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Abstract. The head-on collision between two cylindrical/spherical ion acoustic
solitary waves (IASWs) in un-magnetized plasmas comprising inertial ions and
q-non-extensive electrons and positrons is investigated using the extended version of
the Poincaré–Lighthill–Kuo perturbation method. How the interactions are taking
place in cylindrical and spherical geometry are studied, and the collision is shown
at different times. The non-planar geometry can modify analytical phase shifts
following the head-on collision are derived. The effects of q-non-extensive electrons
and positrons on the phase shift are studied. It is shown that the properties of the
interaction of IASWs in cylindrical and spherical geometry are very different.

1. Introduction

Electrons are often accelerated to energies of tens of
million electron volts (MeV) by the electric field induced
during disruptive instability in tokamaks (Wesson et al.
1989). The resulting beam of runway electrons can carry
up to about half of the original plasma current. At these
high energies, electron–positron pairs can be created
in collisions between the runaway electrons and the
background plasma ions and electrons. Helander and
Ward (2003) estimated the number of such pairs and
discussed the fate of the positrons created in this way.
The experiments (Tsytovich and Wharton 1978; Surko
et al. 1989; Greaves et al. 1994; Greaves and Surko
1995) have established the possibility of creating a non-
relativistic electron–positron plasma in the laboratory.
There are at least two schemes in which the non-
relativistic electron–positron plasma can be produced
in the laboratory. In one scheme, a relativistic electron
beam impinges on a high Z-target, where positrons
are produced copiously. The relativistic pair plasma
is then trapped in a magnetic mirror and is expec-
ted to cool rapidly by radiation (Trivelpiece 1972).
In another scheme, positrons are accumulated from a
radioactive source. The production of pure positron
plasmas (Trivelpiece 1972; Surko and Murphy 1990;
Greaves et al. 1994) now makes it possible to consider
performing laboratory experiments on electron–positron
plasmas. A natural extension of this research is to
learn how to accumulate and store sufficient numbers of
positrons so that they behave as a collective, multi-body
system. Surko et al. (1989) have developed a method
to accumulate and store positrons in an electrostatic

trap using a tungsten moderator and inelastic collisions
with nitrogen gas. The resulting positron gas fulfills the
requirements on density n and temperature T for it to
act collectively as a classical, single-component positron
plasma. The electron–positron plasmas are occurring
in many astrophysical environments such as the early
universe neutron stars (Rees 1983), active galactic nuc-
lei (Miller and Witta 1987), or pulsar magnetosphere
(Michel 1982) and in solar atmosphere (Hansen and
Emshie 1988) together with small numbers of ions.
Indeed, electron–positron plasmas represent the larger
class of equal-mass plasmas, a class of plasmas that
may offer plasma physical properties quite different from
those of conventional ion–electron plasmas. Clearly, the
properties of wave motions in an electron–positron–ion
(e-p-i) plasma should be different from those in two-
component electron–positron plasmas. A great deal of
attention has been paid to study e-p-i plasmas during
the last three decades (Popel et al. 1995; Chatterjee and
Ghosh 2011; Eslami et al. 2011).

An important source of information about the nature
and characteristics of ion acoustic solitary wave (IASW)
structures which propagate in a plasma is the behavior
which is shown under interaction. For this very reason
the collision of two nonlinear waves is a subject of
great interest. It is well known that when two solitary
structures propagate in a one-dimensional medium, they
can undergo two different sorts of interactions. One
occurs when they move in the same direction with
different velocities. This process can be investigated in
the frame of the inverse scattering method (Gardner
et al. 1967) and shows that after the overtaking the
two waves emerge without changes in shape but with a
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phase shift. The other type of interaction concerns two
solitary waves which propagate in opposite directions
and undergo a quasi-elastic head-on collision (Zabusky
and Kruskal 1965; Su and Miura 1980) which modifies
the trajectories of motion. The variation of phase shift
and the trajectories of the two solitary waves after colli-
sion were studied by a remarkable number of researchers
(Xue 2004a, b; Chatterjee et al. 2010; Ghosh et al. 2011,
2012a,b,c; Kundu et al. 2012) by using the extended
version of Poincaré–Lighthill–Kuo (PLK) method.

