution of the Navier–Stokes equations
describing a vortex tube immersed in an axisymmetric, irrotational field (Davidson
2004). In this model vortex the axial vorticity is given by

ωz(r)= αΓ

4πν
e−r2/R2

B (3.1)

and the velocity field in cylindrical coordinates is

uz = αz, ur =−1
2
αr, uθ = Γ

2πr
(1− e−r2/R2

B), (3.2)

where Γ = 2π
∫∞

0 ωz(r)r dr is the vortex circulation, α is the rate of strain and
RB = 2(ν/α)1/2 is the radius of the Burgers vortex, which is kept constant due to the
balance between the axial stretching rate and the radial viscous diffusion. Jiménez &
Wray (1998) showed that the axial stretching in forced isotropic turbulence originates
in the background vorticity consisting of structures for which ω′ < ω < ωivs. In this
flow the Burgers vortex radius is RB = 2(ν/σ0)

1/2 where σ0 = Eω0
T
· S · Eω0/ | Eω0|2 is the

axial stretching rate acting on the axis of each IVSs (with axial vorticity Eω0) and S is
the local rate of strain. The ratio between the vortex core radius and the Burgers radius
R/RB in table 1 shows that in our (forced) isotropic turbulence 〈R/RB〉 = 0.99 which
is very close to the values obtained by Jiménez & Wray (1998). For the plane jet we
have 〈R/RB〉 = 0.97 which is slightly less than in isotropic turbulence but somehow
also supports the idea that the IVSs from the planar jet are, generally (i.e. in the whole
shear layer), well described by the equilibrium Burgers vortex model.

4. The intense vorticity structures near the T/NT interface
4.1. Topology of the IVSs near the T/NT interface

We now turn to the analysis of the IVSs near the T/NT interface. It is instructive to
have a glimpse of these structures near the T/NT interface. Before we can do this
the exact location of the interface separating turbulent and irrotational flow has to be
defined. Since the T/NT interface divides the flow into a rotational (turbulent) and an
irrotational (non-turbulent) region, the vorticity (or the enstrophy) is the appropriate
variable to define the exact location of the interface. Following several previous works
(e.g. Bisset et al. 2002; Mathew & Basu 2002; da Silva & Pereira 2008; da Silva
2009) we define the T/NT interface location as the flow surface where the local
vorticity norm ω = (ωiωi)

1/2 is equal to a certain threshold. Recently Anand, Boersma
& Agrawal (2009) compared several different criteria to define the T/NT interface.

Figures 4(a–d) and 5(a–d) show the flow structures near the T/NT interface in the
upper shear layer of the plane jet allowing us to better understand the geometry and
interplay of the various structures. Figure 4(a) displays the IVSs (yellow iso-surfaces)
in sections of small circular discs, where the radius of each disc is the exact radius
of the local IVSs radius computed with the vortex tracking algorithm used here. The
length and radial dimension of the IVSs is not uniform but the majority of the
structures seem to display similar characteristics. The IVSs do not show a clear spatial
orientation, as in isotropic turbulence, but seem to be clustered into two separate
regions, at the borders of the flow domain. Figure 4(b) shows iso-surfaces of intense
enstrophy (blue) corresponding to the background vorticity, i.e. structures for which
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FIGURE 4. Side view of the coherent structures near the T/NT interface in the upper shear
layer of the turbulent plane jet: (a) iso-surfaces of the IVSs detected by the vortex tracking
algorithm described in the Appendix (yellow). Note that the displayed radii of the IVSs
structures corresponds to the exact radius computed with the vortex tracking algorithm;
(b) iso-surfaces of enstrophy (blue) and IVSs (yellow); (c) iso-surfaces of low-pressure
regions (orange) and IVSs (yellow); (d) iso-surfaces of low-pressure regions (orange), strong
enstrophy (blue) and IVSs (yellow). Colour references apply to the online version.

the enstrophy is ω′ < ω < ωivs and IVSs (yellow). As can be seen the IVSs merge
with the background vorticity indicating that the IVSs are extreme events of the
background vorticity, as is the case in isotropic turbulence, as described by Jiménez
et al. (1993). The longer enstrophy structures seem to consist of pairs of vortices
aligned preferentially with the streamwise direction. Figure 4(c) shows iso-surfaces
of low-pressure regions (orange) and IVSs (yellow). The pressure field allows one
to observe the large-scale structures of the flow showing three large-scale structures,
aligned with the z direction: two at the upper shear layer, at the extremes of the
domain, and another one below, at the lower shear layer. A considerable number
of streamwise structures are also observed. The radius of the spanwise rollers Rlvs

was estimated by da Silva & Taveira (2010) and is close to the Taylor micro-scale
Rlvs ∼ λ. The structures are remnants of the Kelvin–Helmholtz rollers that are known
to arise during the early stages of the transition to turbulence in a jet. Comparing
figure 4(a,c) one sees that the clusters of IVSs described before are located inside the
large-scale vortices identified by the low-pressure iso-surfaces, however the correlation
between the large-scale structures and the IVSs is apparently low, which underscores
the scale separation between the two types of structure. Finally, figure 4(d) shows
all three iso-surfaces, i.e. IVSs (yellow), enstrophy (blue) and pressure (orange), and
shows that there is some overlap between the enstrophy structures and the pressure but
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FIGURE 5. Side view of the coherent structures near the T/NT interface in the upper shear
layer of the turbulent plane jet: (a) iso-surfaces of the IVSs (yellow), low-pressure regions
(white), and the T/NT interface (brown); (b) same as in (a) but using a transparent iso-surface
for the pressure; (c) same as in (b) but using a transparent iso-surface for the T/NT interface;
(d) iso-surfaces of low-pressure regions (orange), and the T/NT interface (brown). Colour
references apply to the online version.

only for the bigger enstrophy structures, such as one of the two streamwise vortices
which seem to be merging into a single structure (compare also figure 4b,c), i.e. the
spatial overlap between the LVSs and the IVSs (low pressure is associated with strong
vorticity) is clearly apparent from the figure, but one can again see that the IVSs
exhibit more ‘random’ spatial orientation than the LVSs.

