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Transient growth properties are computed for a two-phase temporal mixing layer of
immiscible fluids with interfacial tension. Large transient growth factors are found
to occur at short times in parameter regimes characteristic of the primary breakup
of a liquid. Optimal growth factors scale with the square of the Reynolds number,
as for single-phase flow. The flow fields of optimal disturbances show liquid upflows
and high-speed streamwise gas jets occurring together near the interface, suggesting
transient growth as a possible mechanism for the formation of interfacial patterns.
Optimal growth occurs for streamwise uniform disturbances with a spanwise wave-
length proportional to the thickness of the gas boundary layer. For a coaxial jet, the
predicted number of ligaments would be inversely proportional to the gas boundary
layer thickness.

1. Introduction
The deformation and disintegration of a liquid by a fast flowing gas is a

phenomenon of fundamental importance in both nature and industry. Noteworthy
examples include the wind-driven formation of sea spray, an important component of
sea surface material and heat fluxes, and the atomization of liquids, such as fuels in
combustion applications (Lefebvre 1989; Bayvel & Orzechowski 1994). Experiments
in which high-speed co-flowing gas drives the breakup of liquid jets (Mayer 1994;
Lasheras & Hopfinger 2000; Marmottant & Villermaux 2004, referred to herein
as MV), liquid sheets (Mansour & Chigier 1990; Stapper, Sowa & Samuelson
1992; Lozano et al. 2001) and liquid layers (Raynal 1997) have revealed two co-
existing patterns on the interface at early times: (i) a growing spanwise vortical wave,
apparently generated by the shear at the interface; and (ii) a streamwise vortical
pattern that can lead to protruding streamwise oriented ligaments (SOL), as sketched
in figure 1(a). These ligaments are precursors of drop formation and their three-
dimensional nature precludes an explanation via two-dimensional stability analysis.
Stapper et al. (1992) also found that streamwise vorticity is associated with the
streamwise ligamentary pattern.

Liquid injected at high speed into quiescent gas also exhibits SOL, a configuration
studied extensively by Faeth and co-workers in both cylindrical and planar jet
geometries (see also Hoyt & Taylor 1977 and Sarpkaya & Merrill 2001) and for
which a turbulent primary breakup theory has been developed (Wu, Miranda & Faeth
1995) that successfully correlates ligament properties with the scales of developed
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Figure 1. Sketches showing: (a) streamwise and spanwise patterns; and (b) the base flow.

turbulence in the liquid. This theory cannot, however, address the essentially laminar
flow experiments, like those of MV, nor is it strictly applicable when turbulence is
not fully developed, as in many applications of interest (e.g. diesel fuel injectors).

Streamwise vorticity in single-phase shear flows has been intensely examined for
its role in the transition to turbulence. It is now clear, for example, that streamwise
vortices in boundary layers are responsible for the high- and low-speed streamwise
streaks seen at moderate Reynolds numbers (a high-speed streak is formed as a
streamwise vortex pushes fast fluid from the free stream down into the boundary
layer). Streamwise vortices are not a consequence of modal instability, rather they
result from the transient growth of optimal disturbances – special initial conditions
which experience large transient amplification. There is not space here to review this
active topic; the interested reader can find a comprehensive review and bibliography
in Schmid & Henningson (2000). Transient growth theory has been more successful
than eigenvalue analysis in describing aspects of transition in pipe flow, channel flow
and some types of boundary layers.

To date, stability analyses of co-flowing liquid and gas – whether jets, sheets or
layers – have been almost entirely restricted to eigenvalue studies. On the one hand,
this is justified by the fact that a Kelvin–Helmholtz-type instability (the spanwise
vortical/interfacial mode) is found and its predicted characteristics show reasonably
good agreement with observations. On the other hand, eigenvalues describe the asymp-
totic stability of a flow whereas the breakup of liquids is a rapid process, for which
transient instability may be equally pertinent. A few investigations of transient growth
in a two-fluid shear flow have been performed: three-dimensional computations were
made by Olsson & Henningson (1995) for watertable flow, neglecting the less dense
layer; and de Luca, Costa & Caramiello (2002) examined a liquid sheet falling through
a still, inviscid gas. Two-dimensional studies have also been made: South & Hooper
(1999) focus on the case of uniform density and neglect surface tension while Noorden
et al. (1998) account for both non-uniform density and surface tension.

