
TLP 7 (1&2): 3–35, 2007. C© 2007 Cambridge University Press

doi:10.1017/S1471068406002869 Printed in the United Kingdom

3

Removing redundant arguments automatically

M. ALPUENTE, S. ESCOBAR and S. LUCAS

DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain

(e-mail: {alpuente,sescobar,slucas}@dsic.upv.es)

submitted 30 December 2003; revised 12 May 2005; accepted 5 January 2006

Abstract

The application of automatic transformation processes during the formal development

and optimization of programs can introduce encumbrances in the generated code that

programmers usually (or presumably) do not write. An example is the introduction of

redundant arguments in the functions defined in the program. Redundancy of a parameter

means that replacing it by any expression does not change the result. In this work, we provide

methods for the analysis and elimination of redundant arguments in term rewriting systems

as a model for the programs that can be written in more sophisticated languages. On the

basis of the uselessness of redundant arguments, we also propose an erasure procedure which

may avoid wasteful computations while still preserving the semantics (under ascertained

conditions). A prototype implementation of these methods has been undertaken, which

demonstrates the practicality of our approach.

KEYWORDS: redundant arguments in functions, semantics-preserving program transforma-

tion, analysis and optimization, term rewriting

1 Introduction

A number of researchers have noticed that certain processes of optimization,

transformation, specialization and reuse of code often introduce anomalies in the

generated code that programmers usually (or ideally) do not write (Aho et al. 1986;

Hughes 1988; Leuschel and Sørensen 1996; Liu and Stoller 2002). Examples are

redundant arguments in the functions defined by the program, as well as useless

program rules. The notion of redundant argument means that replacing it by

whatever expression we like, the final result does not change; independently of

actual computations. The following example motivates our ideas.

Example 1

Consider the following program that calculates the concatenation of two lists of

natural numbers and the last element of a list, respectively:

append(nil,y) = y last(x:nil) = x

append(x:xs,y) = x:append(xs,y) last(x:y:ys) = last(y:ys)

Assume that we specialize this program for the call applast(ys,z) ≡
last(append(ys,z:nil)), which appends an element z at the end of a given list

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

4 M. Alpuente et al.

ys and then returns the last element, z, of the resulting list; the example is borrowed

from DPPD library of benchmarks (Leuschel 1998) and was also considered in

Leuschel and Martens (1995); Pettorossi and Proietti (1996b) for logic program

specialization. Commonly, the optimized program which can be obtained by using

an automatic specializer of functional programs (Alpuente et al. 1997; Alpuente

et al. 1998; Alpuente et al. 1999) is:

applast(nil,z) = z lastnew(x,nil,z) = z

applast(x:xs,z) = lastnew(x,xs,z) lastnew(x,y:ys,z) = lastnew(y,ys,z)

The first argument of the function applast is redundant (as well as the first and

second arguments of the auxiliary function lastnew) and would not typically be

written by a programmer who writes this program by hand. This program is far from

{applast′(ys,z) = lastnew′(z), lastnew′(z) = z}, a more feasible one with the

same evaluation semantics, or even the “optimal” program – without redundant

parameters – {applast′′(z) = z} which one would ideally expect (here the rule for

the “local” function lastnew′ is disregarded, since, after optimizing the definition

of applast′, it is not useful anymore). Note that standard (post-specialization)

renaming/compression procedures (Alpuente et al. 1997; Gallagher 1993; Glück and

Sørensen 1994) cannot perform this optimization as they only improve programs

where program calls contain dead functors or multiple occurrences of the same

variable, or the functions are defined by rules whose rhs’s are normalizable.

Therefore, it seems interesting to formalize program analysis techniques for

detecting these kinds of redundancies as well as to formalize transformations for

eliminating the dead code that appears in the form of redundant function arguments

or useless rules and which, in some cases, can be safely erased without jeopardizing

correctness.

In this work, we investigate the problem of redundant arguments in Term

Rewriting Systems (TRSs), as a model for the programs that can be written in

more sophisticated equational, functional, or functional-logic languages. We provide

a semantic characterization of redundancy which is parametric w.r.t. the observed

semantics S. After some preliminaries in Section 2, in Section 3 we consider different

(reduction) semantics S, including the standard normalization semantics (typical of

pure rewriting) and the evaluation semantics (closer to functional and equational

programming). In Section 4 we introduce the notion of redundancy of an argument

w.r.t. a semantics S and provide some useful properties. In Section 5 we derive a

decidability result for the redundancy problem w.r.t. S and provide the first effective

method for detecting redundancies, which is based on approximation techniques.

Then, in Section 6 we provide a more practical method to recognize redundancy

which allows us to simplify the general redundancy problem to the analysis of the

rhs’s of the program rules.

At first sight, one could näıvely think that redundant arguments are a straight

counterpart of “needed redex” positions (Huet and Lévy 1991), a well-known oper-

ational notion in term rewriting, which could be easily neutralized by appropriately

driving the computation. Unfortunately, this is not true as illustrated by the following

example.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 5

Example 2

Consider the optimized program of Example 1 extended with:

take(0,xs) = nil

take(s(n),x:xs) = x:take(n,xs)

The contraction of redex take(1,1:2:nil) at position 1 in the term1

t = applast(take(1,1:2:nil),0) is needed to normalize the term t to the

constructor normal form 0. This means that such redex position (or one of its

residuals) must be reduced in each rewriting sequence from t to its normal form 0

(see Huet and Lévy (1991)). However, the first argument of applast is redundant

for normalization, as we showed in Example 1, and the program could be improved

by dropping this useless parameter. Therefore, although needed redexes are an

essential piece of the computational process which implements the evaluation, from

a semantic point of view, they can be irrelevant (redundant).

Since needed redexes must all be reduced in any reduction sequence leading to

a normal form, Example 2 shows that no normalizing reduction strategy is able

to dodge the problem by avoiding the exploration of the redundant argument.

Thus, in general, inefficiencies caused by the redundancy of arguments cannot

be avoided by using rewriting strategies. Therefore, in Section 7 we formalize

an elimination procedure which gets rid of the redundant arguments and provide

sufficient conditions for the preservation of the semantics. Preliminary experiments

in Section 8 indicate that our approach is both practical and useful.

An extensive comparison with the related literature is provided in Section 9. We

summarize some relevant ideas as follows. Strictness analysis2 (Burn et al. 1986;

Burn 1991; Jensen 1991; Mycroft 1980; Mycroft and Norman 1992; Sekar et al.

1990; Wadler and Hughes 1987) can be used to determine whether the evaluation

of an argument ei within an expression e = f(e1, . . . , ei, . . . , ek) is “strictly” necessary

to obtain the value of e. The counterpart of this notion has been studied in a

number of different analysis techniques such as dead code analysis (Liu and Stoller

2002), unneededness analysis (Hughes 1988), absence analysis (Cousot and Cousot

1994), filtering analysis (Leuschel and Sørensen 1996), or useless analysis (Wand and

Siveroni 1999). Also, similar techniques to detect and remove parts of a program

which are computationally irrelevant have been investigated in the past: program

specialization (Alpuente et al. 1997; Alpuente et al. 1998; Alpuente et al. 1999;

Leuschel and Martens 1995; Pettorossi and Proietti 1994; Pettorossi and Proietti

1996a), slicing (Gouranton 1998; Schoenig and Ducasse 1996; Reps and Turnidge

1996; Szilagyi et al. 2002; Tip 1995; Weiser 1984), compile-time garbage collection

(Jones and Métayer 1989; Park and Goldberg 1992; Knoop et al. 1994), and dead

code removal (Berardi et al. 2000; Kobayashi 2000; Liu and Stoller 2002).

1 In this paper, naturals 1, 2, . . . are often used as shorthand to numbers sn(0) where n = 1, 2,
2 Roughly speaking, a function symbol f is strict in its i-th argument if any subterm at such argument

position must be completely evaluated during the evaluation of f. In symbols: let D1, . . . , Dk, D
be ordered sets with least elements ⊥1, . . . ,⊥k,⊥ respectively, expressing undefinedness, a mapping
f : D1 × · · · × Dk → D is said to be strict in its i-th argument if f(d1, . . . ,⊥i, . . . , dk) = ⊥ for all
d1 ∈ D1, . . . , dk ∈ Dk .

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

6 M. Alpuente et al.

In Section 10, we briefly discuss the detection of redundant arguments in functional

logic programs mechanized by narrowing. We conclude in Section 11. Proofs of all

technical results are given in (Alpuente et al. 2006). This paper is a revised and

improved version of (Alpuente et al. 2002b).

2 Preliminaries

Term rewriting systems provide an adequate computational model for functional and

equational programming languages which allow the definition of functions by means

of patterns, e.g., Haskell, Hope, or Miranda (Baader and Nipkow 1998; Klop 1992;

Plasmeijer and van Eekelen 1993). In the rest of the paper we follow the standard

framework of term rewriting for developing our results; see Baader and Nipkow

(1998) and TeReSe (2003) for missing definitions. To simplify our presentation,

definitions are given in the one-sorted case; the extension to many-sorted signatures

is not difficult (Padawitz 1988), and we comment where they matter the non-obvious

details.

Let → ⊆ A × A be a binary relation on a set A. We denote the inverse of →
by ←, the symmetric closure by ↔, the transitive closure by →+, the reflexive and

transitive closure by →∗, and the reflexive, symmetric and transitive closure by ↔∗.
We say that → is confluent if, for every a, b, c ∈ A, whenever a →∗ b and a →∗ c,
there exists d ∈ A such that b →∗ d and c →∗ d. We say that → is terminating (or

well-founded) iff there is no infinite sequence a1 → a2 → a3 · · · .
Throughout the paper, X denotes a countable set of variables {x, y, w, . . . }, and F

denotes a finite set of function symbols {f, g, h, . . . }, each one having a fixed arity

given by a function ar : F → �. By T(F,X) we denote the set of terms and by

T(F) the set of ground terms, i.e., terms without variable occurrences.Var(t) is the

set of variables in t. A term is said to be linear if it has no multiple occurrences of

a single variable. A k-tuple t1, . . . , tk of terms is written t. The number k of elements

of the tuple t will be clarified by the context.

A substitution is a mapping σ : X → T(F,X) which homomorphically extends

to a mapping σ :T(F,X)→T(F,X). The substitution σ is usually different from

the identity, i.e., ∀x ∈ X : id(x) = x, for a finite subset Dom(σ) ⊆ X, called the

domain of σ. By θ ◦ σ we denote the composition of the substitutions σ and θ, i.e.,

θ ◦ σ(x) = θ(σ(x)). Let Subst(F,X) denote the set of substitutions and Subst(F) be

the set of ground substitutions, i.e., substitutions on T(F). If σ(t) is a ground term,

we call σ a grounding substitution for t. A unifier of two terms t, s is a substitution

σ such that σ(t) = σ(s) and σ is idempotent, i.e., σ ◦ σ = σ. A most general unifier

(mgu) of t, s is a unifier σ such that for each unifier σ′ of t, s there exists θ such that

σ′ = θ ◦ σ. By σ|V we denote the restriction of subsitution σ to the variables in V .