In order to analyse the interplay between these structures and the T/NT interface
figure 5(a–d) use partially transparent (or translucent) iso-surfaces of the same
quantities displayed in figure 4(a–d) and show also the T/NT interface at the upper
shear layer of the jet. As in several works, e.g. Bisset et al. (2002), Mathew & Basu
(2002) and da Silva (2009), the T/NT interface consists on the surface defined by
a certain vorticity norm threshold ω = (ωiωi)

1/2, where ωi = ∇ × ui is the vorticity
field and the detection threshold is ω = 0.7U1/H, which is the same threshold used
in Bisset et al. (2002) and Mathew & Basu (2002). Figure 5(a) shows part of the
T/NT interface (brown) and the LVSs (white) identified using pressure iso-surfaces, as
well as some IVSs (yellow). The T/NT interface is strongly convoluted, something that
has been well known for a long time, and one sees immediately that the length scale
of the convolutions is very similar to the length scale of the LVSs below its surface.
Figures 5(b) and 5(c) are equivalent to figure 5(a) but show the pressure iso-surface as
translucent (figure 5b) and the T/NT interface as translucent (figure 5c) which allows
one to observe the IVSs below the T/NT interface. In contrast to the LVSs, the IVSs
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FIGURE 6. (a) Sketch of the T/NT interface indicating the vorticity surface (solid line)
and the interface envelope position YI (dashed line), with the coordinate system of the
plane jet (x, y) and that used in the conditional statistics (yI). The ‘hole’ represents a
region of irrotational fluid inside the turbulent region and is removed from the statistical
sample. (b) Mean conditional profiles of 〈|ω|〉I , 〈|ωx|〉I , 〈|ωy|〉I and 〈|ωz|〉I (all normalized by
U1/H). (c) Percentage of the total number of points identified as IVSs, as a function of the
distance from the T/NT interface in the region 0 < yI/η < 75, i.e. integrating this profile in
0 < yI/η < 75 we have 100 % (〈|ω|〉I is also shown). The vertical dashed line at yI/η = 20 is
one Taylor micro-scale from the T/NT interface.

play no role on the definition of the T/NT interface characteristics, since they are
neither of the same scale of the observed T/NT interface convolutions nor are they the
first structures that appear right below the T/NT interface. With figure 5(d) displaying
the full T/NT interface at the upper shear layer one realizes, not surprisingly, that
the observed convolutions of the T/NT interface are dictated by the LVSs underneath
its surface. Indeed the T/NT interface coincides with the physical line defined by
the LVSs at the edge of the upper shear layer and this fact underlines one of the
well-known features of the T/NT interface that has been known for some time (e.g.
Townsend 1976): the LVSs are responsible for the observed convolutions of the T/NT
interface and this explains why the length scale of these convolutions is roughly equal
to the length scale of the LVSs.

4.2. Conditional statistics of the IVS characteristics near the T/NT interface
In order to study the influence of the T/NT interface upon the IVS characteristics
we use conditional statistics in relation to the distance from the T/NT interface. The
procedure used to obtain these statistics has been used in several previous works (e.g.
Bisset et al. 2002; Westerweel et al. 2005, 2009; da Silva & Pereira 2008; da Silva
2009), and is briefly outlined here since it was already described in detail in da Silva
& Pereira (2008) and da Silva (2009).

The sketch in figure 6(a) shows the T/NT interface separating the turbulent and
the irrotational flow regions at the upper shear layer of the plane jet. As described
before in the present work the T/NT interface location YI(x) is defined using the
vorticity norm ω = (ωiωi)

1/2. The envelope location YI(x) is determined using a linear
interpolation along the y direction, for each one of the Nx grid points along the x
direction in the original coordinate system. Once the T/NT interface location YI(x)
has been determined a new local coordinate system yI is defined to be right at
the interface location and the conditional statistics are made in this local coordinate
system. The T/NT interface is at yI = 0, while the irrotational and turbulent regions are
defined by yI < 0 and yI > 0, respectively. We denote these conditional statistics
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by 〈 〉I . Re-entrant zones are handled as in, e.g. Westerweel et al. (2009) (see
figure 6a). ‘Holes’ of ‘ambient fluid’ that appear inside the jet are removed from
the statistical sample. Note that here, as in da Silva (2009), the local coordinate
system is always aligned with the y direction, unlike in da Silva & Pereira (2008)
where the conditional statistics were made along a line which is always locally normal
to the T/NT interface. It was observed that both procedures lead to very similar
results, however. The same procedure is used also for the lower shear layer and the
statistics use each one of the Nz spanwise planes and NT = 11 instantaneous fields
taken from the fully developed turbulent regime between T/Tref = 20.2 and 27.0. Note
that the conditional profiles shown below highlight the region in the proximity of
the T/NT interface, in 0 < yI/η < 75, since the variables analysed here are roughly
constant from yI/η ≈ 75 until the centre of the jet shear layer, which is located
approximately at yI/η ≈ 140–150. Some of the conditional mean profiles presented
in this work are scaled by reference turbulent quantities, e.g. 〈R〉I/η. Although in
general these quantities, e.g. η or u′, vary in time and along the y direction, their
conditional mean profiles roughly collapse deep inside the turbulent region for the
NT = 11 fields used here. Nevertheless the reference turbulent quantities used for
each field correspond to their value deep inside the turbulent region, e.g. for each
field/instant η is taken as η = 〈η〉I for yI/η = 75. The conditional mean profiles result
from averaging all of the instantaneous profiles, where each one was scaled by its
‘instantaneous’ reference quantity, i.e. 〈R/η〉I = 〈R(yI)/η〉I = 1/NT

∑NT=11
i=1 〈R (yI)〉I /ηi.

