
Scoring with Code: Composing with
algorithmic notation

THOR MAGNUSSON

Department of Music, School of Media, Film and Music, Silverstone 214, University of Sussex, Brighton, BN1 9RH, UK
Email: t.magnusson@sussex.ac.uk

Computer code is a form of notational language. It prescribes
actions to be carried out by the computer, often by systems
called interpreters. When code is used to write music, we are
therefore operating with programming language as a relatively
new form of musical notation. Music is a time-based art form
and the traditional musical score is a linear chronograph with
instructions for an interpreter. Here code and traditional
notation are somewhat at odds, since code is written as text,
without any representational timeline. This can pose problems,
for example for a composer who is working on a section in the
middle of a long piece, but has to repeatedly run the code from
the beginning or make temporary arrangements to solve this
difficulty in the compositional process. In short: code does not
come with a timeline but is rather the material used for building
timelines. This article explores the context of creating linear
‘code scores’ in the area of musical notation. It presents the
Threnoscope as an example of a system that implements both
representational notation and a prescriptive code score.

1. INTRODUCTION

Live coding has often been portrayed as a practice that
merges real-time composition and performance in a
participatory context (Collins, McLean, Rohrhuber
and Ward 2003; Sorensen and Brown 2007; McLean
2008). Audience members follow the activities of
performers writing scores in the form of code to be
executed by the computer language interpreter. As in
traditional notation, the practice involves the notation
of musical intentions through a set of encoded rules
that are understood and performed by an interpreter.
The principal difference is that in live coding music is
typically composed in real time by means of writing
algorithms. Whilst algorithms can be written for
human interpreters, they are indigenous elements of
live coding languages, where performers programme
events into the future to be executed by a system slaved
to an underlying tempo-clock. Through repeated
practice and performance, the live coder builds up
techniques of mentally carrying representations of
abstract machines operating in time, in the form of
loops or temporally recurrent functions that have been
given identifying names, and which can be altered
during the performance.

Conceived of as a musical score, code is not a direct
one-to-one mapping between signs and sound; between

signifiers and the signified. Since algorithms are
often non-deterministic – with parameters affecting
performance deriving from the environment, artificial
intelligence or random operations – code reveals
a space of possibilities, not unlike the open scores
composed by Cage, Wolff, Pousseur or Feldman in the
middle of the twentieth century. The written notation
can be simple – a few lines of code calling other
functions – but the composition might equally result in
series of infinite variations and patterns of perfect
repeatability. Complicating the idea of seeing code as a
direct and ostensibly causal representation for the
music it generates is the fact that functions can write
other functions, where code composes itself, and
nothing is written or materialised that represents the
sound, only temporary structures in the interpreter’s
memory. For a non-programmer, it might therefore
be hard to imagine how the static text results in
continuous musical events that evolve in time.
Any attempt at creating graphic notations of code’s
functionality as it will be executed in time is practically
impossible: the textual language is itself its best
notation and its output is the ideal representation
(there is no need for a level of abstraction here; cf. the
Borgesian map).1

Musical notation has typically followed the tradi-
tion of defining events on a linear timeline. This
representation of time on a traditional stave is not
perfectly isomorphic, as bars with notes of long dura-
tion are typically shorter on the paper than bars with
many short notes. Such compression and expansion of
‘spacetime’ shows that the language of the score is
event-based as opposed to time-based, a fact that
might partly originate from concerns of saving paper.
However, it should be noted that chronographic
timelines of any kind, such as historical events where

1There are some interesting projects coming up that visualise the
functionality of code through tracing its operations. It is important to
stress that these are not representations of code or its output, but of
its functionality, allowing the programmer to observe the internal
workings of the code. TraceGL (https://trace.gl) is a good example
of such a project. That said, there is much to be explored in the
development of secondary notation of code (see, for example, the
work of Thomas R. G. Green and Marian Petre (1996)), where
graphic symbols can add to the already impressive array of useful
techniques.