Most of these are confined to unbounded planar
geometry, which may not be a realistic situation in
laboratory devices and space. Recently, theoretical stud-
ies (Mamun and Shukla 2001, 2002, 2011; Xue 2003;
Mamun and Mannan 2011) have shown that the proper-
ties of solitary waves and shock in bounded non-planar
cylindrical/spherical geometry are very different from
those in unbounded planar geometry and therefore a
great deal of attention is paid to understand the nonlin-
ear phenomena like solitons, shocks, etc. (Hershkowitz
and Romesser 1974; Maxon and Viecelli 1974; Sahu and
Roychudhury 2004) in the non-planar geometry.

Li (2010) has recently studied the interaction of
IASWs in a non-planar unmagnetized quantum plasma
consisting of electrons, positrons, and ions by employing
the quantum hydrodynamic model and the Korteweg–
de-Vries (KdV) description. He also derived phase shifts
for compressive and rarefactive IASW collisions.

2. Non-extensive distribution in the
governing equation

We consider the nonlinear propagation of finite amp-
litude non-planar (cylindrical and spherical) ion acoustic
waves in a three-component collisionless, unmagnetized
plasma composed of q-non-extensive distributed elec-
trons and positrons and inertial ions. Thus, at equilib-
rium, we have ni0 + np0 = ne0, where ni0, ne0, and np0 are,
respectively, ion, electron, positron unperturbed number
density. The dynamics of ion acoustic waves (IAWs) in
such e-p-i plasma can be described by the following set
of normalized equations:

∂ni

∂t
+

1

rν
∂

∂r
(rνniui) = 0, (1)

∂ui

∂t
+ ui

∂ui

∂r
= −∂φ

∂r
, (2)

1

rν
∂

∂r

(
rν
∂φ

∂r

)
= ne − np − ni, (3)

where ν = 0 in case of 1D planar geometry and ν = 1, 2
in case of non-planar cylindrical (spherical) geometries.
We normalize ion number density (ni) and ion fluid
velocity (ui) by the ion equilibrium density ni0 and the
ion-acoustic speed Ci = (KBTe

mi
)

1
2 , respectively, where mi is

the ion mass, KB being the Boltzmann constant, and Te

is the electron temperature. The electrostatic potential φ
is normalized to KBTi

e
, where e is the magnitude of the

electron charge. The space variable is normalized to the
ion Debye radius, λD = ( KBTi

4πni0e2 )
1
2 , and the time variable is

normalized to the ion plasma frequency, ωpi = (4πni0e
2

mi
)

1
2 .

The Boltzmann distributed electrons and positrons
are taken to be valid for the macroscopic ergodic equi-
librium state. But Maxwell, i.e. Boltzmann distribution
may be inadequate to describe the long-range interac-
tions in unmagnetized collision less plasma where the
non-equilibrium stationary state exists. Space plasma
observations clearly indicate the presence of ion and
electron populations that are far away from their ther-
modynamic equilibrium (Shukla et al. 1986; Ghosh and
Bharuthram 2008). A new statistical approach (Renyi
1955), namely non-extensive statistics or Tsallis statistics
based on the derivation of Boltzmann–Gibbs–Shannon
(BGS) extropic measure (Tsallis 1988), is proposed to
study the cases where Maxwell distribution is considered
inappropriate. This was first acknowledged by Renyi
(1955) and afterwards proposed by Tsallis (1988), where
the entropic index q characterized the degree of non-
extensivity of the considered system. The parameter q
that undergoes the generalized entropy of Tsallis is
linked to the underlying dynamics of the system and
measures the amount of its non-extensivity. In statistical
mechanics and thermodynamics, systems characterized
by the property of non-extensivity are systems for which
the entropy of the whole is different from the sum of
the entropies of respective parts. In other words, the
generalized entropy of the whole is greater than the sum
of the entropies of the parts if q < 1 (superextensivity)
whereas the generalized entropy of the system is smaller
than the sum of the entropies of the parts if q > 1
(subextensivity). In accordance with the evidences (Lima
et al. 2000; Leubner 2008; Tribeche and Merriche 2011;
Ghosh 2012, 2012a; Yasmin et al. 2012) the q-entropy
may provide a convenient frame for the analysis of many
astrophysical scenarios, such as stellar polytropes, solar
neutrino problem, and peculiar velocity distribution of
galaxy cluster. It may be noted that for q < −1, the q-
distribution is unnormalizable. In the extensive limiting
case (q → 1), the q-distribution reduces to the well-
known Maxwell–Boltzmann velocity distribution.