Terms are viewed as labelled trees in the usual way. Positions p, q, . . . are defined

as sequences of positive natural numbers used to address subterms of t, with Λ the

root position (i.e., the empty sequence), p.q the position concatenation, and p < q

the usual prefix ordering. Two positions p, q are disjoint, denoted by p ‖ q, if neither

p < q, p > q, nor p = q. The symbol labeling the root position of t is denoted

as root(t). The subterm at position p of t is denoted as t|p and t[s]p is the term t

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 7

with the subterm at position p replaced by s. The restriction of a set of positions

P w.r.t. a position p is defined as P |p = {p′ | ∃q ∈ P ∧ q = p.p′}, the concatenation

of a position p and a set of positions P is defined as p.P = {p.q | q ∈ P }, and

the comparison of a set of positions P w.r.t. a position p is defined as p � P iff

p � q for each q ∈ P . By PosS (t) we denote all positions in t with a symbol or

variable from S ⊆ F ∪ X. We use Posf(t) and Pos(t) as shorthands for Pos{f}(t)
and PosF∪X(t), respectively. A context is a term C with zero or more ‘holes’, i.e.,

the fresh constant symbol �. We usually write simply C[] to denote an arbitrary

context, clarifying the number and location of holes ‘in situ’. If C is a context and t

a term, C[t] denotes the result of replacing the hole in C by t.

A rewrite rule is an ordered pair (l, r), written3 l → r, with l, r ∈ T(F,X), l �∈ X
and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the right-hand

side (rhs). A TRS is a pair R = (F, R) where R is a set of rewrite rules and F
is called the signature. A term t rewrites to s (at position p), written t →R s (or

just t → s), if t|p = σ(l) and s = t[σ(r)]p, for some rule l → r ∈ R, p ∈ Pos(t) and

substitution σ. An instance σ(l) of the lhs of a rule l → r is called a redex; similarly

subterm t|p in a rewrite step is also called a redex. A term t without redexes is said

a normal form. By NFR we denote the set of finite normal forms w.r.t. R. A term t

is said a head-normal form (or root-stable) if it cannot be rewritten to a redex. By

HNFR we denote the set of head-normal forms w.r.t. R.

A TRS R is left linear if all its lhs’s are linear terms. A TRS R is ground (resp.

right-ground) if all its lhs’s and rhs’s (resp. only its rhs’s) are ground terms. A TRS

R is terminating (resp. confluent) if the relation →R is terminating (resp. confluent).

Two terms t, s are joinable, denoted by t ↓ s, if there exists a term u such that t→∗ u
and s→∗ u.

Given R = (F, R), we assume F can be always considered as the disjoint union

F = C � D of symbols c ∈ C, called constructors, and symbols f ∈ D, called

defined functions, where D = {f | f(l) → r ∈ R} and C = F−D. Then, T(C,X)

is the set of constructor terms. A pattern is a term f(l1, . . . , ln) such that f ∈ D and

l1, . . . , ln ∈ T(C,X). A constructor system (CS) is a TRS whose lhs’s are patterns.

Two (possibly renamed) rules l → r and l′ → r′ overlap, if there is a non-variable

position p ∈ PosF(l) and a most-general unifier σ such that σ(l|p) = σ(l′). The

pair 〈σ(l)[σ(r′)]p, σ(r)〉 is called a critical pair and is also called an overlay if p = Λ.

A critical pair 〈t, s〉 is trivial if t = s. A left-linear TRS without critical pairs is

called orthogonal. Note that orthogonality of a TRS R implies confluence of →R. A

left-linear TRS where its critical pairs are trivial overlays is called almost orthogonal.

3 Semantics

The redundancy of an argument of a function f in a TRSR depends on the semantics

properties of R that we are interested in observing. Our notion of semantics is aimed

to couch operational as well as denotational aspects.

3 We will use also l = r to differentiate a rule from a rewriting step.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

8 M. Alpuente et al.

A term semantics for a signature F is a mapping S : T(F) → P(T(F)) (Lucas

2001) which associates a set of terms to a term. A rewriting semantics for a TRS

R = (F, R) is a term semantics S for F such that, for all t ∈ T(F) and s ∈ S(t),

t →∗R s, i.e., a term semantics where the set of terms associated to a term is

determined only by the program.

The rewriting semantics which is most commonly considered in functional pro-

gramming is the set of values (ground constructor terms) that R is able to produce

in a finite number of rewriting steps (evalR(t) = {s ∈ T(C) | t →∗R s}). Other

kinds of rewriting semantics often considered for R are, e.g., the set of all possible

reducts of a term which are reached in a finite number of steps (redR(t) = {s ∈
T(F) | t →∗R s}), the set of such reducts that are ground head-normal forms

(hnfR(t) = redR(t) ∩ HNFR), or ground normal forms (nfR(t) = hnfR(t) ∩ NFR). We

also consider the (trivial) semantics empty which assigns an empty set to every term.

We often omit R in the notations for rewriting semantics when it is clear from the

context. Furthermore, a rewriting semantics S for a TRS R is called (R-)normalized

if, for all t ∈ T(F), S(t) ⊆ NFR, i.e., the semantics associates only normal forms to

a term. eval and nf are examples of normalized semantics whereas hnf and red are

not normalized.

The ordering � between semantics (Lucas 2001) provides some interesting prop-

erties regarding the redundancy of arguments. Given term semantics S and S′ for

a signature F, we write S � S′ if there exists T ⊆ T(F) (called window set of

S′ w.r.t. S) such that, for all t ∈ T(F), S(t) = S′(t) ∩ T . Note that, then, we have

empty � evalR � nfR � hnfR � redR.

Given a rewriting semantics S, it is interesting to determine whether S provides

non-trivial information for every input expression. Let R be a TRS and S be a

rewriting semantics for R, we say that R is S-defined if for all t ∈ T(F), S(t) �= �
(Lucas 2001). S-definedness is monotone w.r.t. �: if S � S′ and R is S-defined, R is

also S′-defined.

S-definedness has already been studied in the literature for different semantics

(Lucas 2001). In concrete, nf-defined TRSs are known as normalizing TRSs (i.e.,

every term has a normal form (Baader and Nipkow 1998)) and eval-definedness is

related to termination and the standard notion of completely defined (CD) TRSs;

see Kapur et al. (1987) and Kounalis (1985). Roughly speaking, a defined function

symbol is completely defined if it does not occur in any ground term in normal

form, that is to say that functions are reducible on all ground terms (of appropriate

sort). A TRS R is completely defined if each defined symbol of the signature is

completely defined. In one-sorted theories, completely defined programs occur only

rarely. However, they are common when using types, and each function is defined

for all constructors of its argument types.

Let R be a normalizing and completely defined TRS; then, R is evalR-

defined. Being completely defined is sensitive to extra constant symbols in the

signature, and so is redundancy. Thus, we are not concerned with modularity in this

work.

From now on, we formulate the notion of a redundant argument and provide

some useful properties and detection techniques.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 9

4 Redundant arguments

Roughly speaking, a redundant argument of a function f is an argument ti which

we do not need to consider in order to compute the semantics of any call containing

a subterm f(t1, . . . , tk).

Definition 1 (Redundancy of an argument)

Let S be a term semantics for a signature F, f ∈ F, and i ∈ {1, . . . , ar(f)}. The i-th

argument of f is redundant w.r.t. S if, for all contexts C[] and for all t, s ∈ T(F)

such that root(t) = f, S(C[t]) = S(C[t[s]i]).

We denote by rargS(f) the set of redundant arguments of a symbol f ∈ F w.r.t.

a semantics S for F. Note that every argument of every symbol is redundant w.r.t.

empty. The following result shows that redundancy is antimonotone with regard to

the ordering � on semantics.

Theorem 1 (Antimonotonicity of redundancy)

Let S,S′ be term semantics for a signature F. If S � S′, then, for all f ∈ F,

rargS′ (f) ⊆ rargS(f).

The following result guarantees that constructor symbols have no redundant argu-

ments for usual non-trivial semantics, which agrees with the common understanding

of constructor terms as completely meaningful pieces of information.

Proposition 1 (Non-redundancy of constructors)

Let R be a TRS such that |T(C)| > 1, and consider a rewriting semantics S such

that evalR � S. Then, for all c ∈ C, rargS(c) = �.

For many-sorted signatures, we would require that |T(C)τ| > 1 for the sort τ of an

argument of a constructor symbol c. In the following section, we consider several

aspects about decidability of the redundancy of an argument.

5 Decidability Issues

In general, the redundancy of an argument is undecidable. However, we are able

to provide a decidability result about redundancy w.r.t. all the non-trivial semantics

considered in this paper. In this section, for a signature F, term semantics S for F,

f ∈ F, and i ∈ {1, . . . , ar(f)}, by “redundancy w.r.t. S” we mean the redundancy of

the i-th argument of f w.r.t. S.

We follow the “(W)SkS approach” to decide a given property P , which is based

on ascertaining the conditions for expressing P in a decidable logic, namely the

(weak) second-order monadic logic with k successors (W)SkS; see Thomas (1990).

The following theorem by Rabin is the key element for our results in this section.

Theorem 2 (Robin 1969)

The (weak) monadic second-order theory of k successor functions (W)SkS is

decidable.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

10 M. Alpuente et al.

First, we recall some basic definitions about the WSkS logic; see e.g., Thomas

(1990). Terms of the WSkS logic are formed out of individual variables x, y, z, . . . ,

the empty string Λ, and right concatenation with 1, . . . , k. Atomic formulas are

equations between terms, inequations w < w′ between terms, or expressions w ∈ X

where w is a term and X is a (second-order) variable. Formulas are built from

atomic formulas using the logical connectives ∧,∨,⇒,¬, . . . and the quantifiers ∃, ∀
of both individual and second-order variables. Individual variables are interpreted

as elements of {1, . . . , k}∗ and second-order variables as finite subsets of {1, . . . , k}∗.
Equality is the string equality and inequality is the strict prefix ordering. Finite union

and intersection, as well as inclusion and equality of sets, are definable in WSkS in

an obvious way.

Let us relate TRSs and WSkS logic. Given a finite signature F, let k be the

maximal arity of all the function symbols in F and n be the cardinality of F. A

term t is represented in WSkS using n+ 1 set variables X and Xf, f ∈ F, which are

denoted by �X in the following. X will be the set of all positions of t, and Xf will be

the set of positions that are labeled with the corresponding function symbol. The

following WSkS formula expresses that �X encodes a term in T(F) (Comon 2000;

Durand and Middeldorp 1997):

TermF(�X)
def
= X =

⋃n
i=1 Xfi ∧

∧
i�=j(Xfi ∩Xfj = �)

∧ ∀x ∈ X ∀y < x (y ∈ X)

∧
∧

f∈F(∀x ∈ Xf :
∧ar(f)

l=1 (x.l ∈ X) ∧
∧k

l=ar(f)+1(x.l �∈ X))

If TermF(�T) holds, then we let t�T define the term in T(F) which is uniquely

determined by Pos(t) = T and root(t|p) = f if p ∈ Tf for all p ∈ T . A subset of

ground terms L ⊆ T(F) is called WSkS definable if there exists a WSkS formula Φ

with free variables �T such that L = {t�T | TermF(�T) ∧ Φ(�T)}.
An arbitrary term semantics S can be encoded as a relation S between terms:

S = {(t, s) | t ∈ T(F) ∧ s ∈ S(t)}. Hence, we say that semantics S is WSkS

definable if there exists a WSkS formula Φ with free variables �T and �S such that

(t�T , s�S) ∈ S ⇔ TermF(�T) ∧ TermF(�S) ∧ Φ(�T ,�S).

Theorem 3 (Decidability of redundancy)

Let S be a term semantics for a signatureF. If S is WSkS definable, then redundancy

w.r.t. S is decidable.

The following result shows that decidability of redundancy is antimonotone with

regard to the ordering � on semantics.

Proposition 2

Let S,S′ be term semantics for a signature F. If S � S′, S′ is WSkS definable, and

there exists a window set T ⊆ T(F) of S′ w.r.t. S which is WSkS definable, then S

is WSkS definable.