Since the turbulence fields are from the self-similar turbulent regime we assume that
the turbulent characteristics studied here are representative of the flow in turbulent jets.

Figure 6(b) shows conditional mean profiles of 〈|ωx|〉I , 〈|ωy|〉I and 〈|ωz|〉I in relation
to the distance from the T/NT interface, showing a sharp jump across the T/NT
interface with thickness roughly equal to 20η. In the present simulation and deep
inside the turbulent region we have λ ≈ 20η, where λ is the Taylor micro-scale,
therefore this jump is equal to the Taylor micro-scale, in agreement with other
experimental and numerical works (Bisset et al. 2002; Westerweel et al. 2005). As
described in the introduction and as shown by da Silva & Taveira (2010) this is
because the thickness of the T/NT interface is equal to the radius of the LVSs near the
T/NT interface δω ≈ Rlvs.

Figure 6(c) shows the percentage of points which were identified as belonging
to an existing IVS axis in the region 0 < yI/η < 75, i.e. the fraction of the total
number of detected IVSs in this region, as function of the distance from the T/NT
interface (integrating this profile in 0 < yI/η < 75 we have 100 %). For yI/η > 20–25
this number is roughly constant, but it decreases sharply as one approaches the T/NT
interface until, for 0 < yI/η < 5, this number is negligibly small. This shows, as
expected, that there is a thin region near the T/NT interface where no axis from IVSs
exist, since this is roughly the radius of the existing IVSs. This agrees also with
the results of da Silva & Taveira (2010) and da Silva & dos Reis (2011): the T/NT
interface in fact consists of (or is made up from) LVSs sitting at that location. Finally,
note that (figure 6c) the size of the adjusting region 5< yI/η < 25 where the IVSs are
not as numerous as inside the jet is consistent with the analysis of the invariant maps
described by da Silva & Pereira (2008, 2009): at yI/η = 20 there are already signs of
the presence of LVSs.

4.3. IVS characteristics near the T/NT interface: the Burgers vortex model
In this section we analyse the IVS characteristics as function of the distance from
the T/NT interface. Figure 7(a–d) show conditional mean profiles of the vortex core
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FIGURE 7. Conditional profiles of IVS characteristics: (a) vortex core radius 〈R〉I/η; (b) axial
vorticity ω0(U1/H) (the vorticity norm from the whole field |ω| is also shown); (c) tangential
velocity 〈u0〉I/u′; (d) circulation Reynolds number 〈ReΓ 〉I/Re1/2

λ . The vertical dashed line at
yI/η = 20 is one Taylor micro-scale from the T/NT interface.

radius R (figure 7a), axial vorticity ω0 (figure 7b), azimuthal velocity u0 (figure 7c)
and circulation Reynolds number (figure 7d). The conditional mean profile of the
vorticity norm |ω| for the whole flow field is also shown (figure 7b). The vertical
dashed line at yI/η = 20 marks the distance from the T/NT interface which is equal to
the Taylor micro-scale.

The core radius deep inside the jet shear layer (yI/η > 75) is equal to 〈R〉I ≈ 4.3η
which is close to the value observed in isotropic turbulence. However, it increases near
the T/NT interface reaching 〈R〉I ≈ 5.3η at yI/η ≈ 20, before decreasing to 〈R〉I ≈ 4.2η
at yI/η = 10. It is interesting to see that the maximum observed radius is located at
yI/η ≈ 20 which is exactly one Taylor scale from the T/NT interface and is also the
point of maximum vorticity as described by da Silva & Pereira (2008). This can be
explained by the dynamics of the IVSs near the jet edge as will be described below.
The quick drop of 〈R〉I/η in the region 10 < yI/η < 20 has to be caused by the lack
of space inside this layer. There is simply no space for IVSs, whose diameter is close
to 10η, inside this region. Note that as we saw before the number of detected IVSs
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in 0 < yI/η < 20 drops fast as the T/NT interface is approached and therefore the
statistics from this region have to be considered carefully even though the observed
trend is clear.

Interestingly the axial vorticity of the detected IVSs is sensibly constant throughout
the jet shear layer (figure 7b), so that even the IVSs very close to the T/NT interface
have similar axial vorticity to those found deep inside the shear layer. This indicates
that it is mostly the orientation of the IVSs and not their vorticity magnitude that is
affected by the presence of the T/NT interface, in agreement with da Silva & dos Reis
(2011) who showed that the IVSs close to the T/NT interface tend to be aligned with
the tangent to the interface surface.

The evolution of the conditional azimuthal velocity of the IVSs (figure 7c)
resembles the evolution of R/η with a maximum close to the T/NT interface
〈u0〉I/u′ ≈ 0.84 (at yI/η = 20) and smaller values deep inside the shear layer
〈u0〉I/u′ ≈ 0.72 for yI/η > 75. Again, very close to the T/NT interface 10 < yI/η < 20
the azimuthal velocity of the IVSs decreases very fast, which indicates that the vortex
filament characteristics are modified by the presence of the T/NT interface.