To take into account the non-extensivity of electrons,
we use the following q-distribution function:

fe(v) = Cq

{
1 + (q − 1)

[
mev

2

2Te

− eφ

Te

]} 1
q−1

,

where φ stands for the electrostatic potential, and the re-
maining variables/parameters have their usual meaning.
It may be noted that fe(v) is the particular distribution
that maximizes the Tsallis entropy and therefore con-
forms to the laws of thermodynamics. The normalization
constant Cq is given by

Cq = ne0

Γ
(

1
1−q

)
Γ

(
1

1−q
− 1

2

)√
me(1 − q)

2πTe

for − 1 < q < 1,
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Cq = ne0

(
1 + q

2

) Γ
(

1
q−1

+ 1
2

)
Γ

(
1

q−1

) √
me(q − 1)

2πTe

for q > 1,

where the parameter q stands for the strength of non-
extensivity. It may be useful to note that when q < −1,
the q-distribution is unnormalizable. It should be noted
that for q > 1, the q-distribution function exhibits a
thermal cutoff on the maximum value allowed for the
velocity of the particles, which is given by

vmax =

√
2Te

me

(
eφ

Te

+
1

q − 1

)
;

we get

ne(φ) =

∫ ∞

−∞
fe(v)dv, for − 1 < q < 1,

ne(φ) =

∫ +vmax

−vmax

fe(v)dv, for q > 1.

We also assume that the electrons follow q-non-extensive
distribution. Integrating the q-distribution over all ve-
locity space, one obtains the following non-extensive
electron number density:

ne = [1 + (q − 1)φ]
1+q

2(q−1) .

As electrons and positrons have the same mass but
opposite charge, it is expected that they will be described
by a similar distribution. Similarly, as derived from
above, the positrons follow the distribution np = [1 −
(q − 1)φσ]

1+q
2(q−1) .

3. Derivation of KdV equations and phase
shifts

Suppose that two solitary waves in non-planar geometry,
R and L, have been excited in the system. The solitary
wave R (L) is traveling outward (inward) from (to) the
initial point of the coordinate system. The initial position
(at time t = 0) of the solitary wave R (L) is at r = rR
(r = rL), rL�rR . Since 0 < r < ∞, this consideration is
different from Cartesian solitons, where −∞ < x < ∞ in
one dimension. For the head-on collision between two
Cartesian solitons, one can consider that one soliton is at
x ≈ −∞ and the other one is at x ≈ ∞ at the initial time
t = −∞ (see Huang and Velarde 1996; Xue 2004a; Li
2010). After some time they interact following a collision
and then depart each other. In order to investigate the
head-on collision between two solitary waves in non-
planar geometry, we extend the PLK method (Shukla
et al. 1986) to the non-planar geometry. We anticipate
that the collision will result in phase shifts in their post-
collision trajectories. Thus, we introduce the following
transformation:

ξ = ε(r − ct − rA) + ε2A1(η, L) + ε3A2(η, ξ, L) + · · · , (4)

η = ε(r + ct − rB) + ε2B1(ξ, L) + ε3B2(η, ξ, L) + · · · , (5)

L= ε3r, (6)

where ξ and η denote the trajectories of two solitons
traveling toward each other, and c is the unknown phase
velocity of IASWs. The variables A1(η, L) and B1(ξ, L)
are also to be determined.