In Dauchet et al. (1990) and Dauchet et al. (1987), ground (finite) tree transducers

(GTT for short) were introduced to recognize the rewrite relation →∗R in (left-linear

and right-)ground TRSs. Since GTT-recognizable relations are definable in WSkS

(Comon 2000), the semantics red is also WSkS definable, hence the redundancy

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 11

w.r.t. red is decidable. Now, the following result shows that the window set HNFR is

WSkS definable; this is useful for proving that semantics hnf is also WSkS definable.

Theorem 4

The set HNFR of a finite left-linear, right-ground TRS R is WSkS definable.

Then, the following theorem provides the first decidability result w.r.t. all the

non-trivial semantics considered in this paper.

Theorem 5 (Decidability for semantics redR, hnfR, nfR, and evalR)

For a left-linear, right-ground TRS R over a finite signature F, the redundancy

w.r.t. semantics redR, hnfR, nfR, and evalR is decidable.

This result recalls the decidability of other related properties of TRSs, such as

confluence, joinability, and reachability problems (for left-linear, right-ground TRSs)

(Dauchet et al. 1987; Oyamaguchi 1990). For instance, the confluence problem

was shown to be undecidable for right-ground TRSs, while it is decidable for

ground TRSs and also for left-linear and right-ground TRSs (Dauchet et al. 1987).

Note that we cannot weaken in our approach the requirement of right-groundness

in Theorem 5 to the more general conditions of shallowness (Comon 2000) or

growingness (Jacquemard 1996) as the induced rewrite relations are not expressible

in the logic WSkS that we use to decide the property (Durand and Middeldorp 1997).

In the following section we provide the first redundancy detection method, which

(sufficiently) ensures that an argument is redundant in a given TRS.

5.1 Approximations of redundancy

Whenever a property is undecidable or costly to decide, we use approximations. A

notion of approximation (for TRSs) that has been proven useful for approximating

interesting properties in term rewriting (namely neededness of redexes for normal-

ization) is the following Durand and Middeldorp (1997) and Jacquemard (1996):

Given TRSs R and R′ (possibly with extra variables) over the same signature, R′
approximates R if →∗R⊆→∗R′ and NFR = NFR′ . An approximation of TRSs is a

mapping α from TRSs to TRSs with the property that TRS α(R) approximates

TRS R (Durand and Middeldorp 1997). We write Rα instead of α(R) to denote

the approximation of R according to α. Strong, nv (Durand and Middeldorp

1997), shallow (Comon 2000), and growing (Jacquemard 1996) are examples of

such approximations of TRSs. In all these approximations, the rhs’s of the rules

are modified in different ways. For instance, given a TRS R, Rnv is obtained by

replacing all variables in the rhs by new, different variables that do not occur in the

lhs; this is possible since the framework deals with extra variables.

To approximate redundancy, we need to use a new symbol Ω to represent all

ground terms (in particular, to be used at the argument position which is tested for

redundancy). Inspired by (Durand and Middeldorp 1997; Oyamaguchi 1986), we

define our notion of approximation as follows. Let R be a TRS over a signature F
and R′ be a TRS over the signature F ∪ {Ω}, where Ω is a new constant symbol

defined by the rules {Ω → f(Ω) | f ∈ F}. We extend the approximation notion

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

12 M. Alpuente et al.

of Durand and Middeldorp (1997) and Jacquemard (1996) naturally to TRSs over

signatures F and F∪ {Ω}, where Ω is a special symbol that potentially expresses

any term. Note that we consider the normalization semantics only for ground terms.

Thus, we say that R′ approximates R (but notice that, now, R′ is a TRS on

F∪{Ω}) if→∗R ∩ (T(F)×T(F)) ⊆→∗R′ ∩ (T(F)×T(F)) and NFR = NFR′ . Note

that,→∗R⊆ (T(F,X)×T(F,X)) whereas→∗R′⊆ (T(F∪ {Ω},X)×T(F∪ {Ω},X));

however, by definition of R′, NFR′ ⊆ T(F).

The following notation is auxiliary.

Definition 2 (S-determinacy w.r.t. f and i)

Given a symbol f ∈ F and an argument i ∈ {1, . . . , ar(f)}, we say that the semantics

S is determined w.r.t. f and i if for every context C[] and t ∈ T(F) such that

root(t) = f, then |S(C[t[Ω]i])| � 1; where |A| stands for the cardinality of the set A.

The following theorem provides a sufficient condition for redundancy which is the

basis of our decidable approximations of redundancy.

Theorem 6 (Approximation of redundancy)

Let R = (F, R) be a TRS, R′ be an approximation of R, f ∈ F, i ∈ {1, . . . , ar(f)},
and S ∈ {eval, nf}. If R is SR-defined and SR′ is determined w.r.t. f and i, then

i ∈ rargSR(f).

It is an open problem whether redundancy is decidable for terminating TRSs.

Nevertheless, Theorem 6 ensures that redundancy w.r.t. nf is approximable for

terminating TRSs, since any terminating TRS R is nfR-defined. The following

theorem ensures that WSkS definability of a semantics entails the possibility of

guaranteeing decidability of a given approximation.

Theorem 7 (Decidability of S-determinacy w.r.t. f and i)

Let S be a term semantics for a signature F∪ {Ω}. If S is WSkS definable, then it

is decidable whether S is determined w.r.t. f and i.

Remember that the semantics evalR and nfR are WSkS definable for left-linear,

right ground TRSs over finite signatures. This suggests us to use the following

approximation of left-linear right-ground TRSs. Given R = (F, R), we define Rrg =

(F∪ {Ω}, Rrg) as follows:

Rrg = {l → rΩ | l → r ∈ R} ∪ {Ω→ f(Ω) | f ∈ F}

where tΩ is the term t with all variables replaced by Ω. It is straightforward to

see that rg is an approximation of TRSs. The following theorem ensures that S-

determinacy w.r.t. f and i is decidable for an approximation Rrg of a TRS R and

semantics S ∈ {nfRrg
, evalRrg

}.

Theorem 8

Let R be a left-linear TRS, Rrg be the approximation rg of R, f ∈ F, i ∈
{1, . . . , ar(f)}, and S ∈ {evalRrg

, nfRrg
}. It is decidable whether S is determined w.r.t.

f and i.

By Theorems 6 and 8, redundancy of an argument w.r.t. nfR (and evalR) is

effectively approximable by using rg.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 13

Corollary 1 (Approximation of redundancy for Rrg)

Let R = (F, R) be a left-linear TRS, f ∈ F, i ∈ {1, . . . , ar(f)}, and S ∈ {eval, nf}. If

R is SR-defined and SRrg
is determined w.r.t. f and i, then i ∈ rargSR(f).

Example 3

Consider the left-linear TRS R
f(x,0) = 0 f(0,s(y)) = s(0) f(s(x),s(y)) = g(x,y)

g(x,y) = f(x,s(y))

Note that R is terminating, hence nfR-defined. Approximation Rrg is:

f(x,0) = 0 f(0,s(y)) = s(0) f(s(x),s(y)) = g(Ω,Ω)

g(x,y) = f(Ω,s(Ω)) Ω = f(Ω,Ω) Ω = g(Ω,Ω)

Ω = s(Ω) Ω = 0

It is not difficult to see that nfRrg
is determined w.r.t. f and 1 whereas is not

determined w.r.t. f and 2. It is possible to construct an automaton which tests

those conditions, see Thatcher and Wright (1968) for more details, thus making it

automatically provable. By Theorem 6, this means that 1 ∈ rargnfR(f).

The approximation rg is similar to nv of (Durand and Middeldorp 1997), that

replaces every variable in rhs’s by fresh ones. However, including the new symbol

Ω in the rhs’s of the approximated program is essential for our development since

the semantics of the program obtained by the approximation nv is not expressible

in the logic WSkS.

In the following section, we address the redundancy analysis from a complement-

ary perspective. Rather than going more deeply in the decidability issues, we are

interested in ascertaining conditions which (sufficiently) ensure that an argument

is redundant in a given TRS. In order to address this problem, we investigate

redundancy of positions.

6 Redundancy of positions

When considering a particular (possibly non-ground) function call, we can observe

a more general notion of redundancy which allows us to consider arbitrary (deeper)

positions within the call.

Definition 3 (p-prefix-equal terms)

We say that two terms t, s ∈ T(F,X) are p-prefix-equal , with p ∈ Pos(t)∩Pos(s) if,

for all occurrences w with w < p, t|w and s|w have the same symbol at the root.

Definition 4 (Redundant position)

Let S be a term semantics for a signature F and t ∈ T(F,X). The position

p ∈ Pos(t) is redundant in t w.r.t. S if, for all t′, s ∈ T(F) such that t and t′ are

p-prefix-equal, S(t′) = S(t′[s]p).

We denote by rposS(t) the set of redundant positions of a term t w.r.t. a semantics S.

Note that the previous definition cannot be simplified by getting rid of t′ and

simply requiring that for all s ∈ T(F), S(t) = S(t[s]p), mimicking Definition 1. The

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

14 M. Alpuente et al.

reason is that positions in a term cannot be analyzed independently for redundancy

if we want our notion of redundancy of positions to be truly compositional, as the

following example shows.

Example 4

Let us consider the TRS R:

f(a,a) = a f(a,b) = a f(b,a) = a f(b,b) = b

Given the term t = f(a,a), for all terms s ∈ T(F), evalR(t[s]1) = evalR(t)

and evalR(t[s]2) = evalR(t). However, evalR(t[b]1[b]2) �= evalR(t). Indeed,

1, 2 �∈ rposevalR(t).

In the following, we extend Theorem 1 and Proposition 1 (which concern

redundant arguments of function symbols) to redundant positions of terms.

Theorem 9 (Antimonotonicity of redundancy of a position)

Let S,S′ be term semantics for a signature F. If S � S′, then, for all t ∈ T(F,X),

rposS′ (t) ⊆ rposS(t).

Proposition 3 (Non-redundancy of constructor positions)

Let R be a TRS such that |T(C)| > 1, and S be a rewriting semantics such that

evalR � S. Then, for all t ∈ T(C,X), rposS(t) = �.

The following result states that the positions of a term which are below the

indices addressing the redundant arguments of any function symbol occurring in t

are redundant.

Proposition 4

Let S be a term semantics for a signature F, t ∈ T(F,X), p ∈ Pos(t), f ∈ D. For

all positions q, p′ and i ∈ rargS(f) such that p = q.i.p′ and root(t|q) = f, p ∈ rposS(t)

holds.

In the following, we provide some general criteria for ensuring redundancy of

arguments on the basis of the (redundancy of some) positions in the rhs’s of

program rules, specifically the positions of the rhs’s where the arguments of the

functions defined in the lhs’s ‘propagate’ to. Theorems 1 and 9 say that the more

restrictive a semantics is, the more redundancies there are for the arguments of

function symbols. According to our hierarchy of semantics (by �), eval seems to be

the most fruitful semantics for analyzing redundant arguments. In the following, we

focus on the problem of characterizing the redundant arguments w.r.t. eval.

6.1 Using Redundant Positions for Characterizing Redundancy:

the Variable Case

In this section, we focus on the problem of characterizing the redundant arguments

w.r.t. evalR by studying the redundancy w.r.t. evalR of some positions in the rhs’s

of program rules. The following definition is useful to detect whether the variables

of the i-th argument in a lhs of symbol f propagate to positions in the rhs under

the same i-th argument of symbol f.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 15

Definition 5 ((f, i)-redundant variable)

Let f ∈ D, i ∈ {1, . . . , ar(f)}, and t ∈ T(F,X). The variable x ∈ X is (f, i)-redundant

in t if it occurs only at positions p ∈ Posx(t) which (i) are redundant w.r.t. evalR
in t, i.e., p ∈ rposevalR (t), or (ii) they appear inside the i-th parameter of f-rooted

subterms of t, i.e., ∃q such that q.i � p and root(t|q) = f.