Organised Sound 19(3): 268–275 © Cambridge University Press, 2014. doi:10.1017/S1355771814000259

https://doi.org/10.1017/S1355771814000259 Published online by Cambridge University Press

https://trace.gl
http://crossmark.crossref.org/dialog/?doi=10.1017/S1355771814000259&domain=pdf
https://doi.org/10.1017/S1355771814000259


time is mapped directly to space, were uncommon in
medieval times when the foundation of our current
musical notation was established, and only begin to
appear in the mid-eighteenth century, for example with
Barbeu Dubourg’s Machine Chronographique (Boyd
Davis 2012). In the field of music the piano-rolls in the
nineteenth century were the first time-based, arithme-
tically extended timelines for musical events. This form
of notation has been continued in the design of digital
music workstation timelines, although printed musical
scores do still tend to be event-based.
The linear timelines of staff notation or digital audio

workstations seem to be slightly incongruous with
code, as the former encourages deterministic and fixed
approach to composition, whereas the latter opens
up for indeterminacy, non-linearity and liveness.
However, it is important that this dichotomy between
the linearity of the score and the generativity of code,
as presented here, is not understood as two separate
and incompatible traditions: there exists a tradition of
representing code on linear timelines or what this article
defines as ‘code scores’. Furthermore, traditional staff
notation does share some algorithmic features with
code, with its use of elements such as repeat signs, da
capo and coda, greatly extended by the diverse
bespoke notational symbols, textual instructions and
graphic notation invented by individual composers or
specific musical traditions.
This article will explore both historical issues and

implementation factors related to scoring code on
timelines. The context is live coding practice, and a
concrete example is presented, the Threnoscope – a
system for microtonal live coding performance,
implementing both a representational notation of
the system’s state and a graphical prescriptive score
language for code.

2. REPRESENTATIONAL NOTATION

Musical notation is a systematic format of instructions
for the performance of musical events. It is a pre-
scriptive code allowing agents who read it, whether
humans or machines, to perform the music to a varied
degree of sophistication, depending upon practice, skill
and understanding of the format. As a coherent code,
musical notation is a system of abstractions, affording
certain types of expression but excluding other. Any
system of abstractions has involved a design process of
deciding what to include and exclude, judged from a
perspective of what is important to express (Bowker
and Star 2000; Seeger 1958). It is generally accepted
that the human performer will add considerably to
the music, or ‘fill it with life’ through the process of
interpretation, as if impregnating the music with the
life that got extinguished when it was written down in
notational form. We thus find in Western musical
notation a reasonably good support for notating

twelve-tone equal tempered pitch, metrical rhythm
and duration, but a less sophisticated language for
dynamics, timbre and microtonal composition. This
system of notation strongly references keyboard
instruments, where pitch is discrete, as opposed to, say,
the violin or the trombone. There are symbols denoting
continuous changes in pitch, dynamics and timbre, but
those are secondary notations, often of idiosyncratic
nature. In the case of computer notation there is an
array of formats, from the simple MIDI protocol
that has been criticised for its insufficient syntax and
resolution, to more open and flexible protocols such
as MusicXML (Good 2001), or OSC (Wright 2005),
where practically anymusical parameter can be specified
to the desired resolution. An interesting feature of OSC
is the lack of musicality in the protocol; it is ‘open’ to
include any possible parameter or feature description
of the music.

Musical notation has often been named as one of the
key features contributing to the complexity of Western
music. Notation is a mnemonic device offering com-
posers the possibility of externalising their thoughts
and operate with blocks of musical text as scaffolding
that frees them from having to keep all the parameters
in mind at once (Clark and Chalmers 1998). Through
the use of graphic symbols, the composer is able to
think with external building blocks that can support
the most consummate composition of counterpoint,
chord progressions or polyphonic music. The ethno-
musicologist Bruno Nettl discusses non-Western
notation systems, which ‘seem mostly to have or have
had an archival or preservative role, perhaps serving
as mnemonic devices for performers rather than as
aids to composers in controlling and manipulating
their structural building blocks’ (Nettl 2005: 30).
The understanding of notation as rigid prescriptions
might be rather recent, as, in the seventeenth and
eighteenth centuries, musical scores were often seen as
descriptions rather than prescriptions of music (Haynes
2007); a distinction that can be regarded as the differ-
ence between ‘composing through performance and
composing prior to performance’ (Goehr 1992: 188).
Furthermore, with developments in the twentieth-
century Western musical tradition, notation began to
represent the performer’s actions rather than sound
(Kanno 2007), perhaps strongly influenced by Cage’s
work with the prepared piano in his Sonatas and
Interludes (Kotz 2007: 38).

