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For a graph G on vertex set V = {1, . . . , n} let k = (k1, . . . , kn) be an integral vector such

that 1 6 ki 6 di for i ∈ V , where di is the degree of the vertex i in G. A k-dominating

set is a set Dk ⊆ V such that every vertex i ∈ V\Dk has at least ki neighbours in Dk. The

k-domination number γk(G) of G is the cardinality of a smallest k-dominating set of G.

For k1 = · · · = kn = 1, k-domination corresponds to the usual concept of domination.

Our approach yields an improvement of an upper bound for the domination number found

by N. Alon and J. H. Spencer.

If ki = di for i = 1, . . . , n, then the notion of k-dominating set corresponds to the

complement of an independent set. A function fk(p) is defined, and it will be proved that

γk(G) = min fk(p), where the minimum is taken over the n-dimensional cube Cn = {p =

(p1, . . . , pn) | pi ∈ R, 0 6 pi 6 1, i = 1, . . . , n} . An O(∆22∆n)-algorithm is presented, where ∆

is the maximum degree of G, with INPUT: p ∈ Cn and OUTPUT: a k-dominating set Dk

of G with |Dk| 6 fk(p).

1. Introduction

We consider an undirected simple graph G on vertex set V = {1, . . . , n}. A dominating set

of G is a set D ⊆ V such that every vertex i ∈ V\D has at least one neighbour in D.

The domination number γ(G) of G is the cardinality of a smallest dominating set of G. An

independent set of G is a set I ⊆ V such that none of the neighbours of a vertex i ∈ I is

in I . The independence number α(G) of G is the cardinality of a largest independent set of

G. The neighbourhood N(i) of a vertex i ∈ V is the set of all neighbours of i in G. The

degree of a vertex i is the cardinality of N(i) and is denoted by di. Let δ and ∆ be the

minimum degree and the maximum degree of G, respectively. Furthermore, we assume that

G has no isolated vertices, that is, δ > 0.

We generalize the concept of domination. Let k = (k1, . . . , kn) be an integral vector such

that 1 6 ki 6 di for i = 1, . . . , n. A k-dominating set is a set Dk ⊆ V such that every

vertex i ∈ V\Dk has at least ki neighbours in Dk. The k-domination number γk(G) of G is
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the cardinality of a smallest k-dominating set of G. For k1 = · · · = kn = 1 the definition

of k-domination reduces to the usual definition of domination, and with 1 = (1, . . . , 1) it

holds γ1(G) = γ(G). If ki = di for i = 1, . . . , n, then I = V\Dk is an independent set, and

γd(G) = n− α(G) with d = (d1, . . . , dn).

The DOMINATING SET and INDEPENDENT SET problems are known to be

NP-complete (see [9], p. 190 and p. 194).

2. Results

Let R be the set of real numbers and let fk : Cn = {p = (p1, . . . , pn) | pi ∈ R, 0 6 pi
6 1, i = 1, . . . , n} → R be the function defined by

fk(p) =

n∑
i=1

pi +

n∑
i=1

(1− pi)
ki−1∑

l=0

∑
{i1 ,...,il}⊂N(i)

∏
m∈{i1 ,...,il}

pm
∏

m∈N(i)\{i1 ,...,il}
(1− pm)

 .

Theorem 2.1. γk(G) = min
p∈Cn

fk(p).

Proof. We form a set X ⊆ V by random and independent choice of i ∈ V , where

P (i ∈ X) = pi with 0 6 pi 6 1 denotes the probability that the vertex i belongs to X. With

Y = {i ∈ V | i /∈ X and |N(i) ∩ X| 6 ki − 1} the set D = X ∪ Y is a k-dominating set of

G. We obtain E(|D|) = E(|X|) + E(|Y |) because of the linearity of the expectation, and,

consequently,

E(|D|)
=

n∑
i=1

P (i ∈ X) +

n∑
i=1

P (i ∈ Y )

=

n∑
i=1

pi +

n∑
i=1

(1− pi)
(
ki−1∑
l=0

P (|N(i) ∩X| = l)

)

=

n∑
i=1

pi +

n∑
i=1

(1− pi)
ki−1∑

l=0

∑
{i1 ,...,il}⊂N(i)

∏
m∈{i1 ,...,il}

pm
∏

m∈N(i)\{i1 ,...,il}
(1− pm)

 .

The expectation being an average value, there is a k-dominating set Dk such that

the cardinality of Dk is at most E(|D|). Hence, γk(G) 6 minp∈Cn fk(p). Let D∗k be a k-

dominating set of G of cardinality γk(G). For p∗ = (p∗1, . . . , p∗n) with p∗i = 1 if i ∈ D∗k and

p∗i = 0 otherwise, γk(G) = fk(p∗) holds. Theorem 2.1 follows.