Note that variables which do not occur in a term t are trivially (f, i)-redundant in t

for any f ∈ F and i ∈ {1, . . . , ar(f)}.

Example 5

Consider the rules for symbol lastnew in Example 1:

lastnew(x,nil,z) = z lastnew(x,y:ys,z) = lastnew(y,ys,z)

Variable x is (lastnew, 1)-redundant in rhs’s r1 = z and r2 = lastnew(y,ys,z),

since it does not appear in them. Variable ys is (lastnew, 2)-redundant in rhs r2,

since it appears under the second argument of symbol lastnew.

Now, we are able to provide the second effective method to determine redundant

arguments based on the (f, i)-redundant variables occurring in rhs’s. In order to

prove Theorem 10 below, we introduce some auxiliary definitions and lemmata.

Given a TRS R = (F, R), we write Rf to denote the TRS Rf = (F, {l → r ∈ R |
root(l) = f}) which contains the set of rules defining f ∈ D. The following definition

provides the set of positions of the i-th parameter of f symbols in t.

Definition 6

Let f ∈ F, i ∈ {1, . . . , ar(f)}, and t ∈ T(F,X). We define Posf,i(t) = {q.i ∈ Pos(t) |
root(t|q) = f}.

Let t = t1, . . . , tn be a sequence of terms, P = p1, . . . , pn be a sequence of positions

of another term s, and P ′ = p′1, . . . , p
′
m be a subsequence of P (i.e., m < n and

∃µ : {1, . . . , m} → {1, . . . , n} such that p′i = pµ(i) and i < i′ ⇒ µ(i) < µ(i′)), we denote

t|P ′ = t′1, . . . , t
′
m such that t′i = tµ(i). The following result is auxiliary and proves

that the same constructor term is obtained by rewriting when we replace the set of

subterms at evalR-redundant and Posf,i positions in a term by an arbitrary set of

terms.

Proposition 5

Let R be a left-linear CS, f ∈ D, and i ∈ {1, . . . , ar(f)}. Let t ∈ T(F), P ⊆
Posf,i(t) ∪ rposevalR(t) be a set of disjoint positions, and s ∈ T(F). Let t →∗ δ for

some δ ∈ T(C). If, for all l → r ∈ Rf , l|i is a variable which is (f, i)-redundant in r,

then t[s]P →∗ δ.

Now, we provide the second effective method to detect redundancy.

Theorem 10 (Detecting redundancy: the Variable Case)

Let R be a left-linear CS. Let f ∈ D and i ∈ {1, . . . , ar(f)}. If, for all l → r ∈ Rf , l|i
is a variable which is (f, i)-redundant in r, then i ∈ rargevalR (f).

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

16 M. Alpuente et al.

Example 6

A standard example in the literature on useless variable elimination (UVE) – a

popular technique for removing dead variables, see Wand and Siveroni (1999) and

Kobayashi (2000) – is the following program4 with constructor symbols C = {0, s}
and variables a, bogus, and j:

loop(a,bogus,0) = loop(s(a),s(bogus),s(0))

loop(a,bogus,s(j)) = a

Here it is clear that the second argument does not contribute to the value of the

computation. By Theorem 10, the second argument of loop is redundant w.r.t.

evalR.

The restriction to left-linear rules in Theorem 10 above is not strictly necessary;

however, in most practical cases the redundancy of the argument of symbol f cannot

be analyzed independently when we consider repeated variables in left-hand sides,

as witnessed by the following example.

Example 7

Consider the TRS R:

f(x,x) = a

where f and a are the only function symbols in the signature. Since every ground term

t rewrites to a (this can be easily proved by structural induction), both arguments

of f are redundant w.r.t. evalR. However, if we add a new constant symbol b, then

no argument of f is redundant anymore.

The following example demonstrates that the restriction to constructor systems in

Theorem 10 is also necessary.

Example 8

Consider the following non-constructor TRS R where C = {a, b}:
f(a,x) = g(f(b,x)) g(f(b,x)) = x

Then, the second argument of f(a,x) in the lhs of the first rule is a variable

which, in the corresponding rhs of the rule, occurs within the second argument

of a subterm rooted by f, namely f(b,x). Hence, by Theorem 10 we would have

that 2 ∈ rargevalR(f). However, evalR(f(a,a)) = {a} �= {b} = evalR(f(a,b)), which

contradicts 2 ∈ rargevalR(f).

Moreover, the extension of this result to the normalization semantics nf is not

possible, as shown in the following example.

Example 9

Consider the TRS R where C = {a, b}:
f(a,x) = a

4 The original example uses natural 100 as stopping criteria for the third argument, while we simplify
here to natural 1 in order to code it only with two rules.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 17

This TRS satisfies the conditions of Theorem 10 and then 2 ∈ rargevalR(f). In

concrete, we have that, for all s, evalR(f(b,s)) = �. However, nfR(f(b,a)) =

{f(b,a)} �= {f(b,b)} = nfR(f(b,b)).

Now, we are able to detect some redundancies in Example 1.

Example 10

Let us revisit the following rules from the CS R of Example 1:

lastnew(x,nil,z) = z lastnew(x,y:ys,z) = lastnew(y,ys,z)

Using Theorem 10, we are able to conclude that the first argument of function

lastnew is (trivially) redundant w.r.t. evalR, since, in every lhs, the first parameter

of lastnew is a variable that is (lastnew, 1)-redundant in the respective rhs.

Unfortunately, Theorem 10 does not suffice to prove that the second argument of

lastnew is redundant w.r.t. evalR, and this motivates the next section.

6.2 Using redundant positions for characterizing redundancy:

the pattern case

In the following, we provide a different sufficient criterion for redundancy which

is less demanding regarding the shape of the left hand sides, although it requires

confluence and evalR-definedness, in return. The following definitions are helpful to

determine the redundancy of argument i of f when f is defined by ‘matching cases’

for the argument i in the different rules.

Definition 7

Let F be a signature, t = f(t1, . . . , tk), s = f(s1, . . . , sk) be terms and i ∈ {1, . . . , k}.
We say that t and s unify up to i-th argument with mgu σ if 〈t1, . . . , ti−1, ti+1, . . . , tk〉
and 〈s1, . . . , si−1, si+1, . . . , sk〉 unify mith mgu σ.

Definition 8 ((f, i)-triple)

Let R= (F, R) be a TRS, f ∈F, and i∈ {1, . . . , ar(f)}. Given two different (possibly

renamed) rules l → r, l′ → r′ in Rf such that Var(l) ∩ Var(l′) = �, we say that

〈l → r, l′ → r′, σ〉 is an (f, i)-triple of R if l and l′ unify up to i-th argument with

mgu σ.

Example 11

Consider the TRS R from Example 1. This program has a single (lastnew, 2)-triple:

〈lastnew(x,nil,z)=z, lastnew(x’,y:ys,z’)=lastnew(y,ys,z’), [x �→ x’, z �→ z’]〉

The following definition allows us to consider rules for symbol f which are

“semantically equivalent” after replacing some variables and i-parameters in their

rhs’s. The basic idea is to check joinability of the (f, i)-triples of Definition 8 where

variables below the i-th argument of symbol f in the left-hand sides of the rules

of the triple are explicitly instantiated by a dummy symbol a (Definition 9 below).

Intuitively, joinabilty of (all) such triples, then, amounts at proving the i-th argument

of f as redundant (Theorem 11 below).

In the following, we will use notation t either for a k-tuple of terms t1, . . . , tk or for

a sequence of a unique term t, . . . , t; the distinction will be clarified by the context.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

18 M. Alpuente et al.

Definition 9 (Joinable (f, i)-triple)

Let R be a TRS, f ∈ D, and i ∈ {1, . . . , ar(f)}. Let a be an arbitrary constant. An

(f, i)-triple 〈l → r, l′ → r′, σ〉 of R is joinable if σC(τl(r)) and σC(τl′(r
′)) are joinable

(i.e., they have a common reduct). Here, substitution σC is given by:

σC(x) =

{
σ(x) if x �∈ Var(l|i) ∪Var(l′|i)
a otherwise

and transformation τl is given by

τl(t) =

{
t if l|i ∈ X

t[a]Q if l|i �∈ X and Q = {p ∈ Posf,i(t) | Var(t|p) ∩Var(l|i) �= �}

Note that the constant a in the previous definition can be replaced by any ground

term. In the case of many-sorted signatures, we would consider different constants

‘a’, one for each sort.

Example 12

Consider again the CS R in Example 1 and the single (lastnew, 2)-triple given in

Example 11. Let us call the rhs’s

r1 = z and r2 = lastnew(y,ys,z’)

for the lh’s l1 = lastnew(x,nil,z) and l2 = lastnew(x’,y:ys,z’). Let us consider

that 0 is the constant for the sort of the first argument of lastnew and nil is

the constant for the sort of the second argument of lastnew. The corresponding

transformed rhs’s are

τl1 (r1) = z and τl2 (r2) = lastnew(y,nil,z’).

With σ = [x �→ x’, z �→ z’] and σC = [x �→ x’, z �→ z’, y �→ 0, ys �→ nil], the

corresponding instantiated rhs’s are

σC(τl1 (r1)) = z’ and σC(τl2 (r2)) = lastnew(0,nil,z’).

We can prove σC(τl1 (r1)) and σC(τl2 (r2)) are joinable, since the variable z’ is the

common reduct. Hence, the considered (lastnew, 2)-triple is joinable.

Roughly speaking, the result below formalizes a method to determine redundancy

w.r.t. evalR which is based on finding a common reduct of (some particular instances

of) the right-hand sides of rules.

Definition 10 ((f, i)-joinable TRS)

Let R be a TRS, f ∈ F, and i ∈ {1, . . . , ar(f)}. R is (f, i)-joinable if, for all

l → r ∈ Rf and x ∈ Var(l|i), x is (f, i)-redundant in r and all (f, i)-triples of R are

joinable.

The following result is auxiliary for Theorem 11 and proves that the same constructor

term is obtained by rewriting when we replace the set of subterms at evalR-redundant

and Posf,i positions in a term by an arbitrary set of terms.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 19

Proposition 6

Let R be a left-linear, confluent, and evalR-defined CS. Let f ∈ D and i ∈
{1, . . . , ar(f)}. Let t ∈ T(F), P ⊆ Posf,i(t)∪ rposevalR(t) be a set of disjoint positions,

and a be a constant. Let t →∗ δ for some δ ∈ T(C). If R is (f, i)-joinable, then

t[a]P →∗ δ.

Now, we provide the third effective method to detect redundancy.

Theorem 11 (Detecting redundancy: the Pattern Case)

Let R be a left-linear, confluent and evalR-defined CS. Let f ∈ D and

i ∈ {1, . . . , ar(f)}. If R is (f, i)-joinable, then i ∈ rargevalR(f).

Confluence and evalR-definedness are necessary, as shown in the following examples.

Example 13

Consider the following non-confluent CS R:

f(0) = 0 f(s(x)) = g(f(x)) g(x) = 0 g(x) = s(0)

By Theorem 11, we would have 1 ∈ rargevalR(f), since the (f, 1)-triple 〈f(0)=0,
f(s(x))=g(f(x)), id〉 is joinable, i.e., the common reduct of terms 0 and g(f(0))

is 0. However, evalR(f(0)) = {0} �= {0, s(0)} = evalR(f(s(0))).

Example 14

Consider the following non-evalR-defined CS R:

f(0) = 0 f(s(x)) = f(x) g(s(0)) = 0

By Theorem 11, we would have 1 ∈ rargevalR(f). But evalR(f(0)) = {0} �= � =

evalR(f(g(0))).