Although the IVSs are a particular subset of structures taken from a sea of different
eddy sizes we can already draw one conclusion from the above results: since the core
radius and azimuthal velocity are higher near the T/NT interface (yI/η ≈ 20) than
in the region 10 < yI/η < 20, and than deep inside the turbulent region (yI/η > 75),
while the axial vorticity is roughly constant across the shear layer, this implies that
the circulation Γ0 of the IVSs is also maximum at yI/η ≈ 20 and has lower values
in 10 < yI/η < 20 and in the interior of the shear layer yI/η > 20, because the
circulation of each particular IVSs is Γ0 ≈ 2πu0R. This is indeed what is observed in
the circulation Reynolds number whose conditional profile is shown in figure 7(d).

It is tempting to infer that the observed differences in the circulation of the IVSs
across the shear layer are caused by the characteristics of the flow field near the T/NT
interface since the results suggest that the IVSs that are to be found at this location
were formed at that particular location and are not structures that were formed in
other parts of the flow, e.g. the jet centreline, and that were simply advected into the
jet edge. Although only a detailed analysis of the IVSs in time would allow us to
settle these questions definitively, it is easy to show that the lifetime of the IVSs, Tτ ,
is much smaller than the time needed for these structures to travel from the region
near the jet centreline into the region near the jet edge TV . As we show in § 4.4,
the characteristic time associated with the downstream convection of the IVSs, TU, is
much bigger than the lifetime of these structures Tτ � TU, and since the downstream
transport, associated with the higher mean velocity component of the jet, is much
smaller than the time associated with lateral transport of the IVSs, it follows naturally
that the IVSs are dissipated much faster than they can be transported from the centre
of the jet into the region near the jet edge, i.e. Tτ � TU � TV .

The dynamics of the IVSs can be analysed by comparing their characteristics with
the Burgers vortex model. As described above it is well known that the Burgers
vortex model provides an excellent description of the IVSs found in (forced) isotropic
turbulence and it is expected that this model will provide a good description for
the IVSs in free shear flows, e.g. jets, since the IVSs are similar in many different
flows. The mean value of R/RB for the entire shear layer supports this view with
〈R/RB〉 = 0.97 (see table 1). In forced isotropic turbulence Jiménez & Wray (1998)
observed that the radius of the IVSs is equal to the Burgers radius R = RB for a
wide range of Reynolds numbers: 0.96 < R/RB < 1.05 for 62 < Reλ < 168. However,
in decaying isotropic turbulence Jiménez & Wray (1998) observed R/RB = 0.82 for
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FIGURE 8. Conditional profiles of diffusion and stretching time scales 〈Tν〉I and 〈TS〉I , and
ratio between the local vortex core radius and the Burgers radius 〈R/RB〉I . The vertical dashed
line at yI/η = 20 is one Taylor micro-scale from the T/NT interface.

Reλ = 62 showing that the Burgers vortex is a less accurate model to describe the
dynamics of the IVSs in decaying turbulence. The jet flow studied here is also in
some sense a decaying flow since the root-mean-square velocity decreases slowly with
the axial direction (or with time in a temporal simulation) in the far field self-similar
region. However, the presence of a mean shear producing turbulent kinetic energy
and thus some additional local strain (compared with decaying isotropic turbulence) is
expected to counter this decay to some extent. Therefore, in a jet we expect to be
somehow between the classical cases of forced and decaying isotropic turbulence.

We start to analyse the dynamics of the IVSs by comparing the measured vortex
core radius R of each identified structure with the local Burgers radius RB = 2(ν/σ0)

1/2

through the ratio R/RB displayed in figure 8. Note that RB can only be computed
for axial IVS points where vortex stretching dominates over compression σ0 > 0. The
conditional profile of 〈R/RB〉I is slightly smaller than 1.0 close to the T/NT interface
(〈R/RB〉I ≈ 0.9 in 5 < yI/η < 30), attains a maximum of around 〈R/RB〉I ≈ 1.0 in
30< yI/η < 50, and decreases to 〈R/RB〉I ≈ 0.97 in the centre of the shear layer. Thus,
R/RB in the jet is indeed between the values observed in forced and in decaying
isotropic turbulence. This shows that the Burgers vortex model, although being still
an approximately good description for most of the IVSs in the jet, is less accurate in
modelling the IVSs near the T/NT interface, and that for these IVSs (near the T/NT
interface) enstrophy generation by axial vortex stretching and radial enstrophy viscous
diffusion are not in perfect equilibrium, and the vortex core radius of these structures
is not stable, i.e. it is evolving in time.