A central concern in musical notation is the idea of
repeatability – in other words, the requirement that the
composition can be played approximately how the
composer imagines it to be played, and that different
interpreters perform (or ‘re-cite’) the piece approxi-
mately the same way every time they play it. Prior to
the advent of phonographic recording this was an
important attribute of musical notation, although it
should be noted that pre-Romantic composers were

Scoring with Code 269

https://doi.org/10.1017/S1355771814000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771814000259


generous in granting interpreters space for improvisa-
tion, or extemporisation (Haynes 2007). The scope for
creative interpretation by the performer became
increasingly narrower up until the mid-twentieth cen-
tury, when many composers began to create musical
work that was more open, often using idiosyncratic
syntax, graphic scores or textual instructions. This might
result from the advent of phonographic techniques and
related electronic music devices, as it could be argued
that phonography affected composers in ways compar-
able with how photography freed painters from the goal
of objective representation (Bate 2009: 133). In short, in
this new context the objective might not be optimal
control over the performer any more, a view exemplified
by Roberto Gerhard, who took delight in musical
notation’s lack of precision:

Notation’s ambiguities are its saving grace. Fundamentally,
notation is a serviceable device for coping with
imponderables. Precision is never of the essence in
creative work. Subliminal man (the real creative boss) gets
along famously with material of such low definition that
any self-respecting computer would have to reject it as
unprogrammable. (Gerhard, in Cage 1969: 240)

The criterion of repeatability as a necessary feature of
the score could be contrasted with another principle,
namely the score’s catalytic features: to what degree
does the score encourage creative thinking and per-
former engagement? This was a concern that became
increasingly prominent in the mid-twentieth century, a
perspective explored by Umberto Eco in his treatise on
the open work (Eco 1989).

With new possibilities offered by digital media of
representing sound graphically, descriptive scores have
gained a distinct role, where visual artists, animators,
3D graphic artists and VJs have explored different
approaches in visualising musical events. This
approach could be called representational notation, as
it does not necessarily try to describe the music with the
intention of archiving or preserving it – modern phono-
graphic technologies are perfectly capable of that – nor
is it a form of prescription of human actions, but
rather an attempt in representing aspects of the music,
interpreting it or simply making laptop-based musical
performance more interesting to watch. Rainer
Wehinger’s listening score (German: Hörpartitur) for
Ligeti’s electronic piece Artikulation has become a
famous example of such a representational score
(Hugill 2012: 62). Other new media ways of writing
sound can be seen as being highly representative,
or rather exist in a strong audiovisual circularity,
where Xenakis’s UPIC software serves as a fine
example (Xenakis 1992: 329). Live scoring, live nota-
tion, live coding, visual notation, dynamic notation
and animated notation are just a few names given
to the possible cross-modal strands of exploration
afforded by the computer.

3. TIMELINES OF CODE

Code is a peculiar form of notation and computers are
peculiar interpreters. They are very precise and hard
working, and, lacking consciousness (as yet), they
never get bored. The coded system can lie dormant for
a long time, but is happy to switch to full productivity
at the tick of a clock. It can concurrently parse multiple
inputs and render parallel outputs. The system can live
in its own closed loop of self-reference or socialise with
the outer world. In short, when software runs, it is
a process that operates through alternate states of
waiting and executing orders. These instructions can
be scheduled by the program itself as timed events,
they can be issued through communication with other
software, by way of incoming data from the network of
other computers, or through human interaction. An
alarm clock, a calendar pushing a notification, an
email or social media update, and a multiplayer game
are examples of such modes.