Considering the case k1 = · · · = kn = 1, we obtain the following result.
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Corollary 2.2. γ(G) = min
(p1 ,...,pn)∈Cn

n∑
i=1

pi + (1− pi)
∏

m∈N(i)

(1− pm)

 .

Using
∑di−1

l=0 P (|N(i) ∩ X| = l) = 1− P (|N(i) ∩ X| = di) (see the proof of Theorem 2.1)

and α(G) = n− γd(G) we have the following result.

Corollary 2.3.

α(G) = n− min
(p1 ,...,pn)∈Cn

n∑
i=1

pi + (1− pi)(1−
∏

m∈N(i)

pm)


= max

(p1 ,...,pn)∈Cn

n∑
i=1

(1− pi)
∏

m∈N(i)

pm.

Theorem 2.4. There is an O(∆22∆n)-algorithm that constructs a k-dominating set Dk of G

with |Dk| 6 fk(p) for any given p ∈ Cn.

Proof of Theorem 2.4. For given p ∈ Cn let f∗ = fk(p). First we present an algorithm

that constructs a set D ⊂ V . For the current p ∈ Cn of this algorithm let

Aj =

kj−1∑
l=0

∑
{j1 ,...,jl}⊆N(j)

∏
m∈{j1 ,...,jl}

pm
∏

m∈N(j)\{j1 ,...,jl}
(1− pm),

Bj =
∑
i∈N(j)

(1− pi)
∑

{i1 ,...,il }⊂N(i)\{j}
l=ki−1

∏
m∈{i1 ,...,il}

pm
∏

m∈N(i)\{i1 ,...,il}\{j}
(1− pm),

for j = 1, . . . , n.

Algorithm.

INPUT: p ∈ Cn

OUTPUT: D

(1) For j = 1, . . . , n do if 1− Aj − Bj > 0 then pj := 0, else pj := 1.

(2) For j = 1, . . . , n do if Aj = 1 then pj = 1.

(3) D := {j ∈ {1, . . . , n} | pj = 1}.
END

It is easy to see that Aj and Bj can be calculated in O(∆22∆) time. Thus the algorithm

works in O(∆22∆n) time.

Now we want to show that the cardinality of the resulting set D does not exceed the

value f∗ and that D is a k-dominating set.
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Claim 1. |D| 6 f∗

Let us consider step (1) of the algorithm. Note that the function fk((p1, . . . , pn)) is linear

in each variable, and that we have

∂fk((p1, . . . , pn))

∂pj

= 1− Aj

+
∑
i∈N(j)

(1− pi)
ki−1∑
l=1

 ∑
{i1 ,...,il }⊂N(i)

j∈{i1 ,...,il }

∏
m∈{i1 ,...,il }

m6=j

pm
∏

m∈N(i)\{i1 ,...,il}
(1− pm)



− ∑
i∈N(j)

(1− pi)
ki−1∑
l=0

 ∑
{i1 ,...,il }⊂N(i)

j∈N(i)\{i1 ,...,il }

∏
m∈{i1 ,...,il}

pm
∏

m∈N(i)\{i1 ,...,il }
m6=j

(1− pm)


= 1− Aj

+
∑
i∈N(j)

(1− pi)
ki−2∑
l=0

 ∑
{i1 ,...,il}⊂N(i)\{j}

∏
m∈{i1 ,...,il}

pm
∏

m∈N(i)\{i1 ,...,il}\{j}
(1− pm)


− ∑

i∈N(j)

(1− pi)
ki−1∑
l=0

 ∑
{i1 ,...,il}⊂N(i)\{j}

∏
m∈{i1 ,...,il}

pm
∏

m∈N(i)\{i1 ,...,il}\{j}
(1− pm)


= 1− Aj − Bj.

Therefore, for fixed (p1, . . . , pj−1, pj+1, . . . , pn) we always choose pj in such a way that the

value of the function fk(p) is not increased. Then, pi ∈ {0, 1} for i = 1, . . . , n after step (1)

of the algorithm.

Lemma. Let pi ∈ {0, 1} for i = 1, . . . , n and D = {i ∈ {1, . . . , n} | pi = 1}. Then for

j = 1, . . . , n we have Aj ∈ {0, 1} and Aj = 1 if and only if there is no subset S ⊆ N(j) ∩ D
with |S | > kj .

Proof of Lemma. First, assume there is a set S ⊆ N(j) ∩ D with |S | > kj . Then∏
m∈N(j)\{j1 ,...,jl}

(1− pm) = 0

for all subsets {j1, . . . , jl} ⊂ N(j) with l < kj , implying Aj = 0.

Second, assume there is no set S ⊆ N(j) ∩ D with |S | > kj . Define S ′ := N(j) ∩ D.