The primary purpose of this work is to present, for the first time, characteristics
of three-dimensional transient growth in a two-phase shear flow in which capillary
forces act on the interface. We have chosen an unbounded temporal mixing layer
configuration which admits a straightforward computation of transient growth
properties and which is relevant to a number of atomization problems for which
the characteristic length scales are much smaller than the flow geometry. Densities
and viscosities are chosen to correspond to a wide range of gas–liquid combinations,
including the air–water case; density-matched flow is not considered here. This work
has been partly motivated by the need to understand streamwise oriented ligament
formation in liquid breakup, and guided by the tendency of transient growth to
generate streamwise patterns.
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Recently, Marmottant & Villermaux (2004, henceforth referred to as MV), have
performed experiments on co-axial jets using a range of liquids and carefully prepared
exit profiles (see also the earlier studies of Lasheras, Villermaux & Hopfinger 1998).
MV analysed the resulting spanwise wave and streamwise ligament formation and
presented a theory which agrees with a number of observed trends. In this work, we
arrive at an alternative model that provides spanwise periodic structure consistent
with the properties of SOL as a result of the transient growth of optimal disturbances.

2. Base flow
The base flow consists of two immiscible fluids flowing in parallel and separated

by a flat interface; the domain extends to ± ∞ in our theoretical treatment, but is
truncated for computational purposes at large finite values −L1 and L2 (see figure 1b).
The fluids are incompressible, Newtonian and satisfy the Navier–Stokes equations;
they have different viscosities µj and densities ρj (where j = 1, 2 and νj = µj/ρj )
and a surface tension σ acts on the interface. Gravity is neglected. The base velocity
profile ū = (Uj, 0, 0) is the solution of the First Stokes Problem, here in the form
Uj (y) = U ∗

j erf(y/δj ), such that the interface is located at y = 0 and has zero velocity;
base pressure is constant: p̄ = p∗. The First Stokes solution is time-dependent, its
boundary layer thickness given by δj = 3.6

√
νj t = (δ99)j (Schlichting & Gersten 2000).

We nevertheless perform an analysis of this profile at a particular snapshot in time,
with the caveat that any growth, to be considered relevant, must occur more quickly
than the boundary layers develop.

Continuity of tangential stress on the interface can be expressed as
U ∗

2 µ2/δ2 = U ∗
1 µ1/δ1, implying that the base velocity gradient (equivalently, vorticity)

is discontinuous, unless the fluid viscosities are equal. The base flow is subject to both
inviscid (i.e. Kelvin–Helmholtz type) and viscous instabilities, as previously studied in
Yecko, Zaleski & Fullana (2002) and Boeck & Zaleski (2004). This temporal mixing
layer is Galilean invariant and, in principle, may be applied to a wide range of liquid–
gas flow configurations, including atomization of liquid by high-speed co-flowing gas
and atomization of high-speed liquid injected into initially still gas.

Assuming that the boundary layers develop from the same initial time (SIT), their
thicknesses always have a fixed ratio. We define n := δ2/δ1 and then have n= (ν2/ν1)

1/2.
The SIT assumption is discarded in § 5.3, where we compare our results to experiments.

Non-dimensionalization may be performed with respect to either liquid or gas
quantities; here, we use the free-stream liquid velocity U ∗

1 , liquid boundary layer
thicknesses δ1 and pressure ρ1(U

∗
1 )2. The resulting (liquid) Reynolds number is based

on the boundary layer thickness and is given as Re1 = ρ1U
∗
1 δ1/µ1 while the Weber

number is We1 = ρ1(U
∗
1 )2δ1/σ . We introduce the density ratio r = ρ2/ρ1 and viscosity

ratio m =µ2/µ1, from which expressions for the (gas) values Re2 = (rn2/m2)Re1 and
We2 = (rn3/m2)We2 can be easily derived. Since n= (m/r)1/2 is fixed, four dimen-
sionless parameters are therefore needed; we take Re1, We1, r , and m.