For a programmer, scheduling events in time is only
one possible form of software activity of many, and
some software, for example most word or image
editors, relies entirely on user inputs in its workings.
The need for representing code itself on a timeline, with
an active playhead that moves through time, is a
concern particular to a certain type of work. Such
work includes generative music and film, interactive
games, and other forms that emphasise narrative and
carefully designed expression that develops in time.
Since creating interactive or generative time-based
artistic content involves repeated cycles of coding,
testing, evaluating and redesigning, it can be helpful
to work with a timeline where a playhead can be
dragged back and forth to explore a certain function-
ality of the code or a particular part of the piece. This is
different from the development timelines visualised
in clients for various code revision systems, such as
Git, where a movement through time is a shift between
versions of the software, as opposed to changing posi-
tions within a piece, or internal states in the narrative
timeline of code scores.

Narrative timelines have typically been created for
software development featuring artistic or educational
content whose user exploration is an interactive journey.
Figure 1 is a screenshot of Macromedia Director,
which was an early such audiovisual production
environment with an embedded scripting language,
focusing on CD-Rom development. Later Macro-
media Flash introduced similar functionality for
interactive programming of web content. Both were
coding environments based on a timeline with frames,
where code could be inserted to be evaluated at specific
moments in time, much like a musical score. The pos-
sibility of adding code into timelines of compositional
software is becoming more common, with imple-
mentations such as the animation timeline in the

270 Thor Magnusson

https://doi.org/10.1017/S1355771814000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771814000259


Unity game engine, the Scripter functionality in Logic
ProX, orMax/MSPwithin Ableton Live. Furthermore,
the idea of scrubbing through the functionality of
code using a timeline has been explored as parts of
some programming frameworks, for example in the
demonstrations of Bret Victor (see http://worrydream.
com), and more recently as a Playground feature in
Apple’s Swift programming language. However, these
are representations of isolated parts of the code that
can be monitored using a timeline assistant, and not a
general timeline with multichannel tracks where coded
events take place in time.
The coding timeline typically affords a strong

narrative dimension through an object-focused design,
where multiple objects with different parameters can
exhibit similar behaviours but have different identities.
This can be seen as resulting from the object-oriented
programming paradigm, where objects can inherit
behaviours and properties from other objects in a
hierarchically structured system. In such a system,
multimedia elements can be assigned behaviour
through code, offering fast prototyping and develop-
ment in areas of interactive design, storytelling
and object-centred content. Indeed, we can detect a
change in aesthetics in the digital arts when Processing,
Open Frameworks and Cinder became more popular
than the named timeline environments. Those coding
environments have no timelines by default, typically
resulting in work that is loop-based pixel or vector
manipulations, often applying impressive artificial
intelligence and artificial life techniques, but minimis-
ing the multimedia-type narrative content that often
characterised work made in the timeline coding
environments. Such developments and changes in
style are natural and particularly interesting from the
perspective of discerning how technology influences
artistic expression.
The desire for timelines is strong, and third-party

systems have been created for Open Frameworks,
Processing, SuperCollider andMax/MSP, and projects

like Field (see http://openendedgroup.com/field, and
illustrated in Figure 2) operate with coding timelines
by default. Timelines are notoriously difficult to
maintain, and design questions in such systems
include: which parameters should be exposed for
control, what level of resolution should be offered in
terms of the placement of code (e.g. frame, millisecond
or sample), and how is consistency maintained between
objects that are created at one point but changed
(updating the state or behaviour, for example though
live coding) during the execution of the project? Below
I will discuss the design of a code score within a com-
positional system for microtonal performance called
Threnoscope. However, first I will present the piece
from a general perspective, involving a discussion of its
representational score.

4. THE THRENOSCOPE

The Threnoscope is a composed system for musical
expression within which the performer has a defined
scope for improvisation and exploration. The primary
mode of performance is by means of live coding, where
musical events are created, shaped and terminated
through the textual interface of code. A bespoke
microlanguage has been created for this purpose, on
top of (and extending) the SuperCollider language.
The design aims to rethink the emphasis of the linear
timeline from musical notation, representation and
performance, and rather to present something in the
direction of a still image – a stasis on a circular score.
Figure 3 is a screenshot of the Threnoscope graphic
score. The lines crossing the circles represent an
eight-channel surround-sound setup where each line

Figure 1. A screenshot of Macromedia Director showing
the frame-based timeline, the cast of media elements and a

code window. © Gordon Davies

Figure 2. A screenshot of Field: a research animation by
Nick Rothwell for the Shobana Jeyasingh Dance Company.
The figure shows an interface split in three: on the left a
property editor of selected items; in the middle at the top, a
rendered graphic box displaying the output of its code,
blocks representing other code below, and a vertical time-
line that moves from the left to the right triggering events;
and finally, on the right, the textual editor for the code with

a console output below. © Nick Rothwell.