Joinability is decidable for terminating, confluent TRSs as well as for other

classes of TRSs such as right-ground TRSs (Oyamaguchi 1990) and confluent semi-

constructor TRSs (Mitsuhashi et al. 2004) (a semi-constructor TRS is such a TRS

that every subterm of the rhs of each rewrite rule is ground if its root is a defined

symbol). Hence, Theorem 11 gives us an effective method to recognize redundancy

in completely defined, confluent, and (semi-)complete TRSs, as illustrated in the

following.

Example 15

Consider again the CS R of Example 1. This program is confluent, terminating

and completely defined (considering sorts), hence is evalR-defined. By Example 10,

the first argument of lastnew is redundant w.r.t. evalR, using Theorem 10. Now,

the second argument of lastnew is redundant w.r.t. evalR using the new Theorem

11. As a consequence, the positions of variables x and xs in the rhs of the first

rule of applast have been proven redundant. Then, since both lastnew(0,nil,z)

and z rewrite to z, Rapplast is (applast, 1)-joinable. And again by Theorem 11,

we conclude that the first argument of applast is also redundant. Hence, 1 ∈
rargevalR(applast) and 1, 2 ∈ rargevalR(lastnew).

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

20 M. Alpuente et al.

Table 1. Summary of Results

Semantics Theorem Requirements

S Th. 1 (Antimonotonicity) –

S Prop. 1 (Non-redundancy) –

{red, hnf , nf , eval} Th. 5 (Decidability) LL, RG

{nf , eval} Coro. 1 (Approximation Rrg) LL, ND, NDT (ED, EDT)

S Th. 9 (Antimonotonicity – positions) –

S Prop. 3 (Non-redundancy – positions) –

eval Th. 10 (The Variable Case) CS, LL, VR

eval Th. 11 (The Pattern Case) C, CS, ED, LL, JT

C : Confluence LL : Left-Linearity of the TRS

CS : Constructor System ND : nf-definedness

ED : eval-definedness NDT : nfRrg -determinacy

EDT : evalRrg -determinacy RG : Right-ground TRS

JT : Joinability of (f, i)-triples VR : Variables in l|i are (f, i)-redundant in r

Let us conclude with a few general remarks about the complexity of our approach,

that is, the analysis time to detect redundant arguments (the cost of performing the

optimizations proposed in Section 7 is negligible). In Table 1, we provide a summary

of the main results in the paper. Theorem 10 only requires syntactic properties

which can be tested in linear time on the size of the TRS (i.e., on the sum of sizes

of each rule, where the size of a rule is the sum of sizes of the left- and right-hand

sides). The conditions LL, C and ED in the premises of Theorem 11 are standard

properties of rewrite systems (as remarked in Section 3, a TRS R is ED if R is

normalizing and completely defined, but there is no direct way to check whether

a TRS is normalizing and then termination is required) and then assumed to be

fulfilled by the TRS R and checked apart. The complexity of such properties for

decidable cases has been investigated eg (Godoy and Tiwari (2004); Kapur et al.

(1987); Verma (2002) and a number of tools are available for checking them in

practice: For instance, termination tools such as AProVE (Giesl et al. 2004) and

CiME (Contejean et al. 2003), confluence checking tools such as CiME, and tools

for ensuring completely-definedness such as Scc (Hendrix et al. 2005). Thus, the

only property which is strictly new in our framework is JT . As we mentioned above,

joinability is decidable for several classes of TRSs (Godoy and Tiwari 2004; Verma

2002; Mitsuhashi et al. 2004). Actually, there are (cubic) polynomial time algorithms

for joinability of ground systems (Verma 2002, Theorem 12) and a slightly more

general class of TRSs is considered in (Godoy and Tiwari 2004), namely right-

(ground or variable) rewrite systems. In our implementation however, confluence

and termination of the TRS are assumed for the application of Theorem 11 (see

above) and then joinability of terms t and s is decidable by just checking whether

the normal forms of t and s are equal.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 21

7 Erasing redundant arguments

The presence of redundant arguments within input expressions wastes memory space

and can lead to time consuming explorations and transformations (by replacement)

of their structure. Then, since redundant arguments are not necessary to determine

the result of a function call, it is worth to develop methods and techniques to avoid

such unpleasant effects.

As remarked in the introduction, inefficiencies caused by the redundancy of

arguments cannot (in general) be avoided by using rewriting strategies. In this

section we formalize a procedure for removing redundant arguments from a TRS.

The basic idea is simple: if an argument of f is redundant, it does not contribute to

obtaining the value of any call to f and can be dropped from program R. Hence,

we remove redundant formal parameters and corresponding actual parameters for

each function symbol and function call in R. We begin with the notion of syntactic

erasure which is intended to pick up redundant arguments of function symbols.

Definition 11 (Syntactic erasure)

A syntactic erasure is a mapping ρ : F → P(�) such that for all f ∈ F, ρ(f) ⊆
{1, . . . , ar(f)}. We say that a syntactic erasure ρ is sound for a semantics S if, for all

f ∈ F, ρ(f) ⊆ rargS(f).

Example 16

Given the signatureF = {0, nil, s, :, applast, lastnew} of the TRSR in Example 1,

with ar(0) = ar(nil) = 0, ar(s) = 1, ar(:) = ar(applast) = 2, and ar(lastnew) =

3, and according to Example 15, the following mapping ρ is a sound syntactic

erasure for the semantics evalR: ρ(0) = ρ(nil) = ρ(s) = ρ(:) = �, ρ(applast) =

{1}, and ρ(lastnew) = {1, 2}.

Since we are interested in removing redundant arguments from function symbols,

we transform the functions by reducing their arity according to the information

provided by the redundancy analysis, thus building a new, erased signature.

Definition 12 (Erasure of a signature)

Given a signature F and a syntactic erasure ρ : F → P(�), the erasure of F is

the signature Fρ whose symbols fρ ∈ Fρ are one to one with symbols f ∈ F and

whose arities are related by ar(fρ) = ar(f)− |ρ(f)|.

Example 17

The erasure of the signature in Example 16 isFρ = {0, nil, s, :, applast, lastnew},
with ar(0) = ar(nil) = 0, ar(s) = ar(applast) = ar(lastnew) = 1, and ar(:) = 2.

Note that, by abuse, we use the same symbols for the functions of the erased

signature.

Now we extend the procedure to terms in the obvious way.

Definition 13 (Erasure of a term)

Given a syntactic erasure ρ : F → P(�), the function τρ : T(F,X) → T(Fρ,X)

on terms is: τρ(x) = x if x ∈ X and τρ(f(t1, . . . , tn)) = fρ(τρ(ti1), . . . , τρ(tik)) where

{1, . . . , n} − ρ(f) = {i1, . . . , ik} and im < im+1 for 1 � m < k.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

22 M. Alpuente et al.

The erasure procedure is extended to TRSs: we erase the lhs’s and rhs’s of each

rule according to τρ. In order to avoid extra variables in rhs’s of rules (that arise

from the elimination of redundant arguments of symbols in the corresponding

lhs), we replace them by an arbitrary constant of F (which automatically belongs

to Fρ).

Definition 14 (Erasure of a TRS)

Let R be a TRS, a a constant, and ρ be a syntactic erasure for F. The erasure Rρ

of R is Rρ = (Fρ, {τρ(l) → σl(τρ(r)) | l → r ∈ R}) where the substitution σl for a

lhs l is given by σl(x) = a for all x ∈ Var(l) −Var(τρ(l)) and σl(y) = y whenever

y ∈ Var(τρ(l)).

Note that the constant a in the previous definition can be replaced by any ground

term. In a many-sorted signature, we will have different constants ‘a’, each one of

an appropriate sort.

Example 18

Let R be the TRS of Example 1 and ρ be the sound syntactic erasure of Example

16. The erasure Rρ of R consists of the erased signature of Example 17 together

with the following rules:

applast(z) = z lastnew(z) = z

applast(z) = lastnew(z) lastnew(z) = lastnew(z)

Below, we introduce a further improvement aimed at obtaining the final, “optimal”

program.

The mapping τρ induces an equivalence ≡τρ on terms given by: t ≡τρ s iff τρ(t) = τρ(s).

We have the following property of sound erasures of terms.

Proposition 7

If the syntactic erasure ρ : F → P(�) is sound with respect to the semantics S,

then for all t, s ∈ T(F), t ≡τρ s implies that S(t) = S(s).

The following theorem establishes the correctness of the erasure procedure for a

rewriting semantics S.

Theorem 12 (Correctness)

Let R be a left-linear TRS, S be a rewriting semantics for R, ρ be a sound syntactic

erasure for S, and t ∈ T(F). If δ ∈ S(t), then τρ(t)→∗Rρ
τρ(δ).

The following theorem establishes the completeness of the erasure procedure for

a rewriting semantics S.

Theorem 13 (Completeness)

Let R be a left-linear TRS, S be a rewriting semantics for R such that S � redR, ρ

be a sound syntactic erasure for S, and t, δ ∈ T(Fρ). If t→∗Rρ
δ, then ∀t′, δ′ ∈ T(F)

such that τρ(t
′) = t and τρ(δ

′) = δ, S(δ′) ⊆ S(t′).

The following theorem establishes the correctness and completeness of the erasure

procedure for the semantics evalR.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 23

Theorem 14 (Correctness and Completeness)

Let R be a left-linear TRS, ρ be a sound syntactic erasure for evalR, t ∈ T(F), and

δ ∈ T(C). Then, τρ(t)→∗Rρ
δ iff δ ∈ evalR(t).

In the following, we are able to ascertain the conditions for the preservation of

some computational properties of TRSs after erasure.

Theorem 15 (Preservation of Confluence)

Let R be a left-linear TRS. Let ρ be a sound syntactic erasure for evalR. If R is

evalR-defined and confluent, then the erasure Rρ of R is confluent.

Theorem 16 (Preservation of Normalization)

Let R be a left-linear and completely defined TRS, and ρ be a sound syntactic

erasure for evalR. If R is normalizing, then the erasure Rρ of R is normalizing.

In the theorem above, we cannot strengthen normalization to termination. A

simple counterexample showing that termination may get lost is the following;

note that the opposite is also possible, i.e., a non-terminating TRS can be made

terminating after the erasure.

Example 19

Consider the left-linear, (confluent, completely defined, and) terminating TRS R
h(a,y) = a h(c(x),y) = h(x,c(y))

The first argument of h is redundant w.r.t. evalR. However, after erasing the

argument, we get the TRS

h(y) = a h(y) = h(c(y))

which is not terminating.

In the example above, note that the resulting TRS is not orthogonal, whereas

the original program is. Hence, this example also shows that orthogonality is not

preserved under erasure.

After the erasure, a post-processing transformation able to remove redundant

rules (w.r.t. an appropriate notion of rule redundancy) might be useful to restore

termination or orthogonality in some cases, as the example above. Although this

point is outside the scope of this paper, in the following we provide a program

transformation that can improve the optimization achieved by the erasure.

Definition 15 (Reduced erasure of a TRS)

Let R be a TRS and ρ be a syntactic erasure for F. The reduced erasure R′ρ of

R is obtained from the erasure Rρ of R by a compression transformation defined as

removing any trivial rule t → t of Rρ and then normalizing the rhs’s of the rules

w.r.t. the non-trivial rules of Rρ.

Reduced erasures are well-defined whenever Rρ is confluent and normalizing

since, for such systems, every term has a unique normal form.

Example 20

Let Rρ be the erasure of Example 18. The reduced erasure consists of the rules

{applast(z) = z, lastnew(z) = z}.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

24 M. Alpuente et al.

Since right-normalization preserves confluence, termination and the equational

theory (as well as confluence, normalization and the equational theory, in almost

orthogonal and normalizing TRSs) (Gramlich 2001), and the removal of trivial

rules does not change the evaluation semantics of the TRS R either, we have the

following.