To investigate where this imbalance comes from we define two time scales
associated with the two mechanisms: TS = 1/σ0 and Tν = R2/ (4ν) associated with
axial vortex stretching and radial viscous diffusion, respectively. If the two time
scales are equal TS = Tν , the vortex core radius is equal to the Burgers radius
R = RB = 2(ν/σ0)

1/2, and the vortex core is stable, i.e. it does not change in time.
If, in contrast, the two time scales are not equal the mechanism associated with the
smaller time scale dominates, e.g. a vortex where Tν < TS is subjected to more intense
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FIGURE 9. Temporal evolution of the conditional profiles of IVS characteristics, showing
the values at T/T∗ ≈ 22 and T∗ ≈ 24, and the reference mean values (shown in figure 7):
(a) vortex core radius 〈R〉I /η; (b) axial vorticity 〈ω0〉I; (c) tangential velocity 〈u0〉I /u′;
(d) circulation Reynolds number 〈ReΓ 〉I /Re1/2

λ . The vertical dashed line at yI/η = 20 is one
Taylor micro-scale from the T/NT interface.

viscous diffusion than axial stretching, and this will tend to increase its radius in time.
The ratio of the conditional time scales 〈(Tν/TS)

1/2〉I displayed in figure 8 shows that
this is the dynamical situation for the IVSs near the T/NT interface, and to a smaller
extent to many other IVSs to the interior of the shear layer, since 〈Tν/TS〉I < 1.0. Note
that for given σ0 and ν, the two time scales are related to the vortex core radius by
(Tν/TS)

1/2 = R/RB, and the present results comply with this relationship (see figure 8).
Figure 9(a–d) show the instantaneous conditional IVS characteristics for two

different times T/Tref = T∗ ≈ 22 and T∗ ≈ 24 (the mean value resulting from the
averaging procedure using NT = 11 instantaneous fields discussed in figure 7 is
also shown). This allows one to observe the temporal evolution of several IVS
characteristics during a short time interval. The degree of convergence of these curves
is not perfect due to the small number of samples, but is sufficient to observe the
main trends. One observes that as time progresses from T∗ ≈ 22 to T∗ ≈ 24 the axial
vorticity (figure 9b) and the tangential velocity (figure 9c) decrease in the majority of
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the flow points, while the magnitude of the vortex core radius increases (figure 9b).
This is exactly what one would expect in an isolated vortex if the viscous diffusion
of enstrophy is more important than the axial enstrophy stretching. Note that the
circulation Reynolds number also decreases (figure 9d). As remarked by a referee, this
last result underscores the fact that the dynamics of the IVSs is not inviscid, and the
circulation of the individual IVSs is not constant, but decreasing in time. This is a
natural consequence of the fact that the length scale of the IVSs is of the order of the
Kolmogorov micro-scale (R ≈ 4–5η) implying that the viscosity is important for these
structures.

The series of observations described above raise a new question: why is the
dynamics of the IVSs different near the T/NT interface compared with deep inside
the turbulent region? Specifically, we are interested in understanding what the reason
is that the radii of the IVSs near the jet edge are larger than inside the rest of the
shear layer. This issue is important in the context of the turbulent entrainment since
the ‘nibbling’ eddy motions associated with the entrainment are thought to be dictated
by the IVSs near the T/NT interface. It has been remarked that only vortices that
are approximately described by the Burgers vortex will have long lifetimes inside a
turbulent flow, i.e. long lived IVSs must have a radius close to the Burgers radius
R≈ RB. Therefore the key issue here seems to be the axial stretching rate σ0 acting on
the axis of the IVSs, given that ν is of course the same everywhere in the flow.

We start to investigate this issue by analysing the conditional profiles of stretching
rate 〈σ 〉I = 〈ωiωjSij/ (ωkωk)〉I , and mean stretching rate 〈σ̄ 〉I = 〈ωi〉I〈ωj〉I〈Sij〉I/〈(ωkωk)〉I
for the whole flow field, in figure 10(a). We note from the outset that the total 〈σ 〉I
and mean 〈σ̄ 〉I stretching rates are very different with 〈σ̄ 〉I � 〈σ 〉I which shows that
the mean flow has a negligible influence on the stretching rate (for the whole flow
field). Moreover, 〈σ 〉I < 0 is negative in the irrotational region yI/η < 0 implying a
prevalence of compression over stretching of the fluid elements as the T/NT interface
is approached in agreement with da Silva & Pereira (2008), and increases sharply after
the T/NT interface has been crossed displaying a peak at yI/η ≈ 5. After this 〈σ 〉 ≈ 0.4
for yI/η > 30. Since the vorticity norm |ω| is roughly constant inside the shear layer,
the stretching rate must increase with yI for yI > 0 like the rate of strain, as described
by da Silva & Pereira (2008), provided that the alignment between enstrophy and
strain is unchanged. A relatively slow increase in the magnitude of the rate-of-strain
norm near the jet edge was indeed observed independently by da Silva & Pereira
(2007b, 2008) and Holzner et al. (2007), which explains that the enstrophy production
increases also slowly after the T/NT interface, again as shown by da Silva & Pereira
(2007b, 2008) and Holzner et al. (2007).

To analyse the stretching rate acting on the axis of the IVSs figure 10(b) displays
conditional profiles of total axial stretching rate 〈σ0〉I = 〈ω0 ·S ·ω0/ω

2
0〉I , positive

axial stretching rate 〈(σ0 > 0)〉I , i.e. 〈σ0〉I for σ0 > 0, and mean axial stretching rate
〈σ̄0〉I = 〈ω0〉I ·〈S〉I ·〈ω0〉I / 〈ω2