Scoring with Code 271

https://doi.org/10.1017/S1355771814000259 Published online by Cambridge University Press

http://openendedgroup.com/field
https://doi.org/10.1017/S1355771814000259


points to the location of the speaker. The half-moons
or annular wedges are notes – or rather drones of
different waveforms – that can be fully controlled
through live coding, graphical user interfaces, hard-
ware, a network or a code score. When a drone enters
the speaker line, it begins to sound from that spatial
direction, with an attack depending on the drone’s
envelope. The drones can have perimeter length from
5 to 360 degrees and move around the circular inter-
face at any speed, changing spatial position in the
surround sound system.

The circles aligned logarithmically around the
innermost circle represent the harmonics of the piece’s
fundamental pitch. By default this is an A, or 55 Hz,
but this can be set to any frequency. The second
circle therefore defaults to 110 Hz, the third to 165 Hz,
fourth to 220 Hz, and so on. Drones can be created on
any of the harmonics, on defined tuning ratios or scale
degrees, or by using cents or specific frequencies. The
Threnoscope is designed for microtonal exploration of
harmonic relationships, including the study of scales,
tuning systems and chords. The performer can switch
between harmonic-view or scale-view representations
of the pitch space, or choose to have both drawn at
the same time. Figure 4 shows the Threnoscope inter-
face where a scale-view has been drawn without the
harmonics. The system supports the Scala format of

scales (www.huygens-fokker.org/scala/scl_format.html),
whose library contains thousands of different scales
and tunings, including non-octave repeating scales such
as the Bohlen–Pierce scale. Scales and tunings can be
created in real time and saved in the Scala format.
During the creation of scales, hardware can be used
for input and playback, for example using a MIDI
keyboard, although such hardwaremight not be the best
choice, for example, if working with non-equal tunings
or tunings with number of notes in an octave where the
arrangement of the piano interface is not suitable.

The drones can be of any waveform, including
samples. A typical saw wave at the fundamental
frequency (e.g. 55 Hz) would of course contain energy
of all the harmonics drawn on the score interface. The
saw wave is a useful waveform for exploring tuning
systems, as it is often at the higher harmonics where
one perceives detuning in harmonic relationships (for
example when exploring the difference between a just
intonation fifth and an equal tempered fifth). However,
distinctive waveforms can also be designedwhere partials
at any amplitude can be inserted above the fundamental
frequency, not necessarily at harmonic intervals. This
simplifies the design of metallic inharmonic sounds and
harmonic sounds with stretched or compressed harmonic
intervals, as often found in acoustic instruments. This
nuanced design of the drone itself can equally take place

Figure 3. A screenshot of the Threnoscope in its harmonic-view representation. The crossing lines are speakers and the circles
are harmonics of the fundamental pitch. On the right there are two text windows, a terminal for code input and a console for

system state reports and feedback.

272 Thor Magnusson

https://doi.org/10.1017/S1355771814000259 Published online by Cambridge University Press

www.huygens-fokker.org/scala/scl_format.html
https://doi.org/10.1017/S1355771814000259


during or prior to performance, as the drone’s sound will
be compiled and written to disc as a SuperCollider synth
definition, and therefore available in the next session
(McCartney 2002).
The drones contain a resonant lowpass filter where

the cutoff is represented graphically by the width of the
drone and the resonance frequency by a line within it.
The waveform of the drone is represented by colour, and
amplitude by transparency. A drone can be selected for
various purposes, and selected drones are indicated by a
more prominent and thicker stroke. These can be affected
directly by hardware or GUI (graphical user interface)
interaction; a simple example is selecting a drone by
clicking on it, drag it around with the mouse, or kill it by
hitting the delete button on the computer’s keyboard.
The Threnoscope contains various intelligent