Clearly, |S ′| 6 kj − 1. Note that, for any subset {j1, . . . , jl} ⊆ N(j),∏
m∈{j1 ,...,jl}

pm
∏

m∈N(j)\{j1 ,...,jl}
(1− pm) = 1

if {j1, . . . , jl} = S ′ and 0 otherwise. Thus Aj = 1.

This completes the proof of the lemma.
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Now consider step (2) of the algorithm setting pj = 1 if Aj = 1. Note that

fk(p) =

n∑
i=1

pi +

n∑
i=1

(1− pi)Ai.

If pj was already 1 before this step, nothing is changed.

If pj = 0 before step (2), then pj is added to D. Note that
∑n

i=1 pi increases by 1 but

(1 − pj)Aj decreases by 1. For all i 6= j the term Ai cannot increase by this operation

because of the above lemma.

Thus the value of the function fk after step (2) does not exceed the value of that

function before this step. Consequently, the value of fk is not increased by the algorithm.

Furthermore, pj = 0 at the end of the algorithm implies Aj = 0 because of step (2).

Therefore, the cardinality of D equals the value of the function fk at the end of the

algorithm; it follows that |D| 6 f∗, proving Claim 1.

Claim 2. D is a k-dominating set.

Let j ∈ {1, . . . , n} with pj = 0. Then, because of step (2) of the algorithm, Aj 6= 1.

Using the above lemma we have Aj = 0, implying that there is a subset S ⊆ N(j) ∩ D
with |S | > kj . Hence, D = {j ∈ {1, . . . , n} | pj = 1} is a k-dominating set and Claim 2 is

proved.

With Dk = D the proof of Theorem 2.4 is complete.

Let us remark that for k = 1 or k = d the algorithm of Theorem 2.4 runs in O(∆2n)

time.

3. Concluding remarks

For k = 1 we obtain results concerning the domination number γ(G).

Let us consider the case p1 = . . . = pn = p. By Corollary 2.2 we have γ(G)

6 minp∈[0,1] g(p) where g(p) = np+
∑n

i=1(1− p)di+1.

Using the ideas of Alon and Spencer, their bound n(1+ln(δ+1))
δ+1

on γ(G) (cf. [1]) can be

deduced from this result by the following steps. Since (1 − p)di+1 6 (1 − p)δ+1 for all i,

we obtain γ(G) 6 minp∈[0,1] h(p) where h(p) = (np + n(1 − p)δ+1). Using 1 − p < e−p and

minimizing the function np + ne−p(δ+1) for p ∈ [0, 1], the bound of Alon and Spencer

follows. However, with p1 = · · · = pn = ln(δ+1)
δ+1

, Theorem 2.4 yields a constructive proof of

this bound.

An improvement of the result of Alon and Spencer is obtained by noticing that

min
p∈[0,1]

h(p) = h(p̂) with p̂ = 1−
(

1

δ + 1

) 1
δ

,

which implies γ(G) 6 g(p̂); consequently, we have the following result.

Corollary 3.1. With k = 1 and p1 = · · · = pn = 1− ( 1
δ+1

)
1
δ , the above algorithm constructs
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a dominating set of cardinality at most

n

(
1−

(
1

δ + 1

) 1
δ

)
+

n∑
i=1

(
1

δ + 1

) di+1

δ

.

In order to find a small dominating set, it seems reasonable to assume that vertices of

high degree should belong to the dominating set with higher probability than vertices of

small degree. Thus, it may be advantageous to make the probability pi depend on the

degree di of the corresponding vertex. Hence, possible values p1, . . . , pn for the algorithm

of Theorem 2.4 are pi = 1− ( 1
di+1

)
1
δ for i = 1, . . . , n, and we obtain the following.

Corollary 3.2.

γ(G) 6
n∑
i=1

1−
(

1

di + 1

) 1
δ

+

(
1

di + 1

) 1
δ ∏
j∈N(i)

(
1

dj + 1

) 1
δ

 .

Our approach is also useful in the case when all components of k are equal to a constant

greater than 1. For example, let c and s be integers, 1 < c 6 δ, 1 < s, c = (c, . . . , c) and

p1 = · · · = pn = 1
s
. Then (see proof of Theorem 2.1), we have

γc(G) 6
n

s
+
s− 1

s

n∑
i=1

P (|N(i) ∩X| 6 c− 1).

For ε > 0 we have P (|N(i)∩X| 6 c− 1) < ε for i = 1, . . . , n if δ− c is large enough. Other

results for γc(G) can be found in [2], [4], [5], [6], [7], [8], [10] and [11].

We have seen that for k = d our algorithm constructs the complement of an independent

set. Unfortunately, we do not know appropriate values p1, . . . , pn for this algorithm to yield

an independent set whose cardinality satisfies the Caro–Wei inequality (cf. [3])

α(G) >
∑
i∈V

1

di + 1
.
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