3. Governing equations
The base state is perturbed by adding an infinitesimal disturbance of the form

(uj , pj ) = (ûj (y, t), p̂j (y, t))ei(αx+βz). (3.1)

The linear equations that govern the behaviour of these perturbations can be written
in terms of the normal velocity v̂j and normal vorticity η̂j = iβ ûj − iα ŵj :

∂

∂t
(D2 − k2)v̂j + iαUj (D

2 − k2)v̂j − iαD2Uj v̂j − 1

Rej

(D2 − k2)2v̂j = 0, (3.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

33
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005003307
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∂

∂t
η̂j + iαUj η̂j + iβDUj v̂j − 1

Rej

(D2 − k2)η̂j = 0 (3.3)

where k2 = α2 + β2, D= d/dy, and boundary conditions: v̂j = Dv̂j = η̂j = 0 hold far
from the interface (y → ∞). Rej are fixed here; only the perturbations are time-
dependent. The interface displacement f can be introduced by means of the kinematic
condition

df

dt
= (∂t + iαUj )f = v̂j (y = 0). (3.4)

We introduce q = q̃e−iωt , where q̃ = (v2(y), η2(y), f, v1(y), η1(y))T , to have a more
compact notation. An eigenvalue problem can then be written: iωMq̃ = Lq̃, where

M =




D2 − k2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 D2 − k2 0
0 0 0 0 1


, L =




O2 0 0 0 0
R2 S2 0 0 0
0 0 iαUj −1 0
0 0 0 O1 0
0 0 0 R1 S1


, (3.5)

and the matrix elements are:

Oj = iαUj (D
2 − k2) − iαD2Uj − 1

Rej

(D2 − k2)2, (3.6)

Sj = iαUj − 1

Rej

(D2 − k2), Rj = iβDUj . (3.7)

Using the above, we can define the matrix operator L as M−1Lq̃j = Lq̃j .
On the interface, six matching conditions apply, corresponding to continuity of the

three components each of velocity and stress. At y = 0 the normal velocity vj , the
streamwise velocity uj = ik−2(αDvj −βηj ), and the spanwise velocity wj = ik−2(βDvj +
αηj ) must satisfy, respectively, the following:

v2 = v1, (3.8)

(ω − αU )[α(Dv1 − Dv2) − β(η1 − η2)] = k2(DU2v2 − DU1v1), (3.9)

β(Dv1 − Dv2) = α(η2 − η1) . (3.10)

At y = 0 the tangential stress components τxy and τyz must satisfy

m(α(D2 + k2)v2 − βDη2 − ik2D2U2f ) = α(D2 + k2)v1 − βDη1 − ik2D2U1f, (3.11)

m(β(D2 + k2)v2 + αDη2) = β(D2 + k2)vL + αDη1, (3.12)

while the normal stress τyy condition is

r(ωDv2 +αDU2v2)− (ωDv1 +αDU1v1)+
m(D3v2 − 3k2Dv2)

iRe1

− (D3v1 − 3k2Dv1)

iRe1

= − k4

iWe1

f. (3.13)

This disturbance problem is used below to calculate the complete spectrum of
eigenfunctions and disturbances built from the eigenfunctions which experience the
greatest transient amplification.
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4. Computing transient growth
A Chebyshev collocation code developed in previous work (Yecko et al. 2002) was

used to evaluate the eigenvalue stability problem defined above. Solutions for the
spectrum are obtained in order to perform the transient amplification calculations,
implementing the method given in Reddy & Henningson (1993). The linear problem is
mapped to the Chebyshev interval [−1, 1] and the eigenfunctions can then be written
as an expansion in a finite number N of Chebyshev terms Tn(y) with unknown
expansion coefficients, where N is typically 150 or less. The eigenvalue problem
is transformed into a corresponding (4N + 1) × (4N + 1) matrix problem for the
expansion coefficients including the boundary and matching conditions. Because
of the infinite domain a continuous spectrum is present in addition to the finite
discrete spectrum. In the calculations performed here, each semi-infinite domain was
approximated with a finite domain by choosing large values of L1 and L2, these
values determined by finding insensitivity of computed results to increases in L1 or
L2; the continuum is thus replaced by a discrete approximation.