machines that appear in the middle of the circle, as seen
in Figure 4. These machines automate processes and
support the performer, who can delegate all kinds
of designed behaviours to the machines – such as
changing harmonics, pitch or amplitude – or create
new drones according to relationships detected in
existing drones. The machines support a more dis-
persed and concurrent performance, since they are
temporally extended tasks that run parallel to the
performer activity. The goal is to create a system where
both humans and machines can exert simultaneous
control over the system, perhaps reminiscent of the
multi-task performance bandwidth of various acoustic
instruments as opposed to the single-task focus of a
typical live-coding performance. The Threnoscope
aims for varied ways of playing, as code, GUI and
hardware can be used successfully as control inputs,
each mode affording specific features of interaction. As
an example, typical GUI elements can be useful for
quick tasks, but they suffer from over-simplicity, low
resolution and dominating screen presence. Code,
however, can be a wonderful interface for musical
expression, as complex tasks can be written very
quickly, any parameter can be controlled at any

resolution, and temporal mechanisms can be set into
motion that run on their own, adaptable by the human
performer or by the code itself. Defining an action
that has an extended duration, with intervallic events,
often rendering indeterminate results, is a performer
modality that is best achieved by writing code.

The circular score has multiple functions. One of the
key objectives of representing drones this way is to
enable the performer to keep track of the created sound
objects and get visual feedback when they are altered.
The textural information present in a microtonal drone
piece can be highly complex, and visual representation
of the sonic texture – such as overlapping drones, their
spatial position, filtering and amplitude – can be very
helpful for the performer who wants to add, delete or
change parameters in the sonic texture. The representa-
tional score also benefits the audience, who can follow
events taking place in the piece, for example observing
how a drone’s range of harmonics is increasing over
time, how the drone’s fundamental pitch is drifting, or
how it moves through space. From audience reports, the
visual representation seems to be an important element
of the piece, some claiming that the piece should be
conceived of as an audiovisual work, where the score
cannot be separated from the music. Finally, as
a descriptive score, the Threnoscope allows musical
collaborators to better understand the ongoing events
and improvise with the support of the graphical score.

5. THE CODE SCORE

The Threnoscope was initially created for live coding
control, with possible extensions of other control
mechanisms. The interface to the complex synth defi-
nitions is through method calls, which can be mapped
to hardware- or GUI-control in real time. However, it
quickly became clear that the system also lent itself to
the composition of scores that could be played as parts
of a performance or be written as fully composed
pieces. A score is here seen as a description of a
meta-event that develops over time through a series
of sub-events. Such a score could range from a few
seconds to hours of activity. The feature that a score
can be played at the same level as a note or a chord is
uncommon in musical instruments. We do find com-
posed events in many electronic instruments, and some
acoustic instruments, such as arpeggiators or chords
being triggered by pressing a key or a button, but
the current score format allows for a more nuanced
composition of such events, including generativity.

The Threnoscope contains a score-playing mechanism
that executes code at specific moments in time. The score
is in a textual format and can be written manually
using a text editor or by the system itself, as the code
history of every session is recorded by default. The
score format is a two-dimensional array, containing
information about points in time and designated code

Figure 4. A screenshot of the Threnoscope in its scale-view
representation. The figure also shows a drone machine in

the middle with arms operating on the drones.

Scoring with Code 273

https://doi.org/10.1017/S1355771814000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771814000259


to be executed. Multiple scores can be played in
parallel, as each contains its own timing mechanism
and local variables.