Corollary 2

Let R be a left-linear TRS, ρ be a sound syntactic erasure for evalR, t ∈ T(F),

and δ ∈ T(C). If (the TRS which results from removing trivial rules from) Rρ is

confluent and terminating (alternatively, if it is almost orthogonal and normalizing),

then, τρ(t)→∗R′ρ δ if and only if δ ∈ evalR(t), where R′ρ is the reduced erasure of R.

Erasures and reduced erasures of a TRS preserve left-linearity. For a TRS R
satisfying the conditions in Corollary 2, by using Gramlich (2001), it is immediate

that the reduced erasure R′ρ is confluent and normalizing. Also, R′ρ is completely

defined if R is.

Hence, let us note that these results allow us to perform the ‘optimal’ optimization

of program applast in Example 1 while guaranteeing that the intended (evaluation

or normalization) semantics is preserved.

8 Experiments

The practicality of our ideas is witnessed by the implementation of a prototype

system which delivers encouraging good results for the techniques deployed in

Section 6 (Theorems 10 and 11) and the erasure procedure of Section 7. The

prototype has been implemented in PAKCS (Hanus et al. 2003a), the current

distribution5 of the multi-paradigm declarative language Curry (Hanus et al. 2003b),

and is publicly available at http://www.dsic.upv.es/users/elp/redargs.

We have used the prototype to perform some preliminary experiments which

show that our methodology does detect and remove redundant arguments of

some common transformation benchmarks, such as bogus, lastappend, allzeros,

doubleflip, etc.; see (Leuschel 1998) and references therein. Tables 2 and 3

summarize the experiments. Benchmarks code as well as the programs obtained

by the erasure procedure are included in (Alpuente et al. 2006).

Table 2 shows the execution runtimes of the original and transformed programs

in PAKCS, as well as the arguments in the whole program which are signaled as

redundant for each benchmark using the notation: #signaled/#total. Runtimes have

been measured in an “AMD Athlon XP” class machine running Fedora Core 3.0

and using version 1.6.0 of the PAKCS compiler under SICStus Prolog 3.8.6. Natural

numbers are given by numbers 0, 1, 2, etc in the tables, instead of the notation Z/S

x used in the bechmarks code. For benchmarking purposes, goals make use of the

auxiliary factorial function, defined in a usual way. The number of elements of a

list (when used) is indicated by a subindex. Note that the analysis time for each

example is negligible.

5 See http://www.informatik.uni-kiel.de/∼pakcs

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 25

Table 2. Execution of the original and transformed programs in Curry

Name Call in original/erased program Time (ms) Gain rargeval

bogus loop (fact 8) (fact 9) (fact 8) 150

loop’ (fact 8) (fact 8) 150 0% 1/1

applast applast [(fact 8)]10000 (fact 8) 168

applast’ (fact 8) 153 9% 3/3

plus minus minus pe (fact 8) (fact 8) 220

minus pe’ (fact 8) 155 30% 1/1

plus leq leq pe (fact 8) (fact 8) 79

leq pe’ ∼0 100% 1/1

double even even pe (fact 8) 77

even pe’ ∼0 100% 1/1

sum allzeros sum pe [(fact 8)]10000 23

sum pe’ ∼0 100% 1/1

Mutual recursion 1 f (fact 8) (fact 8) 123

f’ ∼0 100% 1/1

Mutual recursion 2 f (fact 8) 132

f’ ∼0 100% 1/1

Important optimizations are obtained for most examples. In the case of program

bogus, no appreciable optimization is achieved by removing redundant arguments,

since Curry is a lazy language and the redundant argument in bogus is a useless

variable. In order to dissociate the possible dependency of the achieved optimization

w.r.t. the lazy evaluation of the language, Table 3 shows the execution runtimes of

the benchmarks in the Maude interpreter6 (version 2.1.1), which uses an innermost

rewriting strategy.

Note that, in this case, significant optimizations are also measured for programs

bogus and applast. The plus minus example runs in nearly half the original

execution time in both, lazy and eager systems, which seems consistent with the fact

that one of the two arguments have been removed.

9 Related work

Some notions have appeared in the literature of what it means for a term in a

TRS R to be “computationally irrelevant”. As we are going to see, our analysis is

different from all the related methods in many respects and, in general, incomparable

to them.

Contrarily to our notion of redundancy, the meaninglessness of Kuper (1994)

and Kennaway et al. (1996) is a property of the terms themselves (they may have

6 See http://maude.cs.uiuc.edu

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

26 M. Alpuente et al.

Table 3. Execution of the original and transformed programs in Maude

Name Call in original/erased program Time (ms) Gain rargeval

bogus loop (fact 8) (fact 9) (fact 8) 651

loop’ (fact 8) (fact 8) 47 93% 1/1

applast applast [(fact 8)]10000 (fact 8) 102

applast’ (fact 8) 54 47% 3/3

plus minus minus pe (fact 8) (fact 8) 62

minus pe’ (fact 8) 30 51% 1/1

plus leq leq pe (fact 8) (fact 8) 33

leq pe’ ∼0 100% 1/1

double even even pe (fact 8) 32

even pe’ ∼0 100% 1/1

sum allzeros sum pe [(fact 8)]10000 40

sum pe’ ∼0 100% 1/1

Mutual recursion 1 f (fact 8) (fact 8) 73

f’ ∼0 100% 1/1

Mutual recursion 2 f (fact 8) 61

f’ ∼0 100% 1/1

meaning in R or may not), whereas our notion refers to arguments (positions) of

function symbols. In (Kuper 1994, Section 7.1), a term t is called meaningless if,

for each context C[] s.t. C[t] has a normal form, we have that C[t′] has the same

normal form for all terms t′. This can be seen as a kind of superfluity (w.r.t. normal

forms) of a fixed expression in any context, whereas our notion of redundancy

refers to the possibility of getting rid of some arguments of a given function symbol

with regard to some observed semantics. The meaninglessness of Kuper (1994) is

not helpful for the purposes of optimizing programs by removing useless arguments

of function symbols which we pursue. On the other hand, terms with a normal

form are proven meaningful (i.e., not meaningless) in Kuper (1994) and Kennaway

et al. (1996), whereas we might have redundant actual parameters which are normal

forms.

Among the vast literature on analysis (and removal) of unnecessary data structures,

the analyses of unneededness (or absence) of functional programming (Cousot and

Cousot 1994; Hughes 1988), and the filtering of useless arguments and unnecessary

variables of logic programming (Leuschel and Sørensen 1996; Pettorossi and Proietti

1994) are the closest to our work. In (Hughes 1988), a notion of needed/unneeded

parameter for list-manipulation programs is introduced which is closely related to the

redundancy of ours in that it is capable of identifying whether the value of a subterm

is ignored. The method is formulated in terms of a fixed, finite set of projection

functions which introduces some limitations on the class of neededness patterns

that can be identified. Since our method gives the information that a parameter is

definitely not necessary, our redundancy notion implies Hughes’s unneededness, but

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 27

not vice versa. For instance, constructor symbols cannot have redundant arguments

in our framework (Proposition 1), whereas Hughes’ notion of unneededness can be

applied to the elements of a list, as shown in the following example.

Example 21

Consider the following TRS defining the length function for lists.

length(nil) = 0 length(x:xs) = s(length(xs))

Hughes’ analysis is able to determine that, in the length function, the spine of the

argument list is needed but the elements of the list are not needed; this is used to

perform some optimizations for the compiler. However, this information cannot be

used for the purposes of our work, that is, to remove these elements when the entire

list cannot be eliminated.

On the other hand, Hughes’s notion of neededness/unneededness should not be

confused with the standard notion of needed (positions of) redexes of Huet and

Lévy (1991): Example 2 shows that Huet and Levy’s neededness does not imply the

non-redundancy of the corresponding argument or position (nor vice versa).

The notion of redundancy of an argument in a term rewriting system can be seen

as a kind of comportment property as defined in Cousot and Cousot (1994). Cousot’s

comportment analysis generalizes not only the unneededness analyses but also

strictness, termination and other standard analyses of functional programming. In

Cousot and Cousot (1994), comportment is mainly investigated within a denotational

framework, whereas our approximation is independent from the semantic formalism.

Proietti and Pettorossi’s elimination procedure for the removal of unnecessary vari-

ables is a powerful unfold/fold-based transformation procedure for logic programs;

therefore, it does not compare directly with our method, which would be seen as a

post-processing phase for program transformers optimization. Regarding the kind

of unnecessary variables that the elimination procedure can remove, only variables

that occur more than once in the body of the program rule and which do not occur

in the head of the rule can be dropped. This is not to say that the transformation is

powerless; on the contrary, the effect can be very striking as these kinds of variables

often determine multiple traversals of intermediate data structures which are then

removed from the program. Our procedure for removing redundant arguments is

also related to the Leuschel and Sørensen RAF and FAR algorithms (Leuschel and

Sørensen 1996), which apply to removing unnecessary arguments in the context of

(conjunctive) partial evaluation of logic programs. However, a comparison is not

easy either as we have not yet considered the semantics of computed answers for

our programs in detail.

People in the functional programming community have also studied the problem

of useless variable elimination (UVE). Apparently, they were unaware of the works

of the logic programming community, and they started studying the topic from

scratch, mainly following a flow-based approach (Wand and Siveroni 1999) or a

type-based approach (Berardi et al. 2000; Kobayashi 2000); see Berardi et al. (2000)

for a discussion of this line of research. All these works address the problem of safe

elimination of dead variables but heavily handle data structures. A notable exception

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

28 M. Alpuente et al.

is Liu and Stoller (2002), where Liu and Stoller discuss how to safely eliminate dead

code in the presence of recursive data structures by applying a methodology based

on regular tree grammars. Unfortunately, the method in Liu and Stoller (2002) does

not apply to achieve the optimization pursued in our running example applast.

Obviously, there exist examples (inspired) in the previously discussed works which

cannot be directly handled with our results.

Example 22

Consider the TRS of Example 21 together with the following function symbol f:

f(x) = length(x:nil)

Our methods do not capture the redundancy of the argument of f. In Liu and

Stoller (2002), it is shown that, in order to evaluate length(xs), we do not need

to evaluate the elements of the argument list xs; as Hughes’s unneededness. In Liu

et al.’s methodology, this means that we could replace the rule for f above by the

rule f() = length(:nil) where is a new (dummy) constant. Nevertheless, the

new TRS can be used now to recognize the first argument of f as redundant. That

is, we are allowed to use the following rule f = length(:nil) which completely

avoids wasteful computations on redundant arguments. Hence, the different methods

are complementary and an enhanced test might be developed by properly combine

them.

10 Functional Logic Programming: Narrowing

Programs written in muti-paradigm functional-logic languages such as Curry (see

e.g. those in Section 8) are usually not different from (equivalent) programs written

in the (pure) functional language Haskell. The difference only shows up during the

evaluation. In Curry, one can evaluate expressions containing logical variables (that

are evaluated non-deterministically to deliver computed answers as in Prolog) while

in Haskell only completely ground expressions can be (deterministically) evaluated

to compute its value. In fact, Term Rewriting Systems are also used as abstract

models of programs written in such languages, although narrowing, rather than

rewriting, is usually the underlying computational mechanism (Hanus 1994).

Before the conclusions, let us discuss how the notions and techniques presented so

far could be adapted to cope with more sophisticated, multi-paradigm functional-

logic languages. The most popular operational principle to deal with logical variables

within function calls is known as narrowing, as used in functional logic programming

(see Hanus (1994) for a survey). Narrowing is an unification-based, parameter-

passing mechanism which extends functional evaluation through goal solving cap-

abilities as in logic programming. A narrowing step instantiates variables of an

expression and then applies a reduction step to a redex of the instantiated expression.