Introducing the asymptotic expansion,

ni = 1 + ε2n1 + ε3n2 + ε4n3 + · · · , (7)

ui = u0 + ε2u1 + ε3u2 + ε4u3 + · · · , (8)

φ= ε2φ1 + ε3φ2 + ε4φ3 + · · · , (9)

where u0 is the drift fluid velocity. Substituting (4)–(9)
into (1)–(3) and equating the quantities with equal power
of ε, we obtain coupled equations in different orders of
ε. To the leading order, we have

−c
∂n1

∂ξ
+ c

∂n1

∂η
+

(
∂u1

∂ξ
+

∂u1

∂η

)
= 0, (10)

−c
∂u1

∂ξ
+ c

∂u1

∂η
+

(
∂φ1

∂ξ
+

∂φ1

∂η

)
= 0, (11)

n1 =
(1 + pσ)(q + 1)

2(1 − p)
φ1. (12)

Solving the above we get

φ1 =φξ(ξ, L) + φη(η, L), (13)

n1 =
(1 + pσ)(q + 1)

2(1 − p)
[φξ(ξ, L) + φη(η, L)], (14)

u1 =
1

c
φξ(ξ, L) − 1

c
φη(η, L), (15)

and with the solvability condition (i.e. the condition to
obtain a uniquely defined n1, u1 from (14)–(15) when φ1

is given by (13)), the phase velocity c =
√

2 (1−p)
(1+pσ)(q+1)

+u0

and
√

2(1−p)
(1+pσ)(q+1)

− u0 is also obtained. The unknown

functions φξ and φη will be determined from the next
orders. Relations (13)–(15) imply that, at the leading
order, we have two waves, one of which φξ(ξ, τ) is
traveling to the outward, and the other one φη(η, τ)
is traveling to the inward.

Furthermore, the next higher order leads to

2c
∂2u3

∂ξ∂η
=

∂

∂ξ

[
∂φξ

∂L
+A

∂

∂ξ

(
φξ

∂φξ

∂ξ

)
+B

∂3φξ

∂ξ3
+

ν

2L
φξ

]

− ∂

∂η

[
∂φη

∂L
+A

∂

∂η

(
φη

∂φη

∂η

)
+B

∂3φη

∂η3
+

ν

2L
φη

]

+

(
2
∂A1

∂η
−Dφη

)
∂2φξ

∂ξ2
−

(
2
∂B1

∂ξ
−Dφξ

)
∂2φη

∂η2
.

(16)
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Integrating the above equation with respect to vari-
ables ξ and η yields

2αcu3 =

∫ (
∂φξ

∂L
+ A

∂

∂ξ

(
φξ

∂φξ

∂ξ

)
+B

∂3φξ

∂ξ3
+

ν

2L
φξ

)
dη

−
∫ (

∂φη

∂L
+A

∂

∂η

(
φη

∂φη

∂η

)
+B

∂3φη

∂η3
+

ν

2L
φη

)
dξ

+

∫ ∫ (
2
∂A1

∂η
− Dφη

)
∂2φξ

∂ξ2
dξdη

−
∫ ∫ (

2
∂B1

∂ξ
− Dφξ

)
∂2φη

∂η2
dξdη, (17)

where A = 3(1+pσ)(q+1)
4(1−p)

− (3−q)(1−pσ2)
4(1+pσ)

, B = (1−p)
(1+pσ)(q+1)

, and

D = (1+pσ)(q+1)
4(1−p)

+ (3−q)(1−pσ2)
4(1+pσ)

.
The first term on the right-hand side of (17) will

be proportional to η because the integrand function
is independent of η. The second term on the right-
hand side of (17) will be proportional to ξ because
the integrand function is independent of ξ. Thus, the
two terms of (17) are all secular terms, which must be
eliminated to avoid spurious resonances.