Whilst the textual format has its positive qualities,
it does not contain a visual representation of the
timeline. Such visual rendering can be helpful for
comprehending the structure of musical pieces.
A graphical timeline system for the code was therefore
implemented. Initial experiments included representa-
tions of drone parameters such as amplitude, harmonics
or speed, but since code can theoretically generate
anything, this was seen as limiting. A more fruitful
solution was to create a ‘code score’ where code itself is
visualised (rather than its output) on tracks for each
drone, accompanied by one global track for system-
wide code instructions. Figure 5 shows the code score on
the right. The global code track is on the left, where
any SuperCollider code or system-wide commands
can be placed. System commands include the type of
tuning or scale to be used, the type of visual repre-
sentation, and so forth. The other tracks visible are
the drones themselves, with start and end points, and
drone-specific code is indicated with a small rectangle
in the drone timeline itself. The score elements can
be moved back and forth during playback, enabling the
performer to operate on the score in real time. Events
can be added to the score during playback by both
human and code intervention.

The code score is an attempt to create a dynamic and
adaptable timeline in a musical system. Each drone-
specific instruction is represented by a small square on
the timeline. The composer thus gets a clear visualisa-
tion of the piece’s form, but also gains a fast method of
arranging events, familiar to those accustomed typical
MIDI editors or digital audio workstations. In this
manner, drones can be dragged around, extended, and
events within them moved. As a narrative timeline
(formal-timeline), the code score exists as a part of a

short but interesting tradition that has explored the
possibility of representing code and objects affected by
code on a timeline with a moving playhead. Often such
timelines are frame-based, running through a certain
number of frames per second, but the Threnoscope
score is not based on frames, but temporal events,
supporting a time resolution down to the sample level.

From this perspective, it is clear that live coding with
the Threnoscope is adopting a pre-Romantic method of
‘composing through performance’ (Goehr 1992: 188)
where important aspects of the piece are composed
through live performance yet others reside in the system’s
design. Live coding extends this practice by also enabling
the instrument and the score to be designed and altered in
real time. The relationship between improvisation and
execution of a score in the Threnoscope can be interest-
ing, as the score can range from being very simple
and short to a highly nuanced piece of longer duration,
but one that can be manipulated at all levels in real time
by the live coder. In this case the performer improvises
or plays on top of a prior design, not unlike certain
practices in instrumental music – for example Steve
Reich’s Electric Counterpoint, where a performer plays
on top of a prerecorded performance.

6. CONCLUSION

This article has developed the idea of computer code as
a form of musical notation that might benefit from a
linear representation of time. It has argued that the
timeline representation can be an important element in
musical composition and subsequently explored gra-
phical code scores in that context. Since live coding
is essentially an improvisational practice, most live
coding systems do not implement scoring mechanisms
besides code itself. However, through the possibility of
arranging code events on a timeline using a bespoke
format, the live coder can simplify the compositional
thought process, as the piece (or the relevant part
of it) can be externalised and represented both textu-
ally and graphically on a timeline. Such external
representations allow for more abstract compositional
arrangements, higher levels of dynamic scoring, and
better support for real-time composition.

The article described the current state of the Threno-
scope as a performance system implementing the
textual interface as a score mechanism, in addition to
two types of graphic scores: the representational score of
the system’s internal state, useful to both the performer
and the audience, and the prescriptive code score that
enables the integration of designed event patterns with
live performance. The code score is a type of musical
event integral to the instrument, equal to the drones or
machines that can be played at any time. It is not an
external system for denoting actions, but rather a feature
of the instrument, like a note on a keyboard. Since the
Threnoscope was originally conceived of as a musical

Figure 5. A screenshot of the Threnoscope code score.
Above the representational score is a text field with the code
for a selected drone. At the right there is a visual represen-

tation of the whole score.

274 Thor Magnusson

https://doi.org/10.1017/S1355771814000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771814000259


piece with an embedded micro-language for live coding
performance of microtonal drone music, its scope was
more limited and narrow than most live coding systems,
thus granting the direct explorations of descriptive scores
and code scores. The code score in the Threnoscope is
proposed as a solution to the problem of how code can
be presented on a time line axis, given that code is itself
its best representation.
The author has performed with the Threnoscope at

festivals and conferences and has received numerous
requests by people who want to use the system in their
own musical practice. This raises interesting questions as
it is still unclear whether the system should be seen more
as an instrument for musical expression or as the musical
piece it was originally intended to be. Questions of
authorship and collaboration are relevant, but set aside
for further study, together with exploration of acoustic
instrumentalists performing against the representational
score and systematic studies of audience feedback.