Following the formulation of transient growth used in Schmid & Henningson
(2000), let G(t) represent the maximum possible energy amplification at time t , where
G is optimized over all possible initial conditions for each instant in time. To measure
the energy we require an appropriate norm; in this problem we use

||q||E =
1

2k2

[ ∫ 0

−L1

(|Dv1|2 + k2|v1|2 + |η1|2) dy

+ r

∫ L2

0

(|Dv2|2 + k2|v2|2 + |η2|2) dy + S

]
(4.1)

where S = k4|f |2/We1 is the interfacial energy, proportional to the surface tension σ .
Renardy (1987) has noted that even in the absence of an interfacial energy (e.g. σ = 0)
the interfacial displacement must appear in the energy norm for the transient growth
calculations to converge. South & Hooper (1999) have verified this in two-dimensional
(i.e. β = 0) calculations of transient growth in two-fluid channel flow for the case r = 1.
In contrast, we find good convergence even as σ → 0, but encounter difficulties in
other regimes, such as at very large Re, when the numerical representation of the
continuous spectrum becomes very dense in the complex-ω plane.

We now define the growth factor:

G(t) = sup
q(0) �=0

||q(t)||2E
||q(0)||2E

= ||eiLt ||2E, (4.2)

where q0 is an initial disturbance and L is the linear operator defined above. The
maximum or optimal growth is defined as GO = supt�0 G(t), occurring at time tO
where GO = G(tO), while a peak value GP ≡ supα,β GO(α, β) can also be computed,
occurring at αP , βP such that GP =GO(αP , βP ).

The quantity G(t) is computed by approximating the matrix exponential of (4.2)
using the first K least-stable eigenmodes, K chosen to achieve convergence. This
technique, based on the singular value decomposition, is adopted from Reddy,
Schmid & Henningson (1993) and gives both G and the optimal disturbance associated
with G; further numerical details can be found in Yecko & Rossi (2004).
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Figure 2. (a) G(t) for five We values at α = 0, β = 0.25, Re = 50, r = 0.0012, m= 0.018; (b) GO

values in the (Re, β)-plane at We = 5.5, r = 0.0012, m= 0.018; inset: scaling for GP and tP .

5. Results
We adopt the following parameter value ranges: Re = 50–2000, We = 5–5000,

r = 0.001–0.07 and m =0.01–0.1, spanning a broad range of liquid–gas combinations
and flow regimes, including those of air–water and cryogenic rocket fuel injection.
For simplicity, we refer to Re1, We1 as Re, We in this section.

5.1. Parametric dependence of the transient growth

The streamwise wavenumber of maximum growth always occurs for α = 0 (i.e. for
disturbances uniform in the streamwise direction); we thus consider only α = 0 in
this work (but see Yecko 2003). The spanwise wavenumber of maximum growth, βP ,
is, however expected to depend on Re, We, r and m. When α = 0, each erf profile
individually exhibits only a continuous spectrum of modes, similar in behaviour
to a Blasius boundary layer. The spectrum of the full problem, however, also
contains two discrete modes, corresponding to capillary waves of opposite phase
speed propagating on the interface. As explained in § 4, the continuum modes are
approximate because of the domain truncation. In addition, we have applied the
conditions v, Dv, η → 0 rather than the more appropriate boundedness conditions.
We have tested this technique on the single-phase Blasius boundary layer, finding
excellent agreement with published results, following Butler & Farrell (1992), who
also found that vanishing and boundedness conditions gave equivalent results.

To illustrate the nature of the amplification factor defined in equation (4.2), we
show in figure 2(a) the quantity G(t) computed at five different Weber numbers.
We point out that G(t) curves for We > 100 are not shown as they cannot be easily
distinguished from the curve for We = 100 on the plot. Surface tension thus has little
influence on the wavenumber or magnitude of peak transient growth. As evident in
the multiple peaks seen in figure 2(a), however, there may be a powerful indirect
effect on the transient growth.