The instantiation of variables is usually computed by unifying a subterm of the entire

expression with the left-hand side of some program equation. Narrowing provides

completeness in the sense of logic programming, i.e., computation of answers, as well

as functional programming, i.e., computation of normal forms. Formally, a term s

narrows to t in R, denoted by s�σ t, iff there exists a non-variable position p of s,

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 29

a (standardized apart) rule l → r ∈ R, and a substitution σ such that s|p and l unify

with mgu σ and t = σ(s[r]p).

Narrowing can be considered as a mapping (or semantics) S : T(F,X) →
P(Subst(F,X) ×T(F,X)) that associates a set of pairs 〈substitution,term〉 to an

input term (Hanus and Lucas 2001). The following is a typical evaluation semantics

based on narrowing

evalnarr(t) = {〈σ, s〉 | t�∗σ s ∧ s ∈ T(C,X)}

The substitutions computed by narrowing are usually restricted to the variables of

the input term. Within this semantic framework, the idea of redundancy for term

rewriting as proposed in Definition 1 cannot be näıvely lifted to redundancy for

narrowing (considering arbitrary input terms), as revealed by the following example.

Example 23

Consider the TRS of Example 1. The first argument of symbol lastnew is redundant

w.r.t. evalnarr, i.e., for all contexts C[] and for all t, s ∈ T(F,X) such that

root(t) = f, evalnarr(C[t]) = evalnarr(C[t[s]i]). For instance, with the input term

t = lastnew(x,0:nil,s(0)), we have evalnarr(t[s]1) = {〈id, s(0)〉} for all s ∈
T(F,X). This is because, in every lhs, the first argument is a variable that is

never inspected in the corresponding rhs. However, the second argument of symbol

lastnew is not redundant w.r.t. evalnarr. Consider the goal t′ = lastnew(x,y,s(0)),

then evalnarr(t
′) = {〈[y �→ nil], s(0)〉, 〈[y �→ w:nil], s(0)〉, . . . } �= {〈id, s(0)〉} =

evalnarr(t
′[nil]2). The reason is that there exist many narrowing derivations for t′:

lastnew(x,y,s(0))�{y�→nil} s(0), lastnew(x,y,s(0))�
∗
{y �→w:nil} s(0), . . .

but only this one for t′[nil]2: lastnew(x,nil,s(0))�id s(0).

Thus, the general problem of analyzing redundancy w.r.t. the observable of com-

puted answers is a challenging line of research that we pursue as future work (hence

outside the scope of this paper). Nevertheless, we can still outline different possib-

ilities for analyzing redundancy of arguments w.r.t. narrowing in some particular

cases by applying the results in this paper.

Restriction to the variable case We have seen in Example 23 that the näıve notion of

redundancy for narrowing is still fruitful when we consider the case of an argument

in lhs’s that always corresponds to a variable that is never inspected during the

computation, i.e. the Variable Case in Section 6.1. For instance, using Theorem 10,

we can identify that the first argument of symbol lastnew in Example 1 is redundant

for narrowing and that also the second argument of symbol loop in Example 6 is

redundant for narrowing.

Input terms with mode information Since the narrowing space is bigger than the

rewriting space, the functional logic community (as well as the program transform-

ation and partial evaluation community) usually restrict their interest to preserve

the narrowing semantics evalnarr for a fixed set of goals, similarly to the argument

filtering technique of Leuschel and Sørensen (1996) for logic programming.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

30 M. Alpuente et al.

Example 24

Consider again the TRS of Example 1. Let us assume that we are only interested

in the evaluation semantics of input terms that fit the shape lastnew(G,G,NG),

where G denotes a ground term and NG an arbitrary term. This is known as mode

information in logic programming and implies that the first and second arguments

of symbol lastnew are understood only as input data whereas the third argument

is understood as input and output data. Then the techniques presented in Section

6 can be applied to the arguments that are labeled with G. For instance, the first

and second arguments of lastnew will be detected as redundant for the mode

lastnew(G,G,NG).

As mentioned before, more research is needed in order to come upon a generally

correct notion of redundancy w.r.t. narrowing, which leads to effective detection

algorithms that pay off in practice. We believe that our results in this paper can be

valuable for these studies.

11 Conclusion

This work provides the first results concerning the detection and removal of useless

arguments in program functions. We developed our results in a stepwise manner.

We have given a semantic definition of redundancy which takes the semantics S

as a parameter. We have considered different (reduction) semantics, including the

standard normalization semantics (typical of pure rewriting) and the evaluation

semantics (closer to functional programming). We have provided some decidability

results about redundancy of an argument and a first effective method for detecting

redundancies, which is based on approximation techniques. We have also provided

two more practical methods to recognize redundancy which allows us to simplify

the general redundancy problem to the analysis of the rhs’s of the program rules.

All the three methods to detect redundancies are different and useful. Moreover,

we think that all results in this paper are of independent interest and can be used

for other applications in the fields of rule-based and multi-paradigm declarative

programming.

Actually, inefficiencies caused by the redundancy of arguments cannot be avoided

by using standard reduction strategies. Therefore, we have developed a transforma-

tion for eliminating dead code which appears in the form of useless function calls

and we have proven that the transformation preserves the semantics (and some

operational properties) of the original program under ascertained conditions. The

optimized program that we produce cannot be created as the result of applying

standard transformations of functional programming to the original program, such

as partial evaluation, supercompilation, and deforestation, see e.g., Pettorossi and

Proietti (1996a).

Furthermore, a prototype implementation of the (more practical) methods to

detect redundancy together with the erasure procedure has been provided. The

preliminary experiments performed with the prototype indicate that our approach

is both practical and useful. We believe that the semantic grounds for redundancy

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 31

analyses and elimination laid in this work may foster further insights and develop-

ments in the program optimization community and neighbouring fields.

Finally, apart from these comments, the problem of identifying redundant argu-

ments of function symbols has been reduced to proving the validity of a particular

class of inductive theorems in the equational theory of confluent, evalR-defined

TRSs. We refer to Alpuente et al. (2002a) for details, where a comparison with

approximation methods based on abstract interpretation can also be found.

Acknowledgements

We thank the anonymous referees for the useful remarks and suggestions which

helped to improve the paper.

This work has been partially supported by the EU (FEDER) and the Spanish

MEC under grant TIN 2004-7943-C04-02, the Generalitat Valenciana under grant

GV03/25, and the ICT for EU-India Cross-Cultural Dissemination ALA/95/23/

2003/077-054 project.

References

Aho, A., Sethi, R. and Ullman, J. 1986. Compilers, Principles Techniques and Tools. Addison-

Wesley, Reading, MA.

Alpuente, M., Echahed, R., Escobar, S. and Lucas, S. 2002a. Redundancy of Arguments

Reduced to Induction. In Proc. of the 11th Int’l Workshop on Functional and (Constraint)

Logic Programming WFLP’02, M. Comini and M. Falaschi, Eds. Electronic Notes in

Theoretical Computer Science, vol. 76. Elsevier Sciences Publisher, 100–200.

Alpuente, M., Escobar, S. and Lucas, S. 2002b. Removing Redundant Arguments

of Functions. In 9th International Conference on Algebraic Methodology And Software

Technology, AMAST 2002, H. Kirchner and C. Ringeissen, Eds. Lecture Notes in Computer

Science, vol. 2422. Springer-Verlag, Berlin, 117–131.

Alpuente, M., Escobar, S. and Lucas, S. 2006. Removing Redundant Arguments Automat-

ically. CoRR cs.PL/0601039. Available at http://arxiv.org/abs/cs.PL/0601039.

Alpuente, M., Falaschi, M., Julián, P. and Vidal, G. 1997. Specialization of Lazy Functional

Logic Programs. In Proc. of the ACM SIGPLAN Conf. on Partial Evaluation and Semantics-

Based Program Manipulation, PEPM’97. ACM Sigplan Notices, vol. 32, number 12. ACM

Press, New York, 151–162.

Alpuente, M., Falaschi, M. and Vidal, G. 1998. Partial Evaluation of Functional Logic

Programs. ACM Transactions on Programming Languages and Systems 20, 4, 768–844.

Alpuente, M., Hanus, M., Lucas, S. and Vidal, G. 1999. Specialization of Inductively

Sequential Functional Logic Programs. In Proc. of the ACM SIGPLAN Conf. on Functional

Programming, ICFP’99, P. Lee, Ed. ACM Sigplan Notices, vol. 34, number 9. ACM Press,

New York, 273–283.

Arts, T. and Giesl, J. 2001. A collection of examples for termination of term rewriting using

dependency pairs. Tech. Rep. AIB-2001-09, RWTH Aachen, Germany.

Baader, F. and Nipkow, T. 1998. Term Rewriting and All That. Cambridge University Press.

Berardi, S., Coppo, M., Damiani, F. and Giannini, P. 2000. Type-based useless-code

elimination for functional programs. In Proceedings of SAIG 2000. Lecture Notes in

Computer Science, vol. 1924. Springer-Verlag, Berlin, 172–189.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

32 M. Alpuente et al.

Bert, D., Echahed, R. and Østvold, B. 1993. Abstract Rewriting. In Proc. of Third

Int’l Workshop on Static Analysis, WSA’93. Lecture Notes in Computer Science, vol. 724.

Springer-Verlag, Berlin, 178–192.

Burn, G. 1991. Lazy Functional Languages: Abstract Interpretation and Compilation. Pitman,

London.

Burn, G. L., Hankin, C. L. and Abramsky, S. 1986. The Theory of Strictness Analysis for

Higher Order Functions. In Programs as Data Objects. Lecture Notes in Computer Science,

vol. 217. Springer-Verlag, Berlin, 42–62.

Comon, H. 2000. Sequentiality, second order monadic logic, and tree automata. Information

and Computation 157, 25–51.

Contejean E., Marché C., Monate B. and Urbain X. 2003. Proving termination of rewriting

with CiME. . In A. Rubio, editor,Proc. of 6th International Workshop on Termination,

WST’03, pages 71-73, Technical Report DSIC II/15/03, Valencia, Spain, 2003. Available

at http://cime.lri.fr.

Cousot, P. and Cousot, R. 1994. Higher-order abstract interpretation (and application to

comportment analysis generalizing strictness, termination, projection and PER analysis of

functional languages), invited paper. In Proceedings of the 1994 International Conference on

Computer Languages, ICCL’94. IEEE Computer Society Press, Los Alamitos, California,

Toulouse, France, 95–112.

Dauchet, M., Heuillard, T., Lescanne, P. and Tison, S. 1987. Decidability of the Confluence

of Finite Ground Term Rewrite Systems and of Other Related Term Rewrite Systems. Proc.

of Second IEEE Symp. on Logic In Computer Science, 353–359.

Dauchet, M., Heuillard, T., Lescanne, P. and Tison, S. 1990. Decidability of the Confluence

of Ground Term Rewriting Systems. In Information and Computation. 88. Academic Press,

New York, 187–201.

Durand, I. and Middeldorp, A. 1997. Decidable Call by Need Computations in Term

Rewriting. In Proc. of CADE’97, W. McCune, Ed. Lecture Notes in Artificial Intelligence,

vol. 1249. Springer-Verlag, Berlin, 4–18.

Gallagher, J. 1993. Tutorial on Specialisation of Logic Programs. In Proc. of Partial

Evaluation and Semantics-Based Program Manipulation, Copenhagen, Denmark, June 1993.

ACM, New York, 88–98.

Gallier, J. and Book, R. 1985. Reductions on tree replacement systems. Theoretical Computer

Science 37, 2, 123–150.