0〉I . The conditional profile of the total axial stretching
rate 〈σ 0〉I accounts for both positive and negative events, associated with vortex
stretching and vortex compression, respectively, while 〈(σ0 > 0)〉I accounts only for
vortex stretching, which is more important than compression, and explains the
observed differences between the two curves, i.e. 〈(σ0 > 0)〉I > 〈σ 0〉I . The contribution
of the mean field gradients to the total stretching can be appreciated in 〈σ̄0〉I . Unlike
σ for the whole turbulent flow, σ0 has a non-negligible influence of the mean field,
as can be attested by the fact that 〈σ 0〉I and 〈σ̄0〉I have comparable magnitudes. An
even more striking feature of 〈σ 0〉I as well as of 〈σ̄0〉I , is that it attains its minimum
right at yI/η ≈ 20, i.e. exactly at the point where the radius of the IVSs is maximum,
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FIGURE 10. Conditional profiles of: (a) stretching rate 〈σ 〉I and mean stretching rate 〈σ̄ 〉I;
(b) stretching rate 〈σ 0〉I , positive stretching rate 〈(σ0 > 0)〉I and mean stretching rate 〈σ̄0〉I , at
the axis of the IVSs; (c) rate-of-strain norm at the axis of the IVSs 〈(SijSij)0〉I . The vertical
dashed line at yI/η = 20 is one Taylor micro-scale from the T/NT interface.

indicating that the evolution of the conditional radius of the IVSs is indeed caused by
the behaviour of σ0 near the jet edge. Deep inside the turbulent region yI/η > 40 〈σ 0〉I ,〈σ̄0〉I and 〈(σ0 > 0)〉I are roughly constant, in contrast with the region 0 < yI/η < 40,
where 〈σ 0〉I is seen to decay to its minimum.

It remains to understand what causes the decay of σ0 near the T/NT interface, and
we now turn the investigation in this direction. Here σ0 depends on the rate of strain
(Sij)0 and on the vorticity ω0 on the axis of the IVS, but as we have seen before
ω0 is roughly constant across the whole shear layer (see figure 7b). As for the strain
acting on the axis of the IVS, figure 10(c) displaying conditional rate of strain (SijSij)0
on the axis of the IVS shows that this quantity alone cannot explain the observed
behaviour of σ0 at 0 < yI/η < 40, since (SijSij)0 at yI/η = 20 is similar to (SijSij)0 for
yI/η > 40. The observed decay of 〈σ0〉I near the T/NT interface, however, starts by
yI/η ≈ 40. Recall that da Silva & Pereira (2008) and Holzner et al. (2007) showed
that the rate of strain for the whole flow field is also roughly constant inside the
turbulent region. Therefore, the decay of σ0 around yI/η ≈ 40 has to be explained by
a decrease in the alignment between ω0 and (Sij)0 near the jet edge. A decrease in
the alignment between ωi and Sij (for the entire field) near the T/NT interface was
reported in Holzner et al. (2007) and is consistent with the T/NT interface affecting
the orientation more than the magnitude of the vorticity field described before.

There is however another explanation for the observed decay of σ0 near the T/NT
interface. Indeed it has been shown that in isotropic turbulence the axial stretching
rate acting on the IVSs originates in the background vorticity structures, and these
structures on the other hand lie at the borders of the weak vorticity or velocity
eddy structures, which are themselves relatively free from vorticity in their centres
(Jiménez & Wray 1998). If we can draw a parallel with the present jet flow, the
biggest LVSs from the jet with radius of the order of the Taylor micro-scale consist
of weak vorticity structures whereas the smaller LVSs are the background vorticity
structures. The IVSs are then stretched in the borders of the biggest LVSs in the
flow. To understand the dynamics of the eddies near the T/NT interface figure 11
shows a sketch of the flow depicting the LVSs and IVSs near the jet edge. The IVSs
deep inside the shear layer are stretched by the surrounding large-scale structures, and
the resulting stretching rate imposes their radius R ∼ 4.6η. For the IVSs near the
T/NT interface, however, only a fraction of the LVSs exist and therefore the overall

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

29
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.296


Intense vorticity structures near the turbulent/non-turbulent interface in a jet 185

Irrotational

Turbulent

FIGURE 11. Sketch of the (small) IVSs and (big) LVSs near the T/NT interface in the jet.
The T/NT interface is defined by the LVSs near the jet edge and the IVSs appear more to the
interior of the jet shear layer. The average radius of the IVSs near the T/NT interface is bigger
than deep inside the jet shear layer.

stretching rate on the IVSs will be smaller than inside the jet. Consequently we expect
the stretching rate acting on the IVSs near the jet edge to be smaller by a factor Σδ

than the stretching rate inside the jet σ0(yI/η = λ)=Σδσ0(yI/η > λ), and this explains
the larger IVSs found near the T/NT interface. We note that in the present results this
factor is close to Σδ ≈ 3/4.

The picture that emerges for the IVSs in the jet is as follows: the IVSs inside
the jet are approximately described by the Burgers vortex model R ≈ RB = 2(ν/σ0)

1/2,
although arguably not as accurately as in forced isotropic turbulence. In any case the
most probable dynamic situation for an IVS inside the jet consists of an approximate
balance between the opposing effects of viscous enstrophy diffusion and enstrophy
production by axial stretching. For the IVSs near the jet edge, however, the absence of
one fraction of the LVSs due to the proximity of the irrotational flow region, decreases
the level of total axial stretching rate imposed on the IVSs, compared with the level
of stretching found inside the jet. Owing to this, the radius of the IVSs near the jet
edge will grow until they reach a new situation of equilibrium. Arguably, if an IVS
is detrained and lost into the irrotational region, it will tend to grow even more due
to the associated decrease of axial stretching as it moves farther away from the jet
centreline. One must bear in mind, however, that since Tτ � TU it is clear that the
IVSs are dissipated in a very small time scale compared with the time associated with
large-scale transport in the jet. Thus, it is highly unlikely that the IVSs from jets will
be observed to decay as the jet evolves downstream.