From (4.2), we see that the total energy G is comprised of a liquid kinetic energy, a
gas kinetic energy and an interfacial component. Energy is not equipartitioned – the
interfacial component is generally small compared to the total energy. In addition,
most of the transient energy is found in the normal vorticity component, in the form
of streamwise velocity streaks associated with the lift-up effect (Schmid & Henningson
2000), as for single-phase flow. Oscillations due to interfacial modes can, however,
become prominent at large values of We, as we have seen in figure 2(a) (see also
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Figure 3. (a) GO values in the (r, β)-plane at Re = 100,We = 5.5, m= 0.018; (b) GO values
in the (m,β)-plane at Re =100, We = 5.5, r = 0.0012; inset: scaling of GP .

Olsson & Henningson 1995). These oscillations can sometimes lead to multiple peaks
of comparable magnitude, although typically the local maximum of G(t) that occurs
at the earliest time is also the global maximum in time. In this work, we always take
the earliest maximum to represent the optimal value GO .

In figure 2(b) we show the maximum growth factors GO in the (β, Re)-plane. The
spanwise wavenumber where peak growth occurs remains relatively constant over a
wide range of Re; for example: βP = 0.25 at Re = 50, while βP =0.28 at Re = 2000.
Figure 2(b) also clearly shows that peak growth factors, GP , depend strongly on Re.
By extracting the maximum values at each Re from the figure, a scaling with Re2

is found, as for transient growth in single-phase flows. Specifically, GP = aRe2 (time
to achieve peak growth follows tP = bRe); for the case of figure 2(b), a =1.35 (and
b = 0.31) although in general a = fa(r, m, We) (and b = fb(r, m, We)).

In figure 3(a) we map the maximum growth factors GO over a range of spanwise
wavenumber β = 0.1–1.5 and density ratio r = 0.001–0.07. The density ratio r has a
strong influence on the spanwise length scale of optimal disturbances. Peak growth
falls along a line just below and to the right of the diagonal, as indicated by the
dotted line. The slope of this trend implies that the spanwise wavenumber of peak
growth follows the relation: βP ∝ r1/2.

In figure 3(b) the quantity GO is mapped in the wavenumber–viscosity ratio plane,
showing a strong dependence of peak growth factors on viscosity ratio, m. The
computed scaling derived from the data in figure 3(b) is GP ∝ m−2. We already know
from figure 3(a) that GP does not depend on r but does scale with Re2. We also
found above that GP is nearly independent of We as long as We is not too small. The
scaling seen in figure 3(b) thus leads to the relation GP = c(Re/m)2 = cRe2

2 since the
base flow has the property that Re2/Re = 1/m. Note that the value of c ≈ 4.2 × 10−4

is nearly constant. The wavenumber of peak growth also varies with m, as indicated
by the dotted line in figure 3(b), with dependence βP ∝ m−1/2.

5.2. Optimal disturbance structure

The optimal disturbance fields are easily computed, as mentioned in § 3, from the
singular eigenvectors obtained in computing GO . Figure 4(a) shows the optimal
disturbance velocity vector (0, v, w), looking downstream, at the time of maximum
growth, t = tO . The streamwise velocity component u is shown in figure 4(b). At
t = 0 the optimal disturbance is qualitatively similar, except that u(t = 0) is smaller in
magnitude than u(t = tO) by a factor of order 10−2; the initial optimal disturbance is
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Figure 4. Optimal disturbance having GO = 13660, βO = 0.25, tO = 29.8 at Re = 100,
We = 5.5, r = 0.0012, m= 0.018: (a) (0, v, w) field; (b) (u, 0, 0) field.

thus not shown. In figure 4 the liquid vectors have been magnified by a factor 1/(5r)
in order to more clearly reveal both liquid and gas quantities in the same plot.

The optimal disturbances clearly exhibit the counter-rotating streamwise vortices
familiar from single-phase transient growth. In the two-phase case, the upflows in
the liquid extend to the interface and lead to its upward deformation (f > 0). These
liquid upflows coincide with the gas downflows (figure 4a) and are thus found in the
same regions where high-speed streaks are produced (figure 4b). It therefore appears
possible that transient growth may initiate a disturbance field that evolves, in the
nonlinear regime, into streamwise oriented ligaments.