Giesl J., Thiemann, R., Schneider-Kamp, P. and Falke, S. 2004. Automated Termination

Proofs with AProVE. In V. van Oostrom, editor, Proc. of 15h International Conference

on Rewriting Techniques and Applications, RTA’04, LNCS 3091:210-220, Springer-Verlag,

Berlin, 2004. Available at http://www-i2.informatik.rwth-aachen.de/AProVE.

Glück, R. and Sørensen, M. 1994. Partial Deduction and Driving are Equivalent. In Proc. of

PLILP’94. Lecture Notes in Computer Science, vol. 844. Springer-Verlag, Berlin, 165–181.

Godoy, G. and Tiwari, A. 2004. Deciding Fundamental Properties of Right-(Ground or

Variable) Rewrite Systems by Rewrite Closure. In D. Basin and M. Rusinowitch, editors,

International Joint Conference on Automated Deduction, IJCAR’04, LNAI 3097:91–106,

Springer-Verlag, Berlin, 2004.

Gouranton, V. 1998. Deriving Analysers by Folding/Unfolding of Natural Semantics and

a Case Study: Slicing. In Proc. of the 5th International Static Analysis Symposium, SAS’98.

Lecture Notes in Computer Science, vol. 1503. Springer-Verlag, Berlin, 115–133.

Gramlich, B. 2001. On interreduction of semi-complete term rewriting systems. Theoretical

Computer Science 258, 1–2, 435–451.

Hanus, M. 1994. The Integration of Functions into Logic Programming: From Theory to

Practice. Journal of Logic Programming 19&20, 583–628.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 33

Hanus, M., Antoy, S., Engelke, M., Höppner, K., Koj, J., Niederau, P., Sadre, R. and

Steiner, F. 2003a. PAKCS 1.5.0: The Portland Aachen Kiel Curry System User Manual.

Tech. rep., University of Kiel, Germany.

Hanus, M., Antoy, S., Kuchen, H., López-Fraguas, F., Lux, W., Moreno Navarro, J.,

and Steiner, F. 2003b. Curry: An Integrated Functional Logic Language (version 0.8).

Available at http://www.informatik.uni-kiel.de/ curry.

M. Hanus and S. Lucas. 2001. An Evaluation Semantics for Narrowing-Based Functional

Logic Languages. Journal of Functional and Logic Programming, 2001(2):1–43.

Hendrix J., Clavel M. and Meseguer J. 2005. A Sufficient Completeness Reasoning Tool

for Partial Specifications. In Jürgen Giesl, editor, Proc. of 16h International Conference

on Rewriting Techniques and Applications, RTA’05, LNCS 3467:165–174, Springer-Verlag,

Berlin, 2005. Available at http://maude.cs.uiuc.edu/tools/scc.

Hofbauer, D. 2003. An upper bound on the derivational complexity of Knuth-Bendix

orderings. Information and Computation 183(1):43–56.

Huet, G. and Lévy, J.-J. 1991. Computations in Orthogonal Term Rewriting Systems, Part

I + II. In Computational logic: Essays in honour of J. Alan Robinson. The MIT Press,

Cambridge, MA, 395–414 and 415–443.

Hughes, J. 1988. Backwards Analysis of Functional Programs. In IFIP Workshop on Partial

Evaluation and Mixed Computation (Amsterdam), D. Bjørner, A. Ershov, and N. Jones, Eds.

187–208.

Jacquemard, F. 1996. Decidable approximations to term rewriting systems. In Proc. of 7th

International Conference on Rewriting Techniques and Applications, RTA’96, H. Ganzinger,

Ed. Lecture Notes in Computer Science, vol. 1103. Springer-Verlag, Berlin, 362–376.

Jensen, T. P. 1991. Strictness Analysis in Logical Form. In Proc of International Conference

on Functional Programming Languages and Computer Architecture, R. J. M. Hughes, Ed.

Lecture Notes in Computer Science, vol. 523. Springer-Verlag, Berlin, 352–366.

Jones, S. B. and Métayer, D. L. 1989. Compile-time garbage collection by sharing analysis.

In Proc of International Conference on Functional Programming Languages and Computer

Architecture. ACM Press, New York, 54–74.

Kapur, D., Narendran, P. and Zhang, Z. 1987. On sufficient-completeness and related

properties of term rewriting systems. Acta Informatica 24, 395–416.

Kapur, D., Narendran, P., Rosenkrantz, D.J. and Zhang, Z. 1991. Sufficient-completeness,

ground-reducibility, and their complexity. Acta Informatica 28, 311–350.

Kennaway, R., van Oostrom, V. and de Vries, F. 1996. Meaningless terms in rewriting.

In Proceedings of the ALP’96. Lecture Notes in Artificial Intelligence, vol. 1139. Springer-

Verlag, 254–268.

Klop, J. 1992. Term Rewriting Systems. In Handbook of Logic in Computer Science,

S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Vol. 3. Oxford University Press, Oxford,

1–116.

Knoop, J., Rüthing, O. and Steffen, B. 1994. Partial Dead Code Elimination. Proceedings

of the International Conference on Programming Language Design and Implementation

(PLDI’94) 29, 6, 147–158.

Kobayashi, N. 2000. Type-based useless variable elimination. In Proceedings of PEPM-00.

ACM Press, New York, 84–93.

Kounalis, E. 1985. Completeness in data type specifications. In Proc. of European Conference

on Computer Algebra, EUROCAL’85, B. Caviness, Ed. Lecture Notes in Computer Science,

vol. 204. Springer-Verlag, Berlin, 348–362.

Kuper, J. 1994. Partiality in logic and computation. aspects of undefinedness. Ph.D. thesis,

Universiteit Twente.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

34 M. Alpuente et al.

Leuschel, M. 1998. On the Power of Homeomorphic Embedding for Online Termination.

In Proc. of the 5th International Static Analysis Symposium, SAS’98, G. Levi, Ed. Lecture

Notes in Computer Science, vol. 1503. Springer-Verlag, Berlin, 230–245.

Leuschel, M. and Martens, B. 1995. Partial Deduction of the Ground Representation and

Its Application to Integrity Checking. Tech. Rep. CW 210DSIC-II/8/02, K.U. Leuven.

Leuschel, M. and Sørensen, M. H. 1996. Redundant Argument Filtering of Logic

Programs. In Proceedings of the 6th International Workshop on Logic Program Synthesis

and Transformation (LOPSTR’96), J. Gallager, Ed. Lecture Notes in Computer Science,

vol. 1207. Springer-Verlag, Berlin, Stockholm, Sweden, 83–103.

Liu, Y. A. and Stoller, S. D. 2002. Eliminating dead code on recursive data. Science of

Computer Programming .

Lucas, S. 2001. Transfinite Rewriting Semantics for Term Rewriting Systems. In Proc. of 12th

Int’l Conf. on Rewriting Techniques and Applications, RTA’01, A. Middeldorp, Ed. Lecture

Notes in Computer Science, vol. 2051. Springer-Verlag, Berlin, 216–230.

Mitsuhashi, I. and Oyamaguchi, M. and Ohta, Y. and Yamada, T. 2004. The Joinability

and Unification Problems for Confluent Semi-constructor TRSs. In Proc. of 15th Int’l Conf.

Rewriting Techniques and Applications, RTA’04, V. van Oostrom, Ed. Lecture Notes in

Computer Science, vol. 3091. Springer-Verlag, Berlin, 285–300.

Mycroft, A. 1980. The theory and practice of transforming call by need into call by value. In

4th International Symposium on Programming, B. Robinet, Ed. Lecture Notes in Computer

Science, vol. 83. Springer-Verlag, Berlin, 269–281.

Mycroft, A. and Norman, A. 1992. Optimising compilation. Part ii: lazy functional

languages. In XIX Seminar on Current Trends in Theory and Practice of Informatics, SOF-

SEM’92, Ždiar, Czechoslovakia. Available at http://www.cl.cam.ac.uk/∼am/papers/

sofsem92b.ps.gz.

Oyamaguchi, M. 1986. The reachability problems for quasi-ground for term rewriting systems.

Journal of Information Processing 9, 4, 232–236.

Oyamaguchi, M. 1990. The reachability and joinability problems for right-ground term

rewriting systems. Journal of Information Processing 13, 3, 347–354.

Padawitz, P. 1988. Computing in Horn Clause Theories. EATCS Monographs on Theoretical

Computer Science, vol. 16. Springer-Verlag, Berlin.

Park, Y. G. and Goldberg, B. 1992. Escape Analysis on Lists. Proceedings of the International

Conference on Programming Language Design and Implementation (PLDI’92) 27, 7,

116–127.

Pettorossi, A. and Proietti, M. 1994. Transformation of Logic Programs: Foundations and

Techniques. Journal of Logic Programming 19, 20, 261–320.

Pettorossi, A. and Proietti, M. 1996a. A Comparative Revisitation of Some Program

Transformation Techniques. In Proc. of the 1996 Dagstuhl Seminar on Partial Evaluation.

Lecture Notes in Computer Science, vol. 1110. Springer-Verlag, Berlin, 355–385.

Pettorossi, A. and Proietti, M. 1996b. Rules and Strategies for Transforming Functional

and Logic Programs. ACM Computing Surveys 28, 2, 360–414.

Plasmeijer, R. and van Eekelen, M. 1993. Functional Programming and Parallel Graph

Rewriting. Addison Wesley.

Rabin, M. O. 1969. Decidability of second-order theories and automata on infinite trees.

Transactions of the American Mathematical Society 141, 1–35.

Reps, T. and Turnidge, T. 1996. Program Specialization via Program Slicing. In Partial

Evaluation, Int’l Seminar, Dagstuhl Castle, Germany, O. Danvy, R. Glück, and P. Thiemann,

Eds. Lecture Notes in Computer Science, vol. 1110. Springer-Verlag, Berlin, 409–

429.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

Removing redundant arguments automatically 35

Schoenig, S. and Ducasse, M. 1996. A Backward Slicing Algorithm for Prolog. In Proc.

of the 3rd International Static Analysis Symposium, SAS’96. Lecture Notes in Computer

Science, vol. 1145. Springer-Verlag, Berlin, 317–331.

Sekar, R., Pawagi, S. and Ramakrishnan, I. 1990. Small domains spell fast strictness analysis.

In 16th Annual ACM Symposium on Principles of Programming Languages, POPL’89. ACM

Press, New York, 169–183.

Szilagyi, G., Gyimothy, T., and Maluszynski, J. 2002. Static and Dynamic Slicing of

Constraint Logic Programs. Journal of Automated Software Engineering 9, 1, 41–65.

TeReSe, Ed. 2003. Term Rewriting Systems. Cambridge University Press, Cambridge.

Thatcher, J. W. and Wright, J. B. 1968. Generalized finite automata with an application to

a decision problem of second-order logic. Math. Systems Theory 2, 57–82.

Thomas, W. 1990. Automata on infinite objects. In Handbook of Theoretical Computer Science,

J. van Leeuwen, Ed. Vol. B: Formal Models and Semantics. Elsevier, Amsterdam and The

MIT Press, Cambridge, Mass, 133–191.

Tip, F. 1995. A Survey of Program Slicing Techniques. Journal of Programming Languages 3,

121–189.

Verma, M.-R. 2002, Algorithms and Reductions for Rewriting Problems II. Information

Processing Letters 84(4):227–233.

Wadler, P. and Hughes, R. 1987. Projections for Strictness Analysis. In Proc of International

Conference on Functional Programming Languages and Computer Architecture. Lecture Notes

in Computer Science, vol. 274. Springer-Verlag, Berlin, 385–407.

Wand, M. and Siveroni, I. 1999. Constraint systems for useless variable elimination. In

Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages (POPL’99). ACM Press, New York, 291–302.

Weiser, M. 1984. Program Slicing. IEEE Transactions on Software Engineering 10, 4, 352–357.

https://doi.org/10.1017/S1471068406002869 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002869