Acknowledgements

I would like to thank Dr Stephen Boyd Davis for the
fruitful discussions over the years about timelines and
representations of events in time. I am also greatly
indebted by the profound comments and suggestions
provided by Dr Ed Hughes, Gordon Davies, Enrike
Hurtado Mendieta and Birta Thrastardottir.

REFERENCES

Bate, D. 2009.Photography: The Key Concepts. Oxford: Berg.
Bowker, G. C. and Star, S. L. 2000. Sorting Things Out:

Classification and its Consequences. Cambridge, MA:
MIT Press.

BoydDavis, S. 2012. History on the Line: Time asDimension.
Design Issues 28(4): 4–17.

Clark, A. and Chalmers, D. J. 1998. The Extended Mind.
ANALYSIS 58(1): 7–19.

Collins, N., McLean, A., Rohrhuber, J. and Ward, A. 2003.
Live Coding in Laptop Performance. Organised Sound
8(3): 321–30.

Eco, U. 1989. The Poetics of the Open Work. The Open
Work. Cambridge, MA: Harvard University Press.

Goehr, L. 1992. The Imaginary Museum of Musical Works:
An Essay in the Philosophy of Music. Oxford: Oxford
University Press.

Good, M. 2001. MusicXML for Notation and Analysis. In
W. B. Hewlett and E. Selfridge-Field (eds), The Virtual
Score: Representation, Retrieval, Restoration. Cambridge,
MA: MIT Press.

Green, T. R. G. and Petre, M. 1996. Usability Analysis of
Visual Programming Environments: A ‘Cognitive
Dimensions’ Framework. Journal of Visual Languages
and Computing 10(2): 131–74.

Haynes, B. 2007.The End of EarlyMusic: APeriod Performer’s
History of Music for the Twenty-First Century. Oxford:
Oxford University Press.

Hugill, A. 2012. The Digital Musician. 2nd edn. Abingdon:
Routledge.

Kanno,M. 2007. PrescriptiveNotation: Limits and Challenges.
Contemporary Music Review 26(2): 231–54.

Kotz, L. 2007. Words to Be Looked At: Language in 1960s
Art. Cambridge, MA: MIT Press.

McCartney, J. 2002.Rethinking theComputerMusic Language:
SuperCollider. Computer Music Journal 26(4): 61–68.

McLean, A. 2008. Live Coding for Free. In A. Mansoux and
M. de Valk (eds), Floss+Art. London: Mute Publishing.

Nettl, B. 2005. The Study of Ethnomusicology: Thirty-One
Issues and Concepts. Champaign, IL: The University of
Illinois Press.

Seeger, C. 1958. Prescriptive and Descriptive Music-Writing.
The Musical Quarterly 44(2): 184–95.

Sorensen, A. and Brown, A. 2007. aa-cell in Practice: An
Approach to Musical Live Coding. Proceedings of the
International Computer Music Conference, Copenhagen/
San Francisco: ICMA. 292–9.

Wright, M. 2005. Open Sound Control: An Enabling
Technology for Musical Networking. Organised Sound
10(3): 193–200.

Xenakis, I. 1992. FormalizedMusic: Thought andMathematics
in Composition. Hillsdale, NY: Pendragon Press.

Scoring with Code 275

https://doi.org/10.1017/S1355771814000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771814000259

	Scoring with Code: Composing with algorithmic notation
	1. INTRODUCTION
	2. REPRESENTATIONAL NOTATION
	3. TIMELINES OF CODE
	4. THE THRENOSCOPE
	Figure 1A screenshot of Macromedia Director showing the frame-based timeline, the cast of media elements and a code window.
	Figure 2A screenshot of Field: a research animation by Nick Rothwell for the Shobana Jeyasingh Dance Company.
	Figure 3A screenshot of the Threnoscope in its harmonic-view representation.
	5. THE CODE SCORE
	Figure 4A screenshot of the Threnoscope in its scale-view representation.
	6. CONCLUSION
	Figure 5A screenshot of the Threnoscope code score.
	Acknowledgements

	ACKNOWLEDGEMENTS
	References