5.3. Comparison with experimental results

In experiments that exhibit SOL – whether high-speed liquid injected into still gas,
or high-speed gas and co-flowing liquid – the SIT assumption is not well founded.
For the specific case of high-speed gas and co-flowing liquid, the gas boundary
layer develops well upstream of the nozzle. In the region downstream where SOL
are observed its shape changes little, while the liquid boundary layer is reversed
and then develops. This configuration may be modelled by considering an almost
constant gas layer and a liquid layer developing from time zero, the instant zero
corresponding to the passage through the nozzle. A base flow that satisfies this has
δ1 ∝ (ν1t)

1/2 but δ2 ∝ (ν2(t0 + t))1/2, as though the boundary layers had developed from
different initial times (DIT). This base flow is a bona fide solution of the Navier–
Stokes equation, provided continuity of tangential stresses is imposed, although it
is only an approximation of the actual spatially developing flow. We thus relax
the SIT assumption. Note that δ2 will remain nearly constant for times, t , small
compared to the characteristic time, t0, of the already-developed gas boundary layer.
It is then possible, within a temporal theory, to examine the effects of the growing
liquid boundary layer by computing the flow stability properties over a range of
n. This approach is based on the assumption of a nearly constant gas flow, so
non-dimensionalization is best performed using U ∗

2 and δ2. The five dimensionless
parameters are then: Re2, We2, r , m, and n. (With the new scaling we denote the
resulting G, β values with a † superscript, and, to present dimensional versions, use a
∗ superscript.)

We have computed transient growth properties for several values of n, ranging from
n=0.2 to n= 5. The results, shown in figure 5(a), clearly show that transient growth
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Figure 5. (a) G(β) at n= 0.2, 0.4, 1.0, 2.5, 5.0; and (b) G(β) at m= 0.02, 0.06, 0.1 (solid line
with circles) and at r = 0.002, 0.005, 0.01 (dashed with dots); here n= 1.

is independent of n. Since scaling has been performed here with respect to the gas
quantities, we find β

†
P ≈ 1. This agrees with the βP ≈ 0.25 obtained above since under

the SIT assumption, n= (m/r)1/2 and for air–water, 1/n ≈ 1/
√

15 ≈ 0.25.
In figure 5(b), we show transient growth factors G

†
O(β†) at several values of r and

m, all superimposed. When scaled using δ2, the previously seen variations of βP are
no longer present. The small variations in βP and GP seen in figure 5(b) are due to
the variations of Re1 that accompany the variations of m and r .

This agrees with the experimental observation that the ligament length scale does
not depend on the liquid layer properties. A spanwise wavenumber of β∗

P = β
†
P /δ2

implies a pattern spacing (i.e. distance between ligaments) of λ∗
P =2π/β∗

P . A co-axial
jet of (liquid) diameter d1 = 7.5 mm, having δ2 ∼ 0.2 mm (Raynal 1997; MV) would
thus exhibit approximately seventeen ligaments around the jet circumference, nearly
equal to the number seen in experiments, assuming the difference of geometry can be
ignored. Since we find β

†
P independent of n, r and Re and surface tension influence

is small, the predicted ligament number is just inversely proportional to the width of
the gas boundary layer.

6. Conclusions
Characteristics of transient growth in a two-phase mixing layer were computed,

finding that growth factors scale with Re2, as for single-phase flow, referring to
either the liquid or gas Reynolds number. Optimal disturbances were found to be
streamwise uniform with spanwise wavenumber given by β∗

P =1/δ2. Density ratios
r > 0.07 and viscosity ratios m > 0.1 were not considered in this work, so these results
are not expected to carry over to fluids of similar density or viscosity. Optimal
disturbances consist of streamwise vortices in both phases, leading to prominent high-
and low-speed streamwise streaks in the gas juxtaposed with upward deformations
of the interface. Taken together, these features suggest that transient growth is a
possible mechanism, worthy of further exploration, for the formation of streamwise
oriented ligaments. A model for droplet sizes from primary atomization is a critical
component of spray modelling applications and a predictive theory for ligament
formation is an essential part of such a model. Until detailed flow fields are obtained,
either experimentally or from numerical simulations, the role of transient growth in
the formation of streamwise oriented structures remains to be verified.
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