Finally, note that in the present work no effort was made to separate the results
depending on the local shape of the T/NT interface surface, i.e. whether the interface
is convex or concave, such as is done in, e.g. Bisset et al. (2002), where it is shown
that the conditional statistics in the convex outer part of the LVSs engulfing regions is
different from the concave convoluted T/NT interface found near the centreline of the
jet; however, this aspect certainly deserves to be investigated.

4.4. Lifetime and characteristics of the intense vorticity structures inside the jet
It is possible to make some rough estimates of the characteristics of the IVSs inside
the shear layer, e.g. the vortex core radius, tangential velocity, vorticity and circulation,
as the structures travel downstream in the jet. Before we do this, however, it is
important to realize that the IVSs have a very small lifetime compared with the LVSs,
and that for this reason it will be hard to visualize the scaling laws described here as
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the IVSs travel downstream in a jet, since they will be quickly dissipated. Rather the
relations derived here have to be understood as estimates for the existing IVSs at a
particular downstream location in the jet. To see this we compare the lifetime of the
IVSs with the characteristic time scale associated with their downstream transport in
the jet. The time needed for an IVS to travel a distance equal to the integral scale
L11 is TU = L11/ū, where ū is the characteristic mean velocity in the jet, which is
of the order of the centreline mean velocity ū ∼ ū0, while the integral scale inside
the jet is roughly of the order of the jet half-width L11 ∼ δ0.5 (0.4 < L11/δ0.5 < 0.8)
(Pope 2000). On the other hand, the lifetime of the IVS is of the order of the time
corresponding to one rotation Tτ ∼ R/u0. Given that the size of the vortex core radius
is R ∼ η, and using u0 ∼ u′, where u0 is the maximum azimuthal velocity of the IVS,
we have Tτ ∼ η/u′. In a planar jet 0.2 < u′/ū0 < 0.3 for a range of Reynolds numbers
1500< ReH < 81 400 (Deo, Mi & Nathan 2008), therefore, by taking u′/ū0 ≈ 0.25, we
get Tτ/TU ∼ (R/u0)(ū0/L11) ∼ 4(η/L11) ∼ 4Re−3/4

0 , where Re0 is the Reynolds number
of the large-scale eddies Re0 = u′L11/ν. Clearly the lifetime of the IVS is much shorter
than the time associated with their downstream transport.

The characteristics of the IVSs in a planar turbulent jet can be obtained using
the theoretical results for the self-similar plane jet and considering that the IVSs are
approximately described by the same scaling laws obtained by Jiménez & Wray (1998)
in forced isotropic turbulence. The results described in the previous section support
this view, e.g. in forced isotropic turbulence the radius of the IVS is of the order
of the Burgers radius R ∼ RB and as we have seen the same is also true in a jet,
particularly deep inside the shear layer. Thus, the streamwise evolution of the vortex
core size can be estimated assuming R ∼ RB ∼ (ν/σ0)

1/2. Since the stretching rate is
of the order of σ0 ∼ ω′ and given that ω′ ∼ u′/λ (Jiménez & Wray 1998), and by
using the relation for the downstream evolution of the Taylor micro-scale λ ∼ x3/4

(Antonia, Satyaprakash & Hussain 1980), one concludes that the IVS radius evolves
as R ∼ x5/8. It is interesting to recall that in a plane jet the Kolmogorov micro-scale
also evolves as ∼x5/8 as shown by Deo et al. (2008) and Antonia et al. (1980), which
shows that R ∼ η anywhere in the downstream evolution of the jet. Given that the
Taylor-based Reynolds number increases in the jet as Reλ = u′λ/ν ∼ x1/4 (Antonia
et al. 1980) it follows that the circulation evolves as Γ ∼ 20Re1/2

λ ∼ x1/8, and the axial
vorticity as ω0 ∼ ω′Re1/2

λ ∼ x−9/8. Finally, the maximum azimuthal velocity evolves as
u0 ∼ u′ ∼ x−1/2. Naturally we expect that as the T/NT interface is approached the IVS
will tend to have a larger vortex radius, and smaller axial vorticity, circulation and
azimuthal velocity than deep inside the shear layer for the reasons explained before.
The present scaling laws for the IVSs could be assessed in a spatially evolving planar
jet.

5. Conclusion
A DNS of a turbulent plane jet at Reλ = 120 has been used to analyse the IVSs near

the T/NT interface. The investigation used a tracking procedure to identify the IVSs
which is similar (with some modifications) to the procedure developed by Jiménez
et al. (1993) and Jiménez & Wray (1998). The T/NT interface is roughly defined by
the radius of the LVSs at the edge of the jet, which is Rlvs ∼ λ, while the IVSs appear
more to the interior of the jet shear layer, at ∼5η from the location of the T/NT
interface.

Well inside the jet shear layer the IVS characteristics are approximately similar to
the IVSs observed in forced isotropic turbulence and several other flows: the mean
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radius is of the order of the Kolmogorov micro-scale 〈R〉/η = 4.6, the tangential
velocity is of the order of the root-mean-square velocity 〈u0〉/u′ = 0.76, the mean
circulation Reynolds number normalized by the Taylor scale Reynolds number is
〈ReΓ 〉/Re1/2

λ ≈ 28 and the mean axial vorticity is 〈ω0/(ω
′Re1/2

λ )〉 = 0.38, where ω′ is
the fluctuating vorticity norm. The shapes of the p.d.f.s of these quantities are also
similar to the corresponding p.d.f.s in forced isotropic turbulence.