Hence, we have

∂φξ

∂L
+ AφA

∂φξ

∂ξ
+ B

∂3φξ

∂ξ3
+

ν

2L
φξ = 0, (18)

∂φη

∂L
+ Aφη

∂φη

∂η
+ B

∂3φη

∂η3
+

ν

2L
φη = 0. (19)

The third and fourth terms in (17) are not secular
terms in this order, they could be secular in the next
order. Hence, we have

2
∂A1

∂η
=Dφη, (20)

2
∂B1

∂ξ
=Dφξ. (21)

Equations (18) and (19) are the two side-traveling
wave KdV equations in the reference frames of ξ and
η respectively. One of their special solutions are of (18)
and (19),

φξ =UAΘ
2ν/3
A sech2

[
Γ

1/2
A Θ

ν/3
A

(
ξ − 1

3
AUAΘ

2ν/3
A L

)]
, (22)

φη =UBΘ
2ν/3
B sech2

[
Γ

1/2
B Θ

ν/3
B

(
η − 1

3
AUBΘ

2ν/3
B L

)]
, (23)

where UA and UB are two constants which denote the
amplitude of two IASWs R and L respectively. Here
we have used the definitions ΘA = LA/L, ΘB = LB/L,
ΓA = AUA/12B, ΓB = AUB/12B with LA = ε3rR and
LB = ε3rL. It is noted that the amplitude decreases
drastically as L(r) increases in cylindrical and spherical
geometries. In (18) and (19), A and B are the coefficients
of nonlinearity and dispersion respectively. If we set ν =
0, (18) and (19) will become the planar KdV equations.

ν = 1 and 2 corresponds to the cylindrical and spherical
KdV equations respectively.

Inserting (22) and (23) into (20) and (21), we can
obtain the leading phase functions A1 and B1 due to the
collision of IASWs as follows:

A1 =
D

2
UBΓ

−1/2
B Θ

ν/3
B

×
[
tanh

{
Γ

1/2
B Θ

ν/3
B

(
η |t −1

3
AUBΘ

2ν/3
B L

)}

− tanh

{
Γ

1/2
B Θ

ν/3
B

(
η |t=0 −1

3
AUBΘ

2ν/3
B L

)}]
, (24)

B1 =
D

2
UAΓ

−1/2
A Θ

ν/3
A

×
[
tanh

{
Γ

1/2
A Θ

ν/3
A

(
ξ |t −1

3
AUAΘ

2ν/3
A L

)}

− tanh

{
Γ

1/2
A Θ

ν/3
A

(
ξ |t=0 −1

3
AUAΘ

2ν/3
A L

)}]
, (25)

where ξ |t=0= ε(rL − rR), η |t=0= ε(rR − rL), ξ |t= ε[(rL −
rR) − 2ct], and η |t= ε[(rR − rL) + 2ct]. By setting d0 =
rL − rR as the initial separation between two solitary
waves and assuming that d0 � 0, we have

A1 =
D

2
UBΓ

−1/2
B Θ

ν/3
B[

tanh

{
Γ

1/2
B Θ

ν/3
B

(
η |t −1

3
AUBΘ

2ν/3
B L

)}
+1

]
; (26)

B1 =
D

2
UAΓ

−1/2
A Θ

ν/3
A[

tanh

{
Γ

1/2
A Θ

ν/3
A

(
ξ |t −1

3
AUAΘ

2ν/3
A L

)}
−1

]
. (27)

Therefore, up to O(ε2), we can estimate the phase shifts
in the head-on collision process of the two cylindrical/
spherical solitary waves for weak head-on interaction.
According to (4)–(6) and (26) and (27), we obtain the
corresponding phase shifts ΔP0 and ΔQ0 if the initial
separation between the two solitons is large enough, i.e.
rL � rR , and the observation time is much larger than
the collision time, i.e. t� tc = (rL − rR)/2, as

ΔP0 = −2ε2
D

2

(
12BUB

A

)1/2 ( rL

r

)ν/3

, (28)

ΔQ0 = 2ε2
D

2

(
12BUA

A

)1/2 ( rL

r

)ν/3

. (29)

4. Results and discussions
In this paper we have investigated the collision phe-
nomenon between two cylindrical and spherical IASWs
in a plasma consisting of inertial ions, q-non-extensive
distributed electrons, and positrons by using the exten-
ded version of PLK method. It is well known that soliton
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Figure 1. (Colour online) Graphs of cylindrical collision,
ε = 0.2, UA = 1.5, UB = 1, p = 0.01, σ = 0.01, q = 1.5,
rR = 57.5, rL = 137.5, t = 0.

Figure 2. (Colour online) Graphs of cylindrical collision,
ε = 0.2, UA = 1.5, UB = 1, p = 0.01, σ = 0.01, q = 1.5,
rR = 57.5, rL = 137.5, t = 30.

Figure 3. (Colour online) Graphs of cylindrical collision,
ε = 0.2, UA = 1.5, UB = 1, p = 0.01, σ = 0.01, q = 1.5,
rR = 57.5, rL = 137.5, t = 60.

Figure 4. (Colour online) Graphs of cylindrical collision,
ε = 0.2, UA = 1.5, UB = 1, p = 0.01, σ = 0.01, q = 1.5,
rR = 57.5, rL = 137.5, t = 90.

Figure 5. (Colour online) Graphs of cylindrical collision,
ε = 0.2, UA = 1.5, UB = 1, p = 0.01, σ = 0.01, q = 1.5,
rR = 57.5, rL = 137.5, t = 120.

Figure 6. (Colour online) Graphs of cylindrical collision,
ε = 0.2, UA = 1.5, UB = 1, p = 0.01, σ = 0.01, q = 1.5,
rR = 57.5, rL = 137.5, t = 150.
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Figure 7. (Colour online) Graphs of spherical collision, ε = 0.2,
UA = 1.5, UB = 1, p = 0.01, σ = 0.01, rR = 87.5, rL = 137.5,
q = 2.5.

Figure 8. (Colour online) Graphs of phase shift ΔQ0 vs.
the non-extensive parameter q. ε = 0.2, UA = 1.5, UB = 1,
σ = 0.01, p = 0.01, rR = 87.5, rL = 137.5, r = 100.

like solutions are formed due to the balance between
nonlinearity and dispersion in a nonlinear dispersive
media. Suppose that two solitary waves in non-planar
geometry, R and L, have been excited in the system.
The solitary wave R (L) is traveling outward (inward)
from (to) the initial point of the coordinate system. The
initial position (at time t = 0) of the solitary wave R
(L) is at r = rR (r = rL), rL�rR . Since 0 < r < ∞, this
consideration is different from Cartesian solitons where
−∞ < x < ∞ in one dimension.

For cylindrical case, (22) and (23) are the outward (R)
and inward (L) traveling wave KdV equations respect-
ively. Now we want to show how the interaction takes
place. At the initial position these two solitary waves,
R and L, are at r = rR = 57.5 and r = rL = 137.5,
respectively, at time t = 0. As time progresses, it is
seen from Figs. 1–3 that the outward solitary waves R
and inward solitary waves L come closer and closer
and ultimately collide (Fig. 4). After colliding with
each other they interchange their position and finally
depart from each other so that the soliton R has the

radius r = rL = 137.5, and soliton L has the radius
r = rR = 57.5, which are depicted in Figs. 5 and 6
respectively. Similarly Fig. 7 shows the interaction of
spherical ones.

Now we discuss the effect of physical variables on
phase shifts. It is clear from (32) and (33) that the
magnitude of the phase shifts due to the head-on col-
lision is not only related to the physical parameters,
i.e. ε, σ, β, UA, and UB but also modified by solitons
initial positions rR (rL) and the geometry types ν. The
latter does not exist in planar waves collision. For fixed
physical parameters and the initial soliton position, the
phase shifts are proportional to r−ν/3 . That is, the
collision-induced phase shifts in cylindrical/spherical
geometry decrease with r according to r−ν/3 . At the
same physical parameters and soliton positions, the
phase shifts in different geometries are different. When
ν = 0, the phase shifts given by (32) and (33) reduce to
the planar case.

In all results, all physical parameters are dimensionless
and ε = 0.2, UA = 1.5, and UB = 1 are used. The change
of phase shifts (ΔQ0) with respect to the change of q

is plotted in Fig. 8. It has been seen from Fig. 8 that
the phase shift decreases along with the increasing value
of the non-extensive parameter q and finally tends to a
constant magnitude. Thus, it can be stated that the non-
extensive parameter q has a significant effect on phase
shifts.
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