The mean size of the vortex core radius is also very close to the Burgers vortex
radius 〈R/RB〉 and the shape of the p.d.f.s of R/RB are almost equal in the plane
jet and in forced isotropic turbulence. This indicates that the IVSs from the jet are
approximately described by the Burgers vortex model, i.e. for the IVSs inside a jet
the enstrophy production by axial stretching is roughly balanced by the radial viscous
diffusion indicating that the radius of the IVS is stable, as is the case in isotropic
turbulence (Jiménez & Wray 1998).

The number of detected IVSs is roughly constant inside the jet but drops sharply
in the region 5 < yI/η < 20. Virtually no IVSs exist in the region 0 < yI/η < 5 which
can be explained by the size of the IVSs being approximately equal to R/η ≈ 5 and
therefore no IVSs can fit inside this thin layer.

Conditional statistics in relation to the distance from the T/NT interface were
carried out in order to investigate how the IVS characteristics are affected by
the presence of the T/NT interface. The radius, circulation, vorticity and tangential
velocity are approximately constant inside the jet shear layer. When approaching the
T/NT interface from the interior of the jet (yI/η→ 0) the radius, circulation and
tangential velocity increase near the jet edge, and display a maximum at about one
Taylor micro-scale from the T/NT interface yI/η ≈ 20, before dropping again sharply
in the region 5 < yI/η < 20. The axial vorticity is approximately constant across the
shear layer.

The Burgers vortex is also a good model for the IVSs near the jet edge, although
it is not as accurate as inside the jet shear layer. Indeed for the IVSs located at
5 < yI/η < 20, 〈R/RB〉 ≈ 0.90. This is related with the level of axial stretching rate
acting on the axis of the IVS σ0, which is roughly constant inside the shear layer but
decreases sharply near the T/NT interface attaining a minimum at yI/η ≈ 20. This is
exactly the location where the radius, tangential velocity and circulation of the IVSs
attain their maxima. The decrease in the magnitude of σ0 near the jet edge can be
explained by a decrease in the number of LVSs neighbouring the IVSs since the
stretching imposed on the IVSs is known to originate in the background vorticity at
the edges of the LVSs. Thus, the IVSs near the jet edge are not equilibrium Burgers
vortices, and their mean radius will tend to increase in time. The lifetime of these
structures, however, is small compared with the convective time scale making the
temporal evolution of the radius hard to observe in a jet.

C.B.d.S. would like to acknowledge Professor J. Jiménez for interesting discussions
on this theme during his visit to Madrid in March 2009 and during the visit of
Professor J. Jiménez to Lisbon in November of the same year. Dr M. Teixeira is
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Appendix. Vortex tracking algorithm
The vortex tracking algorithm implemented here is similar to Jiménez et al. (1993)

with some modifications. The IVSs are defined as consisting of points where the
vorticity ω = |Eω| is above a certain threshold ωivs, where this threshold characterizes
the points with the most intense vorticity existing within the flow domain. Following
the procedure adopted by Jiménez et al. (1993), we define this threshold as equal to
the vorticity of the points with highest enstrophy that are contained in 1 % of the total
volume. In HIT the particular value used here was ωivs = 2.7ω′ and can be obtained
from the histograms in figure 2. For comparison, Jiménez et al. (1993) obtained
ωivs = 3.1ω′ at similar Reynolds number.

As a pre-processing step in the tracking algorithm all of the identified points, i.e.
points with vorticity above the defined threshold ω > ωivs are listed and ordered.
Each axis is then identified according to the following steps: (i) choose the first
non-assigned point; (ii) choose the nearest grid plane intersected by the direction of
Eω; the four points in this plane which are nearest to the intersection are chosen
as candidates; (iii) choose the point with the highest value of ω that has not yet
been assigned. The algorithm stops when all points have been assigned. In a second
post-processing phase all IVS points belonging to an axis with less than 20 points are
discarded. A modification introduced here that is absent from the tracking described in
Jiménez et al. (1993) is the elimination of all clustered axis points (i.e. points from
two parallel axis), leaving only points from the axis with the strongest enstrophy.

The worm radius and circulation as function of axis position are calculated from the
vorticity profile along the axis. This profile is obtained using the following steps: (i) a
plane normal to the direction of the vorticity vector is defined for each identified point;
(ii) the vorticity Eω can be interpolated into any given point on this plane using the
least-squares method; in the present work n = 6 radial bins centred on the axis, with
a radius equal to n1x, and with m = 8 points per bin, with an angular interval equal
to 2π/m were used; (iii) to compensate for the noise induced by the discretization, the
value obtained for the radial distribution is filtered over triples of consecutive axial
locations using a [1/4, 1/2, 1/4] mask.

The worm radius R is calculated by an iterative fit of the axial distribution to
ω = ω0e−r2/R2

, where ω0 is the value of vorticity at the axis point. All points where the
iterative process was unable to converge were discarded, like those with a very large
radius R> 30η, as in Jiménez & Wray (1998).

The tangential (or azimuthal) velocity was computed using two different methods.
The first method assumes a Gaussian distribution for the vorticity in each IVS
ω(r) = ω0e−r2/R2

. Using the relation
∮ Eu Edl = ∫ ∫ EωEn dS with the assumed vorticity

distribution one obtains the expression for the tangential velocity u0 = 0.316ω0R.
In the second method the tangential velocity is determined directly from the velocity

flow field. A plane normal to the ω0 axis is determined and the flow field vectors are
projected into it. The tangential velocity is then obtained at each radial position using
an azimuthal averaging procedure similar to that described above. The two methods
give similar results for u0. In the present work the second method was used since it
requires no assumption on the shape of the vorticity distribution